JP2021504755A - 多材料ミラーシステム - Google Patents

多材料ミラーシステム Download PDF

Info

Publication number
JP2021504755A
JP2021504755A JP2020528955A JP2020528955A JP2021504755A JP 2021504755 A JP2021504755 A JP 2021504755A JP 2020528955 A JP2020528955 A JP 2020528955A JP 2020528955 A JP2020528955 A JP 2020528955A JP 2021504755 A JP2021504755 A JP 2021504755A
Authority
JP
Japan
Prior art keywords
mirror
cte
mirror system
strut
extension member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020528955A
Other languages
English (en)
Other versions
JP6982181B2 (ja
Inventor
キャリガン,キース
シルニー,ジョン,エフ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2021504755A publication Critical patent/JP2021504755A/ja
Application granted granted Critical
Publication of JP6982181B2 publication Critical patent/JP6982181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/061Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators

Abstract

主ミラー、及び異なる熱膨張係数(CTE)を有する二次ミラーを含むミラーシステム。 負の熱膨張係数(CTE)ストラットが、主本体部分、主本体部分に関して互いに対向して配置され、ストラット長を画定する第1結合部及び第2結合部を含む。第1結合部及び第2結合部の各々は、外部構造とインターフェースできる。負のCTEストラットは、主本体部分に結合された第1端部と、中間延長部材により第1結合部に結合された第2端部とを有するオフセット延長部材を含んで良い。第1端部及び第2端部は、ストラット長に平行なオフセット長を画定し得る。負のCTEストラットの温度が上昇すると、オフセット長さは、オフセット延長部材の熱膨張により増大し、ストラット長さを減少させるのに十分なように構成され得る。

Description

人工衛星中に一般的に見られる宇宙ベースの望遠鏡におけるカセグレイン反射器タイプ(Cassegrain reflector-type)のイメージングシステムは、画像品質を低下させ得る環境(例えば、温度)変動に影響されやすい。従って、そのような撮像システムに使用されるミラーシステムは、環境変動に対する感度を低減するように設計される。1つの典型的なミラーシステム設計は、光学システム内の全ての光学系(例えば、超低膨張(ULE)ガラスミラー)及び支持構造のために、ゼロに近い熱膨張係数(CTE)の材料を利用する。この設計は、実効上、環境変動に影響されない。別の典型的なミラーシステム設計では、光学システム内のすべての光学系及びすべての支持構造に対して、比較的高いCTE炭化ケイ素(SiC)を利用する。SiC材料は熱膨張の影響を受けやすいが、熱補償及び/又は能動的温度制御を組み込む場合、システム中の全ての構成要素の一様なCTEは、環境変動に対する感度を低下させるのにある程度有効である。
本明細書において、「実質的に」という用語は、作用、特徴、特性、状態、構造、項目、又は結果の完全又はほぼ完全な範囲又は程度を指す。例えば、「実質的に」囲まれた物体は、その物体が完全に囲まれているか、ほぼ完全に囲まれていることを意味する。絶対的完全性からの正確な許容可能な逸脱の程度は、場合によっては、特定の文脈に依存することがある。しかし、一般的に、完了への近さは、絶対的及び完全な完了が得られたかのように、全体的に同一の結果をもたらす。「実質的に」という用語は、作用、特徴、特性、状態、構造、項目、又は結果の完全又はほぼ完全な欠如を指すために、負の意味で使用される場合、同様に適用される。
本明細書で使用される場合、「隣接」とは、2つの構造又は要素の近接を意味し、特に、「隣接」であると同定される要素は、隣接するか又は接続され得る。このような要素は、必ずしも互いに接触することなく互いに近接又は近接していてもよい。正確な近接度は、特定の状況に依存する場合がある。
本発明の概念の最初の概要が、以下に提供され、その後、特定の例は、後にさらに詳細に説明される。この最初の概要は、読者が実施例をより迅速に理解するのを助けることを意図したものであるが、実施例の主要な特徴又は本質的な特徴を特定することを意図したものではなく、また、クレームされた主題事項の範囲を限定することを意図したものでもない。
全てのほぼゼロのCTE成分を組み込んだミラーシステム設計は、環境変動に対する感度を除去するのに有効であるが、ULEガラスミラーは、比較的重く、製造が困難である。ULEガラス材料の剛性対重量比が低いため、大きなULEガラスミラー(例えば、Cassegrain反射鏡ミラーシステムの主ミラー)では自重の偏向が生じ、地上での位置合わせ及び試験を複雑にする。加えて、ULEガラスより安価であるが比較的高いCTEを有する全てのSiC構成要素を組み込んだミラーシステム設計は、環境変動の影響を最小限にするための優れた熱制御、又はそのような環境変動の影響に調整するための連続的な再焦点機構を必要とする。
従って、ほぼゼロのCTEミラーシステムよりも低コストで短い製造スケジュールで高解像度要求を満たし、ほぼ同じコストで同じ製造スケジュールで全てのSiCミラーシステムよりも優れた画質を提供するミラーシステムが開示されている。一態様では、ミラーシステムは、これらの位置で経験される環境変動に特に対処するために、前端及び後端で異なるCTEで構成することができる。ミラーシステムは、主ミラーと、主ミラーに対して支持される二次ミラーとを含むことができる。主ミラーと二次ミラーは、異なるCTEを有することができる。
負のCTEストラットも開示されている。負のCTEストラットは、主本体部分を含むことができる。負のCTEストラットはまた、主本体部分に関して互いに対向して配置され、ストラット長を画定する、第1結合部と第2結合部とを含むことができる。第1及び第2結合部は、各々、外部構造とインターフェースするように構成することができる。さらに、負のCTEストラットは、主本体部分に結合された第1端部と、中間延長部材によって第1結合部に結合された第2端部とを有するオフセット延長部材を含むことができる。第1端部は、第1結合部と第2端部との間にあってもよい。第1及び第2端部は、ストラット長に平行なオフセット長を画定することができる。負のCTEストラットの温度が上昇すると、オフセット長さは、オフセット延長部材の熱膨張により増加して、ストラット長さを減少させるのに十分なように構成することができる。
本発明の特徴及び利点は、添付の図面と併せて、以下の詳細な説明から明らかであり、添付の図面は、例として、本発明の特徴を一緒に示している。
本開示の一例によるミラーシステムの説明図である。 本開示の一例による負のCTEストラットの説明図である。 本開示の一例による、正のCTE主ミラーを有する図2の負のCTEストラットの動作を示す図である。 本開示の一例による、正のCTE主ミラーを有する図2の負のCTEストラットの動作を示す図である。 本開示の一例によるミラーシステムによって達成可能な部品温度及び画質のグラフである。 次に、図示された例示的な実施形態を参照し、これを記述するために本明細書では特定の言語を使用する。それにもかかわらず、本発明の範囲はそれらにより制限されるとは意図されていないことを理解されたい。
本技術をさらに説明するために、図面を参照して実施例を提供する。図1を参照すると、ミラーシステム100の一例が側面図で概略的に示されている。ミラーシステム100は、支持構造110を含むことができる。ミラーシステム100はまた、支持構造110によって支持される主ミラー120を含むことができる。加えて、ミラーシステム100は、支持構造110によって支持される二次ミラー130を含むことができる。いくつかの例では、主ミラー120及び二次ミラー130は、光学望遠鏡(例えば、高解像度撮像システム)及び無線アンテナに使用され得るカセグレイン反射器を形成する。
支持構造110は、1つ以上の主ミラーストラット(mirror struts)112によって主ミラー120に結合されたベース111(例えば、ミラーシステム100の構造ベースを形成するベンチ)を含み得る計量構造を備えても良い。支持構造110はまた、ベース111から延び、二次ミラー130に結合された1つ以上の二次ミラーストラット113を含むことができる。例えば、二次ミラーストラット113は、二次ミラーマウント114を支持することができ、二次ミラーマウント114は二次ミラー130に結合され得る。主ミラーアセンブリ101は、ベース111、主ミラーストラット112、及び主ミラー120を含むことができる。二次ミラーアセンブリ102は、二次ミラーストラット113、二次ミラーマウント114、及び二次ミラー130を含むことができる。
典型的な宇宙ベースの用途(例えば、ミラーシステムが衛星に搭載される用途)では、ミラーシステム100は、地球の軌道のコースに亘って環境変動を受けることになり、その結果、ミラーシステム100の異なる部品に対して変化し得る熱過渡状態が生じる。例えば、ミラーシステム100は、典型的には、ミラーシステム100の「前端」104が衛星から突出するように、ミラーシステム100の「後端」103においてベース111によって衛星に取り付けられる。この構成では、ミラーシステム100の後端103における比較的大きな質量体は、ミラーシステム100の前端104における比較的小さな露出質量体と比較して、熱的に絶縁されてもよい。従って、前端104の構成要素(例えば、二次ミラーアセンブリ102)は、日々の熱負荷を変化させ得る(例えば、昼夜、地球に対する衛星の傾きの変化(すなわち、軌道のベータ角度)など)大きな熱変動を経験することができる。結果として、後端103の構成要素(例えば、主ミラーアセンブリ101)は、前端104の構成要素(例えば、二次ミラーアセンブリ102)と同程度の熱変動を受けない。
本開示の一態様では、ミラーシステム100の種々の構成要素は、使用中に構成要素が受けるであろう熱的条件に適したCTEを提供するように選択され、構成され得る。例えば、後端103の主ミラー120は、非ゼロCTEを有することができ、前端104の二次ミラー130は、ほぼゼロのCTEを有することができる。本明細書中で使用する「ほぼゼロのCTE」という用語は、−4.1×10−7K−1以上かつ4.1×10−7K−1以下の任意のCTEを含む。「非ゼロCTE」という用語は、この範囲外の任意のCTEを含む。より具体的には、主ミラー120は、任意の組み合わせで、炭化ケイ素(SiC)(例えば、反応結合された又は焼結された)、アルミニウム、アルミニウムシリコン金属マトリックス複合材料、アルミニウム炭化ケイ素金属マトリックス複合材料、アルミニウムベリリウム金属マトリックス複合材料、ベリリウム、溶融シリカ、ホウケイ酸ガラス、マグネシウムなどのような、非ゼロCTEを有する任意の適切なミラー材料を含むことができる。他方、二次ミラー130は、任意の組み合わせで、ガラス−セラミック(例えば、クリアセラム(商標)、ZERO(商標)、ZERODUR(商標)、リチウム−アルミノケイ酸塩ガラス−セラミック)、チタニア−ケイ酸塩ガラス(例えば、ULE(商標))、炭素複合材料などのような、ほぼゼロのCTEを有する任意の適切なミラー材料を含むことができる。従って、ミラーシステム100は、本明細書に記載されているように、ミラーシステム100の後端103及び前端104における異なる環境変動に特に対処する、異なるCTEを有する主ミラー及び二次ミラー120、130を利用することができる。例えば、ほぼゼロのCTE二次ミラー130は、二次ミラー130におけるバルク温度変化に対するデフォーカス(defocus)感度を低下させることができ、これは、主ミラー120に比較して、位置に起因する温度変化により影響を受けやすい。
一態様では、支持構造110の構成要素のいずれか又は全ては、ほぼゼロのCTEを有することができる。例えば、ベース111、主ミラーストラット112、二次ミラーストラット113、及び/又は二次ミラーマウント114は、ほぼゼロのCTEを有することができる。支持構造110の構成要素は、複合材料(例えば、炭素繊維のような炭素複合材料、カーボンナノチューブ)などのような、ほぼゼロのCTEを有する任意の適切な構造材料を含むことができる。例えば、ベース111、二次ミラーストラット113、及び二次ミラーマウント114は、炭素繊維で作ることができる。二次ミラーストラット113及び二次ミラーマウント114は、INVAR(商標)取付ハードウェア115によって互いに結合することができる。同様に、二次ミラーマウント114及び二次ミラー130は、INVAR(商標)取付ハードウェア116によって互いに結合することができる。構成要素を互いに結合する場合のように、いくつかの非ゼロCTE材料が含まれてもよいが、全体又は組み合わされたCTE (すなわち、計量構造の「連鎖(chain)」)は、ほぼゼロCTEについて規定された範囲内であってもよい。
高熱伝導率の「熱ストラップ(thermal straps)」117は、二次ミラーストラット113、二次ミラーマウント114、及び/又は二次ミラー130を互いに熱的に結合するために含めることができる。同様に、熱ストラップ118は、主ミラーストラット112、主ミラー120、及び/又はベース111を互いに熱的に結合するために含めることができる。熱ストラップ117、118は、構成要素を互いに熱的に「結合」することができ、これにより、一方の構成要素における温度変化が、他方の構成要素によって迅速に経験されて、両構成要素を実質的に同じ温度に維持し、画像品質に悪影響を及ぼし得る温度勾配を最小限にすることができる。
ミラーシステム100の前端104が衛星上に位置するため、能動的に温度を制御することができない。従って、二次アセンブリ102は、温度変動の影響を最小限に抑えるように、ほぼゼロのCTEを有することが有利である。他方、ミラーシステム100の後端103は、比較的大きな質量を有し、衛星によっていくぶん絶縁されており、いくつかの例では、能動的に温度を制御することができる。従って、ミラーシステム100の後端103の構成要素については、比較的大きな熱膨張の可能性が許容され得る。従って、主ミラーアセンブリ101は、非ゼロCTEを有してもよい。いくつかの例において、これは、主ミラー120の主材料として非ゼロCTE材料を使用することを可能にし、これは、主にほぼゼロCTE材料で作られた主ミラーよりも低コストで短いスケジュールで製造することができる。
主ミラーストラット112は、任意の適切な構造を有することができ、本明細書に記載される本発明に従い、任意の適切な材料で作ることができる。いくつかの例では、主ミラーストラット112は、非ゼロCTE主ミラー120に熱的補償を提供するように構成することができる負のCTEを含むことができる。この構成は、図3A及び3Bに示され、以下により詳細に説明するように、二次ミラー及び種々の支持構成要素のほぼゼロCTEの一定の共役位置に適合するように利用することができる。換言すれば、主ミラーストラット112に対する適切な負のCTEを選択することによって、ミラーシステム100の後端103(すなわち、主ミラー端)及び前端104(すなわち、二次ミラー端)の挙動は、所与の環境に対して整合され得、その結果、各端の焦点位置は、温度にわたって一定に保たれる。
図2に示すように、負のCTEストラット112が、主本体部分140と、主本体部分140の周りに互いに対向して配置された第1連結部分141及び第2連結部分142とを含むことができる。第1結合部分141、第2結合分142は、それぞれ、外部構造(例えば、図1の主ミラー120及びベース111への結合を容易にするように構成されたフィッティング又はハードウェア)とインターフェースするように構成することができ、ストラット長143を画定する。一態様では、結合部141、142は、ストラット112と外部構造との相対的な回転を容易にするために、外部構造とインターフェースする球形ボールを含むことができる。いくつかの態様では、結合部141、142は、組立時の主ミラー120の適切な位置合わせを容易にするために、ストラット112の長さ調整を容易にする(例えば、螺刻ロッドを介して)ように構成することができる。
負のCTEストラット112はまた、オフセット延長部材又はスペーサ144を含むことができ、オフセット延長部材又はスペーサ144は、主本体部分140に結合された第1端部145と、中間延長部材147によって第1結合部分141に結合された第2端部146とを有する。第1端部145は、第1結合部141と第2端部146との間にあってもよい。第1端部145及び第2端部146は、ストラット長143に平行なオフセット長148を画定することができる。負のCTEストラット112の温度が上昇すると、オフセット長さ148は、オフセット延長部材144の熱膨張により増長するように構成することができ、これはストラット長さ143を減少させるのに十分な程度である。
主本体部140、連結部141、142、及び中間延長部材147は、任意の好適なCTEを有することができる。いくつかの例では、主本体部分140、結合部分141、結合部分142、及び/又は中間延長部材147は、ほぼゼロのCTEを有することができる。したがって、主本体部分140、結合部分141、結合部分142、及び/又は中間延長部材147は、複合材料(例えば、炭素繊維、カーボンナノチューブ)などのような、ほぼゼロのCTEを有する任意の適切な構造材料を含むことができる。ニッケル−鉄合金のような非ゼロCTE材料(例えば、INVAR(商標)のような64FeNi)が選択的に使用でき、全体又は組み合わせたCTE (すなわち、構造の「鎖」)が、ほぼゼロのCTEとして指定された範囲内にあり得、それによって、所与の構造又は構造の組み合わせに対してほぼゼロのCTEを提供し得る。いくつかの例では、主本体部分140、結合部分141、結合部分142、及び/又は中間延長部材147は、窒素強化ステンレス鋼(例えば、NITRONIC(商標))などの、非ゼロCTEを有する材料を含むことができる。いくつかの例では、主本体部分140、結合部分141、結合部分142、及び/又は中間延長部材147は、非ゼロの正のCTEを有することができる。オフセット延長部材144は、任意の適切な非ゼロの正のCTE (すなわち、ほぼゼロのCTEよりも大きいCTE)を有することができる。したがって、オフセット延長部材144は、アルミニウム、チタン、鉄、鋼、ニッケル、ベリリウムなどのような、非ゼロの正のCTEを有する任意の適切な構造材料を含むことができる。
いくつかの実施形態では、負のCTEストラット112は、主本体部分140とオフセット延長部材144の第1端部145とを連結する挿入体149を含むことができる。挿入体149は、2つの異なるCTE材料の間に構造的バッファを設けることによって、非ゼロの正のCTEオフセット延長部材144をほぼゼロCTE主本体部分140に連結するのを助けることができる。いくつかの例では、挿入体149は、ニッケル鉄合金(例えば、INVAR(商標)のような64FeNi)などのような材料を含むことができ、それは、オフセット延長部材144の材料(例えば、アルミニウム)よりも強く、主本体部分140(例えば、複合材料)と同様のCTEを有し、主本体部分140の破損を防止する。
主本体部分140、挿入体149、オフセット延長部材144、及び中間延長部材147は、接着剤、ねじ付きインターフェース表面(例えば、ねじ付き表面又は接合された構成要素間の部分の嵌合)、リベット、溶接等を利用するなど、任意の適切な方法で結合することができる。一実施形態では、挿入体149は、150において主本体部分140に結合することができ、オフセット延長部材144の第1端部145は、ねじ付きのインターフェース表面を有する151で挿入体149に結合することができ、中間延長部材147は、ねじ付きのインターフェース表面を有する152でオフセット延長部材144の第2端部146に結合することができる。各主本体部分140のフランジ153〜155、挿入体149、及びオフセット延長部材144は、構成要素の結合を容易にすることができ、オフセット延長部材144の第1端部145における構成要素の適切な相対的位置決めを提供することができる。オフセット延長部材144の第2端部146において、中間延長部材147は、オフセット延長部材144の底面156と完全に接触させることができる。オフセット延長部材144のフランジ155及び底面156は、オフセット長さ148を確立することができる。
主本体部分140、オフセット延長部材144、及び/又は中間延長部材147は、各々、円筒形状を備えることができる。いくつかの例では、主本体部分140、オフセット延長部材144、及び/又は中間延長部材147は、長手方向軸線157に沿って同軸的に整列させることができる。したがって、主本体部分140、オフセット延長部材144、及び/又は中間延長部材147は、互いに直線上にあり得る。オフセット延長部材144は、少なくとも部分的に主本体部分140内に嵌合するように構成することができ、中間延長部材147は、オフセット延長部材144内に嵌合するように構成することができる。したがって、オフセット延長部材144の外径160は、主本体部分140の内径161より小さくすることができ、中間延長部材147の外径162は、オフセット延長部材144の内径163より小さくすることができる。このことは、オフセット長さ148及びストラット長さ143が温度によって変化する間に、過度の内部応力を発生させることなく、熱膨張/収縮に対して、互いに関してこれらの構成要素の自由な動きを可能にすることができる。熱ストラップ(図1の118)は、本明細書に記載されるように、適切な動作及び熱的補償のために、主ミラー120及びオフセット延長部材144を同じ温度に維持するために、主ミラー120及びオフセット延長部材144の温度を密接にリンクさせるために利用され得る。
ストラット112の種々の構成要素の各々のCTE及び軸方向膨張長は、所定の動作温度範囲に対して調整されるストラット112の所望の合成CTEを提供するように構成することができ、非ゼロCTE主ミラー120の受動的熱補償を提供する。主本体部分140、連結部141、連結部142、及び中間延長部材147が、主としてほぼゼロCTE材料で構成されている例においては、オフセット延長部材144のオフセット長さ148は、ストラット112のCTEを確立する際の主たる変数となる。
動作時に、オフセット延長部材144の温度が上昇するにつれて、オフセット延長部材144は、オフセット長さ148を膨張させ及び増長させる。中間延長部材147とオフセット延長部材144の第2端部146とが接続していることにより、結合部141は対向する結合部142に向かって移動し、ストラット長143を効果的に収縮させ減少させる。温度が下がると、逆の事象が起こる。その結果、ストラット112の正味CTEは負となり、温度が上昇するにつれてストラット長さ143が減少し、温度が低下するにつれてストラット長さ143が増長する。
一態様では、図3A及び3Bに概略的に示すように、負のCTEストラット112は、負のCTEを有するように構成して、所与の正のCTE主ミラー120の膨張/収縮をオフセット(相殺)するよう、所与の温度範囲に亘って適切な収縮/膨張を提供することができる。一般に、図3Aに示すような正のCTE主ミラー120については、主ミラー120が温度低下に伴い収縮するにつれて、主ミラー120の焦点105は、二次ミラー(図示せず)の前で主ミラーに向かってシフトする傾向がある。他方、図3Bに示すように、主ミラー120が温度上昇に伴い膨張するにつれて、焦点105は、二次ミラー(図示せず)の後方で主ミラー120から離れるようにシフトする傾向がある。焦点105が温度変化に伴いシフトするこのような傾向は、焦点を維持することを困難にしてしまう。
しかしながら、正のCTE主ミラー120と共に負のCTEストラット112を利用することにより、所与の温度範囲にわたって、主ミラー120の焦点105を二次ミラーに対して実質的に同じに受動的に維持することができる。例えば、主ミラー120が温度の低下に伴い収縮し、焦点105を主ミラー120に向かってシフトさせるにつれ、負のCTEストラット112は、対応して膨張又は増長し、主ミラー120を二次ミラーに向かって押し、焦点105を二次ミラーに対して実質的に同じ位置に受動的に維持する。主ミラー120が、温度上昇に伴い膨張し、焦点105を主ミラー120から離れるようにシフトさせるにつれ、負のCTEストラット112は、対応して収縮又は短縮し、主ミラー120を二次ミラーから引き離し、焦点105を二次ミラーに対して実質的に同じ位置に受動的に維持する。従って、負のCTEストラット112は、変化する温度勾配に適応し、主ミラーデフォーカス(defocus)感度を低減するように調整又は構成することができる。換言すれば、負のCTEストラット112によって提供される受動的熱補償は、熱変動に実質的に非感受性であるミラーシステムを提供することができる。その結果、広範囲の温度にわたって主ミラー焦点を維持することができるミラーシステムが得られる。さらに、負のCTEストラット112は、能動的熱制御の必要性を排除又は最小限に抑えつつ、比較的安価で高CTEの主ミラーを低コストで使用することを可能にする。
いくつかの例では、負のCTEストラットは、ミラーシステムの動作環境に依存して、使用されないことがある。或いは、主ミラー(すなわち、ミラーシステムの後端)が、能動的温度制御などによって、所与の温度に維持され得る場合には、負のCTEストラットが使用されないことがある。
本明細書に開示される原理は、ミラーシステム100が温度変動を経験する間、許容可能なレベルで画質を維持することができる。例えば、図4は、構成要素の温度及び画質(波面誤差として定量化される)をグラフで表す。露出された前端構成要素(例えば、二次ミラー及びストラット)の温度は、環境条件の変化に応じて大きく変わることがあり、一方、比較的巨大で断熱された後端コンポーネント(例えば、主ミラー)の温度は、比較的一定のままである。後端構成要素は、典型的には、より長い期間に亘る温度変化を示す。グラフに示されるように、波面誤差(すなわち、画質)は、許容可能なレベルのままであり、一方、前端及び後端構成要素は、異なるタイプの温度変動特性を経験する。従って、ミラーシステム100は、動作環境に特有の材料選択から利益を得ることができ、ミラーシステムは、必要な場合(すなわち、ほぼゼロのCTEミラー及び構造構成要素を使用する露出された前端で)、熱に非感受性であり、許容可能な場合(すなわち、非ゼロのCTEミラー及び任意に負のCTEストラットを使用する比較的大型で断熱された後端で)、ある程度の熱感受性を可能にする。ミラーシステム100において材料(すなわち、CTE特性)をこのように戦略的に使用することによって、特に、製造するのが最も困難で高価な構成要素であることが多い主ミラーに関して、製造時間と費用を節約することができる。結果として、ミラーシステム100の画質は、ほぼゼロCTE材料で作られた望遠鏡の画質に匹敵し得るが、より短い時間フレームで作るのにはるかに安価である。加えて、ミラーシステム100のコスト及び製造時間は、完全に同じ高CTE材料(例えば、SiC)で作られた望遠鏡のコスト及び製造時間に近く、一方、優れた画質が得られる。従って、本明細書に開示されたミラーシステム100は、他の撮像システムに比較して、低コストで、小さい波面誤差で、高空間分解能撮像を生成することができる。
図面に例示されている実施例を参照し、本明細書では、これを記述するために特定の言語を使用した。それでもなお、本技術の範囲の制限は意図されていないことが理解されるであろう。本明細書に示された特徴の変更及びさらなる修正、ならびに本明細書に示された実施例の追加の適用は、本明細書の範囲内であると考えられるべきである。
本開示は、本明細書に記載されるいくつかの実施形態又は特徴が、本明細書に記載される他の実施形態又は特徴と組み合わせることができることを明示的に開示するものではないが、本開示は、当業者によって実施可能であると思われる任意のそのような組み合わせを記載していると解釈されるべきである。本開示における「又は」の使用は、本明細書に別段の記載がない限り、非排他的又はすなわち「及び/又は」を意味するものと理解されるべきである。
さらに、記載された特徴、構造、又は特徴は、1つ以上の例において、任意の適切な方法で組み合わせることができる。先の説明では、記載された技術の例を完全に理解するための様々な構成の例のような、多数の特定の詳細が提供された。しかしながら、当該技術は、特定の細部の1つ以上を伴わずに、或いは他の方法、構成要素、装置などと共に実施することができることが認識されるであろう。他の例では、周知の構造又は動作については、技術の側面を不明瞭にすることを避けるために、詳細には示さず、或いは説明しない。
主題事項は、構造的特徴及び/又は動作に特有の言語で説明されてきたが、添付の特許請求の範囲において定義される主題事項は、必ずしも上述の特定の特徴及び動作に限定されるものではないことを理解されたい。むしろ、上述の特定の特徴及び作用は、請求項に係る発明を実施する例示的な形態として開示される。記載された技術の精神及び範囲から逸脱することなく、多数の修正及び代替の構成を考案することができる。

Claims (34)

  1. ミラーシステムであって:
    主ミラー;及び
    該主ミラーに対して支持される二次ミラーであり、前記主ミラー及び当該二次ミラーが異なる熱膨張係数(CTE)を有する二次ミラー;
    を含むミラーシステム。
  2. 請求項1に記載のミラーシステムであり、前記主ミラーは非ゼロCTEを有し、前記二次ミラーはほぼゼロのCTEを有する、ミラーシステム。
  3. 請求項1に記載のミラーシステムであり、前記支持をする構造は、前記主ミラーに結合されたベースを備える、ミラーシステム。
  4. 請求項3に記載のミラーシステムでありさらに、
    前記ベースと前記主ミラーとを結合するストラットを備えるミラーシステム。
  5. 請求項4に記載のミラーシステムであり、前記ストラットが負のCTEを有する、ミラーシステム。
  6. 請求項5に記載のミラーシステムでありさらに、
    前記主ミラーと前記ストラットとを熱的に結合する熱ストラップを有するミラーシステム。
  7. 請求項3に記載のミラーシステムであり、前記支持する構造は、前記ベースから延び、前記二次ミラーに結合されるストラットを備える、ミラーシステム。
  8. 請求項1に記載のミラーシステムであり、前記支持する構造が、複合材料、ニッケル−鉄合金、又はそれらの組み合わせを含む、ミラーシステム。
  9. 請求項8に記載のミラーシステムであり、前記複合材料が炭素繊維を含む、ミラーシステム。
  10. 請求項8に記載のミラーシステムであり、前記ニッケル−鉄合金が64FeNiを含む、ミラーシステム。
  11. 請求項1に記載のミラーシステムであり、前記支持する構造は、ほぼゼロのCTEを有する、ミラーシステム。
  12. 請求項1に記載のミラーシステムであり、前記主ミラーは、SiC、アルミニウム、又はそれらの組み合わせを含む、ミラーシステム。
  13. 請求項1に記載のミラーシステムであり、前記二次ミラーが、リチウム−アルミノ珪酸ガラス−セラミック材料、ホウ珪酸ガラス材料、又はそれらの組み合わせを含む、ミラーシステム。
  14. 請求項1に記載のミラーシステムであり、前記主ミラー及び前記二次ミラーは、カセグレイン反射器を形成する、ミラーシステム。
  15. ミラーシステムであって:
    ベースと、該ベースから延びる第2ミラーストラットとを有する支持構造体:
    主ミラーストラットにより前記ベースに係合され、非ゼロの熱膨張係数(CTE)を有する主ミラー;及び
    前記第2ミラーストラットに結合され、ほぼゼロのCTEを有する二次ミラー;
    を含むミラーシステム。
  16. 請求項15に記載のミラーシステムであり、前記主ミラーストラットが負のCTEを有する、ミラーシステム。
  17. 請求項16に記載のミラーシステムでありさらに、
    前記主ミラーと前記主ミラーストラットとを熱的に結合する熱ストラップを有するミラーシステム。
  18. 請求項15に記載のミラーシステムであり、前記支持構造体が、複合材料、ニッケル−鉄合金、又はそれらの組み合わせを含む、ミラーシステム。
  19. 請求項18に記載のミラーシステムであり、前記複合材料が炭素繊維を含む、ミラーシステム。
  20. 請求項18に記載のミラーシステムであり、前記ニッケル−鉄合金が64FeNiを含む、ミラーシステム。
  21. 請求項15に記載のミラーシステムであり、前記支持構造体は、ほぼゼロのCTEを有する、ミラーシステム。
  22. 請求項15に記載のミラーシステムであり、前記主ミラーは、SiC、アルミニウム、又はそれらの組み合わせを含む、ミラーシステム。
  23. 請求項15に記載のミラーシステムであり、前記二次ミラーが、リチウム−アルミノ珪酸ガラス−セラミック材料、ホウ珪酸ガラス材料、又はそれらの組み合わせを含む、ミラーシステム。
  24. 請求項15に記載のミラーシステムであり、前記主ミラー及び前記二次ミラーは、カセグレイン反射器を形成する、ミラーシステム。
  25. 負の熱膨張係数(CTE)ストラットであって:
    主本体部分;
    前記主本体部分に関して互いに対向して配置され、ストラット長を画定する第1結合部及び第2結合部であり、当該第1結合部及び第2結合部の各々は、外部構造とインターフェースするように構成されている、第1結合部及び第2結合部;
    前記主本体部分に結合された第1端部と、中間延長部材により前記第1結合部に結合された第2端部とを有するオフセット延長部材であり、前記第1端部は、前記第1結合部と前記第2端部との間にあり、前記第1端部及び前記第2端部は、前記ストラット長に平行なオフセット長を画定する、オフセット延長部材;
    を含み、
    当該負のCTEストラットの温度が上昇すると、前記オフセット長さは、前記オフセット延長部材の熱膨張により増大し、前記ストラット長さを減少させるのに十分なように構成されている、ことを特徴とする負のCTEストラット。
  26. 請求項25に記載の負のCTEストラットであり、前記オフセット延長部材がアルミニウムを含む、負のCTEストラット。
  27. 請求項25に記載の負のCTEストラットであり、前記主本体部分、前記中間延長部材、又はそれらの両方が、ほぼゼロのCTEを有する、負のCTEストラット。
  28. 請求項25に記載の負のCTEストラットであり、前記主本体部分、前記中間延長部材、又はそれらの両方が、複合材料、ニッケル−鉄合金、又はそれらの組み合わせを含む、負のCTEストラット。
  29. 請求項28に記載の負のCTEストラットであり、前記複合材料が炭素繊維を含む、負のCTEストラット。
  30. 請求項28に記載の負のCTEストラットであり、前記ニッケル−鉄合金が64FeNiを含む、負のCTEストラット。
  31. 請求項25に記載の負のCTEストラットであり、前記主本体部分、前記オフセット延長部材、及び前記中間延長部材のうちの少なくとも1つが、円筒形状を備える、負のCTEストラット。
  32. 請求項25に記載の負のCTEストラットでありさらに、
    前記主本体部分と前記オフセット延長部材の前記第1端部とを結合する挿入体を備える負のCTEストラット。
  33. 請求項32に記載の負のCTEストラットであり、前記挿入体がニッケル−鉄合金を含む、負のCTEストラット。
  34. 請求項33に記載の負のCTEストラットであり、前記ニッケル−鉄合金が64FeNiを含む、負のCTEストラット。
JP2020528955A 2017-11-30 2018-09-28 多材料ミラーシステム Active JP6982181B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/828,223 2017-11-30
US15/828,223 US10877237B2 (en) 2017-11-30 2017-11-30 Multi-material mirror system
PCT/US2018/053600 WO2019108300A1 (en) 2017-11-30 2018-09-28 Multi-material mirror system

Publications (2)

Publication Number Publication Date
JP2021504755A true JP2021504755A (ja) 2021-02-15
JP6982181B2 JP6982181B2 (ja) 2021-12-17

Family

ID=63963478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020528955A Active JP6982181B2 (ja) 2017-11-30 2018-09-28 多材料ミラーシステム

Country Status (7)

Country Link
US (2) US10877237B2 (ja)
EP (1) EP3717950A1 (ja)
JP (1) JP6982181B2 (ja)
KR (2) KR102469991B1 (ja)
CA (1) CA3081549A1 (ja)
IL (1) IL274495B (ja)
WO (1) WO2019108300A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10877237B2 (en) 2017-11-30 2020-12-29 Raytheon Company Multi-material mirror system
US11327208B2 (en) * 2018-05-30 2022-05-10 Raytheon Company Method of manufacture for a lightweight, high-precision silicon carbide mirror assembly
FR3137977A1 (fr) * 2022-07-13 2024-01-19 Bertin Winlight Système d’imagerie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152090A (ja) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp 反射鏡システム
JP2010262163A (ja) * 2009-05-08 2010-11-18 Nikon Corp 変倍式望遠光学系及びこれを備える光学装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914063A (en) * 1973-05-24 1975-10-21 Unistrut Corp Space frame connecting fixture
US4285728A (en) 1975-02-06 1981-08-25 Owens-Illinois, Inc. Method of making low expansion crystallized glass-ceramics and telescope mirror blanks made thereby
US4856887A (en) 1987-04-01 1989-08-15 Hughes Aircraft Company Lightweight silicon carbide mirror
US5071596A (en) 1989-10-23 1991-12-10 Cvd Incorporated Fabrication of lightweight ceramic mirrors by means of a chemical vapor deposition process
US5076700A (en) 1990-12-20 1991-12-31 Litton Systems, Inc. Bonded lightweight mirror structure
US5565052A (en) 1992-03-05 1996-10-15 Industrieanlagen-Betriebsgesellschaft Gmbh Method for the production of a reflector
US5296311A (en) 1992-03-17 1994-03-22 The Carborundum Company Silicon carbide reinforced reaction bonded silicon carbide composite
US5302561A (en) 1993-03-11 1994-04-12 Cercom, Inc. Monolithic, fully dense silicon carbide mirror and method of manufacturing
US5741445A (en) 1996-02-06 1998-04-21 Cvd, Incorporated Method of making lightweight closed-back mirror
US7244034B1 (en) 1999-08-20 2007-07-17 M Cubed Technologies, Inc. Low CTE metal-ceramic composite articles, and methods for making same
US6176588B1 (en) 1999-12-14 2001-01-23 Corning Incorporated Low cost light weight mirror blank
DE10125554C2 (de) 2001-05-23 2003-06-18 Astrium Gmbh Ultraleichter und ultrasteifer vollkeramischer Reflektor und Verfahren zur Herstellung sowie Verwendung eines solchen Reflektors
GB0119033D0 (en) 2001-08-03 2001-09-26 Southampton Photonics Ltd An optical fibre thermal compensation device
US20050141108A1 (en) * 2001-09-06 2005-06-30 Atkinson Charles B. Cryogenic telescope using hybrid material for thermal stability
JP4068496B2 (ja) 2003-04-14 2008-03-26 Nec東芝スペースシステム株式会社 鏡面母材及びそれを用いた鏡体及び、鏡体を用いた光学装置
US20070207268A1 (en) 2003-12-08 2007-09-06 Webb R K Ribbed CVC structures and methods of producing
US7195361B2 (en) 2005-01-19 2007-03-27 Xinetics, Inc. Active hybrid optical component
CN101470223B (zh) 2007-12-26 2012-10-03 中国科学院大连化学物理研究所 表面改性技术加工RB-SiC超光滑表面反射镜方法
JP2009276378A (ja) 2008-05-12 2009-11-26 Mitsubishi Electric Corp 軽量化ミラー及びその製造方法
DE102008039042B4 (de) 2008-08-21 2011-04-14 Schott Ag Substrat für einen Spiegelträger mit reduziertem Gewicht sowie Spiegel mit gewichtsreduziertem Spiegelträger
DE102009011863B4 (de) 2009-03-05 2024-02-08 Asml Netherlands B.V. Leichtgewicht-Trägerstruktur, insbesondere für optische Bauteile, Verfahren zu deren Herstellung und Verwendung der Trägerstruktur
US8292537B2 (en) 2009-06-16 2012-10-23 Utah State University Research Foundation Thermal expansion compensation method and system
US20110221084A1 (en) 2010-03-10 2011-09-15 Trex Enerprises Corp. Honeycomb composite silicon carbide mirrors and structures
US8607513B2 (en) 2011-12-30 2013-12-17 Panelclaw, Inc. Thermal growth compensators, systems, and methods
US9958638B2 (en) 2013-09-13 2018-05-01 Raytheon Company Optimal kinematic mount for large mirrors
CN104451580A (zh) 2014-12-29 2015-03-25 中国科学院长春光学精密机械与物理研究所 RB-SiC基底反射镜表面改性层的制备方法
US9823459B2 (en) 2015-09-29 2017-11-21 Raytheon Company High-stiffness structure for larger aperture telescope
KR101688426B1 (ko) 2016-06-24 2017-01-02 한화시스템 주식회사 비열화 고정구조를 가지는 광학조립체
US10877237B2 (en) 2017-11-30 2020-12-29 Raytheon Company Multi-material mirror system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152090A (ja) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp 反射鏡システム
JP2010262163A (ja) * 2009-05-08 2010-11-18 Nikon Corp 変倍式望遠光学系及びこれを備える光学装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.C. MACHADO ET AL: "Picometer resolution interferometric characterization of the dimensional stability of zero CTE CFRP", SPIE, vol. 7018, JPN7021001469, 23 July 2008 (2008-07-23), US, pages 1 - 70183, ISSN: 0004497890 *
WEST S C ET AL: "Wavefront control of the Large Optics Test and Integration Site(LOTIS)6.5m Collimator", APPLIED OPTICS, vol. 49, no. 18, JPN6021016127, 20 June 2010 (2010-06-20), US, pages 3522 - 3537, XP001555109, ISSN: 0004497889, DOI: 10.1364/AO.49.003522 *

Also Published As

Publication number Publication date
US10877237B2 (en) 2020-12-29
US20200142154A1 (en) 2020-05-07
KR20200078582A (ko) 2020-07-01
US11314041B2 (en) 2022-04-26
KR20220025149A (ko) 2022-03-03
IL274495A (en) 2020-06-30
WO2019108300A1 (en) 2019-06-06
KR102469991B1 (ko) 2022-11-22
IL274495B (en) 2021-09-30
JP6982181B2 (ja) 2021-12-17
EP3717950A1 (en) 2020-10-07
US20190162931A1 (en) 2019-05-30
KR102479668B1 (ko) 2022-12-20
CA3081549A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6214773B2 (ja) 大型ミラー用の最適な運動学的マウント
JP6982181B2 (ja) 多材料ミラーシステム
US8960929B2 (en) Device for correcting optical defects of a telescope mirror
JP5862484B2 (ja) 鏡支持構造
EP3221733B1 (en) Secondary mirror positioning mechanism
Weingrod et al. Design of bipod flexure mounts for the IRIS spectrometer
JP7102802B2 (ja) 光学系支持機構
JP6540341B2 (ja) ミラー支持方法、ミラー支持構造およびミラー構造体
KR20170092477A (ko) 변형 가능한 미러
JP2010152090A (ja) 反射鏡システム
Woody et al. CFRP truss for the CCAT 25m diameter submillimeter-wave telescope
JP6597032B2 (ja) ミラー支持方法、ミラー支持構造およびミラー構造体
JP3204347U (ja) 熱膨張差を補償し要素を支持部に締結する締結装置及びその締結装置を含む光学機器
Tomar et al. Design of Primary Mirror Mount for Spaceborne EO Payload
Cui et al. Application and analysis of all-aluminum structure in infrared remote sensing camera
McIntosh Jr Classification and design of large laser mirrors
Xinji Design for main support of long focal length space camera
CN117590553A (zh) 一种反射镜支撑结构
Rossin et al. Semi-kinematic mount of the FIREBALL large optics
Bittner et al. Image quality prediction for the SOFIA Telescope using actual mirror data
Vacance et al. SM98-096/251 Active Integrated Device for the Positioning Control for a Mirror in a Space Telescope
Guan et al. Design of long focal length space remote sensor's main support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211118

R150 Certificate of patent or registration of utility model

Ref document number: 6982181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150