JP2021530350A - 流体を処理するための電磁コイルアセンブリ構造およびそれを作製するための方法 - Google Patents

流体を処理するための電磁コイルアセンブリ構造およびそれを作製するための方法 Download PDF

Info

Publication number
JP2021530350A
JP2021530350A JP2021502840A JP2021502840A JP2021530350A JP 2021530350 A JP2021530350 A JP 2021530350A JP 2021502840 A JP2021502840 A JP 2021502840A JP 2021502840 A JP2021502840 A JP 2021502840A JP 2021530350 A JP2021530350 A JP 2021530350A
Authority
JP
Japan
Prior art keywords
fluid
electromagnet
sample
pcb board
electromagnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021502840A
Other languages
English (en)
Inventor
ドン ダブリュー. アーノルド,
トーマス アール. コービー,
チャン リウ,
スタニスロー ポティラーラ,
アレクサンダー ツィピロビッチ,
Original Assignee
ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド filed Critical ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド
Publication of JP2021530350A publication Critical patent/JP2021530350A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50855Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using modular assemblies of strips or of individual wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0893Geometry, shape and general structure having a very large number of wells, microfabricated wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/22Details of magnetic or electrostatic separation characterised by the magnetic field, e.g. its shape or generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical or biological applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00564Handling or washing solid phase elements, e.g. beads

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

電磁気システム、および電磁気システムを組み立てるための対応する方法が、説明される。電磁気システムは、それぞれが流体および複数の磁性粒子を受容する流体チャンバを画定するように構成される、複数の流体容器と、複数の流体容器のうちの少なくとも1つの中に磁場を発生させるように構成される、複数の電磁石とを含む、流体処理システムにおいて使用されることができる。流体処理システムはまた、PCBボードを含み得、PCBボードは、PCBボード上に含まれる電気接触端子と、各電磁石上に含まれるばね荷重される接続部との間に電気接続を確立することによって電磁石に電流を供給する。制御コンポーネントが、各電磁石によって発生される電磁場を制御し、少なくとも1つの流体容器内に、各流体容器内の流体内の複数の磁性粒子に磁気的に影響を及ぼすために十分な複数の磁場勾配を発生させる。

Description

(関連米国出願)
本願は、その全内容が参照することによって本明細書に組み込まれる、2018年7月20日に出願された、米国仮出願第62/701,009号の優先権の利益を主張する。
(分野)
本開示は、概して、電磁構造と、電磁構造を組み立てるための方法に関し、より具体的には、電磁構造と、流体内に配置される磁性粒子を操作することによって流体を処理するために使用される電磁構造を組み立てるための方法とに関する。
(導入)
サンプルの調製は、化学的および生物学的分析研究の重要な段階である。精密かつ信頼できる分析を達成するために、標的化合物が、複雑な未加工サンプルから処理され、分析機器に送達されなければならない。例えば、プロテオミクス研究は、概して、単一のタンパク質またはタンパク質群に焦点を合わせる。故に、生物学的サンプルが、サンプル中の他の細胞物質から標的タンパク質を単離するように処理される。タンパク質の消化、脱塩、単離、マトリクス浄化(例えば、免疫沈降)等の付加的処理が、多くの場合、要求される。塩、緩衝剤、洗剤、タンパク質、酵素、および他の化合物等の非標的物質が、典型的には、化学的ならびに生物学的サンプル中で見出される。これらの非標的物質は、例えば、分析機器によって検出される標的信号の量の低減を引き起こすことによって、分析に干渉し得る。したがって、複雑な未加工サンプルは、典型的には、非標的物質から着目化合物を単離するように、1つ以上の分離および/または抽出技法を受ける。
液体クロマトグラフィ(LC)は、異なる物質の複雑な混合物中に存在する着目分析物の分離のための、典型的な溶液ベースの技法である。液体クロマトグラフィは、概して、固体の不溶性母材にわたって液体サンプルを走流させることを伴い得る。液体サンプルは、ある条件、例えば、pH、塩分濃度、または溶媒組成条件下で、母材に対する親和性を有する、着目分析物を含み得る。LCの間、混合物中の化学成分は、液体移動相の流動によって固定相を通して搬送されることができる。液体クロマトグラフィにおける分離は、分析物と移動相および固定相の両方の相互作用の差異に起因して生じ得る。
高性能液体クロマトグラフィ(HPLC)は、分析物が高圧力において液体移動相中の固定相を通して押進される、LCのある形態である。高圧力を使用して分析物を押進させることは、分離された成分が固定相上に留まる時間、したがって、成分がカラム内に拡散する必要がある時間を短縮することができる。高性能液体クロマトグラフィは、典型的には、従来のLC技法と比較してより良好な分解能および感度を達成するために分析機器によって使用され得る、処理されたサンプルをもたらすことができる。しかしながら、LCは、サンプルを処理するために使用するには高価であり、複数の並列カラムが複数のサンプルを同時に処理するために要求されるような逐次的プロセスである、複雑な技法であり得る。加えて、LCは、ある潜在的標的材料を不可逆的に吸着および/または共溶出することができる。HPLCは、LC(例えば、典型的には、サンプルを処理するために約10〜30分を要求する)よりも迅速であり得るが、HPLCの複雑性および費用は、例えば、プロセスを実行するために要求されるポンプならびに他の特殊機器に起因して、従来のLCをはるかに上回り得る。
磁性粒子またはビーズは、化学的および生物学的アッセイならびに診断のためのサンプル調製のために採用され得る、別の技術である。例証的磁性粒子が、米国特許第4,582,622号および米国特許第4,628,037号に説明されている。サンプル分離および抽出のために磁性粒子を採用するデバイスならびに方法の実施例が、米国特許第4,554,088号および米国特許第8,361,316号に説明されている。そのような磁性粒子は、典型的には、Martin A.M.Gijsによって著され、Microfluid Nanofluid(2004;I:22−40)に公開された、「Magnetic bead handling on−chip:new opportunities for analytical applications」と題された論説に開示されるもの等の微小流体システムにおいて使用される。
磁性粒子技術は、高性能(例えば、デバイス感度および正確度)を提供し、また、アッセイプロトコルの容易な自動化も提供する、ロバストな技術である。多くの用途に関して、磁性粒子の表面は、混合物中の標的物質を他の物質と選択的に結合させ得る、抗体、レクチン、オリゴヌクレオチド、または他の生体反応性分子等の好適なリガンドもしくは受容体でコーティングされる。磁性粒子の分離および取扱技術における1つの主要な要素は、標的物質と粒子表面との間の反応率を向上させるための効率的な混合であり得る。懸濁磁性粒子が、磁力によって作動され、サンプル溶液の攪拌をもたらし、混合プロセスを向上または発生させることができる。例示的磁性粒子混合システムは、Suzuki et al.によって著され、Journal of Microelectromechanical Systems(2004;I:13:779−790)に公開された、「A chaotic mixer for magnetic bead−based micro cell sorter」と題された論説、およびWang et al.によって著され、Microfluid Nanofluid(2008;I:4:375−389)に公開された、「A rapid magnetic particle driven micromixer」と題された論説に開示されている。
米国特許第6,231,760号、米国特許第6,884,357号、および米国特許第8,361,316号に開示されるもの等の磁性粒子を使用して流体を混合するためのいくつかの前述の技法は、容器内の磁場勾配の相対変位を誘発するように、機械的手段を使用して、静止している容器に対して磁石を移動させること、または静止している磁石に対する容器の移動を伴っている。そのような方法を使用する磁場勾配の変位は、磁性粒子を磁石位置の変化に伴って持続的に移動するように誘導することによって、容器内にある混合を引き起こし得る。しかしながら、容器内での磁場勾配の形成は、粒子を容器の壁に近接する領域内に誘引し、閉じ込め得、これは、混合効率および有効性を低減させる。国際特許出願公開第WO1991/09308号に説明される別の技法は、その中に配列される磁性粒子を有するチャンバの周囲で相互に対面する2つの電磁石の使用を伴う。十分な周波数において2つの電磁石を順次通電および非通電させること(すなわち、バイナリオン/オフ制御)は、チャンバの中に配置された流体内に磁性粒子を懸濁させるように動作する。本方法に従って2つの電磁石を作動させることから結果として生じる粒子の移動は、チャンバ内の小さい面積に限定され得、比較的弱い混合力を発生させる。加えて、磁性粒子の一部は、磁場によって影響を受けない場合がある。影響を受けていない粒子は、チャンバ表面の近傍で凝集し、混合または親和性結合に寄与しない。
米国特許第8,585,279号は、封入されたサンプル容器内で磁性粒子を作動させるために、統合ポンプおよび流体チャネルの組み合わせにおける無線周波数(RF)駆動電磁石を採用する、微小流体チップデバイスを開示する。電磁石は、サンプル容器内の磁場勾配を変動させ、サンプル流体内の磁性粒子の移動をもたらすように構成されるシーケンスで作動される。しかしながら、微小流体チップデバイスを使用するサンプルの混合は、元来、微小流体デバイスの構成が限定数のサンプルの同時の処理のみを可能にするため、本質的に逐次的である。特定の構成に起因して、微小流体チップデバイスは、比較的大きいサンプル体積の損失および磁性粒子の損失を被る。加えて、微小流体チップ微小流体デバイスの封入されたチャネルおよびサンプル容器は、デバイスからのサンプル体積の装填ならびに収集の自動化に対して障壁をもたらし、処理されることが可能なサンプル体積を限定する。微小流体チップデバイスを使用して処理されるサンプルは、本デバイスの種々のチャネルおよび流体経路を通して進行することが要求されるため、広い接触表面積に必然的に暴露される。故に、微小流体チップデバイスを介して処理されるサンプルは、例えば、非特異的結合に起因して、高い飛沫同伴および低い回収の影響を受けやすい。
磁性粒子はまた、Anderson et al.によって著され、Journal of Proteome Research(2004;I:3:235−244)に公開された、「Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti−Peptide Antibodies(SISCAPA)」と題された論説に説明される、SISCAPA技法等のサンプルプレート用途においても使用されている。例示的磁気サンプルプレートシステムは、Beckman Coulter,Inc.(Brea,California,United States)によって提供されるAgencourt SPRIPlate 96R−Ring Super Magnet Plate、およびAlpaqua(登録商標)(Beverly,Massachusetts,United States)によって提供されるMagnum FLXを含む。これらの用途では、サンプルプレートは、磁石がサンプルウェルの間に突出するか、またはサンプルウェルが輪形状の磁石内に位置付けられることを可能にするかのいずれかであるように配列される、複数の固定磁場磁石を含む。サンプルウェル内の磁性粒子は、サンプルプレートの近傍に永久磁石を設置し、混合を助長することによって攪拌されることができる。他のタイプの自動混合デバイスは、概して、機械的攪拌によって(すなわち、サンプルプレートを振動させることによって)混合を達成しようとする。サンプルを処理した後、磁石は、ビーズをサンプルウェルの側面に閉じ込め、サンプル流体の除去を可能にするために使用されることができる。しかしながら、従来の磁気サンプルプレート用途において使用される固定磁場磁石は、ロバストな混合を達成することが可能ではない。例えば、磁性粒子は、概して、サンプルウェルの離散面積内で凝集し、集塊化する傾向がある。加えて、プレート自体が、分析のステップの間に移動されなければならず、これは、有意な自動化を要求する。
故に、サンプル流体の超高速均質混合および多数のサンプル流体のアクセス可能な並行処理を含む、磁性粒子を使用するサンプル混合ならびに分離の全体的速度および効率を改良する必要性が存在する。
米国特許第8,585,279号公報
(要約)
本出願人の本教示の種々の側面による、装置、システム、および方法は、既知のシステムを用いて被られる、サンプル体積に関する限定、サンプル損失、ならびに磁性粒子損失を伴わない、電磁構造を使用する流体の処理を可能にする。一例として、流体は、流体内に配置される磁性粒子を使用して、(例えば、上部カバーを伴わない、周囲大気に開放している)開放流体容器内で処理されることができる。磁性粒子は、流体容器に隣接して配列される、例えば、流体容器の周囲を中心として2次元アレイに配列される、磁気構造によって発生される磁場によって攪拌されるように構成されることができる。
流体容器を囲繞する磁気構造への信号の選択的印加に基づいて、磁性粒子は、非限定的実施例として、急速かつ効率的に流体を混合する、および/または流体内の標的分析物を捕捉するように、流体内で回転、転回、ならびに/もしくは側方に左右に移動するように影響を受けることができる。磁気構造は、各電磁石が、その中に配置される磁性粒子に影響を及ぼすために効果的な所望の磁場を流体容器内で発生させるように個別に制御される、流体容器の周囲に配置される複数の電磁石から形成されることができる。
本教示の種々の側面によると、本システムは、本明細書に開示される方法およびシステムが、その内側の種々の異なる体積のサンプルの処理を可能にし得るように、容器内の混合チャンバへのサンプルの統合された微小流体送達を利用しない。微小流体ベースのシステムが、概して、完全に充填された微小流体ネットワークを通して固定量の液体を輸送するように、拡散、毛管力、または微小流体ポンプに依拠する、閉鎖系である一方で、本教示の種々の側面によるシステムおよび方法は、種々の体積の流体サンプルで充填もしくは部分的に充填され得る容器を利用し、それによって、例えば、サンプルの可用性または経費ならびに/もしくは特定のアッセイの要件に応じて、処理されるべきサンプル体積の低減または拡張を可能にすることができる。
いくつかの側面では、処理されるべきサンプル(およびそれを処理するために利用される試薬)は、例えば、(例えば、容器の開放端を通して挿入されるオートサンプラまたはピペットを介して)開放流体容器に直接添加されることができ、同様に、処置に続いて、(例えば、捕捉デバイスを介して)そこから直接除去されることができる。
一側面では、流体処理システムが、説明される。流体処理システムは、複数の流体容器と、複数の電磁石と、PCBボードと、複数の電磁石に結合される、制御コンポーネントとを含むことができる。各流体容器は、その中に流体と、複数の磁性粒子とを含有するように構成される、流体チャンバを画定するように構成されることができる。流体チャンバは、閉鎖下端から、大気に開放している開放上端まで延在するように構成され、また、流体処理システムを使用する処理のために流体を受容するように構成されることができる。各電磁石は、複数の流体容器のうちの少なくとも1つの中に磁場を発生させるように構成されることができる。さらに、各電磁石は、複数のばね荷重される接続部を備えることができる。PCBボードは、複数の電気接触端子を備えることができる。各電気接触端子は、電力源から電気信号を受信するように構成されることができる。各電気接触端子はさらに、対応する電磁石のばね荷重される接続部に接続し、電磁石に電気信号を供給する、対応する電磁石との電気接続を確立するように構成されることができる。制御コンポーネントは、複数の電磁石に結合されることができる。制御コンポーネントは、各電磁石によって発生される電磁場を制御し、少なくとも1つの流体容器内に、各流体容器内の流体内の複数の磁性粒子に磁気的に影響を及ぼすために十分な複数の磁場勾配を発生させるように構成されることができる。
別の側面では、流体処理のための方法が、説明される。流体処理方法は、流体および複数の磁性粒子を複数の流体容器に送達することと、各電磁石上に含まれるばね荷重される接続部とPCBボードの電気接触端子との間に電気接続を確立することによって、電力源からPCBボードに指向される電気信号を、PCBボード内に含まれる複数の電気接触端子を通して複数の電磁石に供給することと、複数の電磁石を使用して、複数の流体容器のうちの少なくとも1つの中に磁場を発生させることと、各電磁石によって発生される電磁場を制御し、少なくとも1つの流体容器内に、各流体容器内の流体内の複数の磁性粒子に磁気的に影響を及ぼすために十分な複数の磁場勾配を発生させることとを含むことができる。
他の実施例では、上記の側面のいずれか、または本明細書に説明される任意のシステム、方法、装置は、以下の特徴のうちの1つ以上を含むことができる。
PCBボードは、複数の孔を含むことができる。各孔は、電磁石の少なくとも一部を受容するように構成されることができる。孔は、少なくとも2つの電気接触端子が、各孔の円周に隣接して配置されるように構成されることができる。さらに、各電磁石は、対応する孔の中への挿入のために構成される、搭載支柱を含むことができる。加えて、または代替として、PCBボードの電気接触端子は、PCBボードに接続される、電気ワイヤを備えることができる。
少なくとも1つの電磁石は、電磁石によって発生される電磁場を再成形するように構成される、1つ以上の磁気レンズを備えることができる。さらに、各電磁石内に含まれる、ばね荷重される接続部は、少なくとも1つのばね荷重される押しピンを含むことができる。加えて、または代替として、各電磁石は、コイル状の伝導性ワイヤを備えることができる。各電磁石のばね荷重される接続部は、その電磁石のコイル状の伝導性ワイヤに電気的に結合されるように構成されることができる。
さらに、少なくとも1つの流体容器は、サンプルプレート内に配列される、複数のサンプルウェルを備えることができる。いくつかの側面では、サンプルプレートは、96ウェルサンプルプレートを含むことができる。
本発明の他の側面および利点が、その全てが実施例としてのみ、本発明の種々の側面を例証する、以下の図面ならびに説明から明白となり得る。
種々の実施形態の詳細な説明が、一例として、以下の図面を参照して、本明細書に下記に提供される。図面が、例示的にすぎず、図面の全ての参照が、例証の目的のためのみに行われ、本明細書に下記に説明される実施形態の範囲をいかようにも限定することを意図していないことを理解されたい。便宜上、参照番号はまた、類似構成要素または特徴を示すように、図の全体を通して(オフセットの有無を問わず)繰り返されてもよい。
図1A−1Dは、本明細書に開示されるいくつかの側面による、例証的流体処理システムを描写する。 図1A−1Dは、本明細書に開示されるいくつかの側面による、例証的流体処理システムを描写する。 図1A−1Dは、本明細書に開示されるいくつかの側面による、例証的流体処理システムを描写する。 図1A−1Dは、本明細書に開示されるいくつかの側面による、例証的流体処理システムを描写する。
図2A−Bは、本明細書に開示されるいくつかの側面による、流体処理システムの実施例を描写する。 図2A−Bは、本明細書に開示されるいくつかの側面による、流体処理システムの実施例を描写する。
図2C−2Fは、本明細書に開示されるいくつかの側面による、電磁石、および電磁石を接続するための接続部の実施例を描写する。 図2C−2Fは、本明細書に開示されるいくつかの側面による、電磁石、および電磁石を接続するための接続部の実施例を描写する。 図2C−2Fは、本明細書に開示されるいくつかの側面による、電磁石、および電磁石を接続するための接続部の実施例を描写する。 図2C−2Fは、本明細書に開示されるいくつかの側面による、電磁石、および電磁石を接続するための接続部の実施例を描写する。
図3A−3Bは、本明細書に開示されるいくつかの側面による、開放ウェル磁気サンプルプレートの実施例を図示する。
図4は、本明細書に開示されるいくつかの側面による、例証的流体処理システムを描写する。
図5は、本明細書に開示されるいくつかの側面による、例証的流体処理構造およびその混合パターンを描写する。
図6は、本明細書に開示されるいくつかの側面による、例証的な流体処理および分析システムを描写する。
(詳細な説明)
本開示は、概して、電磁気システムと、電磁気システムを組み立てるための対応する方法とに関する。いくつかの実施形態では、電磁気システムは、その中に分散される磁性粒子を利用することによって、流体サンプルを混合、分離、フィルタリング、または別様に処理するために使用されることができる。流体処理システムは、流体をマクロまたはミクロスケールで処理するように構成されることができる。一般に、マクロスケールは、ミリリットル範囲内の流体体積を伴い得る一方、ミクロスケール流体処理は、マイクロリットル、ピコリットル、またはナノリットル等、ミリリットル範囲を下回る流体体積を伴い得る。しかしながら、流体処理システムは、本明細書に説明されるように動作することが可能な任意の流体体積を処理することができる。
図1A−1Dは、本明細書に開示されるいくつかの側面による、例証的流体処理システム100を描写する。図1Aに示される流体処理システム100は、実施例として提供され、本明細書に説明されるシステム、デバイス、および方法は、多くの異なる流体処理システムと連動して使用されることができる。さらに、流体処理システム100は、本明細書に説明されるシステム、デバイス、および方法の実施形態に従った使用のために1つのみの可能性として考えられる流体処理システムを表し、他の構成ならびに動作特性を有する流体処理システムおよび/またはそのコンポーネントが全て、同様に、本明細書に説明されるシステム、デバイス、ならびに方法に従って使用されることができる。
流体処理システム100は、複数の流体容器115−1、115−2、・・・、115−nと、流体容器115−1、115−2、・・・、115−n内に磁場勾配または磁力を発生させるように構成される、磁気構造105とを有する、流体処理構造130を含むことができる。各流体容器115−1、115−2、・・・、115−nは、概して、任意のタイプ/数の容器を含み得る。容器は、サンプル流体を保持するように構成されることができる。容器は、その中に、サンプルウェル、バイアル、流体リザーバ、マイクロタイタプレート内のウェル、または同等物等の、流体含有チャンバを画定する、任意の好適な容器であることができる。概して、任意の好適な数の流体容器115−1、115−2、・・・、115−nが、使用されることができる。
概して、各流体容器115−1、115−2、・・・、115−nは、流体サンプルを含有することができる。さらに、各流体容器115−1、115−2、・・・、115−nは、サンプル容器への流体サンプルおよび/または試薬の挿入ならびに/もしくはそれからの流体サンプルおよび/または試薬の除去を可能にする、開放サンプル容器(例えば、大気に開放している)であることができる。例えば、流体サンプル容器115−1、115−2、・・・、115−nは、いったん流体が処理されると、容器の開放端を通して挿入されるオートサンプラまたはピペットを介した流体サンプルの直接挿入、ならびに/もしくは捕捉デバイスを介したサンプルの直接除去を可能にするように配列されることができる。流体容器115−1、115−2、・・・、115−nは、種々の構造を備えることができる。例えば、流体容器115−1、115−2、・・・、115−nは、高スループットサンプル調製を可能にするように構成される、複数のウェルまたはバイアルを含む、多重バイアルアレイ構造であることができる。
各流体容器115−1、115−2、・・・、115−n内の流体サンプルは、その中に配置される、複数の磁性粒子120を含むことができる。磁性粒子は、サンプル流体が各流体容器115−1、115−2、・・・、115−nに移送される前および/または後に、サンプル流体をそれに移送することに先立って、サンプル流体に添加されることができる。
磁性粒子120は、磁場の影響下で撹拌され得るように構成されることができる。下記にさらに詳細に説明されるように、磁場は、磁気構造130を使用して発生されることができる。例えば、磁場は、流体容器115−1、115−2、・・・、115−nに隣接して配列される、1つ以上の電磁石を使用して発生されることができる。磁性粒子120またはその一部は、限定ではないが、種々の酸化鉄材料(例えば、Fe、SiOでコーティングされたFe、Fe、もしくは同等物)等の強磁性材料を含む、種々の磁気的に影響を受けやすい材料から形成されることができる。
いくつかの実施形態では、磁性粒子120は、非磁性コーティングでコーティングされた磁性「コア」を含むことができる。例えば、磁性粒子120は、流体と反応しないように、および/または着目材料(例えば、生体材料)に選択的に結合するように構成されることができる。いくつかの実施形態では、磁性粒子120の少なくとも一部は、常磁性ビーズを含むことができる。いくつかの実装では、常磁性ビーズを使用するとき、磁性粒子120の少なくとも一部は、流体中の磁性粒子120を撹拌する、および/または本システム内での磁性粒子120の移動を促進する、強磁性の磁性粒子を含むことができる。
加えて、または代替として、磁性粒子は、C18アルキル基等の種々のアルキル基で修飾されるビーズ(「C18ビーズ」)を含むことができる。非限定的実施例として、そのようなC18ビーズは、ペプチドおよびタンパク質の消化物の精製、脱塩、ならびに濃縮のために使用されることができる。さらに、磁性粒子は、例えば、抗体(「親和性ビーズ」)でコーティングされ、サンプル内の特定の分析物の選択的結合を提供することによって官能化されている、ビーズを含むことができる。磁性粒子120は、国際特許出願公開文書第WO2015/128725号(その全教示は、参照することによって本明細書に組み込まれる)に説明されるもの等の球状および/または棒形状(すなわち、磁気撹拌バー)等の種々の形状を有することができる。
磁気構造105は、流体容器115−1、115−2、・・・、115−nの周囲に配置される、複数の電磁石110−1、110−2、・・・、110−mを使用して形成されることができる。磁気構造130内の各電磁石110−1、110−2、・・・、110−mは、個々に制御され、流体容器内に、その中に配置される磁性粒子に影響を及ぼすために効果的な所望の磁場を発生させることができる。例えば、磁気構造130は、急速かつ効率的に流体を混合する、および/または流体内の標的分析物を捕捉するために、複数の電磁石110−1、110−2、・・・、110−mの組み合わせられた効果が異なる強度ならびに/もしくは指向性等の異なる特性を伴うサンプル容器内に磁場を生成するように構成されることができる。
磁気構造130は、種々の構成で配列されることができる。例えば、磁気構造130は、2次元アレイに配列されることができる。代替として、または加えて、磁気構造130は、磁性粒子の3次元の移動を可能にし得る、2次元アレイの複数の層として配列されることができる。磁気構造130は、流体サンプル内での磁性粒子の移動を促進するために、流体容器の周囲を中心として配置されることができる。さらに、磁気構造130は、磁気構造(例えば、流体容器を囲繞する電磁石)への電気信号の選択的印加が、流体サンプル中の磁性粒子を流体サンプル内で回転、転回、および/または側方に移動させるように構成されることができる。
本明細書に説明される、磁性粒子に影響を及ぼすための磁気アセンブリの使用は、従来の磁性粒子処理システム等の既存技術に優る種々の技術的利点を提供することができる。例えば、本明細書に開示される磁性構造は、種々の体積のサンプル流体における増加したサンプル接触率のために、拡散率を有意に向上させる、および/または磁気免疫学的アッセイにおける分析物捕捉効率を向上させることができる。さらに、本明細書に開示される磁気構造は、より迅速かつより効果的なサンプル混合を提供するように、磁性粒子に影響を及ぼし、したがって、サンプル混合の効率の増加を提供することができる。加えて、本教示に従って構成される流体処理構造を使用してサンプルを処理することは、迅速な反応速度を発生させることができる。例えば、免疫学的親和性プルダウン、洗浄、溶出/変性、還元、アルキル化、および消化手順を含む、タンパク質処理は、手動の管内処理のための1日または2日の処理時間と比較して、約10〜12分で完了されることができる。増加した処理速度は、例えば、流体処理の律速ステップ(例えば、LCの律速ステップ)および既知の微小流体プラットフォームの中で少ない固定体積を利用する必要性のため、拡散の克服に起因して達成される。加えて、そのような迅速な効率的サンプル処理は、本教示に従って構成される流体処理構造が、サンプル反応ウェルの大型アレイの中に統合され、それによって、サンプル処理を増加させ、例えば、オートサンプラを介した自動化を可能にし得るため、同時にサンプル反応容器の大型アレイを横断して達成されることができる。本明細書に説明される流体処理システムはまた、前述の非限定的実施例に加えて、複数の他の技術的利点を提供することもできる。
記載されるように、磁気構造105はさらに、複数の電磁石110−1、110−2、・・・、110−mを含む。4つの電磁石(例えば、電磁石110−1、110−2、110−3、110−4)が、図1Aに、各流体容器(例えば、流体容器115−1))を囲繞するものとして描写されているが、本明細書に開示される実施形態は、任意の具体的な数の電磁石に限定されない。概して、任意の好適な数の電磁石(例えば、2個、3個、4個、5個、6個、7個、8個、9個、10個、以上の電磁石)が、各流体容器115−1、115−2、・・・、115−n内に磁場勾配もしくは磁力を発生させるために使用されることができる。
いくつかの実施形態では、4つの電磁石(例えば、電磁石110−1、110−2、110−3、110−4)は、四重極磁石構造と同一に、または実質的に同様に動作するように構成されることができる。電磁石110−1、110−2、・・・、110−mは、例えば、強磁性コア電磁石を含む、当技術分野において公知の任意好適な電磁石を含むことができる。さらに、電磁石110−1、110−2、・・・、110−mは、正方形、長方形、丸みを帯びた形状、楕円形、または本明細書に開示される種々の側面に従って動作することが可能な任意の他の形状を含む、種々の形状を有することができる。
流体処理システム100はまた、コントローラ125を含むことができる。コントローラ125は、1つ以上の無線周波数(RF)信号、直流(DC)信号、交流(AC)信号、または同等物の印加を介して電磁石を差動的に作動させるように構成されることができる。加えて、または代替として、複数の電磁石に印加されるAC信号は、サンプル流体内での電磁石の所望される移動に影響を及ぼすために、相互に対して異なる位相遅延を呈することができる。さらに、DC信号は、非限定的な実施例として、流体が、磁性粒子の吸引を伴わずに容器から引き出され得るように、電磁石を隔離する(例えば、流体容器の片側に引き寄せる)ために効果的であることができる。
コントローラ125は、磁気構造105に動作可能に結合され、電磁石110−1、110−2、・・・、110−mによって生成される磁場を制御するように構成されることができる。いくつかの実施形態では、コントローラ125は、電気信号を複数の電磁石110−1、110−2、・・・、110−mに供給するように構成される、1つ以上の電源(図示せず)を制御するように構成されることができる。電気信号は、無線周波数(RF)波形、直流(DC)、交流(AC)、または同等物の形態にあることができる。AC波形が、概して、流体サンプルの混合を助長するように電磁石110−1、110−2、・・・、110−mに印加され得る、波形の実施例として本明細書で使用されるが、本教示の種々の側面に従って動作することが可能な任意の好適なタイプの電流が、本明細書で考慮される。
例えば、DC信号は、加えて、または代替として、磁性粒子120を流体容器115−1の一側面に引き寄せ(およびバルク流体から引き出し)、混合ステップ後に容器からの流体移送を補助する、ならびに/もしくは磁性粒子の吸引を防止するために、1つ以上の電磁石110−1、110−2、・・・、110−mに印加されることができる。
コントローラ125は、電磁石を作動させることが可能な任意のタイプの好適なデバイスおよび/または電気コンポーネントであることができる。コントローラ125は、電磁石のそれぞれのソレノイドを通して通過する電流を制御することによって、電磁石110−1、110−2、・・・、110−mのそれぞれによって生成される磁場を調整するように動作することができる。加えて、または代替として、コントローラ125は、電磁石110−1、110−2、・・・、110−mを制御するための命令を提供するように構成されるアプリケーションを実行するコンピューティングデバイス等、論理デバイス(図示せず)ならびに/もしくはメモリを含む、またはそれに結合されることができる。アプリケーションは、オペレータ入力および/または流体処理システム100からのフィードバックに基づいて命令を提供することができる。例えば、アプリケーションは、コントローラ125による実行のための1つ以上のサンプル処理プロトコルを含むことができる、ならびに/もしくはメモリは、それを記憶するように構成されることができる。
各電磁石110−1、110−2、・・・、110−mは、コントローラ125によって、個別にアドレス指定され、作動されることができる。例えば、コントローラ125は、電磁石のうちの1つ以上が異なる磁場を発生させるように、異なる位相のAC電気信号を電磁石110−1、110−2、・・・、110−mのうちの1つ以上のそれぞれに供給することができる。このように、流体容器115−1、115−2、・・・、115−n内で磁気構造105によって発生される磁場勾配は、サンプル流体内での磁性粒子120の移動を操作するように、急速かつ効果的に制御されることができる。いくつかの実施形態では、RF波形およびその特性(例えば、位相偏移)が、サンプル処理プロトコルに従って電磁石110−1、110−2、・・・、110−mに印加されることができる。本教示に照らして、磁気構造105が、限定ではないが、タンパク質アッセイ、サンプル誘導体化(例えば、ステロイド誘導体化、ガスクロマトグラフィのためのサンプル誘導体化等)、および/またはサンプル精製ならびに脱塩を含む、種々のプロセスにおいてサンプル流体内の磁性粒子120を操作するために利用され得ることを理解されたい。本処理に続いて、処理された流体は、分析のために質量分析計(MS)等の種々の分析機器に送達されることができる。
図1Bは、流体容器115−1の実施例を図示する。図1Bに示されるように、流体容器115−1は、開放上端115a(例えば、周囲の大気に開放している)から下側閉鎖端115bまで延在することができる。そのような配列下で、流体は、流体容器115−1の開放上端115aを通して流体容器115−1の中に装填される、および/またはそれから除去されることができる。例えば、図1Bに示されるように、1つ以上の液体装填/収集デバイス135が、流体容器115−1の開放上端115aの中に挿入され、流体容器115−1の内外に液体を装填ならびに/もしくは除去するために使用されることができる。容器115−1は、除去可能なキャップ(図示せず)を含むことができる。キャップは、任意の好適な様式で配列されることができる。例えば、キャップは、種々の処理手順の間に、開放上端115a(例えば、Eppendorf管)に結合されることができる。例えば、キャップは、混合、汚染、および/または蒸発の間に流体の逃散を防止するために使用されることができる。本明細書に開示される実施形態と併用され得る液体装填/収集デバイス135の実施例は、限定ではないが、手動サンプル装填デバイス(例えば、ピペット)、多重チャネルピペットデバイス、音響液体取扱デバイス、および/またはオートサンプラを含むことができる。液体は、さらなる処理または分析のために分析デバイス140(例えば、質量分析計)に移送されることができる。
いくつかの実施形態では、(例えば、流体チャンバの底部115bの上方のある高さに、流体容器の周囲を中心として配列される)電磁石110−1、110−2、・・・、110−mの単一の層が、流体容器内の特定の平面内に磁性粒子120を捕捉する、および/または懸濁させる、流体容器115−1、115−2、・・・、115−n内に磁場を発生させるように作動されることができる。例えば、磁性粒子120は、流体収集プロセスの間に、および/または流体チャンバの下側表面上の材料との接触が回避されることになる、材料(例えば、流体チャンバの下側表面に付着する細胞)の上方の平面内で流体(例えば、試薬)を処理するために、流体容器の底部から離れるように磁性粒子を移動させるように特定の平面内に懸濁されることができる。
磁気構造105は、種々の流体処理システムおよび流体取扱デバイスの中に組み込まれることができる。例えば、図1Bに示されるように、磁気構造105は、磁気混合器の混合要素として機能する、独立型混合デバイス112として動作することができる。
さらに、図1Bに示されるように、いくつかの実施形態では、アクチュエータ150が、コントローラ125を起動するために利用されることができる。具体的には、流体容器115が、コントローラ125を起動し、電磁石110−1、110−2、110−3、110−4を作動させるように、アクチュエータ150に対して押し付けられることができる。さらに、磁気構造105(図1A)は、従来の4、8、12、または96ウェルサンプルプレート等のサンプルプレートのサンプル容器内で磁性粒子120を混合するために使用されることができる。加えて、または代替として、磁気構造105は、開放ウェルサンプルプレート(すなわち、大気に開放している、除去可能カバーもしくはキャップでシールされる、および/または部分的に封入される)のサンプルウェル内で磁性粒子120を混合するように構成されることができる。
図1Cに示されるように、サンプルプレート160の流体容器115−1(すなわち、サンプルウェル)は、電磁石110−1、110−2、・・・、110−mの間に形成される空洞内で下方に嵌合することができる。さらに、図1Dに示されるように、サンプルプレート160は、サンプルウェル115−1が電磁石110−1、110−2、・・・、110−mに隣接して配列され得るように、その平面170上等の流体処理システム100の一部の上に設置されることができる。
図2A−Bを参照すると、本教示の種々の側面による、流体処理システム200の実施例が、描写される。図2Aに示されるように、分解図に描写される流体処理システム200は、ベースプレート210と、PCBボード220と、複数の電磁構造230と、その略平面状の上側表面240aから延在する複数のサンプルウェル242を画定する、上側プレート240とを備えることができる。上側プレート240は、サンプルウェルが、略円形の断面形状を有する、96ウェルの形式として図2Aに描写されているが、上側プレート240が、上記で議論されるように、種々の断面形状および最大容積を呈する任意の数のサンプルウェル242を含み得ることが、当業者によって理解されるであろう。例えば、本教示によると、開放サンプルウェル242はそれぞれ、種々の体積の流体サンプルで充填または部分的に充填され、それによって、例えば、サンプルの可用性もしくは経費および/または特定のアッセイの要件に応じて、処理されるべきサンプル体積の低減もしくは拡張を可能にすることができる。さらに、上側プレート240が、全て非限定的な実施例として、ポリマー材料(例えば、ポリスチレンまたはポリプロピレン)等の、当技術分野において公知である、もしくは本教示に従って以降に展開される任意の好適な材料を使用して製造され得ることを理解されたい。加えて、当技術分野において公知であるように、表面は、種々の表面コーティングでコーティングされ、増加された親水性、疎水性、不動態化性、または細胞もしくは他の分析物への増加された結合性を提供することができる。いくつかの側面では、上側プレート240の底面240bは、下記に議論されるように、流体処理システムの下側部分と(恒久的にまたは除去可能に)係合するように構成されることができる。例えば、図2Bに示されるように、いくつかの側面では、底面240bは、電磁構造230の上端230aに係合するために、その中に形成されるくぼみ、またはそれを通して電磁構造の一部が延在し、サンプルウェル242のそれぞれの周囲に、かつそれを中心として配置され得るボアを含むことができる。
流体処理システム200はさらに、PCBボード220と、ベースプレート210と、複数の電磁石230とを含むことができる。示されるように、PCBボード220は、それに電気信号が電力源(図示せず)によって印加され得、それに電磁石230が電気的に結合され得る、複数の電気接点222を備えることができる。本明細書に別様に議論されるように、PCBボード220は、各電磁石230が、コントローラによって、電気信号のそれへの選択的印加を通して個々にアドレス指定および作動され得るように構成されることができる。
加えて、PCBボード220は、それを通して電磁構造の一部がベースプレート210まで延在し得る、複数の孔224を含むことができる。ベースプレート210は、電磁石230を搭載するように構成される。ベースプレート210はまた、ヒートシンクとして機能することもできる。例えば、図2Aに示されるように、電磁石230は、電磁石230が電気接点222上に着座されると孔224を通して延在する、搭載支柱232を含むことができる。搭載支柱232は、搭載支柱232と関連付けられる伝導性導線が、ベースプレート210に電気的に結合され得るように構成されることができる。示されるように、ベースプレート210は、搭載支柱232がそれと確実な係合状態にあることを確実にするように、搭載支柱232に対応するボアを含むことができる。さらに、電磁石230は、その周囲に、PCBボードの電気接点222に電気的に結合される、コイル状の伝導性ワイヤ234が存在し得る、上側支柱を含むことができる。伝導性ワイヤ234は、電磁石230の上端230a内のコイルホルダ255の中で終端することができる。コイルホルダ255は、非伝導性材料から成ることができる。
図2C−2Eは、本教示のいくつかの側面による、電磁石230の実施例を図示する。示されるように、電磁石230は、電磁石230の上端230aに配置される、上側極282と、下側極284とを含むことができる。いくつかの側面では、非伝導性材料725が、電磁石230の外部部分の少なくとも一部を囲繞することができる。例えば、図2Dに示されるように、断熱材231が、電磁石230を隔離するために使用されることができる。概して、当技術分野において入手可能な任意の好適な非伝導性材料が、電磁石230を隔離するために使用されることができる。
電磁石230の上側極282は、導電性材料から成ることができる。いくつかの側面では、上側極282および下側極284は、断熱材231を使用して電気的に絶縁される、単一部品から成ることができる。電磁石230はまた、1つ以上の磁気レンズ250を含むことができる。磁気レンズ250は、電磁石230に隣接するサンプルウェル242(容器)内に磁場を再成形するように構成されることができる。
図2Aに戻って参照すると、ベースプレート210は、完全な電気回路を形成するために接地されることができる。PCBボード220は、1つ以上の電気信号が複数の電気接点222に印加され、電流を接触点222から電磁構造230を通して流動させ得るように構成されることができる。
図2D−2Fに示されるように、PCBボードと各電磁石230との間の接続は、複数の伝導性のばね荷重される押しピン270、271を使用して達成されることができる。2つのばね荷重される押しピンとして説明され、示されているが、電磁石230をPCBボードに接続することが可能な任意の好適な構造および任意の好適な数の構造が、本教示に従って利用されることができる。ばね荷重される押しピン270、271は、伝導性ワイヤ234に接続し、PCBコントロールボードから伝導性ワイヤ234に電気信号を伝導するように構成されることができる。
具体的には、電流は、PCBボード222の電気接点から、ばね荷重される押しピン270、271およびワイヤコイル234を通して流動することができる。電流の方向は、特定の接点222に印加される信号の電圧に依存し得る。ワイヤコイル234は、その指向性が電流の方向に依存する、ワイヤコイル234を通して、かつそれを中心として磁場を発生させるように、ソレノイドとして作用することができる。電磁構造230の上端230aは、種々の形状(例えば、その周囲でワイヤがコイル状になる、支柱と実質的に同一の断面形状)を有することができる。例えば、上端230aは、磁場を集中させる、および/またはサンプルウェル内でのその均一性を増加させる、レンズとして作用するように、伝導性材料から選択的に形状され、サンプルウェルの周辺表面に対応するように成形されることができる。
ばね荷重される押しピン270、271は、PCBボード上の対応する接触面積222と接続し得るように構成されることができる。例えば、図2Eに示されるように、ばね荷重される押しピン270、271は、PCBボード上の対応する接点222、222’と接続するように構成される。記載されるように、PCBボード上の対応する接点222、222’は、PCBコントロールボードから電磁石230の伝導性ワイヤ234に電気信号を転送する電気接続を確立するために、ばね荷重される押しピン270、271を受容し、それに接続するように構成されている、PCBボード上の電気接点であることができる。
例えば、いくつかの側面では、対応する接点222、222’は、ばね荷重される押しピン270、271のための接続点としての役割を果たすように構成される、PCBボード上に形成される、小さい孔であることができる。さらに、マルチウェル処理システムにおいて、電気信号は、概して、単一のPCBボード(例えば、図2Aに示されるPCBボード220)によって制御される、電磁石に同時に送信される。例えば、図2Aの流体システム200に示されるサンプルトレイ等の96ウェルサンプルトレイに関して要求される電気信号を発生させるために、少なくとも117個の電磁構造230が、独立して、かつ同時に作動される必要がある。本教示に従って構成される電磁石およびPCBボードは、ばね荷重される押しピン270、271を使用して電磁石230とPCBボードとの間に接続を確立することによって、より安定した、かつよりロバストな電気信号制御を可能にし、より便宜的な電磁構造置換ならびにより便宜的な電磁構造およびピンアセンブリを提供する。
図2Eに戻って参照すると、PCBボード内の各孔224は、孔224の円周に隣接して、またはその周囲に配置される、複数の接触面積222、222’を備えることができる。接触面積222、222’は、電圧源(例えば、ACまたはDC電圧源)の個別の端子ならびに/もしくはそれへの電圧の送達のためのコントローラに接続し得るように構成されることができる。いくつかの側面では、PCBボードは、それぞれが一連のウェル(例えば、4個または16個の孔)を備える、複数の小領域S1を備えることができる。ウェルまたは孔は、略正方形形状構成を画定するように、相互から等距離で離間されることができる。さらに、各電磁石230のばね荷重される押しピン270、271は、PCBボード上に個別の接続部222、222’との接点を確立し得るように構成されることができる。
図2Fに示されるように、いくつかの側面では、PCBボードと電磁石230との間の接続は、PCBボードの上に接続部を溶接またははんだ付けすることによって確立されることができる。代替として、または加えて、ワイヤ端子が、接続部を形成および確立するために使用されることができる。
PCBボードによって電磁石230に転送されるAC電流は、約300Hzの周波数範囲を含むことができる。本周波数範囲において、PCBボード内の要素間のクロストークの確率が、低減される(例えば、銅トレースまたはPCBボードの内側)。いくつかの側面では、1アンペア未満の動作電流が、使用されることができる。
図3Aは、本明細書に開示されるいくつかの側面による、開放ウェル磁気サンプルプレートの実施例を図示する。図3Aに示されるように、96ウェルサンプルプレート305は、複数のサンプルウェル315を含むことができる。菱形形状のサンプルウェル315が、図3Aに描写されているが、サンプルウェル315は、任意の好適な形状を有することができる。例えば、サンプルウェルは、正方形形状、長方形形状、丸みを帯びた形状、楕円形、または本教示の種々の側面に従って動作することが可能な任意の他の形状であることができる。
各サンプルウェル315は、図2A−2Fに関連して説明される電磁石等、複数の電磁石320a−dを含む磁気構造310によって、その周辺を中心として囲繞されることができる。磁気構造310および本出願人の教示の種々の側面に従ってAC駆動発振磁場を使用して磁性粒子を混合する方法は、サンプルウェル315の大型開放アレイとして構成されるサンプルプレートデバイスを含む、既存のサンプルプレートデバイスの中に組み込まれることができる。例えば、磁気構造310は、業界標準96サンプルウェルアレイ305等の標準サンプルプレートデバイスを受容するように構成されることができる。これは、例えば、標準サンプルウェルプレートと一致する幾何学形状を有する、電磁石320a−dおよび磁気構造310の形成を使用することによって達成されることができる。このように、流体チャネルおよびポンプは、要求されず、限定ではないが、非特異的結合ならびに飛沫同伴(すなわち、使い捨てサンプルプレートの使用)を含む、これらの要素に関連する流体処理課題を低減させ、さらに排除する。加えて、開放ウェルサンプルシステムの使用は、オートサンプラと他の自動流体取扱システムとの統合等、サンプル装填および収集のためのより効率的な方法を提供する。このように、本出願人の教示の種々の側面による流体処理システムは、流体操作および機械的複雑性の観点から単純かつ効率的である、サンプルの大型のアレイの同時処理を可能にし得る。
加えて、または代替として、種々の試薬、磁性粒子、ならびに/もしくは他のプロセス要素が、低減されたサンプル操作を用いて完全なアッセイを実施するために、サンプルプレート305のサンプルウェル315の中に組み込まれることができる。例えば、サンプルプレートの各行または列内のサンプルウェル315は、要求される使用の順序で特定のアッセイに関して要求されるプロセス要素を含むことができる。タンパク質処理アッセイを伴う実施例では、プルダウンビーズが、サンプルウェルの第1の列350a内に配置されることができ、イオン交換ビーズが、サンプルウェルの第2の列350b内に配置されることができ、トリプシンでコーティングされたビーズが、サンプルウェルの第3の列350c内に配置されることができる。このように、サンプルの処理は、タンパク質処理アッセイを実施し、その中で実施される処理ステップを促進するために、各ウェルを囲繞する電磁石を適切に作動させるために、1つの列(例えば、列350a)から別の列(例えば、列350b)にサンプルを移送することのみを要求することができる。
図3Aおよび3Bのサンプルウェル315の流体チャンバは、流体的に隔離されているものとして描写されているが、また、サンプルプレート305が、加えて、種々のサンプルウェル315間での液体移動を促進するための、流体チャネル、弁、ポンプ、または同等物を含む、種々の液体取扱要素を含み得ることも理解されたい。例えば、1つ以上の空気圧式に制御される圧力マニホールドが、サンプルプレート305上に統合され、可動部品を要求することなく、サンプルウェル315間で、試薬が充填されたポートおよび試薬リザーバ間で、ならびに/もしくは試薬リザーバとサンプルウェルとの間で流体を自動的に移送することができる。
さらに、各電磁石320a−dは、1つを上回るサンプルウェル315内に磁場を発生させるように、1つを上回るサンプルウェル315と関連付けられることができる。図3Bに描写されるように、電磁石320aは、サンプルウェル315a−dのそれぞれの中に磁場を発生させることができる。故に、電磁石320aは、電磁石320b−dを伴うサンプルウェル315dを基準として電磁構造310を形成することができる。加えて、電磁石320aは、電磁石320c、320e、および320fを伴うサンプルウェル315cを基準として電磁構造310を形成することができる。このように、各電磁石320a−fは、複数のサンプルウェル315a−d内に配列される磁性粒子に影響を及ぼすように構成されることができる。故に、より少ない電磁石320a−fが、サンプルウェル315a−dのトレイ内で磁性粒子を作動させるために使用されることができる。例えば、117個のみの電磁石320a−fが、サンプルウェル315a−d毎に4つの電磁石を使用する96ウェルサンプルトレイのための384個の電磁石(96×4)と比較して、96ウェルサンプルプレートのために要求され得る。全てのサンプルプレートの抽出が、全サンプルプレートに関する抽出プロセスを完了させるために約数秒の処理時間を用いて、電磁石320a−fの代替行を順に作動させることによって達成されることができる。
図4は、本明細書に説明される種々の側面による、例証的流体処理システムを図式的に図示する。図4に示されるように、流体処理システム400は、関連付けられる流体容器415a−f内に磁場勾配を発生させるように構成される、複数の磁気構造405a−fを含むことができる。各磁気構造405a−fは、電磁石410a−lのうちのあるものが磁気構造405a−fの間で共有される、複数の電磁石410a−lを含むことができる。電磁石410a−lは、以下の例示的位相遅延方程式420等の異なる位相遅延を有する、RF信号のそこへの印加を介して制御されることができる。
Figure 2021530350
式中、Iは、電流を示し、fは、周波数を示し、tは、時間を示す。
図4に示されるように、電磁石410a、・・・、410lは、電磁石に対応する位相遅延方程式420に従って、A−Dと標識される。磁気構造405a−fの電磁石410a−lの位相遅延は、隣接電磁石のための90°位相偏移を生成する。しかしながら、180°位相遅延、270°位相遅延、または同等物等の他の位相偏移値が、本出願人の教示の種々の側面に従って使用され得るため、実施形態は、そのように限定されない。種々の側面では、位相遅延方程式420による電磁石410a−lの作動は、サンプルウェル415a、415e、および415cの中の磁性粒子(図示せず)を時計回り運動で混合させ、サンプルウェル415b、415d、および415fの中の磁性粒子を反時計回り運動で混合させる。本出願人の教示の種々の側面に従って攪拌される磁性粒子を使用して、流体を混合することは、磁性粒子を各流体容器内で均質に分散させ、最適な暴露および流体との向上された混合を提供する。
図5は、本出願人の教示の種々の側面による、例証的流体処理構造およびその混合パターンを描写する。グラフ505は、出願人の教示の種々の側面による、時間間隔T1−T5における流体処理構造500の電磁石520a−dへの電流の印加から結果として生じる、磁場510a、510bを描写する。種々の側面では、磁場510a、510bの波形は、持続的な磁性粒子混合および改良される混合効率を促進するように、容器内での磁性粒子の例示的概略移動525を発生させる、正弦波を表す。磁場510a、510bは、相互に対する90°位相偏移を有し、磁場510aは、電磁石520aおよび520dに対応し、磁場510bは、電磁石520bおよび520cに対応する。
図5の例証的描写では、電磁石520a−dが、同一の電気信号がそれに印加されるときに、各電磁石によって発生される磁場の配向が、概して、異なるように、流体サンプルに対して異なる場所に配列されることを理解されたい。同様に、電磁対(すなわち、520aおよび520dならびに520bおよび520c)が、流体サンプルの対向側に配列されるため、各対の中の電極によって発生される磁場は、同一規模ならびに逆位相の電気信号が各対の中の電磁石に印加されるときに同一方向にある。したがって、方程式(1)−(4)の正弦波電気信号が、それぞれ、電磁石520a−dに印加されるとき、サンプル流体中の結果として生じる磁場は、図5で図式的に描写されるように経時的に変動し、電磁石520aおよび520dの対がともに、磁場510aを発生させ、電磁石520bおよび520cの対がともに、磁場510bを発生させ(磁場510bは、磁場510aに対して90°遅延される)、それによって、図式的に描写されるような種々の時点における粒子の移動525に起因して、略反時計回りの様式で流体に混合を被らせる。したがって、異なる混合パターンが、磁気構造の電磁石に印加されるAC波形を制御することによってもたらされることができる。
本出願人の本教示に従って説明される磁気構造および流体処理システムは、LC、CE、またはMSデバイス等の、当技術分野で公知である、もしくは本教示に従って以降に展開ならびに修正される、種々の分析機器と組み合わせて使用されることができる。
ここで図6を参照すると、本出願者の教示の種々の側面による、1つの例証的流体処理および分析システムが、図式的に描写されている。図6に示されるように、流体処理システム610は、いくつかの実施形態による、磁気構造および開放ウェルサンプルプレートを使用して、流体サンプルを処理するように構成されることができる。処理された流体は、全て非限定的実施例として、手動サンプル装填デバイス(例えば、ピペット、マルチチャネルピペット)、または液体取扱ロボット、オートサンプラ、もしくは音響液体取扱デバイス(例えば、LabCyte,Inc.(Sunnyvale,California)によって製造されるEcho(登録商標)525液体ハンドラ)等の種々の自動システムのうちのいずれかを使用して、流体処理システム610から収集されることができる。
処理された流体は、渦駆動サンプル移送デバイス等の種々の流体移送デバイスを使用して移送されることができる。上記に記載されるように、1つのサンプルウェルから除去されるサンプルは、さらなる処理ステップのためにプレート上の異なるサンプルウェルに添加されることができる、または下流分析器に送達されることができる。例えば、いくつかの側面では、処理されたサンプルは、インラインLC分離のためにLCカラム615に送達されることができ、溶出液は、処理された分析物のイオン化のためにイオン源620に送達され、続いて、キャリアガスを通したそれらの移動度に基づいてイオンを分析するDMS625、および/またはそれらのm/z比に基づいてイオンを分析する質量分析計630によって、分析されることができる。いくつかの側面では、処理されたサンプルは、イオン源615に直接移送され、分離は、例えば、米国特許第8,217,344号(その全教示は、参照することによって本明細書に組み込まれる)に説明されるようなMSと直列に配置される微分移動度分光計(DMS)アセンブリによって提供されることができる。化学的分離のためのDMSアセンブリと組み合わせて本出願者の本教示に従って説明される、流体処理システムは、MS分析のためにサンプルを処理するためのLC(またはHPLC)カラムの必要性を排除し得る。種々の側面では、処理されたサンプルは、表面音響波噴霧(SAWN)装置、エレクトロスプレーイオン化(ESI)デバイス、およびマトリクス支援導入イオン化(MAII)源を使用して、MS等の分析機器の中に導入されてもよい。
本明細書は、ある例証的な非限定的実施形態の文脈において利点を開示するが、種々の変更、代用、並び替え、および改変が、添付の請求項によって定義されるような本明細書の範囲から逸脱することなく成され得る。さらに、任意の一実施形態に関連して説明される、任意の特徴もまた、任意の他の実施形態に適用可能であり得る。

Claims (16)

  1. 流体処理システムであって、
    複数の流体容器であって、各流体容器は、その中に流体と、複数の磁性粒子とを含有するように構成されている、流体チャンバを画定するように構成され、前記流体チャンバは、閉鎖下端から、大気に開放している開放上端まで延在するように構成され、前記流体処理システムを使用する処理のために前記流体を受容するように構成されている、複数の流体容器と、
    複数の電磁石であって、各電磁石は、前記複数の流体容器のうちの少なくとも1つの中に磁場を発生させるように構成され、各電磁石は、複数のばね荷重される接続部を備える、複数の電磁石と、
    複数の電気接触端子を備えるPCBボードであって、各電気接触端子は、電力源から電気信号を受信するように構成され、各電気接触端子はさらに、対応する電磁石のばね荷重される接続部に接続し、前記電磁石に前記電気信号を供給する、前記対応する電磁石との電気接続を確立するように構成されている、PCBボードと、
    前記複数の電磁石に結合された制御コンポーネントであって、前記制御コンポーネントは、各電磁石によって発生される前記電磁場を制御し、前記少なくとも1つの流体容器内に、各流体容器内の前記流体内の前記複数の磁性粒子に磁気的に影響を及ぼすために十分な複数の磁場勾配を発生させるように構成されている、制御コンポーネントと
    を備える、流体処理システム。
  2. 前記PCBボードはさらに、複数の孔を備え、各孔は、電磁石の少なくとも一部を受容するように構成されている、請求項1に記載の流体処理システム。
  3. 少なくとも2つの電気接触端子は、各孔の円周に隣接して配置されている、請求項2に記載の流体処理システム。
  4. 各電磁石は、対応する孔の中への挿入のために構成された搭載支柱を備える、請求項2に記載の流体処理システム。
  5. 前記電気接触端子は、前記PCBボードに接続されている電気ワイヤを備える、請求項1に記載の流体処理システム。
  6. 少なくとも1つの電磁石は、前記電磁石によって発生される前記電磁場を再成形するように構成されている、1つ以上の磁気レンズを備える、請求項1に記載の流体処理システム。
  7. 前記ばね荷重される接続部は、少なくとも1つのばね荷重される押しピンを備える、請求項1に記載の流体処理システム。
  8. 各電磁石は、コイル状の伝導性ワイヤを備え、各電磁石の前記ばね荷重される接続部は、その電磁石の前記コイル状の伝導性ワイヤに電気的に結合されている、請求項1に記載の流体処理システム。
  9. 少なくとも1つの流体容器は、サンプルプレート内に配列された複数のサンプルウェルを備える、請求項1に記載の流体処理システム。
  10. 前記サンプルプレートは、96ウェルサンプルプレートを備える、請求項9に記載の流体処理システム。
  11. 流体を処理するための方法であって、
    流体および複数の磁性粒子を複数の流体容器に送達することと、
    各電磁石上に含まれるばね荷重される接続部とPCBボードの電気接触端子との間に電気接続を確立することによって、電力源から前記PCBボードに指向される電気信号を、前記PCBボード内に含まれる前記複数の電気接触端子を通して複数の電磁石に供給することと、
    前記複数の電磁石を使用して、前記複数の流体容器のうちの少なくとも1つの中に磁場を発生させることと、
    各電磁石によって発生される前記電磁場を制御し、前記少なくとも1つの流体容器内に、各流体容器内の前記流体内の前記複数の磁性粒子に磁気的に影響を及ぼすために十分な複数の磁場勾配を発生させることと
    を含む、方法。
  12. 前記PCBボードはさらに、複数の孔を備え、前記方法はさらに、対応する孔の中に前記電磁石の少なくとも一部を挿入することによって、各電磁石と前記PCBボードとの間に接続を確立することを含む、請求項11に記載の方法。
  13. 前記電磁石内に含まれる前記ばね荷重される接続部を、前記対応する孔の円周に隣接して配置された前記電気接触端子に接続することによって、前記接続を確立することをさらに含む、請求項12に記載の方法。
  14. 前記電磁石の搭載支柱を使用して、前記対応する孔の中に前記電磁石を挿入することをさらに含む、請求項12に記載の方法。
  15. 前記PCBボード上の1つ以上のワイヤを使用して、前記PCBボードの中に前記複数の電磁石を接続することをさらに含む、請求項11に記載の方法。
  16. 各電磁石内に含まれる1つ以上の磁気レンズを使用して、前記電磁石によって発生される前記電磁場を再成形することをさらに含む、請求項11に記載の方法。
JP2021502840A 2018-07-20 2019-07-19 流体を処理するための電磁コイルアセンブリ構造およびそれを作製するための方法 Pending JP2021530350A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862701009P 2018-07-20 2018-07-20
US62/701,009 2018-07-20
PCT/IB2019/056209 WO2020016854A1 (en) 2018-07-20 2019-07-19 An electromagnetic coil assembly structure for processing fluids and methods for making same

Publications (1)

Publication Number Publication Date
JP2021530350A true JP2021530350A (ja) 2021-11-11

Family

ID=69164838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021502840A Pending JP2021530350A (ja) 2018-07-20 2019-07-19 流体を処理するための電磁コイルアセンブリ構造およびそれを作製するための方法

Country Status (4)

Country Link
EP (1) EP3823757A4 (ja)
JP (1) JP2021530350A (ja)
CN (2) CN112512691A (ja)
WO (1) WO2020016854A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023069992A1 (en) 2021-10-19 2023-04-27 Phenomenex, Inc. Systems and methods of simple and automatable protein digestion using magnetic beads

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580052A (ja) * 1991-09-20 1993-03-30 Nippon Paint Co Ltd 生体内物質の測定装置及び測定方法
JPH11500952A (ja) * 1995-02-21 1999-01-26 ダブリュー. シディキー,イクバール 磁性粒子を利用した混合/分離装置及びその方法
JP2003315338A (ja) * 2002-04-26 2003-11-06 Precision System Science Co Ltd 磁性粒子懸濁液測定装置
JP2005340062A (ja) * 2004-05-28 2005-12-08 Nec Tokin Corp 電磁継電器
US8361316B2 (en) * 1995-02-21 2013-01-29 Sigris Research, Inc. Device for mixing and separation of magnetic particles
WO2017093896A1 (en) * 2015-11-30 2017-06-08 Dh Technologies Development Pte. Ltd. Electromagnetic assemblies for processing fluids

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078316A1 (en) * 2003-03-08 2004-09-16 Ecole Polytechnique Federale De Lausanne (Epfl) Magnetic bead manipulation and transport device
JP5362586B2 (ja) 2007-02-01 2013-12-11 サイオネックス コーポレイション 質量分光計のための微分移動度分光計プレフィルタ
EP2105202A1 (en) * 2008-03-28 2009-09-30 Stichting Dutch Polymer Institute Apparatus and method for a microfluidic mixer and pump
SG170703A1 (en) * 2009-10-20 2011-05-30 Agency Science Tech & Res Microfluidic system for detecting a biological entity in a sample
EP2758173B1 (en) * 2011-09-19 2019-07-24 Centre National De La Recherche Scientifique Microfluidic system
EP3110747A4 (en) * 2014-02-28 2017-11-08 DH Technologies Development Pte. Ltd. Magnetic elements for processing fluids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580052A (ja) * 1991-09-20 1993-03-30 Nippon Paint Co Ltd 生体内物質の測定装置及び測定方法
JPH11500952A (ja) * 1995-02-21 1999-01-26 ダブリュー. シディキー,イクバール 磁性粒子を利用した混合/分離装置及びその方法
US8361316B2 (en) * 1995-02-21 2013-01-29 Sigris Research, Inc. Device for mixing and separation of magnetic particles
JP2003315338A (ja) * 2002-04-26 2003-11-06 Precision System Science Co Ltd 磁性粒子懸濁液測定装置
JP2005340062A (ja) * 2004-05-28 2005-12-08 Nec Tokin Corp 電磁継電器
WO2017093896A1 (en) * 2015-11-30 2017-06-08 Dh Technologies Development Pte. Ltd. Electromagnetic assemblies for processing fluids

Also Published As

Publication number Publication date
CN117138854A (zh) 2023-12-01
CN112512691A (zh) 2021-03-16
EP3823757A4 (en) 2022-04-20
WO2020016854A1 (en) 2020-01-23
EP3823757A1 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP7085476B2 (ja) 流体を処理するための電磁アセンブリ
US20220011327A1 (en) An Electromagnetic Coil Assembly Structure for Processing Fluids and Methods for Making Same
US11828691B2 (en) Electromagnetic assemblies for processing fluids
US10656147B2 (en) Magnetic elements for processing fluids
US8585279B2 (en) Device and method for manipulating and mixing magnetic particles in a liquid medium
US8999732B2 (en) Method for manipulating magnetic particles in a liquid medium
US7601265B2 (en) Apparatus for retaining magnetic particles within a flow-through cell
JP2010518403A (ja) 液滴アクチュエータデバイスおよび磁性ビーズを使用する方法
EP1649285A1 (en) Device and method for analysis of samples using a combined sample treatment and sample carrier device
CA2654808A1 (en) A device and method for manipulating and mixing magnetic particles in a liquid medium
US20100300978A1 (en) Device, system and method for washing and isolating magnetic particles in a continous fluid flow
JP2021531461A (ja) 磁性粒子
JP2021530350A (ja) 流体を処理するための電磁コイルアセンブリ構造およびそれを作製するための方法
JP7493611B2 (ja) 流体を処理するための電磁気アセンブリ
WO2016063389A1 (ja) マイクロ流体デバイス並びにそれを用いた分析方法及び分析装置
JP2024105631A (ja) 流体を処理するための電磁アセンブリ
US20240255473A1 (en) System and methods for sample processing with mass spectrometry incorporating magnetic beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231214