JP2021516209A - Hydration heat reducing agent with improved long-term storage - Google Patents

Hydration heat reducing agent with improved long-term storage Download PDF

Info

Publication number
JP2021516209A
JP2021516209A JP2020572362A JP2020572362A JP2021516209A JP 2021516209 A JP2021516209 A JP 2021516209A JP 2020572362 A JP2020572362 A JP 2020572362A JP 2020572362 A JP2020572362 A JP 2020572362A JP 2021516209 A JP2021516209 A JP 2021516209A
Authority
JP
Japan
Prior art keywords
heat
reducing agent
hydration
hydrate
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020572362A
Other languages
Japanese (ja)
Other versions
JP7070949B2 (en
Inventor
ベス ギル
ベス ギル
ヨンスン バク
ヨンスン バク
ヨンシク ガン
ヨンシク ガン
ヒョンド ユン
ヒョンド ユン
ギュヨン ギム
ギュヨン ギム
ジョンス ナム
ジョンス ナム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tripod Co ltd
Original Assignee
Tripod Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tripod Co ltd filed Critical Tripod Co ltd
Publication of JP2021516209A publication Critical patent/JP2021516209A/en
Application granted granted Critical
Publication of JP7070949B2 publication Critical patent/JP7070949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/085Acids or salts thereof containing nitrogen in the anion, e.g. nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/16Acids or salts thereof containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0071Phase-change materials, e.g. latent heat storage materials used in concrete compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00448Low heat cements

Abstract

本発明は、水酸化水和物、硝酸塩系水和物、塩化物系水和物およびリン酸塩系水和物のうちのいずれか1種またはこれらの混合物からなる潜熱性化合物と、酸化物または水酸化物からなる安定化助剤と、を含む水和熱低減剤に関し、従来の水和熱低減剤に比べて長期保管性に優れるため、長期保管や温度による粒子の凝集および物性低下が低減した水和熱低減剤に関する。【選択図】図1The present invention relates to a latent heat compound composed of any one of hydroxide hydrate, nitrate hydrate, chloride hydrate and phosphate hydrate or a mixture thereof, and an oxide. Alternatively, with respect to the hydration heat reducing agent containing a stabilizing aid composed of hydroxide, the long-term storage property is superior to that of the conventional hydration heat reducing agent. Regarding the reduced heat of hydration reducing agent. [Selection diagram] Fig. 1

Description

本発明は、長期保管性が向上した水和熱低減剤に係り、より詳細には、安定化助剤を含むことにより、水和熱低減剤の長期保管の際に凝集が発生せず、取り扱いが容易な水和熱低減剤に関する。 The present invention relates to a heat hydration reducing agent having improved long-term storage, and more specifically, by including a stabilizing aid, the heat reducing agent does not aggregate during long-term storage and can be handled. It relates to an easy hydration heat reducing agent.

セメントが水と反応してコンクリートの形成時に発生するコンクリート水和熱は、コンクリートの製造過程で問題となるため、水和熱低減剤を混合して水和熱を抑制している。特に、コンクリート水和熱は、セメント量が少ないときには外部に発散するが、いわゆる高強度/マスコンクリートを使用する大型構造物の場合には、コンクリートの塊自体がかなり大きいので、内部の水和熱が外部に上手く抜けない。それにより、コンクリートの内・外部の温度差(通常25℃)がかなり大きく発生し、コンクリートのひび割れを誘発する。 Since the heat of concrete hydration generated when cement reacts with water to form concrete becomes a problem in the concrete manufacturing process, a heat hydration reducing agent is mixed to suppress the heat of hydration. In particular, the heat of hydration of concrete radiates to the outside when the amount of cement is small, but in the case of a large structure using so-called high strength / mass concrete, the lump of concrete itself is quite large, so the heat of hydration inside Does not come out well to the outside. As a result, a considerably large temperature difference between the inside and outside of the concrete (usually 25 ° C.) is generated, which induces cracks in the concrete.

コンクリートの水和温度を低減するための技術としては、低発熱セメント、低発熱混和材(フライアッシュや高炉スラグなど)、超遅延剤などを用いた材料面での水和熱低減技術、プレクーリング(Pre−Coolong)工法、パイプクーリング(Pipe Cooling)工法、分割打設工法などの施工面での水和熱低減技術、および温度鉄筋配筋、ひび割れ誘発目地設置などの設計構造面での低減技術を挙げることができる。 Technologies for reducing the hydration temperature of concrete include low heat generation cement, low heat generation admixtures (fly ash, blast furnace slag, etc.), heat hydration reduction technology using super retardants, and precooling. (Pre-Coolong) construction method, pipe cooling (Pipe Cooling) construction method, hydration heat reduction technology in construction such as split casting method, and reduction technology in design structure such as temperature reinforcing bar arrangement and crack induction joint installation Can be mentioned.

出願人は、材料面での水和熱低減技術を開発し、無機系水和物を適用することにより、水和熱を大幅に低減させることができる組成物を完成させたことがある。 The applicant has developed a technique for reducing heat of hydration in terms of materials, and has completed a composition capable of significantly reducing heat of hydration by applying an inorganic hydrate.

例えば、韓国登録特許第10−0766803号公報、韓国登録特許第10−0796534号公報では、シリカ系希釈溶液に硝酸塩系、塩化物系、およびリン酸塩系の混合化合物を付加した組成物によって水和熱低減効果を発現している。このとき、前記混合化合物は、硝酸カルシウム四水和物(Ca(NO・4HO)、硝酸亜鉛六水和物(Zn(NO・6HO)および硝酸リチウム三水和物(LiNO・3HO)のいずれか1種またはこれらの混合物からなる硝酸塩系化合物、塩化カルシウム六水和物(CaCl・6HO)からなる塩化物系化合物、リン酸水素二ナトリウム十二水和物(NaHPO・12HO)からなるリン酸塩系化合物であって、無機系水和物で構成されている。 For example, in Korean Registered Patent No. 10-0766803 and Korean Registered Patent No. 10-0796534, water is prepared by adding a nitrate-based, chloride-based, and phosphate-based mixed compound to a silica-based diluted solution. It has a heat-reducing effect. At this time, the mixture compound, calcium nitrate tetrahydrate (Ca (NO 3) 2 · 4H 2 O), zinc nitrate hexahydrate (Zn (NO 3) 2 · 6H 2 O) and lithium nitrate Sanshui dihydrate any one or nitrate-based compound consisting of a mixture of (LiNO 3 · 3H 2 O) , a chloride compound consisting of calcium chloride hexahydrate (CaCl 2 · 6H 2 O) , phosphate dibasic a sodium twelve dihydrate (Na 2 HPO 4 · 12H 2 O) phosphate-based compound consisting of, and a inorganic hydrate.

また、韓国登録特許第10−0802988号公報では、水酸化ストロンチウム八水和物(Sr(OH)・8HO)を含有することにより、コンクリートの発熱を低減させており、韓国登録特許10−1618682号公報では、水酸化ストロンチウム八水和物(Sr(OH)・8HO)、硝酸亜鉛六水和物(Zn(NO・6HO)、硝酸アルミニウム九水和物(Al(NO・9HO)などの水和物を含有することにより、コンクリートの発熱を低減させている。 Further, in Korean Patent Registration No. 10-0802988 Publication, by the inclusion of strontium hydroxide octahydrate (Sr (OH) 2 · 8H 2 O), and reduce the heat generation of the concrete, Korean Patent Registration 10 in -1618682 discloses, strontium hydroxide octahydrate (Sr (OH) 2 · 8H 2 O), zinc nitrate hexahydrate (Zn (NO 3) 2 · 6H 2 O), aluminum nitrate nonahydrate by containing a hydrate of such (Al (NO 3) 2 · 9H 2 O), thereby reducing the heat generation of the concrete.

このような水和物からなる水和熱低減剤は、優れた水和熱低減効果を示すが、水和物の特性上、長期保管時や気温の高い環境で粒子間の凝集が発生して水和熱低減性能が低下するという問題が生じている。特に、製品を輸出する場合、さまざまな温度条件で長期間輸送および保管されなければならないため、製品の性能低下が大きく現れ、これを解決するための技術の改善が求められている。 A heat hydration reducing agent composed of such a hydrate exhibits an excellent heat hydration reducing effect, but due to the characteristics of the hydrate, aggregation between particles occurs during long-term storage or in a high temperature environment. There is a problem that the heat hydration reduction performance is lowered. In particular, when a product is exported, it must be transported and stored for a long period of time under various temperature conditions, so that the performance of the product deteriorates significantly, and improvement of technology for solving this is required.

本発明は、かかる従来技術の問題点を解決するためになされたもので、その目的は、長期保管時にも水和熱低減性能が低下せず、粒子の凝集が発生しない水和熱低減剤を提供することにある。 The present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a heat hydration reducing agent which does not deteriorate the heat hydration reducing performance even during long-term storage and does not cause agglomeration of particles. To provide.

上記目的を達成するための本発明の水和熱低減剤は、水酸化水和物、硝酸塩系水和物、塩化物系水和物およびリン酸塩系水和物のうちのいずれか1種またはこれらの混合物からなる潜熱性化合物と、酸化物または水酸化物からなる安定化助剤とを含むことを特徴とする。 The hydration heat reducing agent of the present invention for achieving the above object is any one of hydroxide hydrate, nitrate hydrate, chloride hydrate and phosphate hydrate. Alternatively, it is characterized by containing a latent thermal compound composed of a mixture thereof and a stabilizing aid composed of an oxide or a hydroxide.

この時、前記安定化助剤は、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、酸化アルミニウム(Al)および酸化ケイ素(SiO)のうちのいずれか1種またはこれらの混合物であり、前記水和熱低減剤の全体重量に対して1〜30重量%、好ましくは1〜10重量%含有できる。 At this time, the stabilizing aid is calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), aluminum oxide (Al 2 O). 3 ) and any one of silicon oxide (SiO 2 ) or a mixture thereof, which can be contained in an amount of 1 to 30% by weight, preferably 1 to 10% by weight, based on the total weight of the heat hydration reducing agent. ..

また、前記ストロンチウム系水和物は、水酸化ストロンチウム八水和物(Sr(OH)・8HO)および水酸化バリウム八水和物(Ba(OH)・8HO)のうちのいずれか1種またはこれらの混合物であり、前記硝酸塩系水和物は、硝酸カルシウム四水和物(Ca(NO・4HO)、硝酸亜鉛六水和物(Zn(NO・6HO)、硝酸リチウム三水和物(LiNO・3HO)、硝酸アルミニウム九水和物(Al(NO・9HO)、硝酸マグネシウム六水和物(Mg(NO・6HO)および硝酸鉄六水和物(Fe(NO・6HO)のうちのいずれか1種またはこれらの混合物であり、前記塩化物系水和物は、塩化カルシウム六水和物(CaCl・6HO)であり、前記リン酸塩系水和物は、リン酸水素二ナトリウム十二水和物(NaHPO・12HO)であり得る。 Furthermore, the strontium hydrate of strontium hydroxide octahydrate (Sr (OH) 2 · 8H 2 O) and barium hydroxide octahydrate (Ba (OH) 2 · 8H 2 O) is any one or a mixture of these, the nitrate-based hydrate, calcium nitrate tetrahydrate (Ca (NO 3) 2 · 4H 2 O), zinc nitrate hexahydrate (Zn (NO 3) 2 · 6H 2 O), lithium nitrate trihydrate (LiNO 3 · 3H 2 O) , aluminum nitrate nonahydrate (Al (NO 3) 2 · 9H 2 O), magnesium nitrate hexahydrate (Mg ( NO 3) is any one or a mixture of these of 2 · 6H 2 O) and iron nitrate hexahydrate (Fe (NO 3) 2 · 6H 2 O), the chloride-based hydrate a calcium chloride hexahydrate (CaCl 2 · 6H 2 O) , wherein the phosphate-based hydrate, be disodium hydrogen phosphate twelve dihydrate (Na 2 HPO 4 · 12H 2 O) obtain.

また、本発明の水和熱低減剤は、セメントを含む結合材組成物に含有され、前記結合材組成物の全体重量に対して0.5〜10重量%含有されることを特徴とする。 Further, the heat hydration reducing agent of the present invention is contained in a binder composition containing cement, and is characterized by being contained in an amount of 0.5 to 10% by weight based on the total weight of the binder composition.

本発明の水和熱低減剤は、従来の水和熱低減剤に比べて長期保管時にも水和熱低減性能が低下せず、粒子の凝集が発生しない効果を示すので、コンクリート組成物に適用しても優れた水和熱低減特性を示すことができる。 The heat hydration reducing agent of the present invention is applied to a concrete composition because it has an effect that the heat hydration reducing performance does not deteriorate even during long-term storage and particles do not agglomerate as compared with the conventional heat hydration reducing agent. Even so, it can exhibit excellent hydration heat reduction characteristics.

実施例および比較例に係る水和熱低減剤の自然乾燥による表面状態の変化を示す写真である。It is a photograph which shows the change of the surface state by natural drying of the hydration heat reducing agent which concerns on Example and comparative example. 実施例および比較例に係る水和熱低減剤を40℃のチャンバーに放置したときの表面状態の変化を示す写真である。It is a photograph which shows the change of the surface state when the hydration heat reducing agent which concerns on an Example and a comparative example was left in a chamber of 40 degreeC. 実施例および比較例に係る水和熱低減剤の時間経過に伴う簡易断熱温度の変化を示すグラフである。It is a graph which shows the change of the simple adiabatic temperature with the passage of time of the hydration heat reducing agent which concerns on an Example and a comparative example. 実施例および比較例に係る水和熱低減剤をコンクリートに適用したときのスランプの変化を示すグラフである。It is a graph which shows the change of the slump when the hydration heat reducing agent which concerns on an Example and a comparative example was applied to concrete. 実施例および比較例に係る水和熱低減剤をコンクリートに適用したときの圧縮強度の変化を示すグラフである。It is a graph which shows the change of the compressive strength when the hydration heat reducing agent which concerns on an Example and a comparative example was applied to concrete. 実施例および比較例に係る水和熱低減剤を室温で30日間放置した後、結合材組成物に適用したときの組成物の性状を比較した写真であって、実施例の水和熱低減剤を適用した結合材組成物(a)および比較例の水和熱低減剤を適用した結合材組成物(b)の写真である。It is a photograph comparing the properties of the composition when the hydration heat reducing agent according to the examples and the comparative examples was left at room temperature for 30 days and then applied to the binder composition. It is a photograph of the binder composition (a) to which the above was applied and the binder composition (b) to which the heat hydration reducing agent of Comparative Example was applied.

以下、本発明をより詳細に説明する。本明細書および請求の範囲で使用された用語や単語は、通常的かつ辞典的な意味に限定して解釈されてはならず、発明者は、それ自身の発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に即して、本発明の技術的思想に符合する意味と概念で解釈されるべきである。 Hereinafter, the present invention will be described in more detail. The terms and words used herein and in the claims shall not be construed in a general and lexicographical sense, in order for the inventor to describe his invention in the best possible way. In line with the principle that the concept of terms can be properly defined, the meaning and concept should be interpreted in line with the technical idea of the present invention.

本発明に係る水和熱低減剤は、主にコンクリート組成物に含有されることにより、コンクリートを構成するセメントと水とが反応して発生する水和熱を低減させる作用をするものである。 The heat of hydration reducing agent according to the present invention acts to reduce the heat of hydration generated by the reaction between the cement constituting the concrete and water when it is mainly contained in the concrete composition.

水和熱低減剤は、従来技術で様々な水和物が潜熱性化合物として適用されているが、本発明の水和熱低減剤は、水酸化水和物、硝酸塩系水和物、塩化物系水和物およびリン酸塩系水和物のうちのいずれか1種またはこれらの混合物からなる潜熱性化合物に、酸化物または水酸化物からなる安定化助剤を付加することを特徴とする。 Various hydrates have been applied as latent heat compounds in the conventional technique for reducing heat of hydration, but the heat of hydration reducing agent of the present invention includes hydroxide hydrate, nitrate-based hydrate, and chloride. It is characterized in that a stabilizing aid consisting of an oxide or a hydroxide is added to a latent thermal compound composed of any one of a system hydrate and a phosphate system hydrate or a mixture thereof. ..

水和物からなる潜熱性化合物は、水分を多量に含有しているので、長期保管をする場合、容器の密閉にも拘らず、水分含有量の変化によって粒子の凝集が発生することを避けることができない。また、前記水和物を構成する結晶水の他にも、外気に含まれた水分が吸収されながら、前記潜熱性化合物の水分含有量が高くなる。しかし、長期保管する場合、温度、湿度などの外部環境の変化に応じて水分含有量が低くなり、水和物自体の水分含有量が減少することが分かる。 Since the latent heat compound composed of hydrate contains a large amount of water, when storing for a long period of time, it is necessary to avoid agglomeration of particles due to a change in water content even though the container is sealed. I can't. Further, in addition to the water of crystallization constituting the hydrate, the water content of the latent heat compound increases while the water contained in the outside air is absorbed. However, it can be seen that when stored for a long period of time, the water content decreases in response to changes in the external environment such as temperature and humidity, and the water content of the hydrate itself decreases.

このような理由により、潜熱性化合物を長期保管するか或いは輸出のために輸送および保管する過程で粒子の凝集が発生するという問題点が生じている。このような粒子の凝集は、コンクリート組成物の製造時に粉砕を介してある程度解決することができるが、凝集が一度発生した潜熱性化合物の場合、水和熱低減効果が大きく低下することが分かる。つまり、単純な性状の変化に止まるのではなく、物性の変化まで誘発するのである。 For this reason, there is a problem that particle agglutination occurs in the process of long-term storage of the latent heat compound or transportation and storage for export. Such agglutination of particles can be solved to some extent through pulverization during the production of the concrete composition, but it can be seen that the effect of reducing the heat of hydration is greatly reduced in the case of a latent heat compound in which agglutination occurs once. In other words, it does not stop at simple changes in physical properties, but induces changes in physical properties.

例えば、水酸化ストロンチウム八水和物(Sr(OH)・8HO)の場合には、熱重量分析を行うと、水分含有量が次第に減少して30日保管した後、水分含有量が10%まで減少することが分かる。この場合、コンクリート組成物の水和熱低減効果が大幅に減少することが分かる。 For example, in the case of strontium hydroxide octahydrate (Sr (OH) 2 · 8H 2 O) , when subjected to thermal gravimetric analysis, after the water content has been stored gradually reduced to 30 days, the water content It can be seen that it decreases to 10%. In this case, it can be seen that the effect of reducing the heat of hydration of the concrete composition is significantly reduced.

このような水和熱低減剤は、従来技術による水和熱低減剤と基本的な組成は同じであってもよい。例えば、水ガラス(NaSiO)、シラノール(Si(OH))、TEOS[Si(OC)]のうちのいずれか1種を水で希釈して形成されたシリカ系希釈溶液に潜熱性化合物と水を混合して製造することもでき、潜熱性化合物と水を適正比率で混合して製造することもできる。このような水和熱低減剤の組成および製造方法は、韓国登録特許第10−0766803号公報に開示されているとおりである。しかし、本発明では、固相水和熱低減剤を提供しているので、潜熱性化合物および安定化助剤のみからなる水和熱低減剤を適用することが好ましい。このような2成分の水和熱低減剤は、追加の添加剤や溶剤の使用がないため、製造工程の効率が高く、長期保管性の面でもさらに優れた効果を示す。 Such a hydration heat reducing agent may have the same basic composition as the hydration heat reducing agent according to the prior art. For example, a silica-based diluted solution formed by diluting any one of water glass (Na 2 SiO 3 ), silanol (Si (OH) 4 ), and TEOS [Si (OC 2 H 5)] with water. It can also be produced by mixing the latent heat compound and water, or by mixing the latent heat compound and water in an appropriate ratio. The composition and production method of such a heat hydration reducing agent are as disclosed in Korean Registered Patent No. 10-0766803. However, since the present invention provides a solid phase hydration heat reducing agent, it is preferable to apply a hydration heat reducing agent consisting only of a latent heat compound and a stabilizing aid. Since such a two-component heat of hydration reducing agent does not require the use of additional additives or solvents, the efficiency of the manufacturing process is high, and the effect is even more excellent in terms of long-term storage.

また、前記潜熱性化合物も、従来技術における公知の様々な水和物を使用することができる。具体的には、水酸化水和物としてストロンチウム八水和物(Sr(OH)・8HO)および水酸化バリウム八水和物(Ba(OH)・8HO)のいずれか1種またはこれらの混合物、硝酸塩系水和物として硝酸カルシウム四水和物(Ca(NO・4HO)、硝酸亜鉛六水和物(Zn(NO・6HO)、硝酸リチウム三水和物(LiNO・3HO)、硝酸アルミニウム九水和物(Al(NO・9HO)、硝酸マグネシウム六水和物(Mg(NO・6HO)および硝酸鉄六水和物(Fe(NO・6HO)のうちのいずれか1種またはこれらの混合物、塩化物系水和物として塩化カルシウム六水和物(CaCl・6HO)、リン酸塩系水和物としてリン酸水素二ナトリウム十二水和物(NaHPO・12HO)を使用することができる。また、水和物は、1種を使用してもよく、2種以上を混合して使用してもよい。 Further, as the latent heat compound, various hydrates known in the prior art can be used. Specifically, either the strontium octahydrate as hydroxide hydrate (Sr (OH) 2 · 8H 2 O) and barium hydroxide octahydrate (Ba (OH) 2 · 8H 2 O) 1 species or mixtures thereof, calcium nitrate tetrahydrate as a nitrate-based hydrate (Ca (NO 3) 2 · 4H 2 O), zinc nitrate hexahydrate (Zn (NO 3) 2 · 6H 2 O), lithium nitrate trihydrate (LiNO 3 · 3H 2 O) , aluminum nitrate nonahydrate (Al (NO 3) 2 · 9H 2 O), magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O) and any one or a mixture of these of iron nitrate hexahydrate (Fe (NO 3) 2 · 6H 2 O), calcium chloride hexahydrate as the chloride-based hydrate (CaCl 2 · 6H 2 O), can be used disodium hydrogen phosphate twelve dihydrate as a phosphate hydrate (Na 2 HPO 4 · 12H 2 O). In addition, one type of hydrate may be used, or two or more types may be mixed and used.

しかし、従来技術による水和熱低減剤は、前述したように、長期保管性が低いという問題点がある。例えば、硝酸カルシウム四水和物(Ca(NO・4HO)、硝酸亜鉛六水和物(Zn(NO・6HO)、硝酸リチウム三水和物(LiNO・3HO)、塩化カルシウム六水和物(CaCl・6HO)およびリン酸水素二ナトリウム十二水和物(NaHPO・12HO)は、相転移温度がそれぞれ47、42、32、36、36℃であり、夏季や保管倉庫内で相転移温度に近接する或いは相転移温度を超える場合が発生しやすく、この場合、水和物の結晶構造が変形してしまう。相転移温度が相対的に低いため、コンクリートの水和温度が上昇したときに水和熱を吸収する効果はあるものの、逆に保管状態での物性が変わるという問題が発生する。 However, as described above, the heat hydration reducing agent according to the prior art has a problem of low long-term storage stability. For example, calcium nitrate tetrahydrate (Ca (NO 3) 2 · 4H 2 O), zinc nitrate hexahydrate (Zn (NO 3) 2 · 6H 2 O), lithium nitrate trihydrate (LiNO 3 · 3H 2 O), calcium chloride hexahydrate (CaCl 2 · 6H 2 O) and disodium hydrogen phosphate twelve dihydrate (Na 2 HPO 4 · 12H 2 O) , the phase transition temperature, respectively 47,42 , 32, 36, 36 ° C., which are likely to be close to or exceed the phase transition temperature in summer or in a storage warehouse, in which case the crystal structure of the hydrate is deformed. Since the phase transition temperature is relatively low, it has the effect of absorbing the heat of hydration when the hydration temperature of concrete rises, but on the contrary, there is a problem that the physical properties in the stored state change.

したがって、コンクリートの水和熱を吸収する効果は維持しながら、保管条件で安定的に結晶構造を維持することができる技術が求められる。本発明では、前記潜熱性化合物の安定化助剤を加えて組成することにより、上述した長期保管に伴う問題点を解決している。 Therefore, there is a need for a technique capable of stably maintaining the crystal structure under storage conditions while maintaining the effect of absorbing the heat of hydration of concrete. In the present invention, the above-mentioned problems associated with long-term storage are solved by adding a stabilizing aid for the latent heat compound to the composition.

前記安定化助剤は、酸化物または水酸化物を使用することが好ましい。具体的には、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、酸化アルミニウム(Al)、酸化ケイ素(SiO)を使用することができ、これらの化合物のうちのいずれか1種を使用しても、2種以上の混合物を使用してもよい。 It is preferable to use an oxide or a hydroxide as the stabilizing aid. Specifically, calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), aluminum oxide (Al 2 O 3 ), silicon oxide. (SiO 2 ) can be used, and any one of these compounds may be used, or a mixture of two or more may be used.

また、前記安定化助剤は、前記水和熱低減剤の全体重量に対して1〜30重量%、好ましくは1〜10重量%含有されることが好ましい。前記安定化助剤の含有量があまり少ない場合には、安定化助剤を使用していない水和熱低減剤とは物性の違いがなく、前記安定化助剤の含有量が30重量%を超える場合には、潜熱性化合物の含有量が相対的に少なくなって水和熱低減効果が減少することが分かる。 Further, the stabilizing aid is preferably contained in an amount of 1 to 30% by weight, preferably 1 to 10% by weight, based on the total weight of the heat hydration reducing agent. When the content of the stabilizing aid is too small, there is no difference in physical properties from the heat hydration reducing agent that does not use the stabilizing aid, and the content of the stabilizing aid is 30% by weight. If it exceeds, it can be seen that the content of the latent heat compound is relatively small and the effect of reducing the heat of hydration is reduced.

本発明の水和熱低減剤は、コンクリート組成物に混合されてコンクリートの水和熱を低減させるという効果を示す。前記コンクリート組成物は、セメント、高炉スラグ微粉末、フライアッシュ、シラスカーヒューム、水、骨材を含んで構成され、コンクリートの用途と物性に応じて含有量や具体的成分が異なり得る。前記セメントとしては、1種普通ポルトランドセメント、高炉スラグセメントなどを使用することができ、前記高炉スラグ微粉末、フライアッシュ、シラスカーヒュームなどは、結合材として使用することができる。しかし、如何なる組成のコンクリート組成物においても、本発明の水和熱低減剤を混合することにより、水和熱低減の効果を得ることができる。 The heat hydration reducing agent of the present invention has the effect of reducing the heat of hydration of concrete by being mixed with the concrete composition. The concrete composition is composed of cement, blast furnace slag fine powder, fly ash, silascar fume, water, and aggregate, and the content and specific components may differ depending on the use and physical properties of the concrete. As the cement, type 1 ordinary Portland cement, blast furnace slag cement and the like can be used, and the blast furnace slag fine powder, fly ash, shirasu carfume and the like can be used as a binder. However, the effect of reducing the heat of hydration can be obtained by mixing the heat of hydration reducing agent of the present invention in the concrete composition having any composition.

前記水和熱低減剤は、コンクリート組成物に適用する場合、組成物の全体重量に対して0.5〜10重量%、好ましくは1〜5重量%含有されることが好ましい。前記水和熱低減剤の量があまり少ない場合には、コンクリートの十分な水和熱低減効果を期待し難く、初期強度の発現にも影響を及ぼさない。これに対し、前記水和熱低減剤の量があまり多い場合には、コンクリートの初期流動性を低下させるおそれがあり、コンクリートの水和熱低減性能に対する経済的な面で非効率的である。 When applied to a concrete composition, the heat of hydration reducing agent is preferably contained in an amount of 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total weight of the composition. When the amount of the heat hydration reducing agent is too small, it is difficult to expect a sufficient effect of reducing the heat of hydration of concrete, and it does not affect the development of initial strength. On the other hand, if the amount of the heat hydration reducing agent is too large, the initial fluidity of the concrete may be lowered, which is economically inefficient with respect to the heat hydration reducing performance of the concrete.

また、本発明の水和熱低減剤は、結合材組成物(例えば、低発熱結合材組成物)に適用することもできる。この場合には、セメント、好ましくは1種普通ポルトランドセメント、高炉スラグ微粉末、フライアッシュを含む3成分系結合材100重量%に対して、前記水和熱低減剤0.5〜10重量%をプレミキシング(premixing)工程によって投入して製造することができる。この時、前記結合材は、3成分系結合材を適用することが好ましいが、セメントを単独で使用してもよく、セメントと高炉スラグ微粉末、セメントとフライアッシュの2成分系結合材を使用してもよい。すなわち、前記結合材は、1成分乃至3成分からなってもよいが、結合材100重量%に対して前記水和熱低減剤0.5〜10重量%を含むことが好ましい。これは、前記水和熱低減剤の含有量があまり少ない場合には、水和熱低減効果を得ることができず、前記水和熱低減剤の含有量があまり多い場合には、水和熱低減効果がむしろ減少するうえ、高価な水和熱低減剤を多量に使用することにより経済性に劣るためである。また、如何なる場合でも、コンクリート形成時に発生する水和熱は、添加された水和熱低減剤によって抑制されるため、高品質のコンクリートを製造することができる。 Further, the heat hydration reducing agent of the present invention can also be applied to a binder composition (for example, a low heat generating binder composition). In this case, 0.5 to 10% by weight of the heat of hydration reducing agent is added to 100% by weight of the three-component binder containing cement, preferably one-class ordinary Portland cement, blast furnace slag fine powder, and fly ash. It can be fed and manufactured by a premixing process. At this time, it is preferable to apply a three-component binder to the binder, but cement may be used alone, and a two-component cement of cement and blast furnace slag fine powder and cement and fly ash is used. You may. That is, the binder may be composed of one to three components, but it is preferable that the binder contains 0.5 to 10% by weight of the heat of hydration reducing agent with respect to 100% by weight of the binder. This is because when the content of the heat of hydration reducing agent is too small, the effect of reducing the heat of hydration cannot be obtained, and when the content of the heat of hydration reducing agent is too large, the heat of hydration is reduced. This is because the reduction effect is rather reduced, and the use of a large amount of an expensive heat hydration reducing agent is inferior in economic efficiency. Further, in any case, the heat of hydration generated during the formation of concrete is suppressed by the added heat of hydration reducing agent, so that high quality concrete can be produced.

以下、本発明の好適な実施形態の説明によって本発明をより詳細に説明する。しかし、下記の実施形態は、本発明の理解を助けるための一実施形態に過ぎないものである。これらによって本発明の権利範囲が縮小または限定されてはならない。 Hereinafter, the present invention will be described in more detail by describing preferred embodiments of the present invention. However, the following embodiments are only one embodiment for assisting the understanding of the present invention. These shall not reduce or limit the scope of rights of the present invention.

[水和熱低減剤の評価]
表1に示すように、潜熱性化合物と安定化助剤とを混合して水和熱低減剤を製造した。表1において、混合物1は、硝酸カルシウム四水和物(Ca(NO・4HO)、塩化カルシウム六水和物(CaCl・6HO)およびリン酸水素二ナトリウム十二水和物(NaHPO・12HO)をそれぞれ50、40、10重量%の割合で混合して製造した潜熱性化合物であり、混合物2は、硝酸亜鉛六水和物(Zn(NO・6HO)、塩化カルシウム六水和物(CaCl・6HO)およびリン酸水素二ナトリウム十二水和物(NaHPO・12HO)をそれぞれ50、40、10重量%の割合で混合して製造した潜熱性化合物である。
[Evaluation of heat hydration reducing agent]
As shown in Table 1, a latent heat compound and a stabilizing aid were mixed to produce a heat hydration reducing agent. In Table 1, mixture 1, calcium nitrate tetrahydrate (Ca (NO 3) 2 · 4H 2 O), calcium chloride hexahydrate (CaCl 2 · 6H 2 O) and sodium hydrogen phosphate twenty-two water hydrate is (Na 2 HPO 4 · 12H 2 O) a latent compound which is prepared by mixing at a ratio of 50,40,10 wt%, respectively, mixture 2, zinc nitrate hexahydrate (Zn (NO 3 ) 2 · 6H 2 O), calcium chloride hexahydrate (CaCl 2 · 6H 2 O) and disodium hydrogen phosphate twelve dihydrate (Na 2 HPO 4 · 12H 2 O) , respectively 50,40,10 It is a latent thermal compound produced by mixing in a proportion of% by weight.

Figure 2021516209
Figure 2021516209

表1に基づいて製造された水和熱低減剤に対する水分の含有量を熱重量分析器で測定することにより、水和物を構成する結晶水の含有量の変化を測定した。潜熱性化合物は、空気中から水分を吸収して水分の含有量が増加するため、測定の前に、40℃の乾燥オーブン内に30分間入れておいて余分な水分を除去した後、これを測定基準にして熱重量分析器で測定した。水分の含有量は、0日で試料の熱重量分析の際に80〜150℃の温度範囲におけるピーク面積を100%とし、時間による80〜150℃の範囲のピーク面積を百分率で表した。その結果は、表2のとおりである。 The change in the content of water of crystallization constituting the hydrate was measured by measuring the water content of the heat hydration reducing agent produced based on Table 1 with a thermogravimetric analyzer. Since the latent thermogravimetric compound absorbs moisture from the air and increases the moisture content, it is placed in a drying oven at 40 ° C. for 30 minutes to remove excess moisture before measurement. It was measured with a thermogravimetric analyzer as a measurement standard. For the water content, the peak area in the temperature range of 80 to 150 ° C. was set to 100% in the thermogravimetric analysis of the sample in 0 days, and the peak area in the range of 80 to 150 ° C. with time was expressed as a percentage. The results are shown in Table 2.

Figure 2021516209
Figure 2021516209

表2の結果より、安定化助剤を使用していない場合に比べて、安定化助剤を使用した水和熱低減剤における結晶水含有量の減少速度が著しく遅くなることが分かる。これらの結果から、水和物の結晶構造を構成する水分子の脱着量が安定化助剤を使用するときに減少する傾向を確認することができる。 From the results in Table 2, it can be seen that the rate of decrease in the water of crystallization content in the heat of hydration reducing agent using the stabilizing aid is significantly slower than that in the case where the stabilizing aid is not used. From these results, it can be confirmed that the amount of desorption of water molecules constituting the crystal structure of the hydrate tends to decrease when the stabilizing aid is used.

また、実施例1、実施例2および比較例1の試料をペトリ皿に置き、時間の経過に伴う粒子の凝集や乾燥の程度を視覚的に確認した。 In addition, the samples of Example 1, Example 2 and Comparative Example 1 were placed on a Petri dish, and the degree of particle aggregation and drying with the passage of time was visually confirmed.

図1では実施例および比較例に係る水和熱低減剤の自然乾燥による表面状態の変化を示している。図1の結果を参照すると、比較例1の場合、1日目から粒子の凝集が発生し、56日目には粒子の凝集した塊が多数発見される。しかし、実施例1および実施例2では、56日を観察しても、粒子の凝集が発生しないことを確認することができる。このような粒子の凝集が発生する理由は、空気中の水分を吸収する程度と結晶水の変化によるものと推測される。 FIG. 1 shows changes in the surface state of the heat hydration reducing agent according to Examples and Comparative Examples due to natural drying. With reference to the result of FIG. 1, in the case of Comparative Example 1, agglutination of particles occurs from the first day, and a large number of agglomerated lumps of particles are found on the 56th day. However, in Example 1 and Example 2, it can be confirmed that the agglutination of particles does not occur even after observing 56 days. It is presumed that the reason why such particle agglutination occurs is due to the degree of absorption of moisture in the air and the change in water of crystallization.

また、図2は実施例および比較例に係る水和熱低減剤を40℃のチャンバーに放置したときの表面状態の変化を示しているが、比較例1では1日目から粒子の凝集が発生するが、実施例1および2では7日間放置しても粒子の凝集が発生しないため、高温でも保管安定性に優れることを確認することができる。 Further, FIG. 2 shows changes in the surface state when the heat hydration reducing agent according to Examples and Comparative Examples was left in a chamber at 40 ° C., but in Comparative Example 1, agglomeration of particles occurred from the first day. However, in Examples 1 and 2, it can be confirmed that the storage stability is excellent even at a high temperature because the particles do not aggregate even after being left for 7 days.

[コンクリート組成物の評価]
上述した水和熱低減剤を適用したコンクリート組成物の物性を評価するために、表3に示すようにコンクリート組成物を製造した。
[Evaluation of concrete composition]
In order to evaluate the physical properties of the concrete composition to which the above-mentioned heat hydration reducing agent was applied, a concrete composition was produced as shown in Table 3.

Figure 2021516209
Figure 2021516209

表3によるコンクリート組成物の簡易断熱温度を測定した。時間による簡易断熱温度の変化は、図3のグラフに示すとおりである。断熱温度は、簡易断熱温度試験法によって測定した。内部サイズ300×300×300mmの簡易断熱試験体を20℃の打設温度で50Lの容器に打設して中央部の温度を10分単位で測定した。 The simple adiabatic temperature of the concrete composition according to Table 3 was measured. The change in the simple adiabatic temperature with time is as shown in the graph of FIG. The adiabatic temperature was measured by a simple adiabatic temperature test method. A simple heat insulating test piece having an internal size of 300 × 300 × 300 mm was placed in a 50 L container at a placing temperature of 20 ° C., and the temperature at the center was measured in units of 10 minutes.

結果を参照すると、水和熱低減剤を使用していない基準試料と比較して、実施例1、実施例2および比較例1の試料は、簡易断熱温度が安定して変化することが分かり、水和熱低減効果があることを確認することができる。また、安定化助剤を含まない比較例1においても、製造直後にコンクリート組成物に適用すると、実施例1および2と同等の効果を得ることができることが分かる。しかし、比較例1の試料を30日間室温に放置した後、同じ実験を行うと、基準試料と同様の簡易断熱温度の変化を示す。したがって、安定化助剤を適用していない水和熱低減剤は、長期保管性が悪いことを確認することができる。 With reference to the results, it was found that the simple adiabatic temperature of the samples of Example 1, Example 2 and Comparative Example 1 changed stably as compared with the reference sample in which the heat hydration reducing agent was not used. It can be confirmed that there is an effect of reducing heat of hydration. Further, it can be seen that even in Comparative Example 1 containing no stabilizing aid, when applied to the concrete composition immediately after production, the same effect as in Examples 1 and 2 can be obtained. However, when the sample of Comparative Example 1 is left at room temperature for 30 days and then the same experiment is performed, the change in the simple adiabatic temperature similar to that of the reference sample is shown. Therefore, it can be confirmed that the hydration heat reducing agent to which the stabilizing aid is not applied has poor long-term storage stability.

また、前記実施例および比較例の試料に対するスランプおよび圧縮強度を測定した結果は、図4および図5に示すとおりである。これは、表4のような結果として示される。表4を参照すると、56日経過後のコンクリートの空気量、スランプ、圧縮強度などの物性において、実施例1および2のコンクリートが通常のコンクリートと同等程度を示すことが分かる。 The results of measuring the slump and the compressive strength with respect to the samples of the Examples and Comparative Examples are as shown in FIGS. 4 and 5. This is shown as a result as shown in Table 4. With reference to Table 4, it can be seen that the concrete of Examples 1 and 2 shows the same degree as the ordinary concrete in terms of physical properties such as the amount of air, slump, and compressive strength of the concrete after 56 days have passed.

Figure 2021516209
Figure 2021516209

しかし、比較例1の水和熱低減剤を30日間室温に放置した後、同様の実験を行うと、空気量、スランプ、圧縮強度がすべて悪くなることが分かる。このような結果は、水和熱低減剤の時間による劣化に起因するものである。これに対し、本発明の水和熱低減剤(実施例1および2)の場合、30日間室温に放置した後、同様の実験を行ったとき、表4と略同じ測定値を示した。これは、本発明の水和熱低減剤が安定化助剤を含むことにより、長期保管性が向上するためであると把握された。 However, when the heat hydration reducing agent of Comparative Example 1 is left at room temperature for 30 days and then the same experiment is performed, it can be seen that the amount of air, the slump, and the compressive strength all deteriorate. Such a result is due to the deterioration of the heat hydration reducing agent over time. On the other hand, in the case of the heat hydration reducing agent of the present invention (Examples 1 and 2), when the same experiment was carried out after being left at room temperature for 30 days, substantially the same measured values as in Table 4 were shown. It was found that this is because the heat hydration reducing agent of the present invention contains a stabilizing aid to improve long-term storage stability.

また、1種ポルトランドセメント40重量%、高炉スラグ微粉末30重量%、フライアッシュ25重量%、水和熱低減剤5重量%の割合でプレミキシングして製造された結合材組成物を対象に実験した結果は、図6のとおりである。前記水和熱低減剤は、実施例1と比較例1を適用した。水和熱低減剤を室温で30日間放置した後、結合材組成物に適用したときの組成物の性状を比較した。図6の結果を参照すると、実施例1の水和熱低減剤を適用した結合材組成物(a)は、粒子の凝集が発生しないが、比較例1の水和熱低減剤を適用した結合材組成物(b)は、粒子の凝集が発生して水和熱低減効果が顕著に低くなることを確認することができた。このような結果は、本発明で水和熱低減剤の構成を最適化することにより、水和熱低減剤の長期保管性が向上したために得られるものと判断される。 In addition, an experiment was conducted on a binder composition produced by premixing at a ratio of 1 type Portland cement 40% by weight, blast furnace slag fine powder 30% by weight, fly ash 25% by weight, and heat hydration reducing agent 5% by weight. The results are shown in FIG. As the heat of hydration reducing agent, Example 1 and Comparative Example 1 were applied. After allowing the heat hydration reducing agent to stand at room temperature for 30 days, the properties of the composition when applied to the binder composition were compared. With reference to the result of FIG. 6, the binder composition (a) to which the heat hydration reducing agent of Example 1 was applied does not cause agglutination of particles, but the binding to which the heat of hydration reducing agent of Comparative Example 1 was applied. In the material composition (b), it was confirmed that agglomeration of particles was generated and the effect of reducing heat of hydration was remarkably reduced. It is judged that such a result is obtained because the long-term storage property of the heat hydration reducing agent is improved by optimizing the composition of the heat hydration reducing agent in the present invention.

本発明は、上述したように好適な実施形態を挙げて説明したが、前記実施形態に限定されず、本発明の精神から逸脱することなく、当該発明の属する技術分野における通常の知識を有する者によって多様な変形と変更が可能である。それらの変形例および変更例は、本発明と添付された特許請求の範囲の範疇内に属するものと理解すべきである。 Although the present invention has been described with reference to preferred embodiments as described above, the present invention is not limited to the above-described embodiments, and a person who has ordinary knowledge in the technical field to which the invention belongs without departing from the spirit of the present invention. Various transformations and changes are possible. It should be understood that these modifications and modifications fall within the scope of the claims attached to the present invention.

Claims (5)

水酸化水和物、硝酸塩系水和物、塩化物系水和物およびリン酸塩系水和物のうちのいずれか1種またはこれらの混合物からなる潜熱性化合物と、
酸化物または水酸化物からなる安定化助剤と、を含むことを特徴とする、水和熱低減剤。
A latent heat compound consisting of any one of hydroxide hydrate, nitrate hydrate, chloride hydrate and phosphate hydrate or a mixture thereof, and
A heat hydration reducing agent comprising a stabilizing aid consisting of an oxide or a hydroxide.
前記安定化助剤は、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、酸化アルミニウム(Al)および酸化ケイ素(SiO)のうちのいずれか1種またはこれらの混合物であることを特徴とする、請求項1に記載の水和熱低減剤。 The stabilizing aids include calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), aluminum oxide (Al 2 O 3 ) and The heat of hydration reducing agent according to claim 1, wherein the agent is any one of silicon oxide (SiO 2) or a mixture thereof. 前記安定化助剤は、前記水和熱低減剤の全体重量に値して1〜30重量%含有されることを特徴とする、請求項1に記載の水和熱低減剤。 The heat hydration reducing agent according to claim 1, wherein the stabilizing aid is contained in an amount of 1 to 30% by weight corresponding to the total weight of the heat hydration reducing agent. 前記水酸化水和物は、水酸化ストロンチウム八水和物(Sr(OH)・8HO)および水酸化バリウム八水和物(Ba(OH)・8HO)のうちのいずれか1種またはこれらの混合物であり、
前記硝酸塩系水和物は、硝酸カルシウム四水和物(Ca(NO・4HO)、硝酸亜鉛六水和物(Zn(NO・6HO)、硝酸リチウム三水和物(LiNO・3HO)、硝酸アルミニウム九水和物(Al(NO・9HO)、硝酸マグネシウム六水和物(Mg(NO・6HO)および硝酸鉄六水和物(Fe(NO・6HO)のうちのいずれか1種またはこれらの混合物であり、
前記塩化物系水和物は、塩化カルシウム六水和物(CaCl・6HO)であり、
前記リン酸塩系水和物は、リン酸水素二ナトリウム十二水和物(NaHPO・12HO)であることを特徴とする、請求項1に記載の水和熱低減剤。
The hydroxide hydrate, any of strontium hydroxide octahydrate (Sr (OH) 2 · 8H 2 O) and barium hydroxide octahydrate (Ba (OH) 2 · 8H 2 O) One or a mixture of these,
The nitrate-based hydrate, calcium nitrate tetrahydrate (Ca (NO 3) 2 · 4H 2 O), zinc nitrate hexahydrate (Zn (NO 3) 2 · 6H 2 O), lithium nitrate Sanshui hydrate (LiNO 3 · 3H 2 O) , aluminum nitrate nonahydrate (Al (NO 3) 2 · 9H 2 O), magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O) and nitric acid is any one or a mixture of these of iron hexahydrate (Fe (NO 3) 2 · 6H 2 O),
The chloride-based hydrate, a calcium chloride hexahydrate (CaCl 2 · 6H 2 O) ,
The phosphate-based hydrate, characterized in that it is a disodium hydrogen phosphate twelve dihydrate (Na 2 HPO 4 · 12H 2 O), heat of hydration reducing agent according to claim 1.
前記水和熱低減剤は、セメントを含む結合材組成物に含有され、
前記結合材組成物の全体重量に対して0.5〜10重量%含有されることを特徴とする、請求項1に記載の水和熱低減剤。
The heat of hydration reducing agent is contained in a binder composition containing cement.
The heat hydration reducing agent according to claim 1, wherein the binder composition is contained in an amount of 0.5 to 10% by weight based on the total weight of the binder composition.
JP2020572362A 2018-03-20 2019-03-07 Hydration heat reducing agent with improved long-term storage Active JP7070949B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180032151A KR101882896B1 (en) 2018-03-20 2018-03-20 Hydration Heat Reducer Improved Long-term Storage Property
KR10-2018-0032151 2018-03-20
PCT/KR2019/002636 WO2019182270A1 (en) 2018-03-20 2019-03-07 Hydration heat reducing agent having improved long-term storageability

Publications (2)

Publication Number Publication Date
JP2021516209A true JP2021516209A (en) 2021-07-01
JP7070949B2 JP7070949B2 (en) 2022-05-18

Family

ID=63454948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020572362A Active JP7070949B2 (en) 2018-03-20 2019-03-07 Hydration heat reducing agent with improved long-term storage

Country Status (3)

Country Link
JP (1) JP7070949B2 (en)
KR (1) KR101882896B1 (en)
WO (1) WO2019182270A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101882896B1 (en) * 2018-03-20 2018-08-27 주식회사 트라이포드 Hydration Heat Reducer Improved Long-term Storage Property
KR102307019B1 (en) * 2021-06-03 2021-09-30 주식회사트라이포드 Hydration heat reducer with improved durability and usability
KR102341733B1 (en) 2021-06-23 2021-12-22 주식회사트라이포드 Sieving device for producing hydration heat reducing agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100527A (en) * 1994-10-03 1996-04-16 Okumura Corp Placing method for mass concrete
JPH08268744A (en) * 1995-03-30 1996-10-15 Onoda:Kk Low exothermic nonshrinkable filler
KR100766803B1 (en) * 2006-07-05 2007-10-17 대림산업 주식회사 Agent for the purpose of reducing hydration heat of concrete using 3type latent heat storage composition and the method of making it
JP2011144070A (en) * 2010-01-14 2011-07-28 Kyushu Electric Power Co Inc Flocculating-caking resistant fly ash, method for deciding the flocculating-caking resistant fly ash, and method for mixing the flocculating-caking resistant fly ash
KR101618682B1 (en) * 2014-08-28 2016-05-10 주식회사트라이포드 Concrete composition for unclear power structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796534B1 (en) 2006-10-12 2008-01-21 대림산업 주식회사 Low heat building concrete composition using 3type combine and 3type latent heat storage composition
KR100802988B1 (en) 2007-04-26 2008-02-14 대림산업 주식회사 Composition of premixed type - ultra low heat binder with latent heat property and method for reducing hydration heat of concrete using it
KR101758174B1 (en) * 2016-11-18 2017-07-17 한국건설기술연구원 Crack reducing composition for concrete and concrete composition comprising the same
KR101882896B1 (en) * 2018-03-20 2018-08-27 주식회사 트라이포드 Hydration Heat Reducer Improved Long-term Storage Property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100527A (en) * 1994-10-03 1996-04-16 Okumura Corp Placing method for mass concrete
JPH08268744A (en) * 1995-03-30 1996-10-15 Onoda:Kk Low exothermic nonshrinkable filler
KR100766803B1 (en) * 2006-07-05 2007-10-17 대림산업 주식회사 Agent for the purpose of reducing hydration heat of concrete using 3type latent heat storage composition and the method of making it
JP2011144070A (en) * 2010-01-14 2011-07-28 Kyushu Electric Power Co Inc Flocculating-caking resistant fly ash, method for deciding the flocculating-caking resistant fly ash, and method for mixing the flocculating-caking resistant fly ash
KR101618682B1 (en) * 2014-08-28 2016-05-10 주식회사트라이포드 Concrete composition for unclear power structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中原勝儼, 無機化合物・錯体辞典, JPN6021040095, 10 June 1997 (1997-06-10), JP, pages 220 - 221, ISSN: 0004618389 *
社団法人 日本化学会編, 化学便覧 基礎編, vol. 改訂3版, JPN6021040097, 25 June 1984 (1984-06-25), JP, pages 126, ISSN: 0004618390 *

Also Published As

Publication number Publication date
WO2019182270A1 (en) 2019-09-26
JP7070949B2 (en) 2022-05-18
KR101882896B1 (en) 2018-08-27

Similar Documents

Publication Publication Date Title
Villaquirán-Caicedo et al. Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources
Kumar et al. The filler effect: The influence of filler content and type on the hydration rate of tricalcium silicate
Lapeyre et al. Influence of pozzolanic additives on hydration mechanisms of tricalcium silicate
JP7070949B2 (en) Hydration heat reducing agent with improved long-term storage
Yang et al. Research progresses in magnesium phosphate cement–based materials
RU2517729C2 (en) Geopolymer composite binders with given properties for cement and concrete
ES2863499T3 (en) Compositions in the form of particles for the formation of geopolymers, their use and procedures to form geopolymers with these
Sultan et al. Incorporation of cement bypass flue dust in fly ash and blast furnace slag-based geopolymer
US11498868B2 (en) Addition of colloidal silica to concrete
JP5500828B2 (en) Soil hardening material
Li et al. Approaches to achieve fluidity retention in low-carbon calcined clay blended cements
JPS6357377B2 (en)
JP6318182B2 (en) Binder for conditioning waste containing aluminum metal and its use
CN112851264A (en) High-temperature-resistant concrete based on iron tailings and steel slag powder
Sun et al. Mechanical and durability properties of blended OPC mortar modified by low-carbon belite (C2S) nanoparticles
CN106145965A (en) A kind of lightweight, heat insulation, refractory castable composition and application thereof and preparation method
Deng et al. Investigation of sulfate attack on aluminum phases in cement-metakaolin paste
Chen et al. Improved mechanical strength of magnesium oxysulfate cement using ferric sulfate
Zhu et al. Calcium‐silicate‐hydrates/polycarboxylate ether nanocomposites doped by magnesium: Enhanced stability and accelerating effect on cement hydration
KR101992802B1 (en) Method for manufacturing eco-friendly cement composite using nano-silica sol
KR102114016B1 (en) Hybrid Hydration Heat Reducer and Concrete Composition Using the Same
KR101750011B1 (en) Concrete binder composition containing polysilicon dry sludge powder
WO2017109583A2 (en) Magnesium phosphate based cement, mortar and concrete compositions with increased working time
JP2018080075A (en) Cement admixture, production method of cement admixture, cement composition and production method of cement composition
Ribeiro et al. Effect of MgO/NH4H2PO4 Ratio on the Properties of Magnesium Phosphate Cements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R150 Certificate of patent or registration of utility model

Ref document number: 7070949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150