JP2021186616A - Fire preventing and fire fighting equipment for super-high-rise wooden building - Google Patents

Fire preventing and fire fighting equipment for super-high-rise wooden building Download PDF

Info

Publication number
JP2021186616A
JP2021186616A JP2020105658A JP2020105658A JP2021186616A JP 2021186616 A JP2021186616 A JP 2021186616A JP 2020105658 A JP2020105658 A JP 2020105658A JP 2020105658 A JP2020105658 A JP 2020105658A JP 2021186616 A JP2021186616 A JP 2021186616A
Authority
JP
Japan
Prior art keywords
building
nitrogen
fire
space
fire extinguishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020105658A
Other languages
Japanese (ja)
Inventor
駿太郎 小田
Shuntaro Oda
淳 富永
Atsushi Tominaga
聡 富永
Satoshi Tominaga
優斗 富永
Yuto Tominaga
浩一 小田
Koichi Oda
絵里子 小田
Eriko Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020105658A priority Critical patent/JP2021186616A/en
Publication of JP2021186616A publication Critical patent/JP2021186616A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

To provide fire preventing and fire fighting equipment for a super-high-rise wooden building.SOLUTION: A concept of building a super-high-rise wooden building over 100 meters in height is in progress. Such a building has a disadvantage in preventing and fighting a fire as compared with a conventional steel-frame concrete building. To cope with this disadvantage, a dry-type fire preventing and fire fighting method using nitrogen in which the structure of the building is modified and the interior is divided into a plurality of blocks is introduced in place of a wet type fire preventing and fire fighting method using water. There are also provided measures to prevent disasters (oxygen deficiency accident) accompanying the introduction of nitrogen.SELECTED DRAWING: Figure 1

Description

発明の詳細な説明Detailed description of the invention

超高層建築物という明確な定義はないが、一般的に高さ100mを超える建屋は超高層建築物と呼ばれている。本発明は超高層の木造建築物を対象として、万一これ等の建屋において火災が発生した場合、被害を最小限に抑えるための防消火設備に関する技術を提供する。 Although there is no clear definition of a skyscraper, a building with a height of more than 100 m is generally called a skyscraper. The present invention provides a technique for fire extinguishing equipment for minimizing damage in the event of a fire in these buildings, targeting super high-rise wooden buildings.

21世紀に入り超高層の木造建築物の建設が注目されている。この背景には次のような歴史的な経緯がある。我が国は太平洋戦争時の本土空襲による大火災の経験から、1950年に新たに建築基準法が制定され、木造による大型建築物の建設が禁止された。その後2000年の法改正まで大型の木造建築に関し空白の時代が続いた。 In the 21st century, the construction of skyscrapers is drawing attention. The background to this is the following historical background. Based on the experience of a large fire caused by an air raid on the mainland during the Pacific War, Japan enacted a new Building Standard Law in 1950, prohibiting the construction of large wooden buildings. After that, until the revision of the law in 2000, a blank era continued regarding large wooden buildings.

しかし2000年の法改正で、建屋が一定時間の火災に耐えられるならば、繁華街など都市部の防火地域でも大規模な木造の建築物が造れるようになった。更に2010年には新たな環境変化に伴い「公共建築物等における木造利用の促進に関する法律」が成立した。以降、従来の鉄筋コンクリートに代わり木造の高層建築物の建設が注目されている。 However, with the revision of the law in 2000, if the building can withstand a certain period of fire, large-scale wooden buildings can be built even in urban fire-prevention areas such as downtown areas. Furthermore, in 2010, the "Act on Promotion of Wooden Use in Public Buildings, etc." was enacted due to new environmental changes. Since then, attention has been paid to the construction of wooden high-rise buildings instead of conventional reinforced concrete.

この変化には次の二つの社会的要因が大きな影響を与えている。第一の要因は二酸化炭素の排出増大に伴う地球温暖化への警鐘である。主に炭化水素の消費増大に起因する二酸化炭素の排出量の増大は誰しもが認める地球規模の課題となり、世界中で対策が検討されている。 The following two social factors have a great influence on this change. The first factor is a warning against global warming due to increased carbon dioxide emissions. Increasing carbon dioxide emissions, mainly due to increased hydrocarbon consumption, has become an undisputed global issue, and countermeasures are being considered around the world.

対策の一つとして、木々は成長の過程で二酸化炭素を吸収するので、その活用が見直されている。木材を有効に活用すれば二酸化炭素の低減サイクル、即ち木々の植栽→炭素の固定→伐採→木々の活用→植栽のサイクルが可能となり、二酸化炭素の発生を抑制して地球温暖化の防止に繋げることができるからである。 As one of the countermeasures, trees absorb carbon dioxide in the process of growth, so its utilization is being reviewed. Effective use of wood enables a cycle of reducing carbon dioxide, that is, planting trees → fixing carbon → logging → utilizing trees → planting, suppressing the generation of carbon dioxide and preventing global warming. Because it can be connected to.

第二の要因はCRT(クロス ラミネート ティンバー、和名;直交集成材)と呼ばれる新しい建築材料の実用化に成功したことである。この木製材料は複数の板材を交互に組み合わせて板の収縮を抑えて、コンクリート並みに強度を持たせた新素材である。この素材を使えば、鉄筋コンクリートに比し「強度が弱い」と「火災に弱い」という木材固有の弱点のうち、強度面の弱点については劇的に改善された。更に残る弱点である火災に弱いことへの対応も近年各種の技術革新が進み、木材を活用した高層建築物の建設への道が新たに開けようとしている。 The second factor is the successful commercialization of a new building material called CRT (Cross Laminate Timber, Japanese name; orthogonal laminated lumber). This wooden material is a new material that has the strength of concrete by alternately combining multiple boards to suppress the shrinkage of the boards. Using this material, among the weaknesses peculiar to wood such as "weak strength" and "weakness to fire" compared to reinforced concrete, the weakness in terms of strength was dramatically improved. In recent years, various technological innovations have progressed in response to the remaining weakness, which is vulnerable to fire, and a new road to the construction of high-rise buildings using wood is about to be opened.

例えば国内では竹中工務(株)は「燃エンウッド」と称して独自の集成材を開発している。この材料は木材の中心部を木製の集成材とし、その周囲を不燃性のモルタルで保護、更に外側を木材で包む新たな複合材である。この複合材では可燃性の木材部と不燃性のモルタル部の容積比が各々50%に近い比率である。同社はこの材料を使用して2013年、国内初となる大型の木造オフィスビルを大阪市に建設した。 For example, in Japan, Takenaka Corporation is developing its own laminated lumber called "Burning Enwood". This material is a new composite material in which the center of the wood is made of laminated wood, the surroundings are protected by non-combustible mortar, and the outside is wrapped with wood. In this composite material, the volume ratio of the flammable wood part and the non-flammable mortar part is close to 50%, respectively. The company used this material to build the first large wooden office building in Japan in 2013 in Osaka.

また2018年、住友林業(株)は創立70周年を記念して「W350計画」と称して地上70階建て、高さ350m、1階当たりの床面積6,500m2という巨大な超高層の木造建築物の建設構想を発表した。この建設に使う構造材については全材料に対して木造材の占める割合を容量比で90%以上を目指すと公表している。 In 2018, Sumitomo Forestry Co., Ltd. called the "W350 Plan" to commemorate the 70th anniversary of its founding. Announced the construction concept of the thing. Regarding the structural materials used for this construction, it has been announced that the ratio of wooden materials to all materials will be 90% or more in terms of capacity.

現在世界で建設された最も高い木造建築はUBC大学(カナダ)の学生寮で、高さは58m、18階建である。住友林業の計画が実現すれば、木造では世界一の高さとなり、正に「街を森に変える環境木化都市」への挑戦となる。但し本計画は未だ構想の段階で、同社は新しいプロジェクトを組み、2041年の完成を目指している。 The tallest wooden building currently built in the world is the University of British Columbia (Canada) dormitory, which is 58 meters high and has 18 floors. If Sumitomo Forestry's plan is realized, it will be the tallest wooden structure in the world, and it will be a challenge to become an "environmental wooded city that transforms the city into a forest". However, this plan is still in the planning stage, and the company is planning to complete a new project in 2041.

同社がこの建設の目途を得たのは、同社が独自に開発した建設用構造材である。同社によれば、使用される建築資材は木材と鋼材の独自の強度を活用したハイブリット構造である。また柱と梁の構造には鉄骨制振ブレースを採用して、木造建屋の強度上の問題を解決できるとしている。同社は既に建屋の設計に専門の設計業者を指定しているが、その構造の詳細については未だ公開されていない。 The company got the prospect of this construction with its own construction structural materials. According to the company, the building materials used are hybrid structures that take advantage of the unique strength of wood and steel. In addition, steel frame damping braces are used for the structure of columns and beams to solve the strength problem of wooden buildings. The company has already designated a professional designer for the design of the building, but details of its structure have not yet been disclosed.

上記の実例で明らかのように木造の超高層建築物を建設する際の大きな壁であった強度上の課題は近年の建設材料の目覚ましい改良により解決の目途が見え始めている。残された課題は万一大型建屋で火災が発生した場合に「その被害を征服できる防消火対策を如何にして確立できるか」である。次にこれ等の超高層建築物の防消火設備についての現状を記す。 As is clear from the above example, the problem of strength, which was a large wall when constructing a wooden skyscraper, is beginning to be solved by the remarkable improvement of construction materials in recent years. The remaining issue is "how can we establish fire extinguishing measures that can conquer the damage" in the unlikely event that a fire breaks out in a large building. Next, the current status of fire extinguishing equipment for these skyscrapers will be described.

現状の建築基準法では木造の高層建築物の防消火設備に特に限定した規制はないが、材質の難燃性が基準をクリアすれば、現行の鉄筋コンクリート製の高層建屋に準じた適用が為されると予想されている。参考例として木造ではないが、最新の超高層建築物で2014年に竣工した日本最高の高さ300mを有する「あべのハルカス(大阪市)」における防消火設備の実施例を記す。 The current Building Standards Law does not specifically limit fire extinguishing equipment for wooden high-rise buildings, but if the flame retardancy of the material clears the standards, it will be applied in accordance with the current reinforced concrete high-rise buildings. Is expected. As a reference example, although it is not a wooden structure, an example of fire extinguishing equipment in "Abeno Harukas (Osaka City)", which is the latest skyscraper and has the highest height of 300m in Japan, was completed in 2014.

このビルは地上60階建て、地下5階を有す高さ300mの超高層の複合商業ビルである。その防消火対策には現在、日本の最先端技術が採用されている。具体的な防消火化設備としては全館に水スプリンクラーを設置、更に各階ごとに高圧に耐える専用の水消火栓が配備されている。また無停電型の消防士専用のエレベータを設置し、この設備を使って迅速な消火活動ができるよう配慮されている。 This building is a skyscraper commercial complex with a height of 300m and 60 floors above ground and 5 floors below ground. Japan's state-of-the-art technology is currently being adopted for its fire extinguishing measures. As specific fire extinguishing equipment, water sprinklers are installed in the entire building, and a dedicated water fire hydrant that can withstand high pressure is installed on each floor. In addition, an elevator dedicated to firefighters without power outages has been installed so that quick fire extinguishing activities can be carried out using this equipment.

これ等の設備の中でスプリンクラーについては、火災の初期段階で火炎や煙の発生を抑え、避難誘導の時間を稼ぐためには極めて有効とされている。一方、火災が大きく拡大した段階ではスプリンクラー本体が焼損する恐れがあり、消火効果として大きな期待はできないとも言われている。 Among these facilities, sprinklers are said to be extremely effective in suppressing the generation of flames and smoke in the early stages of a fire and gaining time for evacuation guidance. On the other hand, when the fire spreads significantly, the sprinkler body may be burnt down, and it is said that the fire extinguishing effect cannot be expected.

従ってこの建屋の防消火設備の本命は各階に設置された専用の固定消火栓である。この消火栓は耐圧鋼管製で、これに高圧ポンプ車を連結し更にポンプにより順次水圧を上昇させて建屋の全館に放水できるよう配備されている。しかしその操作は訓練を受けた消防士であり、火炎の消火は全ての火源に向けて、消防士による手動放水に依存している。 Therefore, the favorite of the fire extinguishing equipment of this building is a dedicated fixed fire hydrant installed on each floor. This fire hydrant is made of pressure-resistant steel pipe, and a high-pressure pump truck is connected to it, and the water pressure is gradually increased by a pump so that water can be discharged to the entire building. However, its operation is a trained firefighter, and extinguishing the flame relies on manual water discharge by the firefighter for all sources.

上記の対策はあくまで鉄筋コンクリート造りの不燃性の高層ビルを前提とした対策である。この対策が即、木造の高層建築物に適用できるかについては疑問を持つ専門家も多い。木造材を有する高層建築物の火災に関して特筆すべき情報は2019年4月に発生したノートルダム大聖堂(フランス)の火災である。この記録映像は2020年4月15日にNHKから、BSドキュメンタリ―「ノートルダム炎上 消防士たちの闘い」と題してテレビ放映された。 The above measures are based on the premise of nonflammable high-rise buildings made of reinforced concrete. Many experts question whether this measure can be immediately applied to high-rise wooden buildings. Notable information about the fire in high-rise buildings with wooden timber is the fire in Notre Dame Cathedral (France) in April 2019. This recorded video was televised by NHK on April 15, 2020, entitled BS Documentary "The Battle of Notre Dame Firefighters".

映像によればこの火災は同寺院での5回目のミサが終わった夕方に発生、パリ全市から延650名の消防士が駆けつけ消火活動に当たったが、火炎は寺院内の可燃物に次々に類焼、寺院の象徴であった尖塔は焼け落ちてしまった。その後、火災は約半日以上続き、炎は2棟の鐘楼にまで迫ったが、20名の消防士の決死的消火活動により、辛うじて焼失を免れたと報道されている。 According to the video, the fire broke out in the evening after the fifth mass at the temple, and a total of 650 firefighters from all over Paris rushed to extinguish the fire, but the flames struck combustibles in the temple one after another. The spire, which was a symbol of the temple, was burnt down. After that, the fire continued for more than half a day, and the flame approached the two bell towers, but it was reported that the fire was barely saved by the deadly fire extinguishing activities of 20 firefighters.

発災の情報は直ちに世界中に発信された。寺院の外観は石造りであったが、内部の階段、床、梁、屋根裏等には多くの木材が使用されていた。それが全館に燃え広がり、消火活動は困難を極めた。パリ全市から消防隊が駆けつけ高性能のはしご消防車、消火ロボット等も使用された。しかし最後に消火に成功したのは、皮肉なことに燃え盛る建屋内に突入した消防士によるホースを使った手動消火であった。 Information on the disaster was immediately disseminated all over the world. The exterior of the temple was made of stone, but much wood was used for the stairs, floors, beams, and attic inside. It burned throughout the building, and fire extinguishing activities were extremely difficult. Fire brigades rushed from all over Paris, and high-performance ladder fire trucks and fire extinguishing robots were also used. However, the last successful fire extinguishing was, ironically, a manual fire extinguishing using a hose by a firefighter who rushed into the burning building.

この事実は今後、超高層の木造建築物の建設に挑戦する私達に大きな警鐘を鳴らしている。人間は有史以来、火事と言えば即、水を思い浮かべる。最新の超高層建築物である「あべのハルカス」でも、この方式が採用された。木材を使って超近代的な建築物の建設を目指す一方で、その防消火法に有史以来変わらない水を使う方法に依存せざるを得ない。この組み合わせは如何にもアンバランスである。 This fact warns us of the challenge of building skyscrapers in the future. Since the dawn of history, humans immediately think of water when it comes to fire. This method was also adopted in the latest skyscraper "Abeno Harukas". While aiming to build ultra-modern buildings using wood, the fire extinguishing method has to rely on the method of using water, which has not changed since the dawn of history. This combination is unbalanced.

更に超高層建築物と水と使う湿式消火法の組み合わせにはもう一つの致命的な弱点を有する。それは高圧用のポンプや消防車用の専用エレベータの電源に万一、支障をきたした場合、電気に依存する全ての消火活動が機能しなくなることである。エンジン式のはしご車でカバーできる消火範囲は高さは約50mまでである。高さ100m以上の超高層建築物の消火に対し、依然として人間の手による決死的な献身行為に依存して良いのだろうか。これが本提案を考えた率直な動機である。 Furthermore, the combination of skyscrapers and wet fire extinguishing methods using water has another fatal weakness. In the unlikely event that the power supply for high-pressure pumps or dedicated elevators for fire engines is disrupted, all electricity-dependent fire extinguishing activities will cease to function. The fire extinguishing range that can be covered by an engine-type ladder truck is up to about 50 m in height. Is it okay to still rely on human-handed and deadly devotion to extinguish a fire in a skyscraper with a height of 100 m or more? This is a frank motive for considering this proposal.

本発明は、上記問題点に鑑みて、為されたものである。目標は超高層の木造建築物の防消火設備として従来の水を用いた湿式防消火設備に代わり、新たな防消火設備を活用する手段を提供する。具体的には水に代わり窒素を用いた乾式防消火設備を導入する。 The present invention has been made in view of the above problems. The goal is to provide a means to utilize new fire extinguishing equipment instead of the conventional wet fire extinguishing equipment using water as fire extinguishing equipment for skyscrapers. Specifically, a dry fire extinguishing system that uses nitrogen instead of water will be introduced.

美術館や博物館等で貴重な美術品が水消火により損傷されることを避けるため窒息性ガスを吹込んで消火させる設備は既に実用化されている。窒息性ガスとして実績あるガスはハロゲン系ガスと窒素である。これ等のガスは通常は専用ボンベに充填され、消火を対象とする建屋の近傍に保管され、万一の発災時にはここから火災の発生場所へ向けて放出される。前述の「あべのハルカス」の建設に際しても、建屋内の電気室やコンピュータ管理室等にはこの方式が導入されている。 Equipment for extinguishing fire by blowing suffocating gas has already been put into practical use in museums and the like in order to prevent valuable works of art from being damaged by water fire extinguishing. The gases that have been proven as suffocating gases are halogen-based gases and nitrogen. These gases are usually filled in a dedicated cylinder, stored near the building to be extinguished, and discharged from here to the place where the fire broke out in the event of a disaster. This method was also introduced in the electric room and computer management room in the building when the above-mentioned "Abeno Harukas" was constructed.

建屋内に窒素を吹き込むと、内部の空気は窒素とほぼ均一に混合し、排気口を経由して大気に放出される。学術的にはこの混合を「完全混合」と呼ぶ。窒素の吹込みにより建屋内の酸素濃度は徐々に低下し、可燃性ガスが燃焼できない濃度に達する。この時の酸素濃度を「限界酸素濃度」という。この値は可燃性ガスにより固有の値を持ち、水素の場合5.0%、一酸化炭素では5.6%である。 When nitrogen is blown into the building, the air inside mixes with nitrogen almost uniformly and is released to the atmosphere through the exhaust port. Academically, this mixture is called "complete mixture". The oxygen concentration in the building gradually decreases due to the blowing of nitrogen, reaching a concentration at which combustible gas cannot be burned. The oxygen concentration at this time is called "marginal oxygen concentration". This value is unique to flammable gases, 5.0% for hydrogen and 5.6% for carbon monoxide.

可燃物が固体の場合も高温により固体が分解され水素や一酸化炭素等の可燃性ガスを発生するので、燃焼を止めるには気体の場合と同様に建屋内の酸素濃度が可燃性ガスの限界酸素濃度以下になるまで窒素を吹き込めば良い。吹き込まれた窒素は建屋内の空気と混合し、建屋内の酸素濃度を徐々に低下させる。この際、窒素を大量に吹き込むことにより建屋内が過圧にならないよう、建屋内のガスを十分に排気できる排気経路を確保することが必要である。 Even if the combustible is a solid, the solid is decomposed by high temperature to generate combustible gas such as hydrogen and carbon monoxide. Therefore, to stop the combustion, the oxygen concentration in the building is the limit of the combustible gas as in the case of gas. Nitrogen may be blown until the oxygen concentration becomes lower than the oxygen concentration. The blown nitrogen mixes with the air inside the building and gradually reduces the oxygen concentration inside the building. At this time, it is necessary to secure an exhaust path that can sufficiently exhaust the gas in the building so that the inside of the building is not overpressured by blowing a large amount of nitrogen.

通常ボンベに貯蔵可能なガス量は数m3/本であるから、消火対象とする建屋の容量は概ね数10m3〜100m3程度に限定される。このため従来の乾式消火法の対象は建屋全体ではなく、建屋の中で最も貴重な部屋に限定せざるを得なかった。従ってこれ等の設備を使って、容積で数万m3規模以上の高層建築物等の大型建屋を消火の対象とする試みは日本を含め世界中でも未だ公開されていない。 Since the amount of gas that can be stored in a cylinder is usually several m3 / piece, the capacity of the building to be extinguished is generally limited to about several tens of m3 to 100 m3. For this reason, the target of the conventional dry fire extinguishing method had to be limited to the most valuable room in the building, not the entire building. Therefore, attempts to extinguish large buildings such as high-rise buildings with a volume of tens of thousands of meters or more using these facilities have not yet been made public, including in Japan.

上記の乾式防消火法の対象となる建屋は超高層建屋の他に、貴重な絵画や美術品を収納する博物館、法隆寺や金色堂に代表される神社・仏閣、通販向けの大型物流倉庫、内部で塗料等可燃性危険物を取り扱う工場、更に事故時に可燃性ガスを発生する恐れのある密閉型建屋等、広範囲な建屋が挙げられる。 In addition to skyscrapers, the buildings subject to the above dry fire extinguishing law include museums that store valuable paintings and fine arts, shrines and temples such as Horyuji Temple and Golden Hall, large distribution warehouses for mail order, and interiors. There are a wide range of buildings such as factories that handle flammable hazardous materials such as paints, and closed-type buildings that may generate flammable gas in the event of an accident.

これ等の対象物の一部には従来の消火方法である煙検知器とスプリンクラーを組み合わせた水を使う防消火法が使用されていた。本発明はこの湿式防消火法に代わる新たな防消火法を提案する。具体的には今後新設される建屋に予め、新たな工夫を加えることにより、建屋の全域に渡って窒素を活用する乾式防消火法の技術を提供する。 For some of these objects, a fire extinguishing method using water, which is a combination of a smoke detector and a sprinkler, which is a conventional fire extinguishing method, was used. The present invention proposes a new fire extinguishing method that replaces this wet fire extinguishing method. Specifically, by adding new ideas to the new building to be built in the future, we will provide the technology of the dry fire extinguishing method that utilizes nitrogen over the entire area of the building.

窒素を超高層建屋に導入する際、最も注意しなければならない重要な課題は酸欠症即ち酸素欠乏に伴う人的災害や事故の防止である。従来窒素等を使う乾式防消火法が対象としたのは美術館の特別鑑賞室やコンピュータ制御室等の限られたらスペースで、かつ室内では少人数の滞在を前提としていた。 When introducing nitrogen into skyscrapers, the most important issue to be aware of is the prevention of human accidents and accidents associated with oxygen deficiency, that is, oxygen deficiency. Conventionally, the dry fire extinguishing method using nitrogen etc. was targeted at a limited space such as a special viewing room or a computer control room of a museum, and it was assumed that a small number of people would stay indoors.

今回対象とする超高層建築物は建屋の容積が数十万m3以上で、かつ建屋内に常時数百人以上の人間が滞在している。人間は酸素なしの環境下では生きていけない。酸素濃度の低下と共に死の危険が迫る。万一の発災時に窒素を使用する場合、これ等の人達の命を如何にして酸欠事故から守るか、この二次災害については万全な防止策を事前に確立しなけらばならない。これは本発明の実現へ向けて最大の難問である。 The skyscraper targeted this time has a building volume of several hundred thousand m3 or more, and hundreds or more people are always staying inside the building. Humans cannot live in an environment without oxygen. The danger of death approaches as the oxygen concentration decreases. When nitrogen is used in the event of a disaster, it is necessary to establish in advance how to protect the lives of these people from oxygen deficiency accidents and preventive measures against this secondary disaster. This is the biggest challenge for the realization of the present invention.

本発明の具体策を容易に理解し易いよう最初に対象物の概要を例示する。建屋の構造材は木造材を主体とし高さ350m、70階建で、階当たりの床面積は6,500m2と仮定する。各階の高さは350/70=5.0m、建屋の総容量は228万m3となる。この形状は前述した住友林業(株)の「W350計画」とほぼ同一である。この建屋に窒素を用いた乾式防消火設備を計画する。 First, an outline of the object is illustrated so that the concrete measures of the present invention can be easily understood. It is assumed that the structural material of the building is mainly wooden and has a height of 350 m and 70 stories, and the floor area per floor is 6,500 m2. The height of each floor is 350/70 = 5.0m, and the total capacity of the building is 2.28 million m3. This shape is almost the same as the above-mentioned "W350 plan" of Sumitomo Forestry Co., Ltd. A dry fire extinguishing system using nitrogen will be planned for this building.

始めに窒素を使用した建屋内の支燃性ガスを窒素で置換する際の基本的な事項を記す。窒素による乾式防消火法は燃焼の3要素である、可燃物、着火源、支燃性ガスの中で、支燃性ガスを無くする方法である。窒素を用いて火災周囲の支燃性ガス中の酸素濃度を限界値まで下げれば火種は完璧に消火できる。従って建屋が密閉型であるという条件さえ満たせば、乾式法は湿式法に比べ簡潔で、消火効率が圧倒的に高い。 First, the basic items for replacing the combustion-supporting gas in a building that uses nitrogen with nitrogen are described. The dry fire extinguishing method using nitrogen is a method of eliminating the combustible gas among the combustibles, the ignition source, and the combustible gas, which are the three elements of combustion. If nitrogen is used to reduce the oxygen concentration in the flammable gas around the fire to the limit value, the fire can be completely extinguished. Therefore, as long as the condition that the building is a closed type is satisfied, the dry method is simpler than the wet method and the fire extinguishing efficiency is overwhelmingly high.

更に乾式法は設備の組合せが極めてシンプルである。この方式に必要なものは建屋に吹き込む窒素がデッドスペース無しに均一に拡散するように「窒素の吹き出し配管を設置する」こと、及び吹き込んだ多量の窒素ガスで建屋内が過圧にならないよう「排気用のベントを設ける」ことの2項目である。 Furthermore, the dry method has an extremely simple combination of equipment. What is required for this method is to "install a nitrogen blowout pipe" so that the nitrogen blown into the building is evenly diffused without dead space, and to prevent the building from being overpressured by the large amount of nitrogen gas blown into it. There are two items: "Provide a vent for exhaust."

一方、乾式防消火法は大型建屋内の空気中の酸素濃度を低下させるためには多量の窒素が必要になる。将来水素時代の到来に併せて導管を用いた広域の窒素インフラが完成すれば、この課題は容易に解決できる。しかし現状で窒素を多量に供給できる唯一の手段は液化窒素ローリ車よる供給である。 On the other hand, the dry fire extinguishing method requires a large amount of nitrogen to reduce the oxygen concentration in the air inside a large building. If a wide-area nitrogen infrastructure using conduits is completed in the future with the advent of the hydrogen era, this problem can be easily solved. However, at present, the only means that can supply a large amount of nitrogen is the supply by a liquefied nitrogen lorry vehicle.

乾式防消火法の更なる利点は窒素という気体を使うので、どんな高さの建築物の消火にも対応が可能である。湿式防消火法のような消火対象物の高さに関する懸念は皆無である。次に本発明における液化窒素ローリ車を使った窒素の供給方法を記す。 A further advantage of the dry fire extinguishing method is that it uses a gas called nitrogen, so it can be used to extinguish fires in buildings of any height. There is no concern about the height of the fire extinguishing object as in the wet fire extinguishing method. Next, a method of supplying nitrogen using a liquefied nitrogen lorry wheel in the present invention will be described.

液化窒素ローリ車とは窒素を超低温の液状にして真空断熱された特殊容器に充填し、これを車両に搭載して運搬する特別車両である。現在この種の車両は国内では広く普及しており、全国で数百台の液化窒素ローリ車が毎日、運行している。 A liquefied nitrogen lorry vehicle is a special vehicle in which nitrogen is liquefied at an ultra-low temperature, filled in a vacuum-insulated special container, and then mounted on the vehicle for transportation. Currently, this type of vehicle is widespread in Japan, with hundreds of liquefied nitrogen lorry vehicles operating daily throughout the country.

液化窒素ローリ車の搭載容量は大型車で約7ton(重量)、ガス状態に換算すれば約6,000m3/台である。しかしこの量を持っても前記の建屋の容量に比べて極めて少量であり、その対応は難題である。 The loading capacity of a liquefied nitrogen lorry vehicle is about 7 tons (weight) for a large vehicle, which is about 6,000 m3 / unit when converted to a gas state. However, even with this amount, it is extremely small compared to the capacity of the building mentioned above, and it is a difficult task to deal with it.

次に窒素を使って建屋内の酸素ガス濃度を低減させる方法について記す。既述したように建屋内の可燃物を一酸化炭素、水素を主体の可燃性ガスと仮定した場合、その燃焼に必要な酸素濃度は5%以上(=学術用語で限界酸素濃度という)に保たなければならない。逆の見方では建屋内の空気を窒素で置換して空気中の酸素濃度を5%以下すれば全ての火源は消炎する。 Next, the method of using nitrogen to reduce the oxygen gas concentration in the building will be described. As mentioned above, assuming that the combustibles in the building are carbon monoxide and hydrogen as the main combustible gas, the oxygen concentration required for combustion is kept at 5% or more (= limit oxygen concentration in academic terms). Must be. From the opposite perspective, if the air inside the building is replaced with nitrogen and the oxygen concentration in the air is reduced to 5% or less, all fire sources will be extinguished.

容積(Am3)を有する建屋の内部に容量(Vm3)の窒素を吹き込み建屋内の同量のガスを放出させて、建屋内の酸素濃度を通常濃度(a=21%)から目標の酸素濃度(a2=5%)まで低減させる場合、その低減曲線は「完全混合式」に従い、次の関数で示される。ここでeはネピアの数と呼ばれる定数である。

Figure 2021186616
A volume (Vm3) of nitrogen is blown into a building with a volume (Am3) to release the same amount of gas inside the building, and the oxygen concentration inside the building is changed from the normal concentration (a 1 = 21%) to the target oxygen concentration. When reducing to (a2 = 5%), the reduction curve follows the "completely mixed formula" and is shown by the following function. Here, e is a constant called the number of Napier.
Figure 2021186616

上式より空気中の酸素a1を限界酸素濃度a2まで低下させる窒素量 Vは
V= −2.303*A*log(a/a
例えば建屋容積A=100,000m3、a1=21.0、a2=5.0を代入すれば、窒素量V=143,000m3 となる。即ち容積Am3の建屋内の酸素を窒素で置換して燃焼を継続できない酸素濃度まで低減させるには、容量で建屋容量Aの約1.43倍の窒素が必要である。
From the above equation, the amount of nitrogen V that reduces oxygen a1 in the air to the limit oxygen concentration a2 is
V = -2.303 * A * log (a 2 / a 1 )
For example, by substituting the building volume A = 100,000 m3, a1 = 21.0, and a2 = 5.0, the nitrogen amount V = 143,000 m3. That is, in order to replace oxygen in the building with a volume of Am3 with nitrogen and reduce the oxygen concentration to an oxygen concentration at which combustion cannot be continued, nitrogen of about 1.43 times the volume of the building capacity A is required.

次に液化窒素ローリ車で運ばれる窒素を如何にして防消火に有効に活用するかについて、具体的な手段を記す。第一番目の手段は建屋側の対策である。前項の試算で示したように窒素導入の対象物の容積は数百万m3の及ぶ。一方で窒素を供給する側の供給能力は1万m3/台に満たない。この両者のアンバランスの調整である。これには建屋全体の構造を改造し、液化窒素ローリ車で運ばれてきた窒素を目標とする空間にだけ限定して供給する方策を見出す。 Next, we will describe specific means of how to effectively utilize nitrogen carried by liquefied nitrogen lorry vehicles for fire prevention and extinguishing. The first measure is the measures on the building side. As shown in the estimation in the previous section, the volume of the nitrogen-introduced object is several million m3. On the other hand, the supply capacity of the nitrogen supply side is less than 10,000 m3 / unit. It is an adjustment of the imbalance between the two. To do this, we will remodel the structure of the entire building and find a way to supply nitrogen carried by liquefied nitrogen lorry vehicles only to the target space.

このため建屋側の方策として建屋の空間を万一の災害発生時に「窒素の吹込み可能空間」と「窒素の吹込み不可能空間」とに予め明確に区分する。更に防消火設備からの窒素の吹込み先は建屋の中で「窒素吹込み可能エリア向けとして指定された空間」にだけ窒素を集中して吹き込む。当然のことながら、この手段は建屋の設計時に実行されなければならない。この区分の詳細については後述する。 For this reason, as a measure on the building side, the space of the building is clearly divided into "space where nitrogen can be blown" and "space where nitrogen cannot be blown" in the event of a disaster. Furthermore, as for the destination of nitrogen blown from the fire extinguishing equipment, nitrogen is concentrated and blown only into the "space designated for the nitrogen blowable area" in the building. Not surprisingly, this measure must be implemented during the design of the building. The details of this classification will be described later.

第二番目の手段は建屋に供給する多量の窒素の運搬方法を見つけることである。この窒素源の確保は重要である。現在、窒素の製造所として有望な候補は鉄鋼所、都市ガス供給会社、化学学工場等がある。中でも鉄鋼所は銑鉄から鋼への工程で、多量の酸素を製造して使用しているが、その酸素の製造時に多量の窒素を副生している。 The second means is to find a way to transport the large amount of nitrogen supplied to the building. It is important to secure this nitrogen source. Currently, promising candidates for nitrogen manufacturing plants include steelworks, city gas supply companies, and chemical factories. Among them, steelworks produce and use a large amount of oxygen in the process from pig iron to steel, but a large amount of nitrogen is produced as a by-product during the production of that oxygen.

この窒素は液状で副生し、一部は工場内で安全対策として自消されるが、大部分用途が無く大気へ放出されている。その量は年間数十億トン以上で、量的な保有量は既に十分にある。従って輸送手段さえあればこの問題は解決が可能である。 This nitrogen is a liquid by-product, and part of it is self-extinguished as a safety measure in the factory, but most of it has no use and is released into the atmosphere. The amount is more than billions of tons per year, and the quantity is already sufficient. Therefore, this problem can be solved if there is a means of transportation.

第三番目の手段は窒素の活用に伴う負の効果と言われる酸欠事故に対する防止対策を確立することである。人間は大気中の酸素濃度が下がり、10%レベルまで低下すると意識を失い、更に6%以下では数分で死に至る。これ等の症例は人間の人為的ミスのよって引き起こされるケースが圧倒的に多いが、稀に作為的な行為や悪意によって引き起こされる危険性がある。 The third means is to establish preventive measures against oxygen deficiency accidents, which are said to have a negative effect on the use of nitrogen. Humans lose consciousness when the oxygen concentration in the atmosphere drops to 10% level, and when it is 6% or less, they die in a few minutes. These cases are overwhelmingly caused by human human error, but in rare cases there is a risk of being caused by intentional acts or malicious intent.

この酸欠防止対策は事前に十分検討され、必ず実行されなければならない。この防護手段なくして本提案の実践は困難である。防護手段の詳細については次の「実施に向けての最良の形態」で説明する。 This oxygen deficiency prevention measure must be thoroughly examined and implemented in advance. It would be difficult to put this proposal into practice without this protective measure. The details of the protective measures will be described in the next section, "The Best Form for Implementation".

次に上記の活用手段を実行するための具体的な方策を記す。前述したように試算する建屋の全容積は2,280,000m3である。この建屋を窒素で置換して、建屋内の空気中の酸素濃度を燃焼限界濃度以下まで下げる方策を記す。 Next, specific measures for implementing the above-mentioned utilization means are described. As mentioned above, the total volume of the building estimated is 2,280,000 m3. A measure to replace this building with nitrogen to reduce the oxygen concentration in the air inside the building to below the combustion limit concentration is described.

この建屋の空気中の酸素濃度を21%から5%まで低下させるには、建屋容積の1.43倍の窒素量が必要であることは既に記載した。 これを搭載容量のガス換算量で6,000m3 の液化窒素ローリ車で置換するとすれば、必要な液化窒素ローリの台数は2,280,000*1.43/6,000=543台が必要となる。 It has already been mentioned that in order to reduce the oxygen concentration in the air of this building from 21% to 5%, the amount of nitrogen required to be 1.43 times the volume of the building is required. If this is replaced with a 6,000 m3 liquefied nitrogen lorry vehicle in terms of the installed capacity, the required number of liquefied nitrogen lorries is 2,280,000 * 1.43 / 6,000 = 543 units. Become.

この台数の確保は実際には不可能である。都心の交通事情を勘案すれば、初期消火に出動できる液化窒素ローリ車は多くとも10台以下、出来れば5台程度に抑える必要がある。このために建屋本体の改造を行う。改造の第一歩は建屋本体のブロック化である。即ち、建屋全体を「窒素置換を可能とする空間」と「置換が不可能とする空間」にブロック化して区分する。 It is actually impossible to secure this number. Considering the traffic conditions in the city center, it is necessary to limit the number of liquefied nitrogen lorry vehicles that can be dispatched for initial fire extinguishing to 10 or less, preferably 5 or less. For this purpose, the building itself will be remodeled. The first step in the remodeling is to block the building itself. That is, the entire building is divided into "spaces that allow nitrogen substitution" and "spaces that cannot be substituted".

対象とする建屋の形状は矩形、円筒形、多角系のいずれでもよいが、この試算では円筒形と仮定する。 円筒形の場合、前述した通り 1階当たりの床面積は6,500m2、その半径=45.5mの円となる。次にこの面積を円の中心を原点として、更に小さな円を描き、床面積全体を内円部分(以降A部と称す)と内円と外円に囲まれたドーナツ状の部分(以降B部と称す)に2分割する。 The shape of the target building may be rectangular, cylindrical, or polygonal, but in this calculation, it is assumed to be cylindrical. In the case of a cylindrical shape, as described above, the floor area per floor is 6,500 m2, and the radius is a circle of 45.5 m. Next, with this area as the origin, draw a smaller circle, and the entire floor area is the inner circle part (hereinafter referred to as part A) and the donut-shaped part surrounded by the inner and outer circles (hereinafter referred to as part B). It is divided into two parts.

2分割された各々の面積比を仮にA部;B部=20;80とすれば、建屋の一階当たりの床面積6,500m2は中心部A部で1,300m2、外周部B部で5,200m2に分割される。建屋の半径は、A部で20.4m、B部は45.5mとなる。即ち、前述の分割により、円形の面積は内径の半径=20.4m、外径の半径=45.5mの2重円を有する構造に2分割される。 Assuming that the area ratio of each of the two divisions is A part; B part = 20; 80, the floor area of 6,500 m2 per floor of the building is 1,300 m2 in the central part A part and 5 in the outer peripheral part B part. , 200m2. The radius of the building is 20.4m in the A part and 45.5m in the B part. That is, by the above-mentioned division, the circular area is divided into two structures having a double circle having an inner diameter radius of 20.4 m and an outer diameter radius of 45.5 m.

次に2分割された各々の空間の機能を説明する。A部は正常時、非常時とも常に新鮮な空気で満たされた空間で、主に移動空間として利用する。この空間に配置するのはエレベーアタ、エスカレータ、階段等の移動のための設備とトイレである。更に余ったスペースには生花プランター、自販機、不燃性のテーブル、椅子等を置いて社員の憩いや顧客との打ち合わせの場所として利用する。 Next, the function of each space divided into two will be described. Part A is a space filled with fresh air in both normal and emergency situations, and is mainly used as a moving space. Equipment for movement such as elevators, escalators, stairs, etc. and toilets are arranged in this space. In addition, flower arrangement planters, vending machines, non-combustible tables, chairs, etc. will be placed in the extra space to be used as a place for employees to relax and meet with customers.

一方B部は社員が執務を行う居住空間である。ここには事務室、会議室、食堂、調理室および集会ホール等を配置する。この空間の特色は常時は調温、調湿された空気で満たされるが、万一の火災等の非常時には外部より窒素を導入して室内の酸素濃度を下げ、火炎を消火できる構造とする。 On the other hand, Department B is a living space where employees work. An office, a conference room, a dining room, a cooking room, a meeting hall, etc. will be arranged here. The characteristic of this space is that it is always filled with temperature and humidity controlled air, but in the event of an emergency such as a fire, nitrogen is introduced from the outside to reduce the oxygen concentration in the room and the flame can be extinguished.

B部に滞在する社員は非常時には酸欠の危険があり、警報等で警告を受けた場合は、直ちに安全な空間に避難しなければならない。この避難先がA部である。両空間は不燃性の壁で完全に遮断され、その出入りは専用ドアだけである。即ち、建屋の何処かで火災が発生した場合、非常放送により館内に避難指示が出されると、発災点に近い居室にいる社員は、全員上記の専用ドアを通って同一階にあるA部に避難する。A部に移動した社員は火災の程度によっては各種移動手段を使って他階に移動することも可能である。以上の建屋の概要と関連施設を[図1]に示す。 Employees staying in Department B are at risk of oxygen deficiency in an emergency, and if they are warned by an alarm, they must immediately evacuate to a safe space. This evacuation destination is Part A. Both spaces are completely blocked by non-combustible walls, and their access is limited to private doors. That is, if a fire breaks out somewhere in the building, an evacuation order is issued in the hall by an emergency broadcast, and all employees in the living room near the disaster point pass through the above-mentioned dedicated door and are on the same floor. Evacuate to. Employees who have moved to Department A can also move to other floors using various means of transportation depending on the degree of the fire. The outline of the above building and related facilities are shown in [Fig. 1].

次にB部で発災したケースを想定して、その消火手順を説明する。。手順を理解しやすいよう、消火対象とするエリアはB部の中から一つの階を選んで、この1階分の全体を1ブロックと見なして消火するケースで説明する。[図1]ではこのブロックを斜線でハッチングして示す。 Next, assuming a case of a disaster in Part B, the fire extinguishing procedure will be explained. .. To make it easier to understand the procedure, the fire extinguishing area will be described in the case where one floor is selected from the B section and the entire one floor is regarded as one block to extinguish the fire. In [Fig. 1], this block is shown by hatching with diagonal lines.

このブロックの容積はV=6,500*0.8*5.0=26,000m3である。消火に必要な窒素量は先に記載した計算式から、窒素量A=26,000*1.43*0.95=35,300m3となる。但し、0.95はブロック容積Vから、フロアの備品や家具の容積を除外した有効空間係数である。この窒素量は液化窒素ローリ車で約6台分に相当する。この程度の量であれば現行で何とか配車可能である。 The volume of this block is V = 6,500 * 0.8 * 5.0 = 26,000 m3. The amount of nitrogen required for extinguishing the fire is calculated as the amount of nitrogen A = 26,000 * 1.43 * 0.95 = 35,300 m3 from the above-mentioned calculation formula. However, 0.95 is an effective space coefficient excluding the volume of floor equipment and furniture from the block volume V. This amount of nitrogen is equivalent to about 6 liquefied nitrogen lorry vehicles. With this amount, it is possible to dispatch vehicles at present.

以上の計算では消火対象をワンフロア全体を選び、これを1ブロックとしたが、実際の建屋ではフロアは平面上を縦方向の仕切壁で数分割する。この分割を6分割とすれば、対象容積は6階分に相当する容積となる。従って実際の消火ではこの縦分割された容積を1ブロックとし、これを消火対象として考えればよい。このように平面上で6分割し、6階分をまとめた場合でも必要窒素量Aは35,300m3となり、その量は分割しない場合と変わらない。以上の概要を[図2]に示す。但し、[図2]は平面上で6分割し、上半分の3階分を窒素で消火する(=後述する)図である。 In the above calculation, the entire floor was selected as the fire extinguishing target, and this was set as one block, but in the actual building, the floor is divided into several parts on the plane by vertical partition walls. If this division is divided into six, the target volume will be the volume corresponding to the sixth floor. Therefore, in actual fire extinguishing, this vertically divided volume may be regarded as one block, and this may be considered as a fire extinguishing target. Even when the 6th floor is divided into 6 parts on a plane in this way, the required nitrogen amount A is 35,300 m3, and the amount is the same as the case where the 6th floor is not divided. The above outline is shown in [Fig. 2]. However, [FIG. 2] is a diagram in which the upper half of the third floor is extinguished with nitrogen (= described later).

上記のような多量の窒素を短時間に消火対象のブロックに供給するには、幾つかの工夫が必要である。その方法を以下に示す。液化窒素ローリ車からの窒素は最初に地下の密閉室に設置した気化器へ送られ、中低圧の窒素ガスとなる。ここから複数の鋼鉄製導管を用いて建屋の外周を経由して建屋の最上階まで運ばれる。気化器の設置場所を密閉室にした理由は万一気化器から窒素が漏洩した場合でも、窒素が他の空間に酸欠等の悪影響を与えることを避けるためである。 In order to supply a large amount of nitrogen as described above to the block to be extinguished in a short time, some measures are required. The method is shown below. Nitrogen from a liquefied nitrogen lorry vehicle is first sent to a vaporizer installed in an underground closed room to become medium- and low-pressure nitrogen gas. From here, it is transported to the top floor of the building via the outer circumference of the building using multiple steel conduits. The reason why the vaporizer is installed in a closed room is to prevent nitrogen from adversely affecting other spaces such as oxygen deficiency even if nitrogen leaks from the vaporizer.

この導管を各ブロック内に設置した供給ヘッダーに連結する。供給ヘッダーは各ブロック内の定められた階の外周に、リング状に設置する。更にこのヘッダーから枝管を分岐し、この枝管に取り付けた複数の吹き出し口から、消火対象となる空間内に窒素を吹き込む。またヘッダーには遠隔操作で開閉可能の供給元弁を取り付ける。 This conduit is connected to the supply header installed in each block. The supply header is installed in a ring shape on the outer circumference of the specified floor in each block. Further, a branch pipe is branched from this header, and nitrogen is blown into the space to be extinguished from a plurality of outlets attached to the branch pipe. In addition, a supply source valve that can be opened and closed by remote control is attached to the header.

供給元弁はブロック内の各ヘッダーに取り付ける。取り付ける位置はヘッダーから枝管に分岐する大元である。従って1ブロック内では供給元弁の数は複数個となる。例えば平面上で6等分に分割して上下に6階建のブロックの場合、3階毎にヘッダーを設けるとすれば、ヘッダーは2箇所で供給元弁の数は全部で2*6=12個となる。 The source valve is attached to each header in the block. The mounting position is the origin that branches from the header to the branch pipe. Therefore, there are a plurality of supply source valves in one block. For example, in the case of a block that is divided into 6 equal parts on a plane and has 6 floors above and below, if a header is provided for each 3 floors, there are 2 headers and the total number of supply valve is 2 * 6 = 12. It becomes an individual.

このように供給元弁の数は一つの建物でかなりの数になるので、誤って作動させないよう注意しなければならない。この危険を防止するには後述する監視回路に「煙検知による火災発生情報」を組み込めば窒素を吹き込む必要のないブロックの供給元弁が誤って開かれる危険はある程度抑えられるが、更に誤作動防止のため安全対策の冗長化が求められる。この冗長化については後述する。 As you can see, the number of source valves is quite large in one building, so care must be taken not to accidentally operate them. To prevent this danger, by incorporating "fire occurrence information by smoke detection" into the monitoring circuit described later, the risk of accidentally opening the supply valve of the block that does not need to blow nitrogen can be suppressed to some extent, but further prevention of malfunction. Therefore, redundancy of safety measures is required. This redundancy will be described later.

複数の供給元弁を設置する理由は窒素の供給先を限定して供給時間を短縮して、消火スピードを上げるためである。例えば6階建てのブロックで6階で火災が発生したと仮定した場合、供給元弁が最下段階に1個しか無ければ吹き込まれた窒素が最下段から6階に到達するにはかなりの時間を要する。もし4階に供給元弁があれば、その時間は最下段にある場合に比べて1/2に短縮できる。これは初期消火にとって極めて効果的である。この場合は消火に必要な窒素の量も半量で良い。 The reason for installing multiple supply valve is to limit the supply destination of nitrogen, shorten the supply time, and increase the fire extinguishing speed. For example, assuming that a fire broke out on the 6th floor of a 6-story block, it would take a considerable amount of time for the blown nitrogen to reach the 6th floor from the bottom if there was only one source valve at the bottom. Requires. If there is a source valve on the 4th floor, the time can be shortened by half compared to the case at the bottom. This is extremely effective for initial fire extinguishing. In this case, the amount of nitrogen required to extinguish the fire may be half.

このように防消火機器の取付け位置や数を詳細に指定した理由は万一これ等の機器から窒素が漏洩した場合、窒素が防消火の対象とならないブロックや移動空間(=A空間)に流入して酸欠事故を引き起こす危険を回避するためである。以上の工夫により、乾式防消火設備からの窒素を消火を必要とするブロックだけに限定して安全に吹き込むことが可能となる。 The reason for specifying the installation position and number of fire extinguishing equipment in detail in this way is that if nitrogen leaks from these equipment, nitrogen will flow into the block or moving space (= A space) that is not subject to fire extinguishing. This is to avoid the danger of causing an oxygen deficiency accident. With the above measures, it is possible to safely blow nitrogen from the dry fire extinguishing equipment only to the blocks that require fire extinguishing.

複数階を含むブロックに窒素を吹き込む場合、吹き込まれた窒素は該当する階の空間を窒素で置換した後、予め準備された通気口を通り、その階の上段階に流れる。この通気口は、当該階の天井部から更に上段階に繋がるように配置し、窒素は空気・窒素の混合ガスとなって通気口を通り、順次上の階に流れ、最後はブロックの最上階の天井からベント管を経由して大気に放出される。 When nitrogen is blown into a block containing multiple floors, the blown nitrogen replaces the space of the corresponding floor with nitrogen, and then flows through a vent prepared in advance to the upper stage of that floor. This vent is arranged so as to connect to the upper stage from the ceiling of the floor, nitrogen becomes a mixed gas of air and nitrogen, passes through the vent, flows to the upper floor in sequence, and finally the top floor of the block. It is released into the atmosphere from the ceiling of the building via a vent pipe.

この際、窒素が内部の空気と十分に混合するよう若干の工夫を行う。これには通気口の上部に防音型のダンパーを取り付ける。このダンパーは下の階の圧力が上階の圧力より数百mm程度高くなった時に開放する構造とする。この結果、吹き込まれた窒素は空間内で完全混合して、逆流やショートパスすることなしに上段階に流れ、消火効率を高めることができる。ダンパーを防音型にした理由は下階の音が上階に伝わり難くするためである。以上のダンパーの概要を[図3]に示す。 At this time, some measures are taken so that nitrogen is sufficiently mixed with the air inside. For this, a soundproof damper is attached to the top of the vent. This damper has a structure that opens when the pressure on the lower floor becomes several hundred mm higher than the pressure on the upper floor. As a result, the blown nitrogen is completely mixed in the space and flows to the upper stage without backflow or short pass, and the fire extinguishing efficiency can be improved. The reason for making the damper soundproof is that it makes it difficult for the sound of the lower floors to be transmitted to the upper floors. The outline of the above damper is shown in [Fig. 3].

排気口とベント管については非常時に多量に吹き込まれる窒素で建屋内が過圧されないよう十分な排出能力を持たせることが大切である。排気口には常時ラプチュアデスク等の破裂板を取り付けて大気と遮断する。ラプチュアデスクとは薄い金属板で出来た安全器具で、建屋内が過圧された場合にこの金属板が破裂して内部のガスを大気へ放出する機能を持つ安全装置である。排気口は各ブロック毎に設置されるが、ベント管は一般的には各排気口を纏めて建屋の最上部へ導きガスを大気へ放出する。 It is important for the exhaust port and vent pipe to have sufficient exhaust capacity so that the building is not overpressed by a large amount of nitrogen blown in an emergency. A rupture plate such as a rupture desk is always attached to the exhaust port to block it from the atmosphere. A rupture desk is a safety device made of a thin metal plate, and it is a safety device that has the function of bursting the metal plate and releasing the gas inside to the atmosphere when the inside of the building is overpressured. Exhaust ports are installed in each block, but in general, vent pipes collectively guide each exhaust port to the top of the building and release gas to the atmosphere.

更にブロック本体の構造に関しては各ブロック同志の間を上下の境界面には延焼防止用の断熱床を設け、また水平の境界面では仕切り壁の断熱性を強化する補強を行う。これ等の改造は強度面でもブロック空間同志の補強になるので、万一ガス爆発等でブロッ空間内に過圧が掛かる場合に建屋を守るための保護壁になる。 Furthermore, regarding the structure of the block body, a heat insulating floor for preventing the spread of fire is provided between the upper and lower boundary surfaces between the blocks, and the horizontal boundary surface is reinforced to enhance the heat insulating property of the partition wall. Since these modifications will reinforce the block spaces in terms of strength, they will be a protective wall to protect the building in the unlikely event that an overpressure is applied to the block space due to a gas explosion or the like.

上記のようにブロックを複数階に分割することは、各階当たりの窒素置換に要する時間を短縮できるので、消火に係る時間を節減できる効果がある。また今回の試算ではワンブロックを水平断面で6分割したが、この分割数にこだわる必要はない。建屋の用途により分割数は4分割でも8分割でも構わない。 Dividing the block into a plurality of floors as described above has the effect of reducing the time required for extinguishing the fire because the time required for nitrogen replacement for each floor can be shortened. Also, in this estimation, one block was divided into 6 in the horizontal cross section, but it is not necessary to be particular about the number of divisions. The number of divisions may be 4 or 8 depending on the purpose of the building.

建屋全体の外観については自由にデザインすることが可能である。今回の試算で建屋の内外周を共に円形と仮定したが、他にも矩形や多面形としても良い。本発明で参考とした住友林業クラスの容量の建屋であれば、外周を6面形又は8面形とし、これに内周壁を円形又は同形とすることが最良の組み合わせである。イメージは丸い花芯から5枚の花弁を持つ五辨の椿で、この形は建屋の強度や人間の動線から判断して本発明に相応しいデザインの一例である。。 The exterior of the entire building can be freely designed. In this calculation, it is assumed that both the inner and outer circumferences of the building are circular, but other rectangles and polyhedrons may be used. For a Sumitomo Forestry-class capacity building referred to in the present invention, the best combination is to have a 6-sided or 8-sided outer circumference and a circular or same-shaped inner peripheral wall. The image is a five-sided camellia with five petals from a round flower core, and this shape is an example of a design suitable for the present invention, judging from the strength of the building and the flow line of human beings. ..

超高層建築物の建設に際し、水による湿式防消火法に加えて新たに窒素を用いる乾式防消火法を導入することは、消火効率の上昇や消火設備費の節減から見て極めて有効である。現状では窒素の供給源に課題を残すが、将来水素時代の到来に併せて検討されている窒素インフラの構築され、窒素がより簡便な方法で供給できれば、乾式防消火法は更にその威力を発揮できる。 When constructing a skyscraper, it is extremely effective to introduce a new dry fire extinguishing method using nitrogen in addition to the wet fire extinguishing method using water from the viewpoint of increasing fire extinguishing efficiency and reducing fire extinguishing equipment costs. At present, there are still issues with the source of nitrogen, but if the nitrogen infrastructure that is being studied in line with the arrival of the hydrogen era is constructed and nitrogen can be supplied in a simpler way, the dry fire extinguishing method will be even more effective. can.

この消火法は特に超高層建屋等の防消火設備として有効であるが、今後大型の神社、仏閣等の建築物や物流倉庫向けにも応用が可能で、その用途の拡大が期待できる。一方で窒素の導入に伴い新たに発生が懸念される酸欠事故については、いずれの用途先においても慎重な配慮が必要である。 This fire extinguishing method is particularly effective as fire extinguishing equipment for skyscrapers, etc., but it can also be applied to buildings such as large shrines and temples and distribution warehouses in the future, and its use is expected to expand. On the other hand, regarding oxygen deficiency accidents that may occur newly due to the introduction of nitrogen, careful consideration must be given to all applications.

次に本発明の酸欠防止に関して記す。本発明を超高層建築物で利用する際、最も注意しなければならない課題は酸欠症、即ち酸素欠乏に伴う人的な災害や事故を防止することである。 Next, the prevention of oxygen deficiency of the present invention will be described. When using the present invention in a skyscraper, the most important issue to be aware of is to prevent oxygen deficiency, that is, human disasters and accidents associated with oxygen deficiency.

従来窒素等を使う乾式防消火法が対象としたのは繰り返しの説明となるが、美術館やコンピュータ制御室等の限られたらスペースで、かつ少人数の滞在を前提としていた。しかし今回、対象とする超高層建築物は建屋の容積が数十万m3以上で、かつ常時数百人以上の人間が建屋内に滞在している。万一の発災時にここへ窒素を吹き込めば、滞在する人達は全員が酸欠事故の危険に晒される。これ等の人達の命を如何にして酸欠事故から守るか、この対策なしでは本提案は机上の空論になり兼ねない。 Conventionally, the dry fire extinguishing method using nitrogen etc. was targeted for repeated explanations, but it was assumed that a small number of people would stay in a limited space such as a museum or a computer control room. However, this time, the target skyscraper has a building volume of hundreds of thousands of m3 or more, and hundreds or more people are always staying inside the building. If nitrogen is blown into this area in the event of a disaster, all the residents will be at risk of an oxygen deficiency accident. How to protect the lives of these people from oxygen deficiency accidents, without this measure, this proposal could be a desk theory.

酸欠事故とは簡潔に表現すれば、建屋が酸欠状態にあるのに気付かず人が立ち入ること、又は建屋内に人がいることに気付かず窒素を吹き込むことである。この事故に対して今まで取られてきた防止策は視覚、聴覚、臭覚という人間の五感に頼る方法であった。例えばガスに腐臭剤を添加して、臭い付ける等である。しかし本発明の実践に際してこの対策だけでは不十分で、新たな監視システムの導入必要である。特に監視目的が不特定多数の人を対象にする場合はこの対策が必須である。 To put it simply, an oxygen deficiency accident is when a person enters without noticing that the building is in an oxygen deficient state, or when nitrogen is blown into the building without noticing that there is a person inside the building. The preventive measures taken so far for this accident have been to rely on the five human senses of sight, hearing, and smell. For example, an odorant is added to the gas to give it an odor. However, in practicing the present invention, this measure alone is not sufficient, and it is necessary to introduce a new monitoring system. This measure is indispensable especially when the purpose of monitoring is to target an unspecified number of people.

この対策の導入を可能にする背景には近年の新しい技術の発展が大きく寄与している。即ち、自動車の自動運転に関連して人間や車両等の動体監視に関する技術では著しい進展が見られる。例えば新たな監視技術として高性能カメラによる動体の個別識別、超音波による魚群等の群集探知、高感度温度センサーによる発熱者の識別監視等の技術は今回の酸欠防止対策にも十分、活用が可能である。 The development of new technologies in recent years has greatly contributed to the background that enables the introduction of this measure. That is, remarkable progress has been made in the technology related to the monitoring of moving objects such as humans and vehicles in relation to the automatic driving of automobiles. For example, as new monitoring technologies, technologies such as individual identification of moving objects using high-performance cameras, crowd detection of fish schools using ultrasonic waves, and identification monitoring of heat-generating persons using high-sensitivity temperature sensors are fully utilized for this oxygen deficiency prevention measure. It is possible.

この他にも接触法の検知として圧電素子を使い床面への人体の接触の有無を検知する方法が実用化されている。これ等の新たな検知技術の導入により人間の存在の有無を確実に確認できれば、窒素の活用は大きく進展することが期待できる。 In addition to this, a method of detecting the presence or absence of contact of the human body with the floor surface by using a piezoelectric element as a detection of the contact method has been put into practical use. If we can confirm the existence of human beings by introducing these new detection technologies, we can expect that the utilization of nitrogen will make great progress.

建屋での酸欠防止事故を防ぐ方策は今までにも各種の提言が行われて来た。その一例として、火災を起こした建屋内に窒素を吹き込むケースで従来までに実行された防止策を[図4]に示す。 Various proposals have been made so far for measures to prevent oxygen deficiency accidents in buildings. As an example, [Fig. 4] shows the preventive measures that have been implemented so far in the case of blowing nitrogen into the building where a fire has occurred.

この図には自動監視システムとして「煙検知による火災発生情報」と「監視用カメラによる無人確認情報」が図示されている。建屋への窒素の導入に当ってはこの流れ図に示す回路が作動しない限り、窒素を供給機能を作動できないように防護されている。例示した二つの情報は、後述する新たな情報と区別するため、図中では点線で囲まれた範囲で表示されている。 This figure shows "fire occurrence information by smoke detection" and "unmanned confirmation information by surveillance camera" as an automatic monitoring system. When introducing nitrogen into the building, it is protected so that the nitrogen supply function cannot be operated unless the circuit shown in this flow chart is operated. The two illustrated information are displayed in the range surrounded by the dotted line in the figure in order to distinguish them from the new information described later.

今回のように建屋内の居住区分を分割するケースでは、このシステムに加えて、更に独自の監視方法を導入する。即ち、窒素を吹き込む対象が超高層建築物の場合は、建屋のB空間にいる人達は発災時に全員が同一階のA空間へ移動する。この際、居住空間B部と移動空間A部の間に設置した専用ドアを必ず通過する。これを活用した新たな監視システムを導入する。 In the case of dividing the living quarters inside the building like this time, in addition to this system, we will introduce our own monitoring method. That is, when the target to be blown with nitrogen is a skyscraper, all the people in the B space of the building move to the A space on the same floor at the time of the disaster. At this time, the door must pass through the dedicated door installed between the living space B and the moving space A. Introduce a new monitoring system that utilizes this.

この監視システムではこの専用ドアに両空間を出入する際の人数をカウントするカウンターを取り付け、これを利用して「居住者避難終了情報」を得る。従来の一般的なカウンターを使用するケースでは、ビル内に滞在する人数をビル全体として把握することは可能であったが、ビル内の特定の場所に、どれくらいの人数が分布しているかを個別に知ることは極めて困難であった。 In this monitoring system, a counter that counts the number of people entering and exiting both spaces is attached to this dedicated door, and this is used to obtain "resident evacuation end information". In the case of using a conventional general counter, it was possible to grasp the number of people staying in the building as a whole, but it is possible to individually determine how many people are distributed in a specific place in the building. It was extremely difficult to know.

今回のケースではその検知が極めて容易である。具体的には各階に設置した専用ドアの人数カウンタを用いて、室内に入る人数と出る人数をを各々計測し、その差から各階毎の個別に同一の居住空間に滞在する人数と避難者数を簡単に把握することができる。この確認作業が終了した後、建屋内に初めて窒素が吹き込めば良い。 In this case, the detection is extremely easy. Specifically, the number of people entering and leaving the room is measured using the number of people counter of the dedicated door installed on each floor, and the number of people staying in the same living space and the number of evacuees individually for each floor from the difference. Can be easily grasped. After this confirmation work is completed, nitrogen should be blown into the building for the first time.

吹き込まれた窒素により発災したブロックは完璧に消火される。更に各ブロックは不燃性の防護壁によりガードされているので、他のブロックに類焼する危険性は殆ど起こり得ない。従って建屋全体が一気に火炎に包まれるような大火災でなければ、他のブロックの人員確認は不要で、安全を確認する対象者は発災したブロックに限定される。このカウンタを使ってブロック毎に避難者数を短時間にかつ正確に把握できることは本発明の大きな特色である。 The block caused by the blown nitrogen is completely extinguished. Furthermore, since each block is guarded by a nonflammable protective wall, there is almost no risk of burning to other blocks. Therefore, unless the entire building is a big fire that is surrounded by flames at once, it is not necessary to check the personnel of other blocks, and the target people to check the safety are limited to the blocks that have caused the disaster. It is a major feature of the present invention that the number of evacuees can be accurately grasped in a short time for each block by using this counter.

加えてこの確認に際し、避難の対象となる人数は極めて少人数である。対象者は発災したブロックに限定されるので、例えば建屋を70ブロックに分割されたケースであれば、避難対象者は建屋内にいた全人数の1/70で良い。この人数は従来の大型建屋の発災時のように発災時に建屋内の全員について避難を確認しなければならないケースに比べて、避難すべき人達を短時間に確認することが可能となり、従来とは格段の差異がある。 In addition, the number of people to be evacuated for this confirmation is extremely small. Since the target person is limited to the block where the disaster occurred, for example, in the case where the building is divided into 70 blocks, the evacuation target person may be 1/70 of the total number of people in the building. This number makes it possible to confirm the people who should evacuate in a short time compared to the case where it is necessary to confirm the evacuation of everyone in the building at the time of the disaster, as in the case of the conventional large building disaster. There is a marked difference from.

またA空間は発災したB空間とは断熱性の壁で遮断されており、類焼する危険はない。かつ常時新鮮な空気で満たされているので、酸欠の恐れは皆無である。B空間に滞在する人達は慌ててA空間に移動する必要はなく、待避した人達は歩行者用の階段を使って、下の階へ移動することも可能である。地上階又は地下階に下りた人達は専用通路を使って安全に建屋外に避難できる。 In addition, space A is shielded from space B, which has suffered a disaster, by a heat insulating wall, so there is no danger of burning. And because it is always filled with fresh air, there is no risk of oxygen deficiency. Those who stay in space B do not have to rush to move to space A, and those who have evacuated can use the pedestrian stairs to move downstairs. People who descend to the ground floor or basement floor can safely evacuate to the outside of the building using a dedicated passage.

このように大型建屋を対象として建屋内を複数のブロックに分け、そのブロックにいる人間だけを確認するために専用ドアに人数カウンターを取り付け、これを利用して酸欠防止対策に活用することは過去に事例がない。一方でこの情報を本発明が対象とする超高層の木造建築物以外に適用する際には慎重な配慮は必要である。例えば、日に数千人が訪れる姫路城の天守閣の避難計画に同じ避難者確認情報を導入しても、その正確さと迅速さから判断して大きな効果は期待できない。従ってこの「避難者確認情報」の適用範囲は本発明に限定される。 In this way, for large buildings, it is possible to divide the building into multiple blocks, attach a number counter to the dedicated door to check only the people in that block, and use this to prevent oxygen deficiency. There are no cases in the past. On the other hand, careful consideration is required when applying this information to other than the skyscrapers targeted by the present invention. For example, even if the same evacuees confirmation information is introduced into the evacuation plan of the castle tower of Himeji Castle, which is visited by thousands of people a day, no great effect can be expected judging from its accuracy and speed. Therefore, the scope of application of this "evacuee confirmation information" is limited to the present invention.

超高層の木造建築物における酸欠事故の防止には既述した先の情報だけでは不十分である。ここに追加した二つの情報は共に本発明の事故防止には不可欠の情報であり、図ではNEWマークで表示されている。事故防止の立案に際してはこれ等の諸条件を「AND回路」で繋ぎ、安全対策の冗長化を図る。以上をまとめて[図4]に示す。 The above information is not enough to prevent oxygen deficiency accidents in skyscrapers. Both of the two pieces of information added here are indispensable information for accident prevention of the present invention, and are indicated by the NEW mark in the figure. When planning accident prevention, these conditions will be connected by an "AND circuit" to make safety measures redundant. The above are summarized in [Fig. 4].

図4には従来方式に加えて、この「避難者避確認情報」と「特定パスワード入力情報」を新たに追記したフローチャートが記載されている。「特定パスワード入力情報」とは酸欠防止に関し専門技能を有する者が予め指定された特定パスワードを自分で入力装置に入力しない限り、窒素元弁のロック機能を解除できない情報である。この情報は担当者の誤操作を防止する上で非常に重要な入力情報である。 In FIG. 4, in addition to the conventional method, a flowchart in which the “evacuee avoidance confirmation information” and the “specific password input information” are newly added is described. The "specific password input information" is information that the lock function of the nitrogen source valve cannot be released unless a person having specialized skills in preventing oxygen deficiency inputs a specific password specified in advance into the input device by himself / herself. This information is very important input information to prevent erroneous operation by the person in charge.

本発明に従えば、今後消防士の役割も大きく変化する。従来まで消防士の業務の主体は消火活動自体であった。今後はこの業務は消防士から窒素を取り扱う建屋側の管理者に移行する。この結果、消防士の役目は主として負傷者の救出や避難者の誘導等が主体となる。更に乾式防消火法の対象となる建屋の数が増えれば、将来的には各所の消防署に乾式防消火のため液化窒素ローリ車が常備される時代がやって来る。 According to the present invention, the role of firefighters will change significantly in the future. Until now, the main business of firefighters has been fire extinguishing activities themselves. From now on, this work will shift from firefighters to managers on the building side who handle nitrogen. As a result, the role of firefighters is mainly to rescue injured people and guide evacuees. Furthermore, if the number of buildings subject to the Dry Fire Extinguishing Law increases, the time will come when fire departments in various locations will be equipped with liquefied nitrogen lollipop vehicles for dry fire extinguishing.

更に上記の対策に加え、乾式防消火法の普及に当たってはソフト面でも対応策を確立しておく必要がある。具体例としては対象となる建屋は全て所轄官庁の許認可制とし、建屋には酸欠防止管理者の常駐を義務付けること、消火業務に関し消防署と建屋側との間で消火活動に係る役割を事前に明確に定めておくこと等である。 Furthermore, in addition to the above measures, it is necessary to establish countermeasures in terms of software in order to popularize the dry fire extinguishing method. As a specific example, all the target buildings will be licensed by the competent government agency, the building will be obliged to have an oxygen deficiency prevention manager resident, and the role of fire extinguishing activities between the fire department and the building side regarding fire extinguishing work will be done in advance. It should be clearly defined.

以上の酸欠防止対策は必ず実行されなければならない。この実践は本発明を実施するための最良かつ必須の形態である。この対策なしで本発明を実行することは非常に危険である。安全を確保するために導入した窒素が人命を奪う凶器となってはならない。 The above measures to prevent oxygen deficiency must be implemented. This practice is the best and essential form for practicing the present invention. It is very dangerous to carry out the present invention without this measure. Nitrogen introduced to ensure safety should not be a deadly weapon.

最後に本発明の弱点について記す。本発明は二つの大きな弱点を有す。第一の弱点は居住空間A部と移動空間B部との境界壁に関するものである。両空間はこの壁により建屋の内部を二分しているが、万一この壁が何らかの理由で破損し両空間が連通状態になるケースが発生する場合である。 Finally, the weak points of the present invention will be described. The present invention has two major weaknesses. The first weakness is related to the boundary wall between the living space A and the moving space B. Both spaces divide the interior of the building into two by this wall, but in the unlikely event that this wall is damaged for some reason and both spaces are in a state of communication.

この場合は本発明で記載した効果が全て機能しなくなる恐れがある。この種の災害が起きる確率は極めて低いが、万一の発生に備え、事前に対策を配慮しなければならない。この防護策の一例として空間Aに配置されるエレベータやトイレは その構造から判断して貴重な防護壁になるので、その構造と配置場所を工夫しこの安全対策に利用する。また両空間を繋ぐ専用口は二重化することが望ましい。。 In this case, all the effects described in the present invention may not function. The probability of this type of disaster occurring is extremely low, but measures must be taken in advance in case of an accident. As an example of this protective measure, elevators and toilets placed in space A are valuable protective walls judging from their structure, so devise the structure and placement location and use them for this safety measure. In addition, it is desirable to duplicate the dedicated port that connects both spaces. ..

第二の弱点は窒素の供給源に関するものである。現状で供給できる窒素は量自体に関しては問題はないが、輸送方法については未だ課題を残し、液化窒素ローリ車に依存せざるを得ない。しかしこの方法は如何にも脆弱である。 The second weakness concerns the source of nitrogen. There is no problem with the amount of nitrogen that can be supplied at present, but there are still issues regarding the transportation method, and we have no choice but to rely on liquefied nitrogen lorry vehicles. But this method is vulnerable.

しかし悲観する必要はない。近い将来、窒素の供給は別の手段に切り替わる可能性が強い。例えば水素時代の到来に併せて導管を用いた広域にわたる窒素インフラが構築できれば、この問題は一気に解決できる。導管を使って窒素の大量供給が可能になる時代は遅くても今世紀中には到来するので、上記の弱点は時の流れと共に解決可能な課題である。 But you don't have to be pessimistic. In the near future, the supply of nitrogen is likely to switch to another means. For example, if a wide-area nitrogen infrastructure using conduits can be constructed with the advent of the hydrogen era, this problem can be solved at once. The above weaknesses are a problem that can be solved over time, as the era of mass supply of nitrogen using conduits will arrive by the end of this century at the latest.

一方で時代は変わっても「超高層の木造建築物において、建屋内を居住空間と移動空間を区分してブロック化し、万一の火災時には本発明で提示された酸欠防止対策の元で窒素を用いる乾式防消火法を導入する」という本特許の特許性は未来永劫に不変である。 On the other hand, even if the times change, "In a super high-rise wooden building, the living space and the moving space are divided into blocks, and in the event of a fire, nitrogen is used under the oxygen deficiency prevention measures presented in the present invention. The patentability of this patent, which states, "Introduce a dry fire extinguishing method using a fire extinguishing method," will remain unchanged in the future.

20世紀、エネルギーの主役は炭化水素、全ての産業がその恩恵を享受した。その反面、副生する炭酸ガスが主因とされる地球の温顔化が世界的な環境問題を引き起こしつつある。この代替えエネルギーとして環境にクリーンな水素が注目されている。 In the 20th century, hydrocarbons were the protagonists of energy, and all industries enjoyed their benefits. On the other hand, the warming of the earth, which is mainly caused by carbon dioxide produced as a by-product, is causing global environmental problems. Environmentally clean hydrogen is attracting attention as an alternative energy source.

しかし、水素は着火し燃え易く、単独ガスとして一般市場で普及するには危険過ぎる。その危険防止策として、水素を単独ではなく水素・窒素の混合ガスとして供給する方法が提案されている。その際には水素と共に多量の窒素の安定供給が可能となり、窒素の新たな需要が喚起される。 However, hydrogen ignites and burns easily, and is too dangerous to spread in the general market as a single gas. As a risk prevention measure, a method of supplying hydrogen as a mixed gas of hydrogen and nitrogen instead of alone has been proposed. In that case, a stable supply of a large amount of nitrogen will be possible along with hydrogen, and new demand for nitrogen will be stimulated.

一方で一般社会への窒素の拙速な導入は酸欠事故という人間の生命に関わる深刻な問題に直結する。「建屋への窒素を吹き込めば、人間は窒息死する」誰しもが考えるこの重大な懸念が長い間、窒素を使う乾式防消火法の導入を妨げて来た最大の理由である。本発明ではこの懸念を払拭する解決策について詳説し、前節に記載したようにな各種の防護策を提言した。これ等を実行することにより、乾式防消火法導入に際し大きな壁であった「窒素導入に伴う酸欠事故をゼロへ」に向けての道標は明示されたと確信する。 On the other hand, the rapid introduction of nitrogen into the general public directly leads to the serious problem of oxygen deficiency, which is life-threatening for humans. "Blowing nitrogen into a building will suffocate humans." This serious concern, which everyone thinks, has long been the main reason that has hindered the introduction of nitrogen-based dry fire extinguishing methods. In the present invention, a solution for dispelling this concern is described in detail, and various protective measures are proposed as described in the previous section. By implementing these, I am convinced that the guidepost for "zero oxygen deficiency accidents due to the introduction of nitrogen", which was a big barrier when introducing the dry fire extinguishing method, was clarified.

21世紀は水素時代の到来と共に今まで脇役であった窒素がその主役となる可能性が高い。特に伝統的に紙や木を使う文化が定着している我が国において、窒素を不活性ガスとして活用する用途は非常に多い。その具体例の一つとして窒素を使う乾式防消火法が従来の湿式防消火法と併用され、広い範囲で活用される時代が到来するかも知れない。本発明がその変革の一端を担うことを期待する。 With the advent of the hydrogen era in the 21st century, nitrogen, which has been a supporting role until now, is likely to play a leading role. Especially in Japan, where the culture of using paper and wood is traditionally established, there are many uses for utilizing nitrogen as an inert gas. As one of the specific examples, the dry fire extinguishing method using nitrogen may be used in combination with the conventional wet fire extinguishing method, and the era may come when it is widely used. We hope that the present invention will play a part in that transformation.

窒素を用いた乾式防消火設備の全体の構成を示す概略図である。 It is a schematic diagram which shows the whole structure of the dry type fire extinguishing equipment using nitrogen. 窒素を液化窒素ローリ車から建屋に供給する方法示す概略図である。 It is a schematic diagram which shows the method of supplying nitrogen from a liquefied nitrogen lorry car to a building. 窒素が通気口を経て建屋内に流れる状態を示す概略図である。 It is a schematic diagram which shows the state which nitrogen flows into a building through a vent. 窒素による酸欠防止策の一例を示す流れ図である。 It is a flow chart which shows an example of the oxygen deficiency prevention measure by nitrogen.

1 窒素製造所
2 窒素供給所、消防署
3 液化窒素ローリ車
4 液化窒素連結口
5 気化器
6 窒素専用導管
7 通気口
8 防音型ダンパー
9 排気口
10 ベント管
11 移動空間部(=A部)
12 居住空間部(=B部)
13 ブロック空間
14 フロア天井
15 フロア床16
16 延焼防止床
17 ヘッダー
18 供給元弁
19 ラプチュアデスク
20 建屋 外周壁
21 建屋 内周壁
1 Nitrogen Factory 2 Nitrogen Supply Station, Fire Station 3 Liquefied Nitrogen Lori Vehicle 4 Liquefied Nitrogen Connection Port 5 Vaporizer 6 Nitrogen Dedicated Conduit 7 Vent 8 Vent 8 Soundproof Damper 9 Exhaust Port 10 Vent Pipe 11 Moving Space (= Part A)
12 Living space (= B)
13 block space 14 floor ceiling 15 floor floor 16
16 Fire spread prevention floor 17 Header 18 Supply source valve 19 Rapture desk 20 Building outer wall 21 Building inner peripheral wall

Claims (5)

建屋の高さ100m以上で、かつ建屋に使用する構造材で木造材の占める割合が容積比で50%以上を占める建築物に設置される防消火設備であって、建屋の外観が矩形、円筒形又は多角形の外周壁とその建屋の同心円状に同形の内周壁を有する建屋であって、外周壁と内周壁で囲まれた空間部に居住空間部を設け、更にこの居住空間部を水平方向に2階分以上の間隔で設置された床と垂直方向に設置された複数の仕切り壁を用いて複数のブロック空間に分割し、このブロック空間において火災が発生した際、建屋の地上階に配備した窒素の受け入口を通じて外部より窒素を受け入れ、予め建屋内に設けた専用配管を使用して火災が発生又は延焼の危険のあるブロック空間に向けて窒素を放出し、ブロック空間の酸素濃度を可燃物の燃焼に必要な酸素濃度以下に下げて火炎を消火させる機能を有する乾式防消火設備。 It is a fire extinguishing facility installed in a building where the height of the building is 100 m or more and the ratio of wooden materials in the structural material used for the building is 50% or more by volume. The appearance of the building is rectangular and cylindrical. A building that has a concentric inner peripheral wall of a shaped or polygonal outer peripheral wall and the building, and a living space is provided in the space surrounded by the outer peripheral wall and the inner peripheral wall, and the living space is further horizontal. It is divided into multiple block spaces using floors installed at intervals of two or more floors in the direction and multiple partition walls installed in the vertical direction, and when a fire breaks out in this block space, it is placed on the ground floor of the building. Nitrogen is received from the outside through the deployed nitrogen inlet, and the nitrogen is released toward the block space where there is a risk of fire or spread of fire using a dedicated pipe installed in the building in advance, and the oxygen concentration in the block space is reduced. A dry fire extinguishing facility that has the function of extinguishing a flame by lowering the oxygen concentration below the oxygen concentration required for burning combustible materials. 前記建屋の乾式防消火設備から窒素を放出するに際し、専用導管を使用して窒素をブロック空間の複数階に吹き込んで空気と窒素の混合ガスとし、更にこの混合ガスを防音型の通気口を経由して順次、上層階へ導き、最終的にブロック空間の最上階に設けたは排気口からベント管を経由して大気へ放出することを特徴とする請求項1に記載の乾式防消火設備。 When releasing nitrogen from the dry fire extinguishing equipment of the building, nitrogen is blown into multiple floors of the block space using a dedicated conduit to form a mixed gas of air and nitrogen, and this mixed gas is passed through a soundproof vent. The dry fire prevention and extinguishing equipment according to claim 1, wherein the gas is sequentially guided to the upper floors and finally discharged from the exhaust port to the air via a vent pipe. 前記建屋の中心に近い空間部に不燃性の内周壁と専用ドアを設置して、居住空間部と完全に分離させた空間部を設け、この空間部にエレベータ、エスカレータ及び階段等、移動用の設備を配置すること特徴とする請求項1に記載の乾式防消火設備。 A non-combustible inner wall and a dedicated door are installed in the space near the center of the building to provide a space completely separated from the living space, and this space is used for moving elevators, escalators, stairs, etc. The dry fire extinguishing equipment according to claim 1, wherein the equipment is arranged. 前記建屋の中心部に近い空間部の地上階及び地下階において、専用壁と専用ドアにより居住空間部から完全に分離され、かつ建屋の外部に繋がる専用の出入り口を有する連絡通路を配置することを特徴とする請求項1に記載の乾式防消火設備。 On the ground floor and basement floor of the space near the center of the building, a connecting passage that is completely separated from the living space by a dedicated wall and a dedicated door and has a dedicated doorway leading to the outside of the building should be placed. The dry fire extinguishing system according to claim 1. 前記建屋の防消火用に使用する窒素を建屋が存在する地域の窒素製造所又は窒素供給所から当該場所まで液化窒素ローリ車を用いて運搬し、酸欠事故の防止に関し専門技能を有する者の元で、建屋の地上に設置された液化窒素の受入口に連結し、更に気化器を経由して液化窒素を中低圧のガスとして、このガスを該当建屋の防消火のために供給することを特徴とする請求項1に記載の乾式防消火設備。 A person who has expertise in preventing oxygen deficiency accidents by transporting nitrogen used for fire prevention and extinguishing of the building from the nitrogen factory or nitrogen supply station in the area where the building is located to the location using a liquefied nitrogen lollipop vehicle. Originally, it was connected to the inlet of liquefied nitrogen installed on the ground of the building, and liquefied nitrogen was used as a medium-low pressure gas via a vaporizer, and this gas was supplied for fire prevention and extinguishing of the building. The dry fire extinguishing equipment according to claim 1, which is characterized.
JP2020105658A 2020-05-25 2020-05-25 Fire preventing and fire fighting equipment for super-high-rise wooden building Pending JP2021186616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020105658A JP2021186616A (en) 2020-05-25 2020-05-25 Fire preventing and fire fighting equipment for super-high-rise wooden building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020105658A JP2021186616A (en) 2020-05-25 2020-05-25 Fire preventing and fire fighting equipment for super-high-rise wooden building

Publications (1)

Publication Number Publication Date
JP2021186616A true JP2021186616A (en) 2021-12-13

Family

ID=78849862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020105658A Pending JP2021186616A (en) 2020-05-25 2020-05-25 Fire preventing and fire fighting equipment for super-high-rise wooden building

Country Status (1)

Country Link
JP (1) JP2021186616A (en)

Similar Documents

Publication Publication Date Title
Pietersen Analysis of the LPG-disaster in Mexico City
Norman Fire officer's handbook of tactics
KR20070106398A (en) The house in the room and the building in the room and workshop various of area life of a fire bic used extinction nozzle mounting pipe system a fire extinction on the prevention of rull, there of it's for the early extinguished a fire and the human saved life
ES2393859A1 (en) Method for assessing the risk associated with a building fire
Badger et al. Large-loss Fires in the United States 2014
CN213063077U (en) Fireproof, shockproof and antitheft multipurpose safety cabin
JP2021186616A (en) Fire preventing and fire fighting equipment for super-high-rise wooden building
Dunn Collapse of burning buildings: A guide to fireground safety
Lougheed et al. Positive pressure ventilation for high-rise buildings
CN114370194A (en) Fireproof and shockproof safety house
JP2021194502A (en) Fire extinguishing facility for super high-rise apartment
JP2022013478A (en) Fire protection facility for detached house building
Chow et al. A preliminary discussion on selecting active fire protection systems for atria in green or sustainable buildings
Menon et al. Handbook on Building Fire Codes
Gernay et al. Timber High Rise Buildings and Fire Safety
Koishegarin Fire safety rules in the autonomous organization of education" Nazarbayev University"
Chopade Fire Suppression Systems for High Rise Buildings in India
Chow Necessity of in-depth evaluation of long-throw sprinkler installation at tall atria storing high amounts of combustibles
District et al. Participating Agencies
Szeto An advanced study on automatic water-based suppression systems in several building applications
Vong Improving the effectiveness of fire and rescue of high-rise and super high-rise buildings in Hanoi city
Isiwele et al. Fire Safety in Buildings.
JP2003199840A (en) Method and system for fighting a fire
Sreram et al. Gren “fuelled” by fire: lessons for project management
Tursunovich METHODS OF FIRE PROTECTION IN A PARTICULAR FIRE ZONE