JP2021523302A - Hydrogenated rolling composite process to improve the titanium alloy structure of laminated molding - Google Patents

Hydrogenated rolling composite process to improve the titanium alloy structure of laminated molding Download PDF

Info

Publication number
JP2021523302A
JP2021523302A JP2021500883A JP2021500883A JP2021523302A JP 2021523302 A JP2021523302 A JP 2021523302A JP 2021500883 A JP2021500883 A JP 2021500883A JP 2021500883 A JP2021500883 A JP 2021500883A JP 2021523302 A JP2021523302 A JP 2021523302A
Authority
JP
Japan
Prior art keywords
titanium alloy
rolling
powder
laminated molding
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021500883A
Other languages
Japanese (ja)
Other versions
JP7020742B2 (en
Inventor
▲孫▼中▲剛▼
李永▲華▼
▲陳▼小▲龍▼
唐明亮
▲張▼文▲書▼
常▲輝▼
Original Assignee
南京尚吉増材制造研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京尚吉増材制造研究院有限公司 filed Critical 南京尚吉増材制造研究院有限公司
Publication of JP2021523302A publication Critical patent/JP2021523302A/en
Application granted granted Critical
Publication of JP7020742B2 publication Critical patent/JP7020742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

【課題】 積層造形のチタン合金組織を改善するための水素化圧延複合工程を提供することを課題とする。
【解決手段】 本発明は、積層造形のチタン合金組織を改善するための水素化圧延工程を提供し、積層造形プロセスにおいてチタン合金粉末に水素化処理を施し、積層造形プロセス中の印刷されたワークピースを層ごとに圧延し、印刷−圧延−印刷−圧延のサイクルプロセスを通じて、組織微細化の印刷されたワークピースを製造し、最後に真空アニーリングにより暫定的な合金元素である水素を除去し、最終材料の化学組成の変化を防ぐ。このプロセスは、水素を利用してプロセス中で印刷されたワークピース組織を微細化と改善し、圧延により転位などの欠陥を増加させて核生成エネルギーを低下し、核生成率をアップすることで、合金組成を変えることなく、結晶粒を微細化し、組織を改善するという目的を達成する。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a hydrogenation-rolling composite process for improving a titanium alloy structure of laminated molding.
The present invention provides a hydrorolling step for improving a titanium alloy structure of laminated molding, hydrogenating a titanium alloy powder in the laminated molding process, and printing a workpiece during the laminated molding process. The pieces are rolled layer by layer, and through a printing-rolling-printing-rolling cycle process, microstructure-fine printed workpieces are produced, and finally vacuum annealing removes the provisional alloying element hydrogen. Prevents changes in the chemical composition of the final material. This process uses hydrogen to refine and improve the workpiece structure printed during the process, increase defects such as dislocations by rolling, reduce nucleation energy, and increase the nucleation rate. , Achieve the purpose of refining crystal grains and improving the structure without changing the alloy composition.
[Selection diagram] Fig. 1

Description

本発明は、積層造形分野に属し、チタン合金組織への改善処理に関し、特に、積層造形のチタン合金組織を改善するための水素化+圧延工程に関する。 The present invention belongs to the field of laminated molding, and relates to a treatment for improving a titanium alloy structure, and more particularly to a hydrogenation + rolling process for improving a titanium alloy structure of laminated molding.

積層造形プロセスで用いられる熱源の種類には、レーザー、アーク、プラズマ、電子ビームなどがあり、積層造形工程での急速な加熱と急速な冷却を伴う超常冶金環境下において、積層造形の冶金学的な品質が低く、組織が粗い。かかる材料形態には、粉末とワイヤーが含まれるが、光源と製品形態がどのように変化しても、固化プロセスの冶金的特性が基本的に同じであり、すなわち、金属マイクロゾーンは、集中熱源の作用下で急速に加熱され、急冷されて急速に固化され、その後層ごとの堆積プロセスで複数のサイクル、可変サイクル、激しい加熱と冷却を受けた後、隣接する層または数層が周期的な再溶融と冷却を受け、他の堆積層の結晶粒は周期的に微加熱される。周期的な再溶解と微小ロ熱処理により、積層造形された金属部材の独特な微視組織が得られる。チタン合金を原料とした積層造形プロセスでは、レーザー選択溶融やレーザー蒸着成形などの結晶粒が基板界面に垂直に成長した粗大なオリジナルβ結晶粒と柱状晶になり、底部と頂部に等軸的な結晶粒または微細な結晶粒がわずかしか現れず、非常に不均一な組織特性を形成し、この粗大な組織はより高いエネルギー密度の電子ビームおよびアークの積層造形工程において貫通する柱状晶にさえ発達した。それにもかかわらず、急速な冷却はまた、粗大な結晶粒の内部に微細なラメラ状または針状マルテンサイト組織という超常特殊構造をもたらす。これが、積層造形のチタン合金部材の堆積状態の力学的性質が一般に鋳物または鍛造品の機械的性質よりも高い主な要因である。 Types of heat sources used in the laminate molding process include lasers, arcs, plasmas, electron beams, etc., and the metallurgy of laminate molding in a supernatural metallurgical environment involving rapid heating and rapid cooling in the lamination molding process. The quality is low and the structure is rough. Such material forms include powders and wires, but the metallurgical properties of the solidification process are essentially the same no matter how the light source and product form change, i.e. the metal microzones are a concentrated heat source. Rapidly heated, rapidly cooled and rapidly solidified under the action of, followed by multiple cycles, variable cycles, intense heating and cooling in a layer-by-layer deposition process, followed by periodic layers or several layers. After remelting and cooling, the crystal grains of the other sedimentary layers are periodically slightly heated. By periodic remelting and micro heat treatment, a unique microstructure of the laminated metal member can be obtained. In the laminated molding process using titanium alloy as a raw material, crystal grains such as laser selective melting and laser vapor deposition molding grow into coarse original β crystal grains and columnar crystals that grow perpendicular to the substrate interface, and are equiaxed to the bottom and top. Only a few grains or fine grains appear, forming very non-uniform texture properties, and this coarse structure develops even into columnar crystals that penetrate during the higher energy density electron beam and arc stacking process. bottom. Nevertheless, rapid cooling also results in a paranormal special structure of fine lamellar or needle-like martensite structures inside the coarse crystal grains. This is the main reason why the mechanical properties of the deposited state of laminated titanium alloy members are generally higher than the mechanical properties of castings or forgings.

この問題に着目し、従来技術では、多くの模索的研究が実施され、積層造形工程自体、粒子強化の微細化された結晶粒の添加、および磁界、電界、超音波、レーザー、マイクロ鍛造などの側面を利用してミクロ組織を調整することから、積層造形冶金組織の問題を解決しようとしてきた;
1、積層造形工程パラメータの調整を通じてある程度で冶金組織の改善を達成する。従来技術は、成形プロセスの工程パラメータの制御およびその後の熱処理工程から工程を通じて柱状晶のサイズを縮小しようと試みている。例えばP.A.KobrynらがTi−6Al−4V合金のレーザークラッディングの柱状晶生成法則を研究し、その結果は高温度勾配と大きな冷却速度が柱状晶の成長に有利となり、高いスキャン速度が柱状晶のサイズを縮小できることを示し;
ただし、工程による制御は、過冷却の観点から組織を調整することであり、積層造形がレーザー、電子ビーム等の高エネルギー熱源の加熱により、凝固速度が0.1ms〜1から5ms〜1で、温度勾配がすでに非常に高いレベルにあり、工程パラメータの調整を通じて結晶粒微細化強化を達成することが困難であり;
2、核生成剤または合金元素の添加は、積層造形組織の微細化を実現するための潜在的なルートであり、米国のBanerjeeらはレーザー三次元成形技術を使用して、Ti−TiBおよびTi6Al4V−TiB複合材料の製造に成功し、TiB補強材が堆積状態の合金内で均一に分散し、組織をある程度で微細化することができる。核生成剤の添加は、核形成粒子を増加させることにより組織改善を達成するが、核生成核剤を添加すると合金組成に影響を及ぼし、合金組成に厳しい要件がある合金には適しておらず;
3、積層造形の原材料の改善を通じてミクロ組織を改善し、例えば特許文献1によって提案されたTC4チタン合金の室温での可塑性を高める循環熱水素化処理工程は、TC4チタン合金に対し2回循環水素化処理を施し、すなわち、TC4チタン合金に対し1回の水素化処理を施した後で水素を除去してから2回目の水素化処理を施し、最後に固溶体化処理を施す。本発明の2回水素化処理方法は、C4チタン合金内のα相とβ相の比を改善し、合金内の可塑性がより良好なβ相の含有量を増し、α’マルテンサイトの含有量を減少し、結晶粒を微細化し、それによりその室温での可塑性が更に改善され;2回循環熱水素処理を経た後、TC4チタン合金の最終変形率を改善し22.1%アップし、降伏強度が11.1%減少し、降伏比が11.5%減少した。ただしその欠点は、TC4合金その後の熱処理過程に結晶粒を微細化する水素の作用のみを利用し、溶融や堆積プロセスで元素拡散を促進し、液/固界面組成的過冷却を増加させるために水素を使用できないことであり;水素化物の形成と分解、水素化が変形抵抗を低減させ、転位の動きを促進して変形欠陥を形成し、多次元、多角度から非自発的核生成、結晶粒微細化の作用を促進させる。
Focusing on this problem, many exploratory studies have been carried out in the prior art, such as the lamination molding process itself, the addition of finely divided crystal grains for particle strengthening, and magnetic fields, electric fields, ultrasonic waves, lasers, micro forgings, etc. We have tried to solve the problem of laminated metallurgy by adjusting the microstructure using the sides;
1. Achieve improvement of metallurgical structure to some extent through adjustment of laminated molding process parameters. The prior art attempts to reduce the size of columnar crystals throughout the process from the control of process parameters in the molding process and the subsequent heat treatment process. For example, P. A. Kobryn et al. Studyed the columnar crystal formation law of laser cladding of Ti-6Al-4V alloys, which showed that high temperature gradients and large cooling rates favored columnar crystal growth, and high scanning rates resulted in columnar crystal size. Shows that it can be reduced;
However, the control by the process is to adjust the structure from the viewpoint of supercooling, and the solidification rate is 0.1 ms to 1 to 5 ms to 1 due to the heating of a high energy heat source such as a laser or electron beam in the laminated molding. The temperature gradient is already at a very high level and it is difficult to achieve grain refinement enhancement through adjustment of process parameters;
2. Addition of nucleating agent or alloying element is a potential route to achieve miniaturization of laminated molding structure, and Banerjee et al. In the United States use laser three-dimensional molding technology to Ti-TiB and Ti6Al4V. -The production of the TiB composite material is successful, and the TiB reinforcing material is uniformly dispersed in the alloy in the deposited state, and the structure can be miniaturized to some extent. The addition of a nucleating agent achieves microstructural improvement by increasing the number of nucleating particles, but the addition of a nucleating nucleating agent affects the alloy composition and is not suitable for alloys with strict alloy composition requirements. ;
3. In the circulating thermohydrogenation treatment step of improving the microstructure through the improvement of the raw materials for laminated molding and increasing the plasticity of the TC4 titanium alloy proposed by Patent Document 1, for example, at room temperature, the circulating hydrogen is circulated twice with respect to the TC4 titanium alloy. The conversion treatment is performed, that is, the TC4 titanium alloy is subjected to one hydrogenation treatment, then hydrogen is removed, the second hydrogenation treatment is performed, and finally the solid solution treatment is performed. The double hydrogenation method of the present invention improves the ratio of α phase to β phase in the C4 titanium alloy, increases the content of β phase with better plasticity in the alloy, and contains α'martensite. Reduced and refined grains, thereby further improving their plasticity at room temperature; after undergoing two circulating thermohydrogen treatments, the final deformation rate of the TC4 titanium alloy was improved by 22.1% and yielded. The strength was reduced by 11.1% and the yield ratio was reduced by 11.5%. However, its drawback is that it utilizes only the action of hydrogen, which refines the crystal grains in the subsequent heat treatment process of the TC4 alloy, promotes element diffusion in the melting and deposition processes, and increases liquid / solid interface composition supercooling. The inability to use hydrogen; formation and decomposition of hydrides, hydrogenation reduces deformation resistance, promotes the movement of dislocations to form deformation defects, multidimensional, multiangle to involuntary nucleation, crystals Promotes the action of grain refinement.

なお、趙嘉棋らは、特許文献2では、水素化−ホットアイソスタティックプレスによる鋳造TiAl合金ミクロ組織の改善方法を提案した。この方法は、一、鋳造TiAl合金に対しホットアイソスタティックプレス工程処理を施すステップ1と、ホットアイソスタティックプレス工程処理が施された後のTiAl合金に対し水素化処理を施すステップ2と、水素化処理が施された後のTiAl合金に対し固溶、時効処理を施すステップ3と、最後に真空アニーリング処理を施すステップと、を含む。ホットアイソスタティックプレス工程で、鋳造TiAl合金内の巣等の欠陥を修復し、合金の緻密度を向上させることに有利であり;一方、鋳造TiAl合金における水素の可逆的な合金化作用および各種相転移を利用して、鋳造TiAl合金のミクロ組織を微細化し、合金の性能に対する結晶粒の粗大の悪影響を補う。ただし同様の欠陥は、TiAl合金その後の熱処理過程に結晶粒を微細化する水素の作用のみを利用し、溶融や堆積プロセスで元素拡散を促進し、液/固界面組成的過冷却を増加させるために水素を使用できないことであり;水素化物の形成と分解、水素化が変形抵抗を低減させ、転位の動きを促進して変形欠陥を形成し、多次元、多角度から非自発的核生成、結晶粒微細化の作用を促進させる。 In Patent Document 2, Zhao Jiaqi et al. Proposed a method for improving the microstructure of cast Ti 3 Al alloy by hydrogenation-hot isostatic press. In this method, 1. The cast Ti 3 Al alloy is subjected to a hot isostatic pressing process, and the Ti 3 Al alloy is subjected to a hydrogenation treatment after the hot isostatic pressing process. This includes a step 3 of solidifying and aging the Ti 3 Al alloy after the hydrogenation treatment, and finally a step of performing a vacuum annealing treatment. In the hot isostatic press process, it is advantageous to repair defects such as cavities in the cast Ti 3 Al alloy and improve the precision of the alloy; on the other hand, the reversible alloying of hydrogen in the cast Ti 3 Al alloy. Utilizing the action and various phase transitions, the microstructure of the cast Ti 3 Al alloy is refined to compensate for the adverse effect of grain coarseness on the alloy performance. However, similar defects utilize only the action of hydrogen, which refines the crystal grains in the subsequent heat treatment process of the Ti 3 Al alloy, promotes element diffusion in the melting and deposition processes, and increases liquid / solid interface composition supercooling. The inability to use hydrogen for Promotes the action of nucleation and grain refinement.

上記の3つの方法は、ある程度で積層造形組織を改善できるが、問題点があり、積層造形のチタン合金組織を効果的に改善できていない。したがって、積層造形のチタン合金組織を改善できる工程を見出すことが急務であった。 Although the above three methods can improve the laminated molding structure to some extent, there is a problem and the titanium alloy structure of the laminated molding cannot be effectively improved. Therefore, there was an urgent need to find a process that could improve the titanium alloy structure of laminated molding.

中国特許番号第CN201610032762.9号Chinese Patent No. CN201610032762.9 中国特許番号第CN201110419193.0号Chinese Patent No. CN201110419193.0

本発明の目的は、積層造形プロセスにおいてチタン合金粉末に水素化処理を施し、積層造形プロセス中の印刷されたワークピースを層ごとに圧延し、印刷−圧延−印刷−圧延のサイクルプロセスを通じて、組織微細化の印刷されたワークピースを製造し、最後に真空アニーリングにより暫定的な合金元素である水素を除去し、最終材料の化学組成の変化を防き、積層造形のチタン合金組織形態を改善することで、積層造形のチタン合金組織を改善するための水素化圧延工程を提供することである。 An object of the present invention is to hydrotreat a titanium alloy powder in a laminated molding process, roll the printed workpieces in the laminated molding process layer by layer, and structure through a printing-rolling-printing-rolling cycle process. Manufactures micronized printed workpieces and finally removes the provisional alloying element hydrogen by vacuum annealing to prevent changes in the chemical composition of the final material and improve the structure of laminated titanium alloys. This is to provide a hydrorolling step for improving the titanium alloy structure of laminated molding.

上記目的を達成するため、本発明は、次のステップ1〜6を含む積層造形のチタン合金組織を改善するための水素化圧延複合工程を提供する。すなわち、
チタン合金粉末の水素化処理を施し、チタン合金粉末を水素化熱処理管状炉に入れ、粉末を層状に散布し、各層の粉末散布の厚さが2〜8mmで、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、10〜30分保温し、チタン合金粉末の重量パーセントに基づき0.1%〜0.8%の水素ガスを吹き込み、1〜4時間保温し、その後5〜15℃/minの速度で室温まで冷却することで、水素化チタン合金粉末を得るステップ1、
水素化後のチタン合金粉末を積層造形に用い、粉末散布工程または粉末供給工程で積層造形のワークピース印刷を実施して、チタン合金の金属堆積層を形成するステップ2、
NCシステムで圧延ロールを制御して、ステップ2で形成されたチタン合金の金属堆積層を圧延(圧延変形量10〜50%)するステップ3、
ステップ2、ステップ3を繰り返して、ワークピースの印刷が完了されるまで層ごとに印刷および圧延するステップ4、
積層造形後のチタン合金ワークピースに固溶化処理(チタン合金ワークピースを熱処理炉に入れ、10〜20℃/minの速度でTp℃(相転移温度)+10℃まで加熱し、20〜40分保温し、その後焼入れる)を施すステップ5、
固溶後のチタン合金ワークピースにアニーリング+水素除去熱処理(チタン合金を真空熱処理炉に入れ、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、炉内の真空度は3×10−3Paより高く、2時間〜4時間保温した後、5〜15℃/minで室温まで冷却する)を施すステップ6。
In order to achieve the above object, the present invention provides a hydrogenated rolling composite step for improving the titanium alloy structure of laminated molding including the following steps 1 to 6. That is,
The titanium alloy powder is hydrotreated, the titanium alloy powder is placed in a hydrothermally treated tubular furnace, the powder is sprayed in layers, and the powder spray thickness of each layer is 2 to 8 mm, 1.5 × 10 -3 Pa. Vacuum to, heat to 700 ° C to 800 ° C at a rate of 10 to 20 ° C / min, keep warm for 10 to 30 minutes, and 0.1% to 0.8% hydrogen gas based on the weight percent of titanium alloy powder. Step 1, to obtain titanium hydride alloy powder by blowing, keeping warm for 1 to 4 hours, and then cooling to room temperature at a rate of 5 to 15 ° C./min.
Step 2.
Step 3, in which the rolling roll is controlled by the NC system and the metal deposition layer of the titanium alloy formed in step 2 is rolled (rolling deformation amount 10 to 50%).
Step 4 and step 3 are repeated to print and roll layer by layer until the work piece printing is completed.
Solid solution treatment on the titanium alloy workpiece after laminating (put the titanium alloy workpiece in a heat treatment furnace, heat it to Tp ° C (phase transition temperature) + 10 ° C at a rate of 10 to 20 ° C / min, and keep it warm for 20 to 40 minutes. And then bake) Step 5,
Annealing + hydrogen removal heat treatment on the solid-melted titanium alloy workpiece (put the titanium alloy in a vacuum heat treatment furnace, evacuate to 1.5 x 10 -3 Pa, and evacuate to 700 ° C to 800 ° C at a rate of 10 to 20 ° C / min. The degree of vacuum in the furnace is higher than 3 × 10 -3 Pa, kept warm for 2 to 4 hours, and then cooled to room temperature at 5 to 15 ° C./min).

さらに、ステップ4の圧延プロセスでは、圧延時の圧延量が0.4mmの下で、圧延誤差を0.01mmに制御する必要がある。 Further, in the rolling process of step 4, it is necessary to control the rolling error to 0.01 mm when the rolling amount at the time of rolling is 0.4 mm.

本発明の積層造形のチタン合金組織を改善するための水素化圧延複合工程の有益な利点は、チタン合金中の水素の溶解度を利用してチタン合金粉末に対し水素化処理を施すことである。同時に積層造形の印刷プロセスにおいて、一方で水素化チタン合金粉末中の水素を使用して、元素の拡散を促進させ、液/固界面組成的過冷却を増加させ;周期的な溶融堆積過程で水素化物の形成と分解、水素化は変形抵抗を低減し、転位の動きを促進することで、変形欠陥を形成し、非自発的核生成を促進させ;他方、金属堆積層での層ごとのローリングにより、金属堆積層の変形を引き起こし、印刷されたワークピースの緻密度を向上させる。同時に、圧延が堆積層に転位を導入し、これは、核生成エネルギーを低下させ、核生成率をアップさせ、次の層の印刷プロセスの小さな溶融池において、転位などの欠陥の存在が印刷層の組織を微細化させることができ;上記の多要因の相互作用を通じて、積層造形組織の冶金学的制御および柱状晶/等軸晶変態の正確な制御を達成する。 A beneficial advantage of the hydrorolling composite step for improving the titanium alloy structure of the laminated molding of the present invention is that the titanium alloy powder is hydrogenated by utilizing the solubility of hydrogen in the titanium alloy. At the same time, in the printing process of laminate molding, on the one hand, hydrogen in the titanium hydride alloy powder is used to promote the diffusion of elements and increase the liquid / solid interface composition overcooling; hydrogen in the periodic nucleation process. Formation and decomposition of the compound, hydrogenation reduces deformation resistance and promotes the movement of rearrangements, forming deformation defects and promoting involuntary nucleation; on the other hand, layer-by-layer rolling in metal deposition layers. Causes deformation of the metal deposit layer and improves the density of the printed workpiece. At the same time, rolling introduces dislocations into the sedimentary layer, which lowers the nucleation energy and increases the nucleation rate, and the presence of defects such as dislocations in the small molten pool of the printing process of the next layer prints the layer. The structure can be miniaturized; through the above-mentioned multifactorial interactions, metallurgical control of the laminated structure and accurate control of columnar / equiaxed crystal transformations are achieved.

前述の技術的思想および以下により詳細に記載される追加の技術的思想のすべての組み合わせは、そのような技術的思想が相互に矛盾しない限り、本開示の発明主題の一部と見なすことができることを理解されたい。なお、特許を求める主題のすべての組み合わせは、本開示の発明主題の一部と見なされる。 All combinations of the above technical ideas and the additional technical ideas described in more detail below may be considered as part of the subject matter of the invention of the present disclosure, as long as such technical ideas do not contradict each other. I want you to understand. All combinations of patent-seeking subjects are considered to be part of the invention subject matter of the present disclosure.

添付の図面を参照する以下の描写から本発明によって教示される前述および他の態様、実施例および特徴をより完全に理解することができる。例示的な実施形態の特徴および/または有利な効果などの本発明の他の追加の態様は、以下の描写において明らかであるか、または本発明によって教示される具体的実施形態の実践から知られる。 From the following depictions with reference to the accompanying drawings, the aforementioned and other aspects, examples and features taught by the present invention can be more fully understood. Other additional aspects of the invention, such as the features and / or beneficial effects of the exemplary embodiments, are apparent in the description below or are known from the practice of the specific embodiments taught by the invention. ..

添付図面は、一定の縮尺で描かれることを意図したものではない。添付図面では、各図に示されている同一またはほぼ同一の各構成要素は、同じ符号で表すことができる。分かりやすくするため、各図で各構成要素が付けされているわけではない。ここで、本発明の様々な態様の実施形態を、例として、および添付図面を参照して説明する。 The attached drawings are not intended to be drawn to a certain scale. In the accompanying drawings, the same or substantially identical components shown in each figure can be represented by the same reference numerals. For the sake of clarity, each component is not attached to each figure. Here, embodiments of various aspects of the invention will be described by way of example and with reference to the accompanying drawings.

本発明の積層造形のチタン合金組織を改善するための水素化圧延工程のフローチャートである。It is a flowchart of the hydrogenation rolling process for improving the titanium alloy structure of the laminated molding of this invention.

本発明の技術的内容をよりよく理解するため、具体的実施例を挙げて添付図面と併せて以下に説明する。 In order to better understand the technical contents of the present invention, specific examples will be described below together with the accompanying drawings.

本開示において、添付の図面を参照しつつ本発明の様々な態様を説明し、図面にいくつかの例示された実施形態を示す。本開示の実施例は、必ずしも本発明のすべての態様を含むことを意図するものではない。上で紹介された様々な技術的思想および以下により詳細に記載されるいくつかの技術的思想と実施形態は、多くの方法のいずれかで実施され得る。これは、本発明で開示される技術的思想および実施例がいかなる実施形態にも限定されないためである。なお、本発明に開示されるいくつかの態様は、単独で、または本発明に開示される他の態様との任意の適切な組み合わせで使用することができる。 In the present disclosure, various aspects of the invention will be described with reference to the accompanying drawings, and some illustrated embodiments will be shown in the drawings. The examples of the present disclosure are not necessarily intended to include all aspects of the invention. The various technical ideas introduced above and some of the technical ideas and embodiments described in more detail below can be implemented in any of many ways. This is because the technical ideas and examples disclosed in the present invention are not limited to any embodiment. It should be noted that some aspects disclosed in the present invention can be used alone or in any suitable combination with other aspects disclosed in the present invention.

本発明で開示される積層造形のチタン合金組織を改善するための水素化+圧延工程によれば、事前準備されたチタン合金粉末の水素化処理を施すことによって、水素化チタン合金粉末を得、水素化チタン合金粉末を用いて積層造形+層ごと圧延を実施してチタン合金ワークピースを得た後、更にワークピースに固溶化処理を施し、最後に固溶後のチタン合金ワークピースに対し水素除去熱処理およびアニーリングを実施して、積層造形のチタン合金の微視組織を改善する。 According to the hydrogenation + rolling step for improving the titanium alloy structure of the laminated molding disclosed in the present invention, the titanium alloy powder prepared in advance is subjected to the heat treatment to obtain the titanium hydride alloy powder. After laminating molding + rolling layer by layer using titanium hydride alloy powder to obtain titanium alloy workpieces, the workpieces are further subjected to solidification treatment, and finally hydrogen is applied to the solidified titanium alloy workpieces. Removal heat treatment and annealing are performed to improve the microstructure of the laminated titanium alloy.

本開示の水素化+圧延工程は、一方でチタン合金β相における水素の高い溶解度を利用し、この温度範囲内に異なる比率の水素を入れると、異なる水素含有量を有するチタン合金粉末が得られる。3Dプリントプロセスにおいて水素が溶融と凝固プロセスにおいて水素化物の析出と分解を利用して溶融池内の核生成を促進させ、並びに組成的過冷却の多方面で核生成を促進することで、印刷された組織の結晶粒を微細化させ;他方で、積層造形プロセスにおいて、金属堆積層を層ごと圧延し、積層造形材料を圧延して緻密度を向上させ、同時に圧延は金属堆積層の転位等の欠陥が増加し、次の層の印刷プロセスにおいて、欠陥により核生成エネルギーを低下させるため、核生成率をアップすることができることで、さらに組織を微細化や改善し;最後に真空アニーリングを通じて暫定的な合金元素である水素を除去し、最終材料の化学組成の変化を防ぐと共に水素を利用してプロセス中で印刷されたワークピース組織を微細化と改善し、圧延により転位などの欠陥を増加させて核生成エネルギーを低下し、核生成率をアップし;両者の相互作用は、合金組成を変えることなく、組織を改善するという目的を達成する。 The hydrogenation + rolling process of the present disclosure, on the other hand, utilizes the high solubility of hydrogen in the β phase of the titanium alloy, and when different ratios of hydrogen are added within this temperature range, titanium alloy powders having different hydrogen contents can be obtained. .. In the 3D printing process, hydrogen was printed by utilizing the precipitation and decomposition of hydrides in the melting and solidification process to promote nucleation in the molten pool and in many ways of compositional overcooling. Finer the crystal grains of the structure; on the other hand, in the layered molding process, the metal deposition layer is rolled layer by layer, and the layered modeling material is rolled to improve the density, and at the same time, the rolling is a defect such as dislocation of the metal deposition layer. Increases and reduces nucleation energy due to defects in the printing process of the next layer, thus increasing the nucleation rate, further refining and improving the structure; and finally provisional through vacuum annealing. It removes hydrogen, which is an alloying element, prevents changes in the chemical composition of the final material, uses hydrogen to refine and improve the workpiece structure printed in the process, and increases defects such as dislocations by rolling. Lower nucleation energy and increase nucleation rate; the interaction of the two achieves the goal of improving the structure without changing the alloy composition.

図1に示されるように、本発明の例示的な実施として、前述の具体的実施プロセスは、次のステップ1〜6を含む。すなわち、
チタン合金粉末の水素化処理を施し、チタン合金粉末を水素化熱処理管状炉に入れ、粉末を層状に散布し、均一な水素化の組成を確保するため、各層の粉末散布の厚さが2〜8mmで、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、10〜30分保温し、チタン合金粉末の重量パーセントに基づき0.1%〜0.8%の水素ガスを吹き込み、1〜4時間保温し、その後5〜15℃/minの速度で室温まで冷却することで、水素化チタン合金粉末を得たステップ1、
水素化後のチタン合金粉末を積層造形に用い、チタン合金ワークピースを得たステップ2;ここで粉末散布工程および粉末供給工程は、例えば次のようになり;
粉末散布工程:粉末散布の厚さ20μm〜80μm、レーザー出力200W〜500W、スキャン速度1〜15m/s。
粉末供給工程:粉末供給0.2〜5r/min、レーザー出力1500W〜8000W、スキャン速度1〜30mm/s。
NCシステムで圧延ロールを制御して、チタン合金の金属堆積層を圧延(圧延変形量10〜50%)するステップ3、
ワークピースの印刷が完了されるまでステップ2、ステップ3を繰り返し、圧延時の圧延量が0.4mmの下で、圧延誤差を0.01mmに制御する必要があるステップ4、
積層造形後のチタン合金ワークピースに固溶化処理(熱処理工程:チタン合金ワークピースを熱処理炉に入れ、10〜20℃/minの速度でTp℃(相転移温度)+10℃まで加熱し、20〜40分保温し、その後焼入れる)を施すステップ5、
固溶後のチタン合金ワークピースにアニーリング+水素除去熱処理を施し;チタン合金を真空熱処理炉に入れ、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、炉内の真空度は3×10−3Paより高く、2時間〜4時間保温した後、5〜15℃/minで室温まで冷却するステップ6。
As shown in FIG. 1, as an exemplary implementation of the present invention, the specific implementation process described above comprises the following steps 1-6. That is,
The titanium alloy powder is hydrotreated, the titanium alloy powder is placed in a hydrothermally treated tubular furnace, the powder is sprayed in layers, and the thickness of the powder spray of each layer is 2 to 2 in order to ensure a uniform hydrogenation composition. At 8 mm, vacuum to 1.5 × 10 -3 Pa, heat to 700 ° C to 800 ° C at a rate of 10 to 20 ° C / min, keep warm for 10 to 30 minutes, and 0. Step 1, a titanium hydride alloy powder was obtained by blowing 1% to 0.8% hydrogen gas, keeping it warm for 1 to 4 hours, and then cooling it to room temperature at a rate of 5 to 15 ° C./min.
The titanium alloy powder after hydrogenation was used for laminated molding to obtain a titanium alloy workpiece. Step 2; Here, the powder spraying step and the powder feeding step are as follows;
Powder spraying step: Powder spraying thickness 20 μm to 80 μm, laser output 200 W to 500 W, scanning speed 1 to 15 m / s.
Powder supply process: Powder supply 0.2 to 5 r / min, laser output 1500 W to 8000 W, scanning speed 1 to 30 mm / s.
Step 3, in which the rolling roll is controlled by the NC system to roll the metal deposition layer of the titanium alloy (rolling deformation amount 10 to 50%).
Steps 2 and 3 need to be repeated until the printing of the workpiece is completed, and the rolling error at the time of rolling is 0.4 mm and the rolling error needs to be controlled to 0.01 mm.
Solidification treatment on the titanium alloy workpiece after laminating (heat treatment step: put the titanium alloy workpiece in a heat treatment furnace and heat it to Tp ° C (phase transition temperature) + 10 ° C at a rate of 10 to 20 ° C / min, 20 to 20 ° C. Insulate for 40 minutes and then bake) Step 5,
Annealing + hydrogen removal heat treatment is applied to the solid-melted titanium alloy workpiece; the titanium alloy is placed in a vacuum heat treatment furnace, evacuated to 1.5 × 10 -3 Pa, and evacuated from 700 ° C. at a rate of 10 to 20 ° C./min. Step 6 of heating to 800 ° C., the degree of vacuum in the furnace is higher than 3 × 10 -3 Pa, keeping the temperature for 2 to 4 hours, and then cooling to room temperature at 5 to 15 ° C./min.

本実施形態の具体的工程パラメータは、チタン合金種類の違いに応じて対応する工程を用いることができる。 As the specific process parameters of the present embodiment, the corresponding process can be used according to the difference in the titanium alloy type.

より分かりやすいため、以下、具体的実施例と併せて本発明をさらに説明する。金属粉末がTC4を例としているが、チタン合金粉末の種類はこれに限定されず、かつ本発明の内容もこれに限定されない。 For the sake of clarity, the present invention will be further described below together with specific examples. Although the metal powder is TC4 as an example, the type of titanium alloy powder is not limited to this, and the content of the present invention is not limited to this.

(実施例1)
ステップ1:チタン合金粉末の水素化処理を施し、チタン合金粉末を水素化熱処理管状炉に入れ、粉末を層状に散布し、均一な水素化の組成を確保するため、各層の粉末散布の厚さが3mmで、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、10〜30分保温し、チタン合金粉末の重量パーセントに基づき0.2%の水素ガスを吹き込み、2時間保温し、その後10℃/minの速度で室温まで冷却することで、水素化チタン合金粉末を得;
ステップ2:水素化後のチタン合金粉末を積層造形に用い、チタン合金ワークピースを得(粉末散布の厚さ40μm、レーザー出力300W、スキャン速度5m/s);
ステップ3:NCシステムで圧延ロールを制御して、チタン合金の金属堆積層を圧延(圧延変形量15%)し;
ステップ4:ワークピースの印刷が完了されるまでステップ2、ステップ3を繰り返し、圧延時の圧延量が0.4mmの下で、圧延誤差を0.01mmに制御する必要があり;
ステップ5:積層造形後のチタン合金ワークピースに固溶化処理(熱処理工程:チタン合金ワークピースを熱処理炉に入れ、10〜20℃/minの速度でTp℃(相転移温度)+10℃まで加熱し、20〜40分保温し、その後焼入れる)を施し;
ステップ6:固溶後のチタン合金ワークピースにアニーリング+水素除去熱処理を施し;チタン合金を真空熱処理炉に入れ、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、炉内の真空度は3×10−3Paより高く、2時間〜4時間保温した後、5〜15℃/minで室温まで冷却する。
(Example 1)
Step 1: Hydrogenate the titanium alloy powder, put the titanium alloy powder in a hydrothermally treated tubular furnace, spray the powder in layers, and the thickness of the powder spray of each layer to ensure a uniform hydrogenation composition. Is 3 mm, vacuumed to 1.5 × 10 -3 Pa, heated to 700 ° C to 800 ° C at a rate of 10 to 20 ° C / min, kept warm for 10 to 30 minutes, 0 based on the weight percent of titanium alloy powder. .Titanium hydride alloy powder is obtained by blowing 2% hydrogen gas, keeping warm for 2 hours, and then cooling to room temperature at a rate of 10 ° C./min;
Step 2: Using the hydrogenated titanium alloy powder for laminated molding, obtain a titanium alloy workpiece (powder thickness 40 μm, laser output 300 W, scanning speed 5 m / s);
Step 3: The rolling roll is controlled by the NC system to roll the metal deposition layer of titanium alloy (rolling deformation amount 15%);
Step 4: It is necessary to repeat steps 2 and 3 until the printing of the workpiece is completed, and to control the rolling error to 0.01 mm when the rolling amount at the time of rolling is 0.4 mm;
Step 5: Solidification treatment on the titanium alloy workpiece after lamination molding (heat treatment step: put the titanium alloy workpiece in a heat treatment furnace and heat it to Tp ° C (phase transition temperature) + 10 ° C at a rate of 10 to 20 ° C / min. Insulate for 20-40 minutes and then bake);
Step 6: Annealing + hydrogen removal heat treatment is applied to the solid-melted titanium alloy workpiece; the titanium alloy is placed in a vacuum heat treatment furnace, evacuated to 1.5 × 10 -3 Pa, and at a rate of 10 to 20 ° C./min. It is heated to 700 ° C. to 800 ° C., the degree of vacuum in the furnace is higher than 3 × 10 -3 Pa, kept warm for 2 hours to 4 hours, and then cooled to room temperature at 5 to 15 ° C./min.

本実施形態の具体的工程パラメータは、チタン合金種類の違いに応じて対応する工程を用いることができる。 As the specific process parameters of the present embodiment, the corresponding process can be used according to the difference in the titanium alloy type.

(実施例2)
ステップ1:チタン合金粉末の水素化処理を施し、チタン合金粉末を水素化熱処理管状炉に入れ、粉末を層状に散布し、均一な水素化の組成を確保するため、各層の粉末散布の厚さが4mmで、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、10〜30分保温し、チタン合金粉末の重量パーセントに基づき0.3%の水素ガスを吹き込み、3時間保温し、その後10℃/minの速度で室温まで冷却することで、水素化チタン合金粉末を得;
ステップ2:水素化後のチタン合金粉末を積層造形に用い、チタン合金ワークピースを得(粉末散布の厚さ50μm、レーザー出力350W、スキャン速度5m/s);
ステップ3:NCシステムで圧延ロールを制御して、チタン合金の金属堆積層を圧延(圧延変形量20%)し;
ステップ4:ワークピースの印刷が完了されるまでステップ2、ステップ3を繰り返し、圧延時の圧延量が0.4mmの下で、圧延誤差を0.01mmに制御する必要があり;
ステップ5:積層造形後のチタン合金ワークピースに固溶化処理(熱処理工程:チタン合金ワークピースを熱処理炉に入れ、10〜20℃/minの速度でTp℃(相転移温度)+10℃まで加熱し、20〜40分保温し、その後焼入れる)を施し;
ステップ6:固溶後のチタン合金ワークピースにアニーリング+水素除去熱処理を施し;チタン合金を真空熱処理炉に入れ、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、炉内の真空度は3×10−3Paより高く、2時間〜4時間保温した後、5〜15℃/minで室温まで冷却する。
(Example 2)
Step 1: Hydrogenate the titanium alloy powder, put the titanium alloy powder in a hydrothermally treated tubular furnace, spray the powder in layers, and the thickness of the powder spray of each layer to ensure a uniform hydrogenation composition. Is 4 mm, vacuumed to 1.5 × 10 -3 Pa, heated to 700 ° C to 800 ° C at a rate of 10 to 20 ° C / min, kept warm for 10 to 30 minutes, 0 based on the weight percent of titanium alloy powder. .Blow in 3% hydrogen gas, keep warm for 3 hours, then cool to room temperature at a rate of 10 ° C./min to obtain titanium hydride alloy powder;
Step 2: Using the hydrogenated titanium alloy powder for laminated molding, obtain a titanium alloy workpiece (powder thickness 50 μm, laser output 350 W, scan speed 5 m / s);
Step 3: The rolling roll is controlled by the NC system to roll the metal deposition layer of titanium alloy (rolling deformation amount 20%);
Step 4: It is necessary to repeat steps 2 and 3 until the printing of the workpiece is completed, and to control the rolling error to 0.01 mm when the rolling amount at the time of rolling is 0.4 mm;
Step 5: Solidification treatment on the titanium alloy workpiece after lamination molding (heat treatment step: put the titanium alloy workpiece in a heat treatment furnace and heat it to Tp ° C (phase transition temperature) + 10 ° C at a rate of 10 to 20 ° C / min. Insulate for 20-40 minutes and then bake);
Step 6: Annealing + hydrogen removal heat treatment is applied to the solid-melted titanium alloy workpiece; the titanium alloy is placed in a vacuum heat treatment furnace, evacuated to 1.5 × 10 -3 Pa, and at a rate of 10 to 20 ° C./min. It is heated to 700 ° C. to 800 ° C., the degree of vacuum in the furnace is higher than 3 × 10 -3 Pa, kept warm for 2 hours to 4 hours, and then cooled to room temperature at 5 to 15 ° C./min.

本実施形態の具体的工程パラメータは、チタン合金種類の違いに応じて対応する工程を用いることができる。 As the specific process parameters of the present embodiment, the corresponding process can be used according to the difference in the titanium alloy type.

(実施例3)
ステップ1:チタン合金粉末の水素化処理を施し、チタン合金粉末を水素化熱処理管状炉に入れ、粉末を層状に散布し、均一な水素化の組成を確保するため、各層の粉末散布の厚さが4mmで、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、10〜30分保温し、チタン合金粉末の重量パーセントに基づき0.5%の水素ガスを吹き込み、3.5時間保温し、その後15℃/minの速度で室温まで冷却することで、水素化チタン合金粉末を得;
ステップ2:水素化後のチタン合金粉末を積層造形に用い、チタン合金ワークピースを得(粉末散布の厚さ60μm、レーザー出力400W、スキャン速度8m/s);
ステップ3:NCシステムで圧延ロールを制御して、チタン合金の金属堆積層を圧延(圧延変形量35%)し;
ステップ4:ワークピースの印刷が完了されるまでステップ2、ステップ3を繰り返し、圧延時の圧延量が0.4mmの下で、圧延誤差を0.01mmに制御する必要があり;
ステップ5:積層造形後のチタン合金ワークピースに固溶化処理(熱処理工程:チタン合金ワークピースを熱処理炉に入れ、10〜20℃/minの速度でTp℃(相転移温度)+10℃まで加熱し、20〜40分保温し、その後焼入れる)を施し;
ステップ6:固溶後のチタン合金ワークピースにアニーリング+水素除去熱処理を施し;チタン合金を真空熱処理炉に入れ、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、炉内の真空度は3×10−3Paより高く、2時間〜4時間保温した後、5〜15℃/minで室温まで冷却する。
(Example 3)
Step 1: Hydrogenate the titanium alloy powder, put the titanium alloy powder in a hydrothermally treated tubular furnace, spray the powder in layers, and the thickness of the powder spray of each layer to ensure a uniform hydrogenation composition. Is 4 mm, vacuumed to 1.5 × 10 -3 Pa, heated to 700 ° C to 800 ° C at a rate of 10 to 20 ° C / min, kept warm for 10 to 30 minutes, 0 based on the weight percent of titanium alloy powder. A titanium hydride alloy powder was obtained by blowing in 5.5% hydrogen gas, keeping it warm for 3.5 hours, and then cooling it to room temperature at a rate of 15 ° C./min;
Step 2: Using the hydrogenated titanium alloy powder for laminated molding, obtain a titanium alloy workpiece (powder thickness 60 μm, laser output 400 W, scanning speed 8 m / s);
Step 3: The rolling roll is controlled by the NC system to roll the metal deposition layer of titanium alloy (rolling deformation amount 35%);
Step 4: It is necessary to repeat steps 2 and 3 until the printing of the workpiece is completed, and to control the rolling error to 0.01 mm when the rolling amount at the time of rolling is 0.4 mm;
Step 5: Solidification treatment on the titanium alloy workpiece after lamination molding (heat treatment step: put the titanium alloy workpiece in a heat treatment furnace and heat it to Tp ° C (phase transition temperature) + 10 ° C at a rate of 10 to 20 ° C / min. Insulate for 20-40 minutes and then bake);
Step 6: Annealing + hydrogen removal heat treatment is applied to the solid-melted titanium alloy workpiece; the titanium alloy is placed in a vacuum heat treatment furnace, evacuated to 1.5 × 10 -3 Pa, and at a rate of 10 to 20 ° C./min. It is heated to 700 ° C. to 800 ° C., the degree of vacuum in the furnace is higher than 3 × 10 -3 Pa, kept warm for 2 hours to 4 hours, and then cooled to room temperature at 5 to 15 ° C./min.

本実施形態の具体的工程パラメータは、チタン合金種類の違いに応じて対応する工程を用いることができる。 As the specific process parameters of the present embodiment, the corresponding process can be used according to the difference in the titanium alloy type.

(実施例4)
ステップ1:チタン合金粉末の水素化処理を施し、チタン合金粉末を水素化熱処理管状炉に入れ、粉末を層状に散布し、均一な水素化の組成を確保するため、各層の粉末散布の厚さが5mmで、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、10〜30分保温し、チタン合金粉末の重量パーセントに基づき0.6%の水素ガスを吹き込み、4時間保温し、その後10℃/minの速度で室温まで冷却することで、水素化チタン合金粉末を得;
ステップ2:水素化後のチタン合金粉末を積層造形に用い、チタン合金ワークピースを得(粉末供給速度3r/min、レーザー出力1600W、スキャン速度15mm/s);
ステップ3:NCシステムで圧延ロールを制御して、チタン合金の金属堆積層を圧延(圧延変形量45%)し;
ステップ4:ワークピースの印刷が完了されるまでステップ2、ステップ3を繰り返し、圧延時の圧延量が0.4mmの下で、圧延誤差を0.01mmに制御する必要があり;
ステップ5:積層造形後のチタン合金ワークピースに固溶化処理(熱処理工程:チタン合金ワークピースを熱処理炉に入れ、10〜20℃/minの速度でTp℃(相転移温度)+10℃まで加熱し、20〜40分保温し、その後焼入れる)を施し;
ステップ6:固溶後のチタン合金ワークピースにアニーリング+水素除去熱処理を施し;チタン合金を真空熱処理炉に入れ、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、炉内の真空度は3×10−3Paより高く、2時間〜4時間保温した後、5〜15℃/minで室温まで冷却する。
(Example 4)
Step 1: Hydrogenate the titanium alloy powder, put the titanium alloy powder in a hydrothermally treated tubular furnace, spray the powder in layers, and the thickness of the powder spray of each layer to ensure a uniform hydrogenation composition. Is 5 mm, vacuumed to 1.5 × 10 -3 Pa, heated to 700 ° C to 800 ° C at a rate of 10 to 20 ° C / min, kept warm for 10 to 30 minutes, 0 based on the weight percent of titanium alloy powder. A titanium hydride alloy powder was obtained by blowing in 6% hydrogen gas, keeping it warm for 4 hours, and then cooling it to room temperature at a rate of 10 ° C./min;
Step 2: Using the hydrogenated titanium alloy powder for laminated molding, obtain a titanium alloy workpiece (powder supply speed 3r / min, laser output 1600W, scanning speed 15mm / s);
Step 3: The rolling roll is controlled by the NC system to roll the metal deposition layer of titanium alloy (rolling deformation amount 45%);
Step 4: It is necessary to repeat steps 2 and 3 until the printing of the workpiece is completed, and to control the rolling error to 0.01 mm when the rolling amount at the time of rolling is 0.4 mm;
Step 5: Solidification treatment on the titanium alloy workpiece after lamination molding (heat treatment step: put the titanium alloy workpiece in a heat treatment furnace and heat it to Tp ° C (phase transition temperature) + 10 ° C at a rate of 10 to 20 ° C / min. Insulate for 20-40 minutes and then bake);
Step 6: Annealing + hydrogen removal heat treatment is applied to the solid-melted titanium alloy workpiece; the titanium alloy is placed in a vacuum heat treatment furnace, evacuated to 1.5 × 10 -3 Pa, and at a rate of 10 to 20 ° C./min. It is heated to 700 ° C. to 800 ° C., the degree of vacuum in the furnace is higher than 3 × 10 -3 Pa, kept warm for 2 hours to 4 hours, and then cooled to room temperature at 5 to 15 ° C./min.

本実施形態の具体的工程パラメータは、チタン合金種類の違いに応じて対応する工程を用いることができる。 As the specific process parameters of the present embodiment, the corresponding process can be used according to the difference in the titanium alloy type.

力学的性質の試験結果を表1に示す。

Figure 2021523302
Table 1 shows the test results of the mechanical properties.
Figure 2021523302

積層造形分野において、柱状晶と粗大なオリジナル結晶粒の形成の起源は、冶金プロセスの熱力学・動力学の問題であり、積層造形プロセスの小さな溶融池での超常冶金条件と周期的な堆積は、温度と組成的過冷却の不十分につながり、非自発核生成質点の低下がコア問題である。上記方法は、チタン合金中の水素の溶解度を利用してチタン合金粉末に対し水素化処理を施すことである。3Dプリントプロセスにおいて、一方で水素化を利用して元素の拡散を促進させ、液/固界面組成的過冷却を増加させ;周期的な溶融堆積過程で水素化物の形成と分解、水素化は変形抵抗を低減し、転位の動きを促進することで、変形欠陥を形成し、非自発的核生成を促進させ;他方、金属堆積層での層ごとのローリングにより、金属堆積層の変形を引き起こし、印刷されたワークピースの緻密度を向上させる。同時に、圧延が堆積層に転位を導入し、これは、核生成エネルギーを低下させ、核生成率をアップさせ、次の層の印刷プロセスの小さな溶融池において、転位などの欠陥の存在が印刷層の組織を微細化させることができ;上記の2つの要因の相互作用を通じて、積層造形組織の冶金学的制御および柱状晶/等軸晶変態の正確な制御を達成する。 In the field of laminated molding, the origin of the formation of columnar crystals and coarse original crystal grains is a problem of thermodynamics and dynamics of the metallurgical process. The core problem is a decrease in non-spontaneous nucleation mass, leading to inadequate temperature and compositional supercooling. The above method is to hydrogenate the titanium alloy powder by utilizing the solubility of hydrogen in the titanium alloy. In the 3D printing process, on the other hand, hydrogenation is used to promote element diffusion and increase liquid / solid interfacial supercooling; hydride formation and decomposition during periodic melt deposition processes, hydrogenation deforms. By reducing resistance and promoting the movement of dislocations, it forms deformation defects and promotes involuntary nucleation; on the other hand, layer-by-layer rolling in the metal deposition layer causes deformation of the metal deposition layer, Improves the density of printed workpieces. At the same time, rolling introduces dislocations into the sedimentary layer, which lowers the nucleation energy and increases the nucleation rate, and the presence of defects such as dislocations in the small molten pool of the printing process of the next layer prints the layer. The structure can be miniaturized; through the interaction of the above two factors, metallurgical control of the laminated structure and accurate control of columnar / equiaxed crystal transformations are achieved.

合金材料の強度と結晶粒サイズの関係は、Hall−Petch関係に適合するため、結晶粒が細かいほど、合金の強度は高くなり;結晶粒が微細化される場合のみ、材料の強度および可塑性を同時に向上させることができる。本発明の前述の実施例において、水素の導入および層ごとの圧延処理は、印刷プロセスにおいて非常に効果的に結晶粒を微細化し、組織を改善し、材料の性能を向上させることができ;最後の水素除去処理を通じてチタン合金の組成を変えない。 Since the relationship between the strength of the alloy material and the grain size conforms to the Hall-Petch relationship, the finer the grains, the higher the strength of the alloy; only when the grains are refined, the strength and plasticity of the material It can be improved at the same time. In the aforementioned embodiments of the present invention, the introduction of hydrogen and the layer-by-layer rolling process can very effectively refine the grains, improve the texture and improve the performance of the material in the printing process; The composition of the titanium alloy is not changed through the hydrogen removal treatment of.

本発明では好ましい実施例を前述の通り開示したが、これらは決して本発明に限定するものではなく、当業者は本発明の精神と領域を脱しない範囲内で各種の変動や潤色を加えることができ、従って本発明の保護範囲は、特許請求の範囲で指定した内容を基準とする。 Although preferred embodiments have been disclosed in the present invention as described above, these are by no means limited to the present invention, and those skilled in the art may add various variations and colors within the range that does not deviate from the spirit and domain of the present invention. Yes, and therefore the scope of protection of the present invention is based on what is specified in the claims.

Claims (6)

次のステップ1〜6を含む積層造形のチタン合金組織を改善するための水素化圧延複合工程。
チタン合金粉末の水素化処理を施し、チタン合金粉末を水素化熱処理管状炉に入れ、粉末を層状に散布し、各層の粉末散布の厚さが2〜8mmで、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、10〜30分保温し、チタン合金粉末の重量パーセントに基づき0.1%〜0.8%の水素ガスを吹き込み、1〜4時間保温し、その後5〜15℃/minの速度で室温まで冷却することで、水素化チタン合金粉末を得るステップ1、
水素化後のチタン合金粉末を積層造形に用い、ワークピース印刷を実施して、チタン合金の金属堆積層を形成するステップ2、
NCシステムで圧延ロールを制御して、前記ステップ2で形成されたチタン合金の金属堆積層を圧延するステップ3、
ステップ2、ステップ3を繰り返して、ワークピースの印刷が完了されるまで層ごとに印刷および圧延するステップ4、
積層造形後のチタン合金ワークピースに固溶化処理(チタン合金ワークピースを熱処理炉に入れ、10〜20℃/minの速度でTp℃(相転移温度)+10℃まで加熱し、20〜40分保温し、その後焼入れる)を施すステップ5、
固溶後のチタン合金ワークピースにアニーリング+水素除去熱処理(チタン合金ワークピースを真空熱処理炉に入れ、1.5×10−3Paまで真空引き、10〜20℃/minの速度で700℃〜800℃まで加熱し、炉内の真空度は設定値に達してから、一定の時間保温した後、最後に室温まで冷却する)を施すステップ6。
A hydrogenated rolling composite step for improving the titanium alloy structure of laminated molding including the following steps 1 to 6.
The titanium alloy powder is hydrotreated, the titanium alloy powder is placed in a hydrothermally treated tubular furnace, the powder is sprayed in layers, and the powder spray thickness of each layer is 2 to 8 mm, 1.5 × 10 -3 Pa. Vacuum to, heat to 700 ° C to 800 ° C at a rate of 10 to 20 ° C / min, keep warm for 10 to 30 minutes, and 0.1% to 0.8% hydrogen gas based on the weight percent of titanium alloy powder. Step 1, to obtain titanium hydride alloy powder by blowing, keeping warm for 1 to 4 hours, and then cooling to room temperature at a rate of 5 to 15 ° C./min.
Step 2, a metal deposition layer of titanium alloy is formed by performing workpiece printing using hydrogenated titanium alloy powder for laminated molding.
Step 3, in which the rolling roll is controlled by the NC system to roll the metal deposition layer of the titanium alloy formed in step 2.
Step 4 and step 3 are repeated to print and roll layer by layer until the work piece printing is completed.
Solid solution treatment on the titanium alloy workpiece after laminating (put the titanium alloy workpiece in a heat treatment furnace, heat it to Tp ° C (phase transition temperature) + 10 ° C at a rate of 10 to 20 ° C / min, and keep it warm for 20 to 40 minutes. And then bake) Step 5,
Annealing + hydrogen removal heat treatment on the solid-melted titanium alloy workpiece (put the titanium alloy workpiece in a vacuum heat treatment furnace, evacuate to 1.5 x 10 -3 Pa, and evacuate from 700 ° C at a rate of 10 to 20 ° C / min. Step 6 of heating to 800 ° C., after the degree of vacuum in the furnace reaches the set value, keeping the temperature for a certain period of time, and finally cooling to room temperature).
前記ステップ6において、炉内の真空度は3×10−3Paより高い時、2時間〜4時間保温した後、5〜15℃/minで室温まで冷却することを特徴とする、請求項1に記載の積層造形のチタン合金組織を改善するための水素化圧延複合工程。 The first aspect of the step 6 is that when the degree of vacuum in the furnace is higher than 3 × 10 -3 Pa, the heat is kept warm for 2 hours to 4 hours and then cooled to room temperature at 5 to 15 ° C./min. A hydrogenated rolling composite step for improving the titanium alloy structure of the laminated molding described in. 前記ステップ4の圧延プロセスでは、圧延時の圧延量が0.4mmの下で、圧延誤差を0.01mmに制御する必要があることを特徴とする、請求項1または2に記載の積層造形のチタン合金組織を改善するための水素化圧延複合工程。 The laminated molding according to claim 1 or 2, wherein in the rolling process of step 4, the rolling amount at the time of rolling is 0.4 mm and the rolling error needs to be controlled to 0.01 mm. Hydrogenated rolling composite process to improve titanium alloy structure. 前記ステップ2において、粉末散布工程または粉末供給工程で積層造形のワークピース印刷を実施することを特徴とする、請求項1に記載の積層造形のチタン合金組織を改善するための水素化圧延複合工程。 The hydrogenation-rolling composite step for improving the titanium alloy structure of the laminated molding according to claim 1, wherein in the step 2, the workpiece printing of the laminated molding is performed in the powder spraying step or the powder supply step. .. 前記ステップ3の圧延プロセスでは、圧延変形量を10〜50%に制御することを特徴とする、請求項1に記載の積層造形のチタン合金組織を改善するための水素化圧延複合工程。 The hydrogenation-rolling composite step for improving the titanium alloy structure of the laminated molding according to claim 1, wherein the rolling process of step 3 controls the amount of rolling deformation to 10 to 50%. 前記ステップ2内の積層造形印刷工程は、次の工程を選択することを特徴とする、請求項1に記載の積層造形のチタン合金組織を改善するための水素化圧延複合工程。
粉末散布工程:粉末散布厚度20μm〜80μm、レーザー出力200W〜500W、スキャン速度1〜15m/s;
粉末供給工程:粉末供給0.2〜5r/min、レーザー出力1500W〜8000W、スキャン速度1〜30mm/s。
The laminated molding printing step in step 2 is a hydrogenation-rolling composite step for improving the titanium alloy structure of the laminated molding according to claim 1, wherein the next step is selected.
Powder spraying process: Powder spraying thickness 20 μm to 80 μm, laser output 200 W to 500 W, scanning speed 1 to 15 m / s;
Powder supply process: Powder supply 0.2 to 5 r / min, laser output 1500 W to 8000 W, scanning speed 1 to 30 mm / s.
JP2021500883A 2018-07-11 2019-06-28 Hydrogenated rolling composite method to improve the titanium alloy structure of laminated molding Active JP7020742B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810755021.2A CN108580884B (en) 2018-07-11 2018-07-11 Hydrogen roll compacting combination process is set for improve increasing material manufacturing titanium alloy tissue
CN201810755021.2 2018-07-11
PCT/CN2019/093540 WO2020011027A1 (en) 2018-07-11 2019-06-28 Hydrogenation-roll compacting composite process for improving titanium alloy structure in additive manufacturing

Publications (2)

Publication Number Publication Date
JP2021523302A true JP2021523302A (en) 2021-09-02
JP7020742B2 JP7020742B2 (en) 2022-02-16

Family

ID=63618186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021500883A Active JP7020742B2 (en) 2018-07-11 2019-06-28 Hydrogenated rolling composite method to improve the titanium alloy structure of laminated molding

Country Status (3)

Country Link
JP (1) JP7020742B2 (en)
CN (1) CN108580884B (en)
WO (1) WO2020011027A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108580884B (en) * 2018-07-11 2019-04-30 南京尚吉增材制造研究院有限公司 Hydrogen roll compacting combination process is set for improve increasing material manufacturing titanium alloy tissue
CN109128172B (en) * 2018-11-07 2021-01-01 沈阳航空航天大学 Method for manufacturing titanium alloy crystal grains by refining and adding materials
CN110586942B (en) * 2018-12-17 2020-08-14 南京中科煜宸激光技术有限公司 Method for manufacturing gradient pipe through 3D printing and regulating and controlling microstructure
CN109746443A (en) * 2018-12-29 2019-05-14 华中科技大学 A kind of method of parallel control part deformation and precision during increasing material manufacturing
CN110340172A (en) * 2019-07-15 2019-10-18 太原科技大学 A kind of method that titanium alloy thin wall profile squeezes compound near-net-shape
CN113059160B (en) * 2019-12-30 2022-09-16 沈阳铸造研究所有限公司 Composite preparation method of complex low-gap phase titanium alloy component
CN111168069B (en) * 2020-02-28 2021-04-20 西安交通大学 Heat treatment method capable of effectively improving toughness of LAM TC4 and reducing anisotropy
CN111299579A (en) * 2020-03-09 2020-06-19 深圳市晶莱新材料科技有限公司 Method for improving internal quality of SLM metal printing product
CN111922655B (en) * 2020-07-31 2021-10-22 南京尚吉增材制造研究院有限公司 Continuous wire feeding induction heating composite rolling semi-solid additive manufacturing system and method
CN112139498B (en) * 2020-09-21 2021-10-29 昆明理工大学 Material increase manufacturing process and equipment for selective laser melting composite online rolling
CN112846193B (en) * 2020-12-30 2022-12-09 中车工业研究院有限公司 Additive composite micro-rolling shaft surface repairing system and method
CN113278901A (en) * 2021-05-01 2021-08-20 上海交通大学 Multi-cycle hydrogen-placing treatment method for grain refinement of titanium alloy plate
CN113523282A (en) * 2021-06-10 2021-10-22 中国科学院金属研究所 Method for preparing fine isometric crystal titanium alloy through 3D printing
CN113385669B (en) * 2021-06-23 2022-08-16 南京工业大学 Ordered precipitated phase precipitation regulation and control method for laser additive manufacturing of aluminum-lithium alloy
CN113441732B (en) * 2021-06-30 2023-05-12 西安赛福斯材料防护有限责任公司 Preparation method of 3D printing titanium alloy surface thermal protection film layer for electric propulsion system
CN113618083B (en) * 2021-07-07 2023-02-10 哈尔滨工程大学 Method for manufacturing titanium material structure and performance by using ultrasonic impact to regulate and control laser material increase
CN113549855B (en) * 2021-07-20 2022-06-07 南京工业大学 Preparation method of hydrogen-containing titanium alloy wire for additive manufacturing
CN113695595B (en) 2021-09-01 2022-06-07 大连理工大学 Method for preparing thin-wall blank by adopting laser metal deposition and follow-up rolling
CN113828801B (en) * 2021-09-23 2022-04-22 中南大学 Electric arc additive and cryogenic rolling forming composite manufacturing device and method
CN114043121A (en) * 2021-12-15 2022-02-15 深圳职业技术学院 Powder-cored welding wire for additive manufacturing and preparation method and application thereof
CN114211004B (en) * 2021-12-17 2024-01-12 北京工商大学 PVA-based composite film layer for 3D printing of stainless steel workpiece surface and preparation method
CN115213427A (en) * 2022-07-19 2022-10-21 季华实验室 Additive manufacturing method and product
CN116288090A (en) * 2023-03-14 2023-06-23 南京工业大学 Process for improving metallurgical structure of titanium alloy bar friction stir additive manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040146736A1 (en) * 2003-01-29 2004-07-29 Advanced Materials Products, Inc. High-strength metal aluminide-containing matrix composites and methods of manufacture the same
US20130315773A1 (en) * 2012-05-24 2013-11-28 Advance Materials Products, Inc. (Adma Products, Inc.) Method of Manufacturing Pure Titanium Hydride Powder and Alloyed Titanium Hydride Powders By Combined Hydrogen-Magnesium Reduction of Metal Halides
JP2017002400A (en) * 2015-06-08 2017-01-05 ザ・ボーイング・カンパニーThe Boeing Company Additive manufacturing methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319864A (en) * 2011-07-14 2012-01-18 西北工业大学 Forging method for reducing forging temperature of TC4 alloy blade
JP6548462B2 (en) * 2014-06-17 2019-07-24 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Additional manufacturing method
CN104259459B (en) * 2014-09-29 2016-08-24 飞而康快速制造科技有限责任公司 A kind of method using selective laser melting process to prepare titanium alloy handicraft
CN104785780B (en) * 2015-04-30 2017-07-14 北京化工大学 A kind of device and method for improving selective laser sintering 3D printing part strength
CN105562573B (en) * 2015-12-29 2017-08-08 西北工业大学 The optimization method of hydrogenated TC4 titanium alloy smithing technological parameter
KR101883403B1 (en) * 2016-04-14 2018-07-31 재단법인 포항산업과학연구원 Method for manufacturing high purity spherical titanium powder
CN106735171A (en) * 2016-12-27 2017-05-31 华中科技大学 A kind of titanium aluminium pre-alloyed powder puts hydrogen and two step dehydrogenation high temperature insostatic pressing (HIP) manufacturing process
CN107335805B (en) * 2017-05-27 2019-11-26 广东工业大学 Wire feeding cladding laser-impact forges compound increasing material manufacturing method in a kind of metal parts laser light
CN108580884B (en) * 2018-07-11 2019-04-30 南京尚吉增材制造研究院有限公司 Hydrogen roll compacting combination process is set for improve increasing material manufacturing titanium alloy tissue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040146736A1 (en) * 2003-01-29 2004-07-29 Advanced Materials Products, Inc. High-strength metal aluminide-containing matrix composites and methods of manufacture the same
US20130315773A1 (en) * 2012-05-24 2013-11-28 Advance Materials Products, Inc. (Adma Products, Inc.) Method of Manufacturing Pure Titanium Hydride Powder and Alloyed Titanium Hydride Powders By Combined Hydrogen-Magnesium Reduction of Metal Halides
JP2017002400A (en) * 2015-06-08 2017-01-05 ザ・ボーイング・カンパニーThe Boeing Company Additive manufacturing methods

Also Published As

Publication number Publication date
JP7020742B2 (en) 2022-02-16
CN108580884A (en) 2018-09-28
CN108580884B (en) 2019-04-30
WO2020011027A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7020742B2 (en) Hydrogenated rolling composite method to improve the titanium alloy structure of laminated molding
CN108580874B (en) Hydrogen processing method is set for improve increasing material manufacturing titanium alloy microstructure
JP7022698B2 (en) BCC materials of titanium, aluminum, vanadium, and iron and products made from them
WO2022041252A1 (en) Method for eliminating cracks during 3d printing with nickel-based superalloy
CN112935252B (en) Method for preparing high-toughness eutectic high-entropy alloy based on selective laser melting technology
JP2019516011A (en) FCC materials of aluminum, cobalt, iron and nickel, and products using the same
CN110791686A (en) Aluminum alloy powder material for additive manufacturing, and preparation method and application thereof
CN111872386B (en) 3D printing process method of high-strength aluminum-magnesium alloy
CN111659889A (en) 3D printing process method of high-strength aluminum-manganese alloy
KR20180117721A (en) A high volume of ceramic phase having iron, silicon, vanadium and copper and an aluminum alloy
WO2022174766A1 (en) Titanium alloy powder for selective laser melting 3d printing, and selective laser melting titanium alloy and preparation thereof
JP7028791B2 (en) BCC materials for titanium, aluminum, niobium, vanadium, and molybdenum, and the products produced from them.
CN111945089A (en) Additive manufacturing titanium part and heat treatment process thereof
CN104550960A (en) Metal additive manufacturing method applying cold hearth melting, metal parts and application
CN111850332A (en) 3D printing process method of high-strength aluminum-zinc alloy
CN114411035B (en) Precipitation strengthening type medium-entropy alloy suitable for laser additive manufacturing and preparation method thereof
CN113430474B (en) Process for improving additive manufacturing metallurgical structure of titanium alloy wire
JP2017222899A (en) Metal powder for laminate molding and laminate molded body using metal powder
CN111842914A (en) 3D printing process method of high-strength aluminum-copper alloy
CN114433859B (en) High-quality electrode for titanium alloy powder, and preparation and application thereof
CN115007869A (en) Preparation method of titanium-aluminum powder for powder metallurgy with service temperature of 850 DEG C
RU2562552C1 (en) Method of electrode manufacturing to produce powder heat-resistant alloys based on titanium aluminide
CN116287824B (en) Titanium alloy with continuously adjustable phase structure and preparation method thereof
Sarentica Conventional heat treatment of additively manufactured AlSi10Mg
CN115491555B (en) 7000 series rare earth aluminum alloy sheet and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7020742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150