JP2021185339A - Boiler plant and power generating unit - Google Patents

Boiler plant and power generating unit Download PDF

Info

Publication number
JP2021185339A
JP2021185339A JP2021150603A JP2021150603A JP2021185339A JP 2021185339 A JP2021185339 A JP 2021185339A JP 2021150603 A JP2021150603 A JP 2021150603A JP 2021150603 A JP2021150603 A JP 2021150603A JP 2021185339 A JP2021185339 A JP 2021185339A
Authority
JP
Japan
Prior art keywords
differential pressure
coal
boiler
air preheater
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021150603A
Other languages
Japanese (ja)
Other versions
JP7095949B2 (en
Inventor
広幸 秋保
Hiroyuki Akiyasu
哲也 庄司
Tetsuya Shoji
裕三 白井
Yuzo Shirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2021150603A priority Critical patent/JP7095949B2/en
Publication of JP2021185339A publication Critical patent/JP2021185339A/en
Application granted granted Critical
Publication of JP7095949B2 publication Critical patent/JP7095949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Chimneys And Flues (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

To provide a boiler plant and a power generating unit capable of predicting the differential pressure of an air preheater at high precision.SOLUTION: A boiler plant 20 comprises a boiler 1 exhausting an exhaust gas by the burning of a coal-containing carbon-based fuel, a denitrification device 3 provided at the downstream side of the boiler 1 and denitrifying nitric oxide in an exhaust gas Gs0 in the presence of NH3 and an air preheater 5 provided at the downstream side of the denitrification device 3 and preheating the air for burning in the boiler 1 utilizing the waste heat of an exhaust gas Gs1, and comprises a differential pressure predicting system 30, based on the differential pressure between the upstream side and the downstream side of the air preheater 5 and a differential pressure change velocity in accordance with the kinds of coals, predicting the future differential pressure in the coals.SELECTED DRAWING: Figure 4

Description

本発明は、石炭を含む炭素系燃料を用いたボイラ設備、発電設備に関する。 The present invention relates to a boiler facility and a power generation facility using carbon-based fuel including coal.

従来、石炭を含む炭素系燃料を用いたボイラ設備は、燃料の燃焼により発電の駆動力となる蒸気を生成するボイラを具備して構成されている。また、この種のボイラ設備には、ボイラから排出される排ガス中の窒素酸化物(NO)をアンモニア(NH)の存在下で脱硝する脱硝装置と、脱硝装置を経た排ガスの余熱を利用してボイラでの燃焼用空気を予熱する空気予熱器と、が設けられている。 Conventionally, a boiler facility using a carbon-based fuel including coal is configured to include a boiler that generates steam that is a driving force for power generation by burning the fuel. In addition, for this type of boiler equipment, a denitration device that denitrifies nitrogen oxides (NO X ) in the exhaust gas discharged from the boiler in the presence of ammonia (NH 3 ) and residual heat of the exhaust gas that has passed through the denitration device are used. An air preheater for preheating the combustion air in the boiler is provided.

上記のボイラ設備を継続して稼働すると、燃料の燃焼により生じる燃焼灰が空気予熱器に固着していく場合がある。これを放置すると、空気予熱器の圧力損失(差圧)が限界値を超え、設備に過大な負荷がかかるおそれが高まる。このため、空気予熱器の適時の洗浄が必要となるが、設備の稼働停止を伴うので、必要以上のタイミングで頻繁に洗浄を行うのは現実的でない。 If the above boiler equipment is continuously operated, the combustion ash generated by the combustion of fuel may stick to the air preheater. If this is left unattended, the pressure loss (differential pressure) of the air preheater will exceed the limit value, and there is a high possibility that an excessive load will be applied to the equipment. For this reason, it is necessary to clean the air preheater in a timely manner, but it is not realistic to clean the air preheater more frequently than necessary because the operation of the equipment is stopped.

上記の脱硝装置の下流側に未反応のNHが漏洩した場合、排ガス中の硫黄化合物と反
応して酸性硫安(NHHSO:硫酸水素アンモニウム)等の硫安化合物を生成し、燃
焼灰が空気予熱器の低温部に固着する可能性が生じる。従って、空気予熱器の洗浄を適時に行えるよう、空気予熱器の差圧を高精度に予測することが望まれていた。
When unreacted NH 3 leaks to the downstream side of the above denitration device, it reacts with the sulfur compound in the exhaust gas to generate ammonium sulfate compound such as acidic ammonium sulfate (NH 4 HSO 4 : ammonium hydrogen sulfate), and combustion ash is generated. There is a possibility of sticking to the low temperature part of the air preheater. Therefore, it has been desired to predict the differential pressure of the air preheater with high accuracy so that the air preheater can be cleaned in a timely manner.

この点、特許文献1では、空気予熱器の差圧を測定した過去データを基に、漏洩したNH濃度等の補正も加え、差圧の上昇傾向を予測する方法が提案されている。 In this regard, Patent Document 1, based on historical data obtained by measuring the differential pressure of the air preheater, in addition the correction of the NH 3 concentration and the like leaked, a method of predicting a rising trend of the differential pressure is proposed.

特許2710985号公報Japanese Patent No. 2710985

しかしながら、特許文献1では、設備の稼働時間の経過に対する大まかなレベルでしか空気予熱器の差圧の上昇傾向を予測できなかった。このため、差圧の予測精度に改善の余地があり、空気予熱器の洗浄時期を適切に予測することが困難であった。 However, in Patent Document 1, the increasing tendency of the differential pressure of the air preheater can be predicted only at a rough level with respect to the passage of the operating time of the equipment. Therefore, there is room for improvement in the accuracy of differential pressure prediction, and it is difficult to properly predict the cleaning time of the air preheater.

本発明は上記に鑑みてなされたもので、空気予熱器の差圧を高精度に予測できるボイラ設備、発電設備を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a boiler facility and a power generation facility capable of predicting the differential pressure of an air preheater with high accuracy.

上記目的を達成するための請求項1に係る本発明のボイラ設備は、石炭を含む炭素系燃料の燃焼により排ガスが排出されるボイラと、前記ボイラの下流側に設けられ、NHの存在下で前記排ガス中の窒素酸化物を脱硝する脱硝装置と、前記脱硝装置の下流側に設けられ、前記排ガスの余熱を利用して前記ボイラでの燃焼用空気を予熱する空気予熱器と、を具備するボイラ設備であって、前記空気予熱器の上流側及び下流側の差圧と、石炭の種類に応じた差圧変化速度と、に基づき、差圧と時間との関係を導き出し、差圧と時間との関係に基づいて前記石炭での将来の差圧を予測する差圧予測システムを具備し、前記差圧予測システムは、開始条件検知手段により開始条件が検知された際に予測を開始し、前記開始条件検知手段では、設備稼働者から入力された、炭種の使用計画データに基づいて予測される差圧と、実際に取得される差圧とのずれが許容値を超えた時に、開始条件が検知されることを特徴とする。 The boiler equipment of the present invention according to claim 1 for achieving the above object is provided in a boiler in which exhaust gas is discharged by combustion of a carbon-based fuel including coal and on the downstream side of the boiler, and is provided in the presence of NH 3. A denitration device for denitrifying the nitrogen oxide in the exhaust gas and an air preheater provided on the downstream side of the denitration device to preheat the combustion air in the boiler by using the residual heat of the exhaust gas. Based on the differential pressure on the upstream and downstream sides of the air preheater and the rate of change in the differential pressure according to the type of coal, the relationship between the differential pressure and time is derived, and the differential pressure is used. A differential pressure prediction system for predicting a future differential pressure in the coal based on the relationship with time is provided, and the differential pressure prediction system starts prediction when a start condition is detected by the start condition detecting means. In the start condition detecting means, when the difference between the differential pressure predicted based on the coal type usage plan data input from the equipment operator and the differential pressure actually acquired exceeds the allowable value, It is characterized in that a start condition is detected.

かかる態様は、空気予熱器の差圧や石炭の種類(以下、単に「炭種」と称する場合がある)に応じて差圧変化速度が異なってくることを見出した点に基づいている。かかる態様によれば、空気予熱器の差圧や炭種に応じた差圧変化速度を予測でき、将来の差圧を高精度に予測できる。 This aspect is based on the finding that the differential pressure change rate differs depending on the differential pressure of the air preheater and the type of coal (hereinafter, may be simply referred to as "coal type"). According to this aspect, the differential pressure of the air preheater and the differential pressure change rate according to the coal type can be predicted, and the future differential pressure can be predicted with high accuracy.

差圧変化速度(単位時間当たりの差圧変化量)と、差圧と、の間には相関関係を見出すことができる。つまり、差圧変化速度と差圧との関係から、例えば積分処理により差圧と時間との関係を導き出せる。直接的に圧力値としての差圧を予測する従来の手法と比べ、差圧変化速度を求めた上でこれを積分処理することで、より細かに将来の差圧を予測しやすくなる。 A correlation can be found between the differential pressure change rate (the amount of differential pressure change per unit time) and the differential pressure. That is, from the relationship between the differential pressure change rate and the differential pressure, the relationship between the differential pressure and time can be derived, for example, by integral processing. Compared with the conventional method of directly predicting the differential pressure as a pressure value, by performing the integral processing after obtaining the differential pressure change rate, it becomes easier to predict the future differential pressure in more detail.

将来の差圧を高精度に予測できることで、空気予熱器の洗浄時期をより合理的なタイミングに見極めることができ、ボイラ設備の稼働時間を確保しやすくなる。また、将来の差圧を高精度に予測できることで、空気予熱器の差圧が限界値を超えて設備に過大な負荷がかかることを確実に防止できる。 By being able to predict the differential pressure in the future with high accuracy, it is possible to determine the cleaning time of the air preheater at a more rational timing, and it becomes easier to secure the operating time of the boiler equipment. In addition, by being able to predict the future differential pressure with high accuracy, it is possible to reliably prevent the differential pressure of the air preheater from exceeding the limit value and applying an excessive load to the equipment.

そして、請求項2に係る本発明のボイラ設備は、請求項1に記載のボイラ設備において、前記差圧予測システムは、前記差圧を導出する差圧導出手段と、前記差圧に対する前記差圧変化速度で表される関係を、前記石炭の種類に応じて予め把握する差圧変化速度把握手段と、前記差圧導出手段で導出される前記差圧を、前記差圧変化速度把握手段で把握された前記関係に当てはめて、前記石炭での将来の前記差圧を予測する差圧予測手段と、を具備することを特徴とする。これによれば、各手段による所定の体系をもって上記の差圧予測システムを構成でき、これを適正に機能させることで、将来の差圧を高精度に予測できる。 The boiler equipment of the present invention according to claim 2 is the boiler equipment according to claim 1, wherein the differential pressure prediction system has a differential pressure derivation means for deriving the differential pressure and the differential pressure with respect to the differential pressure. The differential pressure change rate grasping means for grasping the relationship represented by the change rate in advance according to the type of coal and the differential pressure derived by the differential pressure derivation means are grasped by the differential pressure change rate grasping means. It is characterized by comprising a differential pressure predicting means for predicting the future differential pressure in the coal, which is applied to the said relationship. According to this, the above differential pressure prediction system can be configured by a predetermined system by each means, and by making this function properly, future differential pressure can be predicted with high accuracy.

また、請求項3に係る本発明のボイラ設備は、請求項2に記載のボイラ設備において、前記差圧導出手段は、前記空気予熱器の上流側及び下流側に設けられた圧力センサの検出値に基づいて前記差圧を導出することを特徴とする。これによれば、差圧を正確に導出しやすくなる。これにより、将来の差圧を高精度に予測しやすくなる。 Further, in the boiler equipment of the present invention according to claim 3, in the boiler equipment according to claim 2, the differential pressure derivation means is a detection value of a pressure sensor provided on the upstream side and the downstream side of the air preheater. It is characterized in that the differential pressure is derived based on the above. This makes it easier to accurately derive the differential pressure. This makes it easier to predict the future differential pressure with high accuracy.

また、請求項4に係る本発明のボイラ設備は、請求項2もしくは請求項3に記載のボイラ設備において、前記差圧変化速度把握手段は、前記関係として、前記差圧に対する差圧上昇速度及び前記差圧に対する差圧下降速度を把握することを特徴とする。これによれば、稼働時間の経過により、空気予熱器の差圧が上昇傾向をとる石炭を使用する場合のみならず、空気予熱器の差圧が下降傾向をとる石炭を使用する場合であっても、将来の差圧を高精度に予測できる。 Further, the boiler equipment of the present invention according to claim 4 is the boiler equipment according to claim 2 or 3, wherein the differential pressure change rate grasping means has the same relationship as the differential pressure increase rate with respect to the differential pressure. It is characterized in that the differential pressure descending speed with respect to the differential pressure is grasped. According to this, not only when using coal in which the differential pressure of the air preheater tends to increase due to the passage of operating time, but also when using coal in which the differential pressure of the air preheater tends to decrease. However, future differential pressure can be predicted with high accuracy.

また、請求項5に係る本発明のボイラ設備は、請求項2から請求項4のいずれか一項に記載のボイラ設備において、前記差圧変化速度把握手段は、前記関係を所定の関数に基づいて把握することを特徴とする。これによれば、把握する関係の容量やシステムの構成が必要以上に煩雑化することを防止できる。把握する関係が複数ある場合、その複数の関係に応じて異なる関数を把握することも可能となる。よって、差圧予測システムをより適正に機能させ、将来の差圧を高精度に予測できる。また、上記の関係を所定の関数に基づいて把握することで、該関数に基づき差圧変化速度を積分処理することができる。 Further, the boiler equipment of the present invention according to claim 5 is the boiler equipment according to any one of claims 2 to 4, wherein the differential pressure change rate grasping means has the relationship based on a predetermined function. It is characterized by grasping. According to this, it is possible to prevent the capacity of the relationship to be grasped and the system configuration from becoming unnecessarily complicated. When there are a plurality of relationships to be grasped, it is possible to grasp different functions according to the plurality of relationships. Therefore, the differential pressure prediction system can be made to function more appropriately, and future differential pressure can be predicted with high accuracy. Further, by grasping the above relationship based on a predetermined function, the differential pressure change rate can be integrated based on the function.

また、請求項6に係る本発明のボイラ設備は、請求項5に記載のボイラ設備において、前記差圧変化速度把握手段は、前記差圧に対する前記差圧変化速度を、前記石炭の種類に応じて変化の割合が異なる所定の一次関数式とみなして把握することを特徴とする。これによれば、差圧に対する差圧変化速度を極めて正確に把握できる。よって、将来の差圧を極めて高精度に予測できる。 Further, in the boiler equipment of the present invention according to claim 6, in the boiler equipment according to claim 5, the differential pressure change rate grasping means sets the differential pressure change rate with respect to the differential pressure according to the type of coal. It is characterized in that it is regarded as a predetermined linear function expression having a different rate of change. According to this, the differential pressure change rate with respect to the differential pressure can be grasped extremely accurately. Therefore, the future differential pressure can be predicted with extremely high accuracy.

また、請求項7に係る本発明のボイラ設備は、請求項5もしくは請求項6に記載のボイラ設備において、前記差圧変化速度把握手段は、前記差圧に対する前記差圧変化速度を、前記石炭の種類に応じて変化の割合が異なる所定の二次関数式とみなして把握することを特徴とする。これによれば、差圧に対する差圧変化速度を極めて正確に把握できる。よって、将来の差圧を極めて高精度に予測できる。 Further, the boiler equipment of the present invention according to claim 7 is the boiler equipment according to claim 5, wherein the differential pressure change rate grasping means sets the differential pressure change rate with respect to the differential pressure to the coal. It is characterized in that it is regarded as a predetermined quadratic function expression in which the rate of change differs depending on the type of. According to this, the differential pressure change rate with respect to the differential pressure can be grasped extremely accurately. Therefore, the future differential pressure can be predicted with extremely high accuracy.

また、請求項8に係る本発明のボイラ設備は、請求項1から請求項7のいずれか一項に記載のボイラ設備において、前記石炭の種類を変更したとき、前記差圧予測システムは変更後の前記石炭での将来の差圧予測を行うことを特徴とする。これによれば、炭種の変更後すぐに、将来の差圧を高精度に予測できる。 Further, in the boiler equipment of the present invention according to claim 8, when the type of coal is changed in the boiler equipment according to any one of claims 1 to 7, the differential pressure prediction system is changed. It is characterized in that the future differential pressure of the coal is predicted. According to this, it is possible to predict the future differential pressure with high accuracy immediately after changing the coal type.

上記目的を達成するための請求項9に係る本発明の発電設備は、請求項1から請求項8の何れか一項に記載のボイラ設備と、前記ボイラで発生した蒸気が導入されて駆動力を得る蒸気タービンと、前記蒸気タービンの駆動により電力を得る発電機と、を具備することを特徴とする。かかる態様によれば、空気予熱器の差圧や炭種に応じた差圧変化速度を予測でき、将来の差圧を高精度に予測できる。 In the power generation facility of the present invention according to claim 9 for achieving the above object, the boiler facility according to any one of claims 1 to 8 and the steam generated by the boiler are introduced into the driving force. It is characterized by comprising a steam turbine for obtaining electricity and a generator for obtaining electric power by driving the steam turbine. According to this aspect, the differential pressure of the air preheater and the differential pressure change rate according to the coal type can be predicted, and the future differential pressure can be predicted with high accuracy.

上記の課題を解決する本発明の更に他の態様は、石炭を含む炭素系燃料を燃焼させるボイラの下流側に設けられ、前記ボイラから排出される排ガスの余熱を利用して前記ボイラでの燃焼用空気を予熱する空気予熱器を具備し、前記空気予熱器の上流側及び下流側の差圧と、石炭の種類に応じた差圧変化速度と、に基づき、差圧と時間との関係を(積分処理により)導き出し、差圧と時間との関係に基づいて前記石炭での将来の差圧を予測することを特徴とする空気予熱設備にある。かかる態様によれば、空気予熱器の差圧や炭種に応じた差圧変化速度を予測でき、将来の差圧を高精度に予測できる。 Yet another aspect of the present invention that solves the above-mentioned problems is provided on the downstream side of a boiler that burns a carbon-based fuel containing coal, and combustion in the boiler is performed by utilizing the residual heat of the exhaust gas discharged from the boiler. It is equipped with an air preheater that preheats the air, and the relationship between the differential pressure and time is determined based on the differential pressure on the upstream and downstream sides of the air preheater and the differential pressure change rate according to the type of coal. It is in an air preheating facility characterized in that it is derived (by integral processing) and predicts the future differential pressure in the coal based on the relationship between the differential pressure and time. According to this aspect, the differential pressure of the air preheater and the differential pressure change rate according to the coal type can be predicted, and the future differential pressure can be predicted with high accuracy.

上記の課題を解決する本発明の更に他の態様は、石炭を含む炭素系燃料を燃焼させるボイラの下流側に設けられ、前記ボイラから排出される排ガスの余熱を利用して前記ボイラでの燃焼用空気を予熱する空気予熱器の差圧予測方法であって、前記空気予熱器の上流側及び下流側の差圧と、前記石炭の種類に応じた差圧変化速度と、に基づき、差圧と時間との関係を(積分処理により)導き出し、差圧と時間との関係に基づいて前記石炭での将来の差圧を予測することを特徴とする空気予熱器の差圧予測方法にある。かかる態様によれば、空気予熱器の差圧や炭種に応じた差圧変化速度を予測でき、将来の差圧を高精度に予測できる。 Yet another aspect of the present invention that solves the above-mentioned problems is provided on the downstream side of a boiler that burns a carbon-based fuel containing coal, and combustion in the boiler is performed by utilizing the residual heat of the exhaust gas discharged from the boiler. It is a method of predicting the differential pressure of an air preheater that preheats the air, and is based on the differential pressure on the upstream side and the downstream side of the air preheater and the differential pressure change rate according to the type of coal. The method for predicting the differential pressure of an air preheater is characterized in that the relationship between and time is derived (by integral processing) and the future differential pressure in the coal is predicted based on the relationship between the differential pressure and time. According to this aspect, the differential pressure of the air preheater and the differential pressure change rate according to the coal type can be predicted, and the future differential pressure can be predicted with high accuracy.

本発明のボイラ設備、発電設備によれば、空気予熱器の差圧や炭種に応じた差圧変化速度を予測でき、将来の差圧を高精度に予測できる。 According to the boiler equipment and the power generation equipment of the present invention, the differential pressure of the air preheater and the differential pressure change rate according to the coal type can be predicted, and the future differential pressure can be predicted with high accuracy.

実施形態1に係るボイラ設備の構成例を示す概略図。The schematic diagram which shows the structural example of the boiler equipment which concerns on Embodiment 1. 実施形態1に係る空気予熱設備の構成例を示す概略図。The schematic diagram which shows the structural example of the air preheating equipment which concerns on Embodiment 1. 実施形態1に係る空気予熱設備の差圧の推移の一例を説明する概念図。The conceptual diagram explaining an example of the transition of the differential pressure of the air preheating equipment which concerns on Embodiment 1. 実施形態1に係る差圧予測システムの構成例を示す図。The figure which shows the structural example of the differential pressure prediction system which concerns on Embodiment 1. 実施形態1における差圧と差圧変化(上昇)速度の関係の一例を示す図。The figure which shows an example of the relationship between the differential pressure and the differential pressure change (rising) speed in the first embodiment. 実施形態1における差圧と差圧変化(下降)速度の関係の一例を示す図。The figure which shows an example of the relationship between the differential pressure and the differential pressure change (descending) speed in the first embodiment. 本実施形態に係る差圧予測方法の一例を説明するフロー図。The flow diagram explaining an example of the differential pressure prediction method which concerns on this embodiment. 実施形態2に係る差圧予測方法の一例を説明するタイムチャート図。The time chart diagram explaining an example of the differential pressure prediction method which concerns on Embodiment 2. 実施形態3に係る複合発電設備の概略図。The schematic diagram of the complex power generation facility which concerns on Embodiment 3. 差圧と差圧変化(下降)速度の関係の他の例を示す図。The figure which shows the other example of the relationship between the differential pressure and the differential pressure change (descending) speed.

以下、図面を参照して本発明の実施形態について説明する。ただし、以下の説明は、本発明の一態様であり、本発明の範囲内で任意に変更可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the following description is one aspect of the present invention and can be arbitrarily changed within the scope of the present invention.

(実施形態1)
図1は、本実施形態に係るボイラ設備の構成例を示す概略図である。図中、排ガスや空気の流れが実線矢印により表されている。
(Embodiment 1)
FIG. 1 is a schematic view showing a configuration example of a boiler facility according to the present embodiment. In the figure, the flow of exhaust gas and air is represented by solid arrows.

ボイラ設備20は、ボイラ1と、ボイラ1に排気通路2で接続された脱硝装置3と、脱硝装置3に排気通路4で接続された空気予熱器5と、空気予熱器5の上流側及び下流側の差圧(以下、単に「差圧」と称する場合がある)を予測する差圧予測システム30と、を具備して構成されている。 The boiler equipment 20 includes a boiler 1, a denitration device 3 connected to the boiler 1 by an exhaust passage 2, an air preheater 5 connected to the denitration device 3 by an exhaust passage 4, and upstream and downstream of the air preheater 5. It is configured to include a differential pressure prediction system 30 for predicting the differential pressure on the side (hereinafter, may be simply referred to as "differential pressure").

ボイラ1は、石炭を含む炭素系燃料(図中、Fuel)を燃焼させて発電の駆動力となる蒸気を生成するように構成されている。炭素系燃料は、炭素を含む燃料であり、木材やバイオマス等の炭化水素系材料、また、天然ガスや都市ガス等の炭化水素系ガスなども含まれる。 The boiler 1 is configured to burn a carbon-based fuel containing coal (Fuel in the figure) to generate steam that is a driving force for power generation. The carbon-based fuel is a fuel containing carbon, and includes hydrocarbon-based materials such as wood and biomass, and hydrocarbon-based gas such as natural gas and city gas.

脱硝装置3は、ボイラ1から排出された排ガスGs0中のNOを、NHの存在下で脱硝するように構成されている。NHは、排気通路2に設けられたNH供給部6から供給され、アンモニア還元法(選択触媒還元法)により脱硝装置3でNOが水と窒素に分解される。NHの供給量は、図示しないNOセンサ信号等に基づき、排ガスGs0中に含まれるNOを還元できるようにフィードバック制御されている。 Denitrification apparatus 3, the NO X in the exhaust gas Gs0 discharged from the boiler 1, is configured to denitrification in the presence of NH 3. NH 3 is supplied from the NH 3 supply unit 6 provided in the exhaust passage 2, and NO X is decomposed into water and nitrogen by the denitration device 3 by the ammonia reduction method (selective catalytic reduction method). The supply amount of NH 3 is feedback-controlled so that NO X contained in the exhaust gas Gs 0 can be reduced based on a NO X sensor signal (not shown) or the like.

空気予熱器5は、脱硝装置3を経た排ガスGs1の余熱を利用してボイラ1での燃焼用空気を予熱するように構成されている。空気予熱器5には、押込通風機7から押し込まれた空気Air1や、一次通風機8から押し込まれた空気Air1´が供給され、これらの空気と排ガスGs1との熱交換が行われる。 The air preheater 5 is configured to preheat the combustion air in the boiler 1 by utilizing the residual heat of the exhaust gas Gs1 that has passed through the denitration device 3. Air Air1 pushed in from the forced ventilator 7 and air Air1' pushed in from the primary ventilator 8 are supplied to the air preheater 5, and heat exchange between these air and the exhaust gas Gs1 is performed.

ボイラ設備20では、炭素系燃料が粉砕機9により粉砕される。粉砕された炭素系燃料は、ボイラ1内に臨むように配されたバーナー群10を通じて、空気とともにボイラ1内に供給される。炭素系燃料の燃焼によって生じた高温の排ガスGs0が、ボイラ1から排出され、排気通路2に導かれる。 In the boiler equipment 20, the carbon-based fuel is crushed by the crusher 9. The crushed carbon-based fuel is supplied into the boiler 1 together with air through the burner group 10 arranged so as to face the inside of the boiler 1. The high-temperature exhaust gas Gs0 generated by the combustion of the carbon-based fuel is discharged from the boiler 1 and guided to the exhaust passage 2.

排気通路2では、NH供給部6から排ガスGs0中にNHガスが供給され、脱硝装置3で排ガスGs0中のNOが水と窒素に分解される。脱硝装置3を経た排ガスGs1は、高温のまま排気通路4に導かれ、空気予熱器5に流入する。 In the exhaust passage 2, NH 3 gas is supplied into the exhaust gas Gs 0 from the NH 3 supply unit 6, and NO X in the exhaust gas Gs 0 is decomposed into water and nitrogen by the denitration device 3. The exhaust gas Gs1 that has passed through the denitration device 3 is guided to the exhaust passage 4 at a high temperature and flows into the air preheater 5.

空気予熱器5では、一方面から流入する排ガスGs1と、排ガスGs1に対抗して他方面から流入する空気と、の熱交換が行われる。押込通風機7から押し込まれた空気Air1は、空気予熱器5で予熱された上で、バーナー群10を通じてボイラ1内に供給される(ボイラ1での燃焼用空気Air2)。一次通風機8から押し込まれた空気Air1´は、一部は空気予熱器5で予熱された上で(空気Air2´)、残りはそのまま、粉砕機9に供給される。 In the air preheater 5, heat exchange is performed between the exhaust gas Gs1 flowing in from one side and the air flowing in from the other side in opposition to the exhaust gas Gs1. The air Air 1 pushed in from the push-in ventilator 7 is preheated by the air preheater 5 and then supplied into the boiler 1 through the burner group 10 (combustion air Air 2 in the boiler 1). A part of the air Air1'pushed from the primary ventilator 8 is preheated by the air preheater 5 (air Air2'), and the rest is supplied to the crusher 9 as it is.

空気予熱器5を経た排ガスGs2は、該空気予熱器5の下流側に接続された排気通路11に導かれる。排ガスGs2は、排気通路11の途中に配された誘引通風機12により引き込まれ、図示しない除塵装置や脱硫装置等で規定のレベル未満まで浄化された上で、最終的に煙突13から大気中に放出される。なお、誘引通風機12は、図示しない除塵装置や脱硫装置等の途中に配されてもよく、除塵装置や脱硫装置等の下流側に配されてもよい。 The exhaust gas Gs2 that has passed through the air preheater 5 is guided to the exhaust passage 11 connected to the downstream side of the air preheater 5. Exhaust gas Gs2 is drawn in by an attracting ventilator 12 arranged in the middle of the exhaust passage 11, purified to a level below a specified level by a dust remover, a desulfurization device, etc. (not shown), and finally from the chimney 13 into the atmosphere. It is released. The induction ventilator 12 may be arranged in the middle of a dust removing device, a desulfurizing device, or the like (not shown), or may be arranged on the downstream side of the dust removing device, the desulfurizing device, or the like.

ここで、ボイラ設備20は、空気予熱器5の上流側(排気上流側、すなわち排気通路4)に設けられた上流側圧力センサ14と、空気予熱器5の下流側(排気下流側、すなわち排気通路11)に設けられた下流側圧力センサ15と、を具備して構成されている。 Here, the boiler equipment 20 includes an upstream pressure sensor 14 provided on the upstream side (exhaust upstream side, that is, the exhaust passage 4) of the air preheater 5 and a downstream side (exhaust downstream side, that is, exhaust) of the air preheater 5. It is configured to include a downstream pressure sensor 15 provided in the passage 11).

上流側圧力センサ14からは、排ガスGs1の圧力に応じたセンサ信号Sn1が出力される。下流側圧力センサ15からは、排ガスGs2の圧力に応じたセンサ信号Sn2が出力される。センサ信号Sn1及びセンサ信号Sn2は、差圧予測システム30に送信される。 From the upstream pressure sensor 14, a sensor signal Sn1 corresponding to the pressure of the exhaust gas Gs1 is output. From the downstream pressure sensor 15, a sensor signal Sn2 corresponding to the pressure of the exhaust gas Gs2 is output. The sensor signal Sn1 and the sensor signal Sn2 are transmitted to the differential pressure prediction system 30.

上流側圧力センサ14や下流側圧力センサ15の配置場所は、上記の例に制限されず、排ガスGs1や排ガスGs2の圧力を正しく検知できる場所であればよい。 The location of the upstream pressure sensor 14 and the downstream pressure sensor 15 is not limited to the above example, and may be any location as long as the pressure of the exhaust gas Gs1 and the exhaust gas Gs2 can be correctly detected.

空気予熱器5に関連する構成について、図2(a)〜(b)を参照して更に説明する。図2(a)は、本実施形態に係る空気予熱設備の構成例を示す概略図である。図2(b)は、空気予熱器のローターを軸方向に切断した一部断面が表されている。図中、空気予熱器5と、差圧予測システム30と、を具備して空気予熱設備40が構成されている。図2(a)では、図1の例と同様に、排ガスや空気の流れが実線矢印により表されている。 The configuration related to the air preheater 5 will be further described with reference to FIGS. 2 (a) to 2 (b). FIG. 2A is a schematic diagram showing a configuration example of the air preheating equipment according to the present embodiment. FIG. 2B shows a partial cross section of the rotor of the air preheater cut in the axial direction. In the figure, the air preheating equipment 40 is configured with the air preheating device 5 and the differential pressure prediction system 30. In FIG. 2A, the flow of exhaust gas and air is represented by solid arrows, as in the example of FIG.

空気予熱器5は、円筒形状のローター5aと、ローター5aの各放射状の隔壁内に充填された伝熱エレメント5bと、ローター5aを軸支する回転軸5cと、を具備して構成されている。ローター5aは、例えば、伝熱エレメント5bが所定の密度で充填された第1密度部5d、第2密度部5e及び第3密度部5fが、回転軸5cに沿って順番に設けられた三段構造を有している。 The air preheater 5 includes a cylindrical rotor 5a, a heat transfer element 5b filled in each radial partition wall of the rotor 5a, and a rotating shaft 5c that pivotally supports the rotor 5a. .. In the rotor 5a, for example, the first density portion 5d, the second density portion 5e, and the third density portion 5f in which the heat transfer element 5b is filled with a predetermined density are sequentially provided along the rotation shaft 5c in three stages. It has a structure.

第3密度部5fは、第1密度部5d及び第2密度部5eよりも、伝熱エレメント5bの充填密度が小さくされている。第1密度部5d及び第2密度部5eの伝熱エレメント5bの充填密度は同一とされているが、異ならせても構わない。ローター5aは、図示しないケーシングで囲われていて、排ガスや空気の流束に沿うように回転軸5cが配され、図示しないモーター等の駆動力により、ローター5aが回転軸5cを中心に回転可能となっている。 The third density portion 5f has a smaller filling density of the heat transfer element 5b than the first density portion 5d and the second density portion 5e. The filling densities of the heat transfer elements 5b of the first density portion 5d and the second density portion 5e are the same, but may be different. The rotor 5a is surrounded by a casing (not shown), a rotating shaft 5c is arranged along the flux of exhaust gas and air, and the rotor 5a can rotate about the rotating shaft 5c by a driving force of a motor (not shown) or the like. It has become.

ローター5aの一方面(第1密度部5d側)からは排ガスGs1が流入し、排ガスGs1に対抗するローター5aの他方面(第3密度部5f側)からは空気Air1及び空気Air1´が流入する。回転軸5cを中心にローター5aを回転させながら、排ガスGs1により加熱された伝熱エレメント5bの熱を利用して、空気Air1及び空気Air1´を予熱させる。ローター5aのなかでも、高温の排ガスGs1が流入する第1密度部5d側は高温となり(高温部)、空気Air1及び空気Air1´が流入する第3密度部5f側は、第1密度部5dや第2密度部5eと比べて低温となる(低温部)。 Exhaust gas Gs1 flows in from one surface of the rotor 5a (first density portion 5d side), and air Air1 and air Air1'inflow from the other surface (third density portion 5f side) of the rotor 5a that opposes the exhaust gas Gs1. .. While rotating the rotor 5a around the rotating shaft 5c, the heat of the heat transfer element 5b heated by the exhaust gas Gs1 is used to preheat the air Air1 and the air Air1'. Among the rotors 5a, the first density portion 5d side into which the high temperature exhaust gas Gs1 flows becomes high temperature (high temperature portion), and the third density portion 5f side into which the air Air1 and the air Air1'inflow becomes the first density portion 5d and the like. The temperature is lower than that of the second density portion 5e (low temperature portion).

上記の通り、上流側圧力センサ14からは、空気予熱器5に流入する排ガスGs1の圧力に応じたセンサ信号Sn1が得られる。下流側圧力センサ15からは、空気予熱器5から流出する排ガスGs2の圧力に応じたセンサ信号Sn2が得られる。 As described above, from the upstream pressure sensor 14, a sensor signal Sn1 corresponding to the pressure of the exhaust gas Gs1 flowing into the air preheater 5 can be obtained. From the downstream pressure sensor 15, a sensor signal Sn2 corresponding to the pressure of the exhaust gas Gs2 flowing out from the air preheater 5 can be obtained.

なお、上記のような空気予熱器5の構造をはじめ、空気予熱器5に流入し又は空気予熱器5から流出する排ガスや空気に関わる経路構成、各種の通風機に関わる配置等、上記の例に限定されない。 In addition, the above-mentioned examples include the structure of the air preheater 5 as described above, the path configuration related to the exhaust gas and the air flowing into the air preheater 5 or flowing out from the air preheater 5, the arrangement related to various ventilators, and the like. Not limited to.

図3は、上記の空気予熱設備40において、稼働時間tの経過による空気予熱器5の差圧ΔPの推移の一例を説明する概念図である。 FIG. 3 is a conceptual diagram illustrating an example of a transition of the differential pressure ΔP of the air preheater 5 with the lapse of the operating time t in the above air preheating equipment 40.

空気予熱設備40を継続して稼働すると、燃料の燃焼により生じる燃焼灰が空気予熱器5に固着していく場合がある。この場合、稼働時間tの経過とともに、空気予熱器の差圧ΔPが上昇する。 When the air preheating equipment 40 is continuously operated, the combustion ash generated by the combustion of the fuel may stick to the air preheater 5. In this case, the differential pressure ΔP of the air preheater increases with the lapse of the operating time t.

同じ石炭を使用していても、稼働時間tの経過とともに、単位時間当たりの差圧上昇量(差圧上昇速度)が徐々に大きくなる。時点t1(差圧ΔP1)での接線の傾きm1よりも、時点t2(差圧ΔP2)での接線の傾きm2が大きい図3においては、時点t2(差圧ΔP2)での差圧変化速度のほうが大きいことが分かる。すなわち、差圧変化速度と、差圧と、の間に相関関係を見出すことができる。 Even if the same coal is used, the amount of differential pressure increase (differential pressure increase rate) per unit time gradually increases with the passage of the operating time t. In FIG. 3, the slope of the tangent line m2 at the time point t2 (differential pressure ΔP2) is larger than the slope m1 of the tangent line at the time point t1 (differential pressure ΔP1). You can see that it is larger. That is, a correlation can be found between the differential pressure change rate and the differential pressure.

空気予熱器5の差圧に加え、炭種に応じても差圧上昇速度が異なってくる。仮に時点t1で炭種を変更したとき、変更後の石炭に応じて、将来の差圧が大きく上昇するのか、小さい上昇に留まるのか、が異なる。 In addition to the differential pressure of the air preheater 5, the differential pressure increase rate differs depending on the coal type. If the coal type is changed at time point t1, whether the future differential pressure will increase significantly or remain small will differ depending on the changed coal.

本実施形態は、空気予熱器の差圧や炭種に応じて差圧変化速度が異なってくることを見出した点に基づいている。空気予熱設備40やこれを具備して構成されるボイラ設備20によれば、空気予熱器5の差圧や炭種に応じて、将来の差圧が大きく上昇するのか、小さい上昇に留まるのか、まで高精度に予測できる。 This embodiment is based on the finding that the differential pressure change rate differs depending on the differential pressure of the air preheater and the coal type. According to the air preheating equipment 40 and the boiler equipment 20 provided with the air preheating equipment 40, whether the future differential pressure increases significantly or stays at a small increase depending on the differential pressure of the air preheater 5 and the coal type. Can be predicted with high accuracy.

空気予熱器5の差圧が上昇傾向をとる原因としては、例えば、脱硝装置3の下流側へのNHの漏洩が挙げられる。脱硝装置3の下流側に漏洩したNHが、排ガス中の硫黄化合物と反応して酸性硫安(NHHSO:硫酸水素アンモニウム)等の硫安化合物を生成し、空気予熱器5の低温部に燃焼灰が固着するためと考えられている。 The reason why the differential pressure of the air preheater 5 tends to increase is, for example, the leakage of NH 3 to the downstream side of the denitration device 3. NH 3 leaked to the downstream side of the denitration device 3 reacts with the sulfur compound in the exhaust gas to generate ammonium sulfate compound such as acidic ammonium sulfate (NH 4 HSO 4 : ammonium hydrogensulfate), and in the low temperature part of the air preheater 5. It is believed that the combustion ash sticks.

一方、本実施形態は、炭種によっては、稼働時間の経過とともに空気予熱器5の差圧が下降傾向をとることにも着目している。石炭に含まれるカルシウム分が、硫安化合物の生成源となる硫黄分を含む硫酸と結合し、硫酸カルシウム(CaSO)を生成する場合がある。硫酸カルシウムが生成される分、硫安化合物の生成源となる硫黄分が消費されるので、硫安化合物の生成が抑制される。 On the other hand, the present embodiment also pays attention to the fact that the differential pressure of the air preheater 5 tends to decrease with the lapse of the operating time depending on the coal type. Calcium contained in coal may combine with sulfuric acid containing sulfur, which is a source of ammonium sulfate compounds, to produce calcium sulfate (CaSO 4 ). Since the amount of calcium sulfate produced consumes the sulfur content that is the source of the ammonium sulfate compound, the production of the ammonium sulfate compound is suppressed.

硫安化合物がすでに生成されていたとしても、カルシウム分と反応して硫安化合物の分解が進み、硫酸カルシウムが生成される場合がある。従って、硫酸カルシウムは硫安化合物に比べて空気予熱器5に固着しにくい性状を有しているため、その生成量によっては差圧が下降する場合がある。 Even if the ammonium sulfate compound has already been produced, it may react with the calcium content to promote the decomposition of the ammonium sulfate compound, and calcium sulfate may be produced. Therefore, since calcium sulfate has a property of being less likely to adhere to the air preheater 5 than the ammonium sulfate compound, the differential pressure may decrease depending on the amount produced.

つまり、本実施形態は、稼働時間tの経過とともに空気予熱器5の差圧が上昇傾向をとる石炭のみならず、空気予熱器5の差圧が下降傾向をとる石炭にも対応している。空気予熱設備40やこれを具備して構成されるボイラ設備20によれば、空気予熱器5の差圧や炭種に応じて、将来の差圧が大きく下降するのか、小さい下降に留まるのか、まで高精度に予測できる。 That is, this embodiment corresponds not only to coal in which the differential pressure of the air preheater 5 tends to increase with the lapse of the operating time t, but also to coal in which the differential pressure of the air preheater 5 tends to decrease. According to the air preheating equipment 40 and the boiler equipment 20 provided with the air preheating equipment 40, whether the future differential pressure drops significantly or stays small depending on the differential pressure of the air preheater 5 and the coal type. Can be predicted with high accuracy.

図4は、本実施形態に係る差圧予測システム30の構成例を示す図である。差圧予測システム30は、公知の構成からなるマイクロコンピュータを含んでおり、各手段はマイクロコンピュータによるプログラムの実行により実現される。差圧予測システム30には、図示しない記憶手段等が備えられており、各手段での演算結果や検出結果が記憶される。 FIG. 4 is a diagram showing a configuration example of the differential pressure prediction system 30 according to the present embodiment. The differential pressure prediction system 30 includes a microcomputer having a known configuration, and each means is realized by executing a program by the microcomputer. The differential pressure prediction system 30 is provided with storage means and the like (not shown), and the calculation results and detection results of each means are stored.

差圧予測システム30は、炭種判別手段31と、開始条件検知手段32と、差圧導出手段33と、差圧変化速度把握手段34と、差圧予測手段35と、を具備するように構成されている。図1等で示した構成を適宜参照しつつ各手段を説明する。 The differential pressure prediction system 30 is configured to include a coal type discriminating means 31, a start condition detecting means 32, a differential pressure deriving means 33, a differential pressure change speed grasping means 34, and a differential pressure predicting means 35. Has been done. Each means will be described with reference to the configuration shown in FIG. 1 and the like as appropriate.

炭種判別手段31は、ボイラ設備20の設備稼働者から入力される炭種に関する情報に従って、炭種を判別するように構成されている。可能な場合には、炭素系燃料の性状、ボイラ1での燃料効率や燃焼温度等に基づいて、使用されている炭種を自動的に判別するようにしてもよい。また、炭種の使用計画が既に定まっている場合には、設備稼働者から入力される炭種の使用計画データ(例えば、ある開始時点を基準に、将来的な期間は石炭a、その次の期間は石炭b、更にその次の期間は石炭c・・、等の情報が得られるデータ)に基づき、炭種を判別するようにしてもよい。 The coal type discriminating means 31 is configured to discriminate the coal type according to the information regarding the coal type input from the equipment operator of the boiler equipment 20. If possible, the type of coal used may be automatically determined based on the properties of the carbon-based fuel, the fuel efficiency in the boiler 1, the combustion temperature, and the like. If the coal type usage plan has already been decided, the coal type usage plan data input from the facility operator (for example, based on a certain start point, the future period is coal a, and then the next. The coal type may be discriminated based on the data in which information such as coal b is obtained for the period and coal c ... for the next period).

開始条件検知手段32は、差圧の予測を実行するための開始条件が満たされたことを検知するように構成されている。ここでは、開始条件として、ボイラ設備20の設備稼働者から入力される差圧予測指示信号を受け取ったことが設定されている。これによれば、設備稼働者が希望するタイミングで、差圧の予測が実行される。 The start condition detecting means 32 is configured to detect that the start condition for executing the prediction of the differential pressure is satisfied. Here, as a start condition, it is set that the differential pressure prediction instruction signal input from the equipment operator of the boiler equipment 20 is received. According to this, the differential pressure prediction is executed at the timing desired by the equipment operator.

また、開始条件検知手段32は、開始条件として、前回の石炭と異なる石炭を使用したことが炭種判別手段31にて判別されたことが設定されている。すなわち、開始条件として、炭種を変更したことが設定されている。これによれば、設備稼働者からの上記の差圧予測指示信号を受け取らない場合でも、炭種の変更後すぐに、差圧の予測が実行される。 Further, the start condition detecting means 32 is set as a start condition that the coal type determining means 31 determines that coal different from the previous coal was used. That is, it is set that the coal type is changed as a start condition. According to this, even if the above differential pressure prediction instruction signal from the equipment operator is not received, the differential pressure prediction is executed immediately after the coal type is changed.

開始条件は様々に設定可能である。所定の稼働時間ごとや差圧変化量ごとであってもよい。これらによれば、同じ石炭を使用し続ける場合や、設備稼働者からの差圧予測の指示がない場合でも、差圧の予測が自動的に適時に実行されるようになる。上記の開始条件を組み合わせてもよい。 Various start conditions can be set. It may be for each predetermined operating time or for each differential pressure change amount. According to these, even if the same coal is continuously used or if there is no instruction from the equipment operator to predict the differential pressure, the differential pressure prediction is automatically executed in a timely manner. The above start conditions may be combined.

開始条件の好ましい一例としては、設備稼働者から炭種の使用計画データが入力されている場合、この使用計画データに基づいて予測される差圧と、実際に取得される差圧(実差圧)と、を利用した条件が挙げられる。例えば、炭種の使用計画データによれば、ある開始時点を基準に、将来的な期間Taの炭種、その次の期間Tbの炭種、その次の期間Tcの炭種・・がシステム上で取得できる。そして、本実施形態によれば、その将来的な期間ごとに、炭種に応じた差圧の推移を予測することが可能である。そこで、実差圧に関する情報を常時又は定期的に取得するとともに、実差圧と差圧の予測値とを適時に比較して、両者のズレが許容値を越えたときを、開始条件とすることができる。なお、許容値は予め実験等により算出可能である。 As a preferable example of the starting condition, when the usage plan data of the coal type is input from the equipment operator, the differential pressure predicted based on the usage plan data and the differential pressure actually acquired (actual differential pressure) are used. ) And the conditions using. For example, according to the coal type usage plan data, the coal type of the future period Ta, the coal type of the next period Tb, the coal type of the next period Tc, etc. are on the system based on a certain start point. You can get it at. Then, according to the present embodiment, it is possible to predict the transition of the differential pressure according to the coal type for each future period. Therefore, while constantly or periodically acquiring information on the actual differential pressure, the actual differential pressure and the predicted value of the differential pressure are compared in a timely manner, and the start condition is when the difference between the two exceeds the allowable value. be able to. The permissible value can be calculated in advance by experiments or the like.

差圧導出手段33は、上流側圧力センサ14及び下流側圧力センサ15からのセンサ信号Sn1及びセンサ信号Sn2に基づいて、空気予熱器5の差圧を導出するように構成されている。ここでは、センサ信号Sn1から空気予熱器5の上流側(排気通路4内)の圧力値を求めるとともに、センサ信号Sn2から空気予熱器5の下流側の圧力値(排気通路11内)を求め、これらの圧力値の差分により、差圧を導出するように構成されている。 The differential pressure derivation means 33 is configured to derive the differential pressure of the air preheater 5 based on the sensor signal Sn1 and the sensor signal Sn2 from the upstream side pressure sensor 14 and the downstream side pressure sensor 15. Here, the pressure value on the upstream side (inside the exhaust passage 4) of the air preheater 5 is obtained from the sensor signal Sn1, and the pressure value on the downstream side (inside the exhaust passage 11) of the air preheater 5 is obtained from the sensor signal Sn2. It is configured to derive the differential pressure from the difference between these pressure values.

差圧の導出方法は制限されない。上流側圧力センサ14及び下流側圧力センサ15とは別に所定の差圧センサを設け、この差圧センサのセンサ信号に基づいて差圧を導出してもよい。何れにしても、圧力センサを利用することで差圧を正確に導出しやすくなる。 The method of deriving the differential pressure is not limited. A predetermined differential pressure sensor may be provided separately from the upstream side pressure sensor 14 and the downstream side pressure sensor 15, and the differential pressure may be derived based on the sensor signal of the differential pressure sensor. In any case, using a pressure sensor makes it easier to accurately derive the differential pressure.

差圧の導出方法は、圧力センサを利用した手法にも限られない。可能な場合には、センサによらず、計算により差圧を導出してもよい。所定のパラメータに基づき、導出される値を補正してもよい。差圧導出手段33は、差圧を導出できるように構成されていればよい。 The method of deriving the differential pressure is not limited to the method using a pressure sensor. If possible, the differential pressure may be derived by calculation regardless of the sensor. The derived value may be corrected based on a predetermined parameter. The differential pressure derivation means 33 may be configured so that the differential pressure can be derived.

差圧導出手段33により導出された差圧は、差圧予測システム30の記憶手段(図示せず)に記憶される。記憶手段から差圧を読み出すことで、過去に遡って差圧を読み出し可能に構成されている。例えば、炭種を変更したときには、炭種を変更する直前の差圧を記憶手段から読み出し可能となっている。 The differential pressure derived by the differential pressure deriving means 33 is stored in a storage means (not shown) of the differential pressure prediction system 30. By reading the differential pressure from the storage means, the differential pressure can be read back to the past. For example, when the coal type is changed, the differential pressure immediately before the coal type is changed can be read out from the storage means.

差圧変化速度把握手段34は差圧に対する差圧変化速度の関係Fx(以下、単に「関係Fx」と略する場合がある)を炭種に応じて予め把握するように構成されている。関係Fxは、事前の試験や過去の稼働データ等に基づいて作成できる。 The differential pressure change rate grasping means 34 is configured to grasp in advance the relationship Fx (hereinafter, may be simply abbreviated as “relational Fx”) of the differential pressure change rate with respect to the differential pressure according to the coal type. Relationship Fx can be created based on prior tests, past operation data, and the like.

ここでの差圧変化速度把握手段34は、差圧に対する差圧上昇速度(上昇関係Fx1)と、差圧に対する差圧下降速度(下降関係Fx2)と、を予め把握するように構成されている。上昇関係Fx1及び下降関係Fx2を把握することで、空気予熱器5の差圧が上昇傾向をとる石炭を使用する場合のみならず、空気予熱器5の差圧が下降傾向をとる石炭を使用する場合であっても、将来の差圧を高精度に予測できる。 Here, the differential pressure change speed grasping means 34 is configured to grasp in advance the differential pressure rising speed with respect to the differential pressure (rising relation Fx1) and the differential pressure falling speed with respect to the differential pressure (falling relation Fx2). .. By grasping the ascending relationship Fx1 and the descending relationship Fx2, not only when using coal in which the differential pressure of the air preheater 5 tends to increase, but also when using coal in which the differential pressure of the air preheater 5 tends to decrease. Even in some cases, future differential pressure can be predicted with high accuracy.

ただし、上昇関係Fx1のみを把握するようにしてよい。この場合でも、差圧が上昇傾向をとる石炭に対して、将来の差圧を高精度に予測できる。また、下降関係Fx2のみを把握するようにしてもよい。この場合でも、差圧が下降傾向をとる石炭に対して、将来の差圧を高精度に予測できる。 However, only the ascending relationship Fx1 may be grasped. Even in this case, the future differential pressure can be predicted with high accuracy for coal whose differential pressure tends to increase. Further, it may be possible to grasp only the descending relationship Fx2. Even in this case, the future differential pressure can be predicted with high accuracy for coal whose differential pressure tends to decrease.

差圧に対する差圧変化速度の関係Fxとして、上昇関係Fx1及び下降関係Fx2に加え、更なる関係を把握してもよい。把握する関係が増える分、空気予熱器5の差圧を細かく予測できる。ただ、把握する関係が増える分、更なる試験等が必要になる場合がある。差圧の予測の精度と、差圧予測システムの実現性と、のバランスからは、上昇関係Fx1及び下降関係Fx2の2パターンを把握することが好ましい。 As the relationship Fx of the differential pressure change rate with respect to the differential pressure, in addition to the ascending relationship Fx1 and the descending relationship Fx2, a further relationship may be grasped. The differential pressure of the air preheater 5 can be predicted in detail as the relationship to be grasped increases. However, as the number of relationships to be grasped increases, further tests may be required. From the balance between the accuracy of differential pressure prediction and the feasibility of the differential pressure prediction system, it is preferable to grasp the two patterns of rising relation Fx1 and falling relation Fx2.

この点、差圧変化速度把握手段34は、関係Fxを所定の関数に基づいて把握するように構成されている。これによれば、把握する関係の容量やシステムの構成が必要以上に煩雑化することを防止できる。把握する関係が複数ある場合、その複数の関係に応じて異なる関数を把握することも可能となる。 In this respect, the differential pressure change speed grasping means 34 is configured to grasp the relational Fx based on a predetermined function. According to this, it is possible to prevent the capacity of the relationship to be grasped and the system configuration from becoming unnecessarily complicated. When there are a plurality of relationships to be grasped, it is possible to grasp different functions according to the plurality of relationships.

ここでも、差圧変化速度把握手段34は、上昇関係Fx1及び下降関係Fx2に応じた異なる関数を把握している。上昇関係Fx1及び下降関係Fx2で同一の関数を把握することもできるが、差圧が上昇傾向をとる石炭と、差圧が下降傾向をとる石炭と、の何れの場合でも将来の差圧を高精度に予測する観点からは、異なる関数を把握するのが好ましい。 Here, too, the differential pressure change speed grasping means 34 grasps different functions according to the ascending relation Fx1 and the descending relation Fx2. The same function can be grasped for the ascending relation Fx1 and the descending relation Fx2, but the future differential pressure is high in both cases of coal in which the differential pressure tends to increase and coal in which the differential pressure tends to decrease. From the point of view of predicting accuracy, it is preferable to grasp different functions.

具体的に、差圧変化速度把握手段34は、差圧に対する差圧上昇速度を、石炭の種類に
応じて変化の割合が異なる所定の近似曲線(例えば一次関数式)とみなして把握し、これを上昇関係Fx1として把握するように構成されている。つまり、炭種に応じて変化の割合(傾き)が定まり、差圧の値を代入するごとに差圧上昇速度の値が確定する規則が、上昇関係Fx1として差圧変化速度把握手段34に格納されている。
Specifically, the differential pressure change rate grasping means 34 grasps the differential pressure increase rate with respect to the differential pressure by regarding it as a predetermined approximate curve (for example, a linear function formula) in which the rate of change differs depending on the type of coal. Is configured to be grasped as an ascending relationship Fx1. That is, the rule that the rate of change (slope) is determined according to the coal type and the value of the differential pressure increase rate is determined each time the differential pressure value is substituted is stored in the differential pressure change rate grasping means 34 as the ascending relationship Fx1. Has been done.

差圧が上昇する場合を例にとると、一次関数式とみなすことで、所定の化学的現象(硫安化合物の生成等)や物理的現象(燃焼灰の固着等)といった類の現象を考慮に入れて、差圧を予測できるようになる。従って、例えば一次関数式とみなして上昇関係Fx1を把握することで、差圧が上昇傾向をとる石炭について、将来の差圧を極めて正確に予測できる。 Taking the case where the differential pressure rises as an example, by considering it as a linear function equation, it takes into consideration phenomena such as predetermined chemical phenomena (formation of sulphate compounds, etc.) and physical phenomena (sticking of combustion ash, etc.). By putting it in, you will be able to predict the differential pressure. Therefore, for example, by grasping the ascending relationship Fx1 by regarding it as a linear function equation, it is possible to predict the future differential pressure extremely accurately for coal whose differential pressure tends to increase.

また、差圧変化速度把握手段34は、差圧に対する差圧下降速度を、石炭の種類に応じて変化の割合が異なる所定の近似曲線(例えば二次関数式)とみなして把握し、これを下降関係Fx2として把握するように構成されている。つまり、炭種に応じて変化の割合が定まり、差圧の値を代入するごとに差圧下降速度の値が確定する規則が、下降関係Fx2として差圧変化速度把握手段34に格納されている。 Further, the differential pressure change rate grasping means 34 grasps the differential pressure falling speed with respect to the differential pressure as a predetermined approximate curve (for example, a quadratic function formula) in which the rate of change differs depending on the type of coal, and grasps this. It is configured to be grasped as a descending relationship Fx2. That is, a rule that the rate of change is determined according to the coal type and the value of the differential pressure descending speed is determined each time the differential pressure value is substituted is stored in the differential pressure change speed grasping means 34 as the descending relationship Fx2. ..

差圧が下降する場合を例にとると、二次関数式とみなすことで、一次関数式とみなしたことで考慮される上記の現象に加え、硫安化合物の分解や硫酸カルシウムの生成等のような類の現象を考慮に入れて、差圧を予測できるようになる。すなわち、二次関数とみなすことで、一次関数とみなしたときと比べ、多様な現象を考慮した差圧予測(高精度の点で有利な差圧予測)が可能となる。従って、例えば二次関数式とみなして下降関係Fx2を把握することで、差圧が下降傾向をとる石炭について、将来の差圧を極めて正確に予測できる。 Taking the case where the differential pressure drops as an example, in addition to the above-mentioned phenomena that are considered by considering it as a quadratic function formula, such as decomposition of ammonium sulfate compound and formation of calcium sulfate. It becomes possible to predict the differential pressure by taking into account various kinds of phenomena. That is, by regarding it as a quadratic function, it is possible to perform differential pressure prediction (differential pressure prediction advantageous in terms of high accuracy) in consideration of various phenomena as compared with the case where it is regarded as a linear function. Therefore, for example, by grasping the downward relation Fx2 by regarding it as a quadratic function equation, it is possible to predict the future differential pressure extremely accurately for coal whose differential pressure tends to decrease.

差圧予測手段35は、差圧導出手段33により導出される差圧を、差圧変化速度把握手段34で予め把握された関係Fxに当てはめて、石炭での将来の差圧を予測するように構成されている。 The differential pressure predicting means 35 applies the differential pressure derived by the differential pressure deriving means 33 to the relational Fx previously grasped by the differential pressure change rate grasping means 34 so as to predict the future differential pressure in coal. It is configured.

具体的に、差圧予測手段35は、開始条件検知手段32において開始条件が満たされたとき、炭種判別手段31において判別された炭種に応じた関係Fxを差圧変化速度把握手段34から読み込むように構成されている。そして、読み込んだ関係Fxに、差圧導出手段33から導出された差圧を当てはめて、将来の差圧を予測するように構成されている。 Specifically, when the start condition is satisfied in the start condition detecting means 32, the differential pressure predicting means 35 obtains the relational Fx according to the coal type discriminated by the coal type discriminating means 31 from the differential pressure change speed grasping means 34. It is configured to read. Then, the differential pressure derived from the differential pressure derivation means 33 is applied to the read relational Fx to predict the future differential pressure.

差圧変化速度に関する関係Fxと、差圧と、の間には相関関係を見出すことができる。つまり、差圧変化速度と差圧との関係は、例えば積分処理により差圧と時間との関係を導き出せる。直接的に圧力値としての差圧を予測する従来の手法と比べ、差圧変化速度を求めた上でこれを積分処理することで、より細かに将来の差圧を予測しやすくなる。差圧予測手段35で予測された将来の差圧は、設備稼働者に認識できるように、画像装置等に表示される。 A correlation can be found between the differential pressure change rate Fx and the differential pressure. That is, the relationship between the differential pressure change rate and the differential pressure can be derived from the relationship between the differential pressure and time by, for example, integration processing. Compared with the conventional method of directly predicting the differential pressure as a pressure value, by performing the integral processing after obtaining the differential pressure change rate, it becomes easier to predict the future differential pressure in more detail. The future differential pressure predicted by the differential pressure predicting means 35 is displayed on an image device or the like so that the equipment operator can recognize it.

具体例を挙げながら、上記の差圧予測システム30で実行される、空気予熱器5の差圧予測方法の一例を説明する。図5は、差圧変化速度の上昇関係Fx1の一例を示す図である。上昇関係Fx1は、差圧ΔPに応じて差圧変化速度V(>0)が等差的に変化する一次関数式であって、その変化の割合が炭種に応じて異なる。図中、石炭Aの変化の割合は、石炭Bよりも大きく、石炭Cよりも小さい。 An example of the differential pressure prediction method of the air preheater 5 executed by the differential pressure prediction system 30 will be described with reference to a specific example. FIG. 5 is a diagram showing an example of the increase relationship Fx1 of the differential pressure change rate. The ascending relationship Fx1 is a linear function equation in which the differential pressure change rate V (> 0) changes arithmetically according to the differential pressure ΔP, and the rate of change varies depending on the coal type. In the figure, the rate of change of coal A is larger than that of coal B and smaller than that of coal C.

石炭Aを使用していて差圧がΔPa1のとき、差圧上昇速度はVa1となる(図中、点a1)。石炭Aを使用し続け、差圧がΔPa2まで上昇すると、差圧上昇速度はVa2まで大きくなる(図中、点a2)。同じ石炭を使用していても、稼働時間の経過とともに差圧が上昇し、単位時間当たりの差圧上昇量(差圧上昇速度)が徐々に大きくなる。 When coal A is used and the differential pressure is ΔPa1, the differential pressure increase rate is Va1 (point a1 in the figure). When coal A is continuously used and the differential pressure rises to ΔPa2, the differential pressure rise rate increases to Va2 (point a2 in the figure). Even if the same coal is used, the differential pressure increases with the passage of operating time, and the amount of differential pressure increase per unit time (differential pressure increase rate) gradually increases.

石炭Aを使用していて差圧がΔPa1のとき、石炭Aから石炭Bに変更すると、差圧上昇速度はVa1からVb1まで小さくなる(図中、点b)。つまり、石炭Bに変更する場合、石炭Aを使用する場合よりも、将来の差圧の上昇の程度が小さくなると予測できる。 When coal A is used and the differential pressure is ΔPa1, when coal A is changed to coal B, the differential pressure increase rate decreases from Va1 to Vb1 (point b in the figure). That is, when changing to coal B, it can be predicted that the degree of increase in differential pressure in the future will be smaller than when coal A is used.

これにより、将来の差圧が石炭Aより小さな上昇に留まる石炭Bを使用する場合、差圧の限界値を超えるまでの時間が延長されるため、稼働を許容できる機会が増えることが期待される。空気予熱器5の洗浄時期をより合理的なタイミングに見極めることができ、ボイラ設備20の稼働時間を確保しやすくなる。 As a result, when coal B, whose future differential pressure stays smaller than coal A, is used, the time until the differential pressure limit is exceeded is extended, and it is expected that there will be more opportunities to allow operation. .. The cleaning time of the air preheater 5 can be determined at a more rational timing, and it becomes easy to secure the operating time of the boiler equipment 20.

他方、石炭Aを使用していて差圧がΔPa1のとき、石炭Aから石炭Cに変更すると、差圧上昇速度はVa1からVc1まで大きくなる(図中、点c)。つまり、石炭Cに変更する場合、石炭Aを使用する場合よりも、将来の差圧の上昇の程度が更に大きくなると予測できる。 On the other hand, when coal A is used and the differential pressure is ΔPa1, when coal A is changed to coal C, the differential pressure increase rate increases from Va1 to Vc1 (point c in the figure). That is, when changing to coal C, it can be predicted that the degree of increase in differential pressure in the future will be even greater than when coal A is used.

これにより、将来の差圧が石炭Aより大きく上昇する石炭Cを使用する場合、空気予熱器5の差圧が限界値を超えないような慎重な稼働を実施でき、設備に過大な負荷がかかることを確実に防止できる。 As a result, when coal C, whose future differential pressure rises more than coal A, can be used, careful operation can be performed so that the differential pressure of the air preheater 5 does not exceed the limit value, and an excessive load is applied to the equipment. Can be reliably prevented.

図6は、差圧変化速度の下降関係Fx2の一例を示す図である。下降関係Fx2は、差圧ΔPに応じて差圧変化速度V(<0)が加速度的に変化する二次関数式であって、その変化の割合が炭種に応じて異なる。図中、石炭Dの変化の割合の絶対値は、石炭Eよりも小さく、石炭Fよりも大きい。 FIG. 6 is a diagram showing an example of the downward relationship Fx2 of the differential pressure change rate. The descending relationship Fx2 is a quadratic function equation in which the differential pressure change rate V (<0) changes at an accelerating rate according to the differential pressure ΔP, and the rate of change differs depending on the coal type. In the figure, the absolute value of the rate of change of coal D is smaller than that of coal E and larger than that of coal F.

石炭Dを使用していて差圧がΔPd1のとき、差圧下降速度はVd1となる(図中、点d1)。石炭Dを使用し続け、差圧がΔPd2まで下降すると、差圧下降速度の絶対値はVd2まで小さくなる(図中、点d2)。同じ石炭を使用していても、稼働時間の経過とともに差圧が下降し、単位時間当たりの差圧下降量(差圧下降速度)の絶対値が徐々に小さくなる。 When coal D is used and the differential pressure is ΔPd1, the differential pressure descending speed is Vd1 (point d1 in the figure). When coal D is continuously used and the differential pressure drops to ΔPd2, the absolute value of the differential pressure falling speed decreases to Vd2 (point d2 in the figure). Even if the same coal is used, the differential pressure decreases with the passage of operating time, and the absolute value of the differential pressure decrease amount (differential pressure decrease speed) per unit time gradually decreases.

石炭Dを使用していて、差圧がΔPd1のとき、石炭Dから石炭Eに変更すると、差圧下降速度の絶対値はVd1からVe1まで大きくなる(図中、点e)。つまり、石炭Eに変更する場合、石炭Dを使用する場合よりも、将来の差圧の下降が更に期待できると予測できる。 When coal D is used and the differential pressure is ΔPd1, when coal D is changed to coal E, the absolute value of the differential pressure descending speed increases from Vd1 to Ve1 (point e in the figure). That is, when changing to coal E, it can be predicted that the differential pressure will decrease further in the future than when coal D is used.

これにより、将来の差圧が石炭Dより大きく下降する石炭Eを使用する場合、稼働を許容できる機会がさらに増えることが期待され、ボイラ設備20の稼働時間をより確保しやすくなる。 As a result, when coal E, whose differential pressure drops more than coal D in the future, is expected to have more opportunities to allow operation, it becomes easier to secure the operating time of the boiler equipment 20.

他方、石炭Dを使用していて差圧がΔPd1のとき、石炭Dから石炭Fに変更すると、差圧下降速度の絶対値はVd1からVf1まで小さくなる(図中、点f)。つまり、石炭Fに変更する場合、石炭Dを使用する場合よりも、将来の差圧の下降が期待できなくなると予測できる。 On the other hand, when coal D is used and the differential pressure is ΔPd1, when coal D is changed to coal F, the absolute value of the differential pressure descending speed decreases from Vd1 to Vf1 (point f in the figure). That is, when changing to coal F, it can be predicted that a decrease in the differential pressure in the future cannot be expected as compared with the case where coal D is used.

これにより、将来の差圧が石炭Dより小さな下降に留まる石炭Fを使用する場合、稼働を許容できる機会が増えることが期待され、ボイラ設備20の稼働時間を確保しやすくなるが、その時間は石炭Dを使用する場合に比べて短くなる。 As a result, when coal F, whose future differential pressure stays smaller than coal D, is used, it is expected that there will be more opportunities to allow operation, and it will be easier to secure the operating time of the boiler equipment 20, but that time will be longer. It is shorter than when coal D is used.

図7は、空気予熱器5の差圧予測方法の一例を示すフロー図である。かかる方法について、図1に示した構成を適宜参照しつつ説明する。ここでは、炭種を変更した場合を例に挙げて説明する。 FIG. 7 is a flow chart showing an example of a differential pressure prediction method for the air preheater 5. Such a method will be described with reference to the configuration shown in FIG. 1 as appropriate. Here, the case where the coal type is changed will be described as an example.

ステップS1において、前回の石炭と異なる石炭を使用したことを判別する。これにより、ステップS2において、差圧予測の開始条件が満たされたことを検知する。次いで、ステップS3において、石炭Aを使用していたときの、石炭Bへの変更直前の空気予熱器5の差圧(差圧予測時点の初期差圧)を読み出す。その後のステップS4において、石炭Bに応じた関係Fxを読み込む。ステップS3及びステップS4の順番は逆でもよい。 In step S1, it is determined that coal different from the previous coal was used. Thereby, in step S2, it is detected that the start condition of the differential pressure prediction is satisfied. Next, in step S3, the differential pressure (initial differential pressure at the time of predicting the differential pressure) of the air preheater 5 immediately before the change to coal B when the coal A is used is read out. In the subsequent step S4, the relation Fx corresponding to the coal B is read. The order of steps S3 and S4 may be reversed.

ステップS5において、ステップS3で読み出した差圧を、ステップS4で読み込んだ関係Fxに当てはめて、石炭Bでの将来の差圧を予測する。次いで、ステップS6において、ステップS5で予測した将来の差圧を表示させた後、スタートに戻る。 In step S5, the differential pressure read in step S3 is applied to the relational Fx read in step S4 to predict the future differential pressure in coal B. Then, in step S6, after displaying the future differential pressure predicted in step S5, the process returns to the start.

以上説明したボイラ設備20、空気予熱設備40及び空気予熱器5の差圧予測方法によれば、空気予熱器5の差圧や炭種に応じた差圧変化速度を予測でき、将来の差圧を高精度に予測できる。将来の差圧を高精度に予測できることで、空気予熱器5の洗浄時期をより合理的なタイミングに見極めることができ、ボイラ設備20の稼働時間を確保しやすくなる。 According to the differential pressure prediction method of the boiler equipment 20, the air preheating equipment 40, and the air preheater 5 described above, the differential pressure of the air preheater 5 and the differential pressure change rate according to the coal type can be predicted, and the differential pressure in the future can be predicted. Can be predicted with high accuracy. By being able to predict the differential pressure in the future with high accuracy, it is possible to determine the cleaning timing of the air preheater 5 at a more rational timing, and it becomes easier to secure the operating time of the boiler equipment 20.

また、将来の差圧を高精度に予測できることで、空気予熱器5の差圧が限界値を超えて設備に過大な負荷がかかることを確実に防止できる。例えば、ボイラ設備20にあっては、誘引通風機12の動力過剰や、これと空気予熱器5を接続する排気通路11の変形、更には負圧が限界を下回ることに起因する各種設備に過大な負荷がかかることが確実に防止できる。 Further, since the future differential pressure can be predicted with high accuracy, it is possible to surely prevent the differential pressure of the air preheater 5 from exceeding the limit value and applying an excessive load to the equipment. For example, in the boiler equipment 20, it is excessive due to excessive power of the induction ventilator 12, deformation of the exhaust passage 11 connecting the inducer ventilator 12 and the air preheater 5, and further, the negative pressure falls below the limit. It is possible to surely prevent a heavy load from being applied.

(実施形態2)
図8は、本実施形態に係る空気予熱器5の差圧予測方法の応用例を説明するためのタイムチャート図である。本実施形態で説明する応用例は、上記の実施形態1の設備や方法を用いて実施できるため、同一の符号を付しているものは実施形態1の構成を示し、適宜説明は省略している。
(Embodiment 2)
FIG. 8 is a time chart diagram for explaining an application example of the differential pressure prediction method of the air preheater 5 according to the present embodiment. Since the application examples described in this embodiment can be implemented by using the equipment and method of the above-described first embodiment, those having the same reference numerals indicate the configuration of the first embodiment, and the description thereof is omitted as appropriate. There is.

図8(a)は、差圧予測システム30に入力される、設備稼働者から炭種の使用計画データDATAの一例である。使用計画データDATAは、将来的な期間と、その期間に応じた炭種と、を含んでいる。ここでは、将来的な期間Taで石炭aを使用し、その次の期間Tbで石炭bを使用し、更にその次の期間Tcで石炭cを使用し、また更にその次の期間Tdで石炭dを使用する使用計画が表されている。なお、使用計画データDATAは、図示しないものの、期間Td以降の使用計画も含んでいる。 FIG. 8A is an example of the coal type usage plan data DATA input from the equipment operator to the differential pressure prediction system 30. The usage plan data DATA includes the future period and the coal type according to the period. Here, coal a is used in the future period Ta, coal b is used in the next period Tb, coal c is used in the next period Tc, and coal d is used in the next period Td. The usage plan to use is represented. Although not shown, the usage plan data DATA also includes usage plans after the period Td.

使用計画データDATAにおいて、将来的な複数の期間は、連続していてもよいし、連続していなくてもよい。ただ、連続していたほうが、途切れなく差圧を予測できるので好ましい。ここでは、期間に応じて異なる石炭での使用が計画されているが、勿論、期間をあけて同じ石炭を繰り返し使用する場合もある。 In the usage plan data DATA, a plurality of future periods may or may not be continuous. However, continuous pressure is preferable because the differential pressure can be predicted without interruption. Here, it is planned to use different coals depending on the period, but of course, the same coal may be used repeatedly at intervals.

図8(b)は、使用計画データDATAに基づいて予測した差圧の推移の一例である。例えば、所定の開始条件(STRAT)が満たされ、そのときの差圧予測時点の初期差圧Pstartと、石炭aに応じた差圧変化速度と、に基づき、期間Taにおける将来の差圧が予測される(図中、期間Taの点線)。 FIG. 8B is an example of the transition of the differential pressure predicted based on the usage plan data DATA. For example, when a predetermined start condition (STRAT) is satisfied, the future differential pressure in the period Ta is based on the initial differential pressure P start at the time of differential pressure prediction at that time and the differential pressure change rate according to the coal a. Predicted (dotted line of period Ta in the figure).

そして、期間Ta終了時の予測差圧が、連続する次の期間Tb開始時の初期差圧Pstartとなる。該初期差圧Pstartと、石炭bに応じた差圧変化速度と、に基づき、
期間Tbにおける将来の差圧が予測される(図中、期間Tbの点線)。そして、期間Tb終了時の予測差圧が、連続する次の期間Tc開始時の初期差圧Pstartとなる。以降も同様に、使用計画データDATAに基づき将来の差圧が予測される(図中、期間Tc及び期間Tdの点線)。
Then, the predicted differential pressure at the end of the period Ta becomes the initial differential pressure P start at the start of the next continuous period Tb. Based on the initial differential pressure P start and the differential pressure change rate according to the coal b.
Future differential pressures in period Tb are predicted (dotted line in period Tb in the figure). Then, the predicted differential pressure at the end of the period Tb becomes the initial differential pressure P start at the start of the next continuous period Tc. Similarly, future differential pressures are predicted based on the usage plan data DATA (dotted lines of period Tc and period Td in the figure).

図8(c)は、予測された差圧の推移と対比した、実差圧の推移の一例である。図中、実差圧と、予測された差圧と、に僅かなズレが生じ、そのズレが積み重なっていく例を示している。期間Taの終了時(期間Tbの開始時)には、ズレΔD1(実差圧>予測された差圧)が生じ、期間Tbの終了時(期間Tcの開始時)には、ズレΔD2が生じている(ΔD2>ΔD1:実差圧>予測された差圧)。 FIG. 8C is an example of the transition of the actual differential pressure in comparison with the transition of the predicted differential pressure. In the figure, an example is shown in which a slight deviation occurs between the actual differential pressure and the predicted differential pressure, and the deviations are accumulated. At the end of the period Ta (at the start of the period Tb), a deviation ΔD1 (actual differential pressure> predicted differential pressure) occurs, and at the end of the period Tb (at the start of the period Tc), a deviation ΔD2 occurs. (ΔD2> ΔD1: actual differential pressure> predicted differential pressure).

例えば、期間Taの終了時(期間Tbの開始時)において、ズレΔD1は所定の許容値ΔDlimを越えないが、期間Tbの終了時(期間Tcの開始時)において、ズレΔD2が許容値ΔDlimを越える場合がある。本実施形態では、実差圧と、予測された差圧と、のズレに関する情報が、差圧予測システム30の開始条件検知手段32に入力されるようになっている。 For example, at the end of the period Ta (at the start of the period Tb), the deviation ΔD1 does not exceed the predetermined allowable value ΔD lim , but at the end of the period Tb (at the start of the period Tc), the deviation ΔD2 is the allowable value ΔD. It may exceed lim. In the present embodiment, information regarding the deviation between the actual differential pressure and the predicted differential pressure is input to the start condition detecting means 32 of the differential pressure prediction system 30.

図8(d)は、かかるズレが許容値ΔDlimを越える場合の一例である。ズレが許容値ΔDlimを越える期間Tbの終了時(期間Tcの開始時)、差圧の予測を実行するための開始条件(STRAT)が満たされたことを検知する。 FIG. 8D is an example of a case where the deviation exceeds the allowable value ΔD lim. At the end of the period Tb where the deviation exceeds the permissible value ΔD lim (at the start of the period Tc), it is detected that the start condition (STRAT) for executing the prediction of the differential pressure is satisfied.

差圧予測システム30では、このときの実差圧が、次の期間Tc開始時の初期差圧Pstartとされ、石炭cに応じた差圧変化速度に基づき期間Tcにおける将来の差圧が予測される。つまり、期間Tbの終了時(期間Tcの開始時)に、予測していた差圧の推移がより正確なものに更新されることになる。そして、以降の期間での差圧の予測にも、上記の更新が反映される。 In the differential pressure prediction system 30, the actual differential pressure at this time is set as the initial differential pressure P start at the start of the next period Tc, and the future differential pressure in the period Tc is predicted based on the differential pressure change rate according to the coal c. Will be done. That is, at the end of the period Tb (at the start of the period Tc), the predicted transition of the differential pressure is updated to be more accurate. The above update is also reflected in the prediction of the differential pressure in the subsequent period.

ここでは、当初に予測していた差圧よりも高い範囲で推移するような差圧に更新されている。この場合、空気予熱器5の差圧が限界値を超えないよう、より慎重な稼働を実施できるようになる。 Here, the differential pressure is updated so that the differential pressure changes in a range higher than the initially predicted differential pressure. In this case, more careful operation can be performed so that the differential pressure of the air preheater 5 does not exceed the limit value.

実差圧と、予測された差圧と、のズレΔDが許容値ΔDlimを越えたか否かの判断や、ズレΔDが許容値ΔDlimを越えた場合における予測していた差圧の推移の更新は、期間の終了時、すなわち炭種の変更時に限定されない。例えば、期間Tbの最中にズレΔDが許容値ΔDlimを越えた場合、開始条件検知手段32は、期間Tbの途中であっても開始条件が満たされたとして検知するようにしてもよい。 And actual pressure difference, the predicted differential pressure, the deviation [Delta] D of the judgment and whether exceeds the allowable value [Delta] D lim, deviation [Delta] D is the differential pressure that has been predicted in the case of exceeding the permissible value [Delta] D lim Trends Renewal is not limited to the end of the period, i.e. the change of coal type. For example, when the deviation ΔD exceeds the permissible value ΔD lim during the period Tb, the start condition detecting means 32 may detect that the start condition is satisfied even during the period Tb.

以上説明した本実施形態に係る空気予熱器5の差圧予測方法の応用例は、上記の実施形態1の設備や方法を用いて実施できる。上記の応用例によれば、将来の炭種の使用計画に応じて差圧を高精度に予測できるため、好ましい態様である。 The application example of the differential pressure prediction method of the air preheater 5 according to the present embodiment described above can be carried out by using the equipment and method of the above-described first embodiment. According to the above application example, the differential pressure can be predicted with high accuracy according to the future use plan of the coal type, which is a preferable embodiment.

使用計画データDATAにおける期間の長さの関係や、予測される差圧の推移は、図8に示した例に制限されない。また、使用計画データDATAは、図4に示した差圧予測システム30における記憶手段(図示せず)等に格納できるが、それ以外の場所に格納されてもよい。 The relationship between the lengths of the periods in the usage plan data DATA and the transition of the predicted differential pressure are not limited to the example shown in FIG. Further, the usage plan data DATA can be stored in a storage means (not shown) or the like in the differential pressure prediction system 30 shown in FIG. 4, but may be stored in other places.

(実施形態3)
図9は、本実施形態に係る発電設備50の全体の構成例を示す概略系統図である。図中、実施形態1と同一の部材には同一の符号を付してある。
(Embodiment 3)
FIG. 9 is a schematic system diagram showing an overall configuration example of the power generation facility 50 according to the present embodiment. In the figure, the same members as those in the first embodiment are designated by the same reference numerals.

発電設備50は、実施形態1で説明したボイラ設備20と、ボイラ1で発生した蒸気が導入されて駆動力を得る蒸気タービン51と、蒸気タービン51の駆動により電力を得る発電機52と、を具備して構成される。 The power generation facility 50 includes the boiler facility 20 described in the first embodiment, a steam turbine 51 in which steam generated in the boiler 1 is introduced to obtain a driving force, and a generator 52 in which power is obtained by driving the steam turbine 51. It is equipped and configured.

発電設備50では、ボイラ1での炭素系燃料の燃焼により蒸気が生成される。かかる蒸気が蒸気タービン51に導入されて発電機52の駆動力が得られる。発電機52が駆動されることで、電力が得られる。蒸気タービン51の排気蒸気は復水器53で凝縮されて復水され、復水器53からの復水は給水ポンプ54の駆動によりボイラ1に給水される。 In the power generation facility 50, steam is generated by the combustion of the carbon-based fuel in the boiler 1. Such steam is introduced into the steam turbine 51 to obtain a driving force for the generator 52. Electric power is obtained by driving the generator 52. The exhaust steam of the steam turbine 51 is condensed and restored by the condenser 53, and the condensed water from the condenser 53 is supplied to the boiler 1 by driving the water supply pump 54.

本実施形態に係る発電設備50によれば、実施形態1のボイラ設備20を具備するので、空気予熱器5の差圧や炭種に応じた差圧変化速度を予測でき、将来の差圧を高精度に予測できる。 According to the power generation facility 50 according to the present embodiment, since the boiler facility 20 of the first embodiment is provided, the differential pressure of the air preheater 5 and the differential pressure change rate according to the coal type can be predicted, and the future differential pressure can be determined. It can be predicted with high accuracy.

(他の実施形態)
以上、本発明の一実施形態を説明したが、本発明は上記の実施形態に限定されない。
(Other embodiments)
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

例えば、図4では、差圧予測システム30の各手段を機能的なブロックに分けて説明した。すなわち、上記の実施形態では、差圧予測システムの構成例について、差圧予測システム30として、差圧導出手段33と、差圧変化速度把握手段34と、差圧予測手段35と、を具備する例を説明した。これによれば、各手段による所定の体系をもって上記の差圧予測システム30を構成でき、差圧予測システム30を極めて適正に機能させることができる。ただし、かかる各手段は、その一部又は全てが、一体として構成されていてもよい。また、差圧予測システム自体も、その一部又は全てが、ボイラ設備と一体に構成されていてもよい。 For example, in FIG. 4, each means of the differential pressure prediction system 30 is described by dividing it into functional blocks. That is, in the above embodiment, the differential pressure prediction system 30 includes a differential pressure deriving means 33, a differential pressure change speed grasping means 34, and a differential pressure predicting means 35 for the configuration example of the differential pressure prediction system. An example was explained. According to this, the differential pressure prediction system 30 can be configured by a predetermined system by each means, and the differential pressure prediction system 30 can be made to function extremely appropriately. However, some or all of such means may be configured as one. Further, the differential pressure prediction system itself may be partially or wholly configured integrally with the boiler equipment.

燃料には、本発明の差圧予測を実現できる範囲内で、石炭以外の炭素系燃料が含まれていてもよい。更には、本発明の差圧予測を実現できる範囲内で、炭素系燃料以外の燃料が含まれていてもよい。 The fuel may contain a carbon-based fuel other than coal as long as the differential pressure prediction of the present invention can be realized. Further, a fuel other than the carbon-based fuel may be contained within the range in which the differential pressure prediction of the present invention can be realized.

上記の実施形態では、差圧に対する差圧上昇速度(上昇関係Fx1)を所定の一次関数式とみなして把握し、差圧に対する差圧下降速度(下降関係Fx2)を所定の二次関数式とみなして把握したが、上昇関係Fx1を二次関数とみなすこともでき、下降関係Fx2を一次関数とみなしてもよい。更に、図10に示すように、炭種に応じて関数を変えてもよい。例えば石炭E及びFについては所定の二次関数式とみなして把握し、石炭Gについては所定の一次関数式とみなして把握する等、一次関数式及び二次関数式を組合せ、これを下降関係Fx2´として把握してもよい。勿論、炭種に応じて関数を変えたものを上昇関係として把握してもよい。 In the above embodiment, the differential pressure rising speed (rising relationship Fx1) with respect to the differential pressure is regarded as a predetermined linear function formula, and the differential pressure falling speed (falling relation Fx2) with respect to the differential pressure is regarded as a predetermined quadratic function formula. As we have grasped, the ascending relation Fx1 can be regarded as a quadratic function, and the descending relation Fx2 may be regarded as a linear function. Further, as shown in FIG. 10, the function may be changed depending on the coal type. For example, coal E and F are regarded as a predetermined quadratic function formula and grasped, and coal G is regarded as a predetermined linear function formula and grasped. It may be grasped as Fx2'. Of course, the one whose function is changed according to the coal type may be grasped as an ascending relationship.

本発明は、ボイラ設備、発電設備の産業分野で利用することができる。 The present invention can be used in the industrial field of boiler equipment and power generation equipment.

1…ボイラ、2…排気通路、3…脱硝装置、4…排気通路、5…空気予熱器、5a…ローター、5b…伝熱エレメント、5c…回転軸、5d…第1密度部(高温部)、5e…第2密度部、5f…第3密度部(低温部)、6…NH供給部、7…押込通風機、8…一次通風機、9…粉砕機、10…バーナー群、11…排気通路、12…誘引通風機、13…煙突、14…上流側圧力センサ、15…下流側圧力センサ、20…ボイラ設備、30…差圧予測システム、31…炭種判別手段、32…開始条件検知手段、33…差圧導出手段、34…差圧変化速度把握手段、35…差圧予測手段、40…空気予熱設備、50…発電設備、51…蒸気タービン、52…発電機、53…復水器、54…給水ポンプ、Air1…空気、Air1´…空気、Air2…空気、Air2´…空気、Fuel…炭素系燃料、Gs0…排ガス、Gs1…排ガス、Gs2…排ガス 1 ... Boiler, 2 ... Exhaust passage, 3 ... Condenser, 4 ... Exhaust passage, 5 ... Air preheater, 5a ... Rotor, 5b ... Heat transfer element, 5c ... Rotating shaft, 5d ... First density part (high temperature part) 5, 5e ... 2nd density part, 5f ... 3rd density part (low temperature part), 6 ... NH 3 supply part, 7 ... push-in blower, 8 ... primary blower, 9 ... crusher, 10 ... burner group, 11 ... Exhaust passage, 12 ... Condenser, 13 ... Chimney, 14 ... Upstream pressure sensor, 15 ... Downstream pressure sensor, 20 ... Boiler equipment, 30 ... Differential pressure prediction system, 31 ... Charcoal type discrimination means, 32 ... Start condition Detection means, 33 ... Differential pressure derivation means, 34 ... Differential pressure change speed grasping means, 35 ... Differential pressure prediction means, 40 ... Air preheating equipment, 50 ... Power generation equipment, 51 ... Steam turbine, 52 ... Generator, 53 ... Condenser Water device, 54 ... Water supply pump, Air1 ... Air, Air1'... Air, Air2 ... Air, Air2' ... Air, Fuel ... Carbon-based fuel, Gs0 ... Exhaust gas, Gs1 ... Exhaust gas, Gs2 ... Exhaust gas

Claims (9)

石炭を含む炭素系燃料の燃焼により排ガスが排出されるボイラと、
前記ボイラの下流側に設けられ、NHの存在下で前記排ガス中の窒素酸化物を脱硝する脱硝装置と、
前記脱硝装置の下流側に設けられ、前記排ガスの余熱を利用して前記ボイラでの燃焼用空気を予熱する空気予熱器と、を具備するボイラ設備であって、
前記空気予熱器の上流側及び下流側の差圧と、石炭の種類に応じた差圧変化速度と、に基づき、差圧と時間との関係を導き出し、差圧と時間との関係に基づいて前記石炭での将来の差圧を予測する差圧予測システムを具備し、
前記差圧予測システムは、
開始条件検知手段により開始条件が検知された際に予測を開始し、
前記開始条件検知手段では、設備稼働者から入力された、炭種の使用計画データに基づいて予測される差圧と、実際に取得される差圧とのずれが許容値を超えた時に、開始条件が検知される
ことを特徴とするボイラ設備。
Boilers that emit exhaust gas from the combustion of carbon-based fuels including coal,
A denitration device provided on the downstream side of the boiler and denitration of nitrogen oxides in the exhaust gas in the presence of NH 3.
A boiler facility provided on the downstream side of the denitration device and provided with an air preheater that preheats the combustion air in the boiler by utilizing the residual heat of the exhaust gas.
Based on the differential pressure on the upstream and downstream sides of the air preheater and the differential pressure change rate according to the type of coal, the relationship between the differential pressure and time is derived, and the relationship between the differential pressure and time is used. It is equipped with a differential pressure prediction system that predicts the future differential pressure of the coal.
The differential pressure prediction system is
Prediction is started when the start condition is detected by the start condition detection means.
The start condition detecting means starts when the difference between the differential pressure predicted based on the coal type usage plan data input from the equipment operator and the differential pressure actually acquired exceeds the allowable value. Boiler equipment characterized by the fact that conditions are detected.
請求項1に記載のボイラ設備において、
前記差圧予測システムは、
前記差圧を導出する差圧導出手段と、
前記差圧に対する前記差圧変化速度で表される関係を、前記石炭の種類に応じて予め把握する差圧変化速度把握手段と、
前記差圧導出手段で導出される前記差圧を、前記差圧変化速度把握手段で把握された前記関係に当てはめて、前記石炭での将来の前記差圧を予測する差圧予測手段と、を具備する
ことを特徴とするボイラ設備。
In the boiler equipment according to claim 1,
The differential pressure prediction system is
The differential pressure derivation means for deriving the differential pressure and
A means for grasping the differential pressure change rate and a means for grasping the relationship represented by the differential pressure change rate with respect to the differential pressure in advance according to the type of coal.
The differential pressure predicting means for predicting the future differential pressure in the coal by applying the differential pressure derived by the differential pressure deriving means to the relationship grasped by the differential pressure change rate grasping means. Boiler equipment characterized by being equipped.
請求項2に記載のボイラ設備において、
前記差圧導出手段は、前記空気予熱器の上流側及び下流側に設けられた圧力センサの検出値に基づいて前記差圧を導出する
ことを特徴とするボイラ設備。
In the boiler equipment according to claim 2,
The differential pressure derivation means is a boiler facility characterized in that the differential pressure is derived based on the detection values of the pressure sensors provided on the upstream side and the downstream side of the air preheater.
請求項2もしくは請求項3に記載のボイラ設備において、
前記差圧変化速度把握手段は、前記関係として、前記差圧に対する差圧上昇速度及び前記差圧に対する差圧下降速度を把握する
ことを特徴とするボイラ設備。
In the boiler equipment according to claim 2 or claim 3.
The boiler equipment for grasping the differential pressure change speed is characterized in that, as the relation thereof, the differential pressure increasing speed with respect to the differential pressure and the differential pressure decreasing speed with respect to the differential pressure are grasped.
請求項2から請求項4のいずれか一項に記載のボイラ設備において、
前記差圧変化速度把握手段は、前記関係を所定の関数に基づいて把握する
ことを特徴とするボイラ設備。
In the boiler equipment according to any one of claims 2 to 4.
The differential pressure change rate grasping means is a boiler facility characterized in that the relationship is grasped based on a predetermined function.
請求項5に記載のボイラ設備において、
前記差圧変化速度把握手段は、前記差圧に対する前記差圧変化速度を、前記石炭の種類に応じて変化の割合が異なる所定の一次関数式とみなして把握する
ことを特徴とするボイラ設備。
In the boiler equipment according to claim 5,
The boiler equipment characterized in that the differential pressure change rate grasping means grasps the differential pressure change rate with respect to the differential pressure as a predetermined linear function expression in which the rate of change differs depending on the type of coal.
請求項5もしくは請求項6に記載のボイラ設備において、
前記差圧変化速度把握手段は、前記差圧に対する前記差圧変化速度を、前記石炭の種類に応じて変化の割合が異なる所定の二次関数式とみなして把握する
ことを特徴とするボイラ設備。
In the boiler equipment according to claim 5 or 6.
The boiler facility for grasping the differential pressure change rate is characterized in that the differential pressure change rate with respect to the differential pressure is grasped as a predetermined quadratic function expression in which the rate of change differs depending on the type of coal. ..
請求項1から請求項7のいずれか一項に記載のボイラ設備において、
前記石炭の種類を変更したとき、前記差圧予測システムは変更後の前記石炭での将来の差圧予測を行う
ことを特徴とするボイラ設備。
In the boiler equipment according to any one of claims 1 to 7.
A boiler facility characterized in that when the type of coal is changed, the differential pressure prediction system predicts the future differential pressure of the changed coal.
請求項1から請求項8の何れか一項に記載のボイラ設備と、
前記ボイラで発生した蒸気が導入されて駆動力を得る蒸気タービンと、
前記蒸気タービンの駆動により電力を得る発電機と、を具備する
ことを特徴とする発電設備。
The boiler equipment according to any one of claims 1 to 8.
A steam turbine in which steam generated in the boiler is introduced to obtain driving force, and
A power generation facility including a generator that obtains electric power by driving the steam turbine.
JP2021150603A 2017-08-03 2021-09-15 Boiler equipment, power generation equipment Active JP7095949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021150603A JP7095949B2 (en) 2017-08-03 2021-09-15 Boiler equipment, power generation equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017151075A JP2019027763A (en) 2017-08-03 2017-08-03 Boiler equipment, power generation equipment, air preheating equipment and differential pressure prediction method of air preheater
JP2021150603A JP7095949B2 (en) 2017-08-03 2021-09-15 Boiler equipment, power generation equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017151075A Division JP2019027763A (en) 2017-08-03 2017-08-03 Boiler equipment, power generation equipment, air preheating equipment and differential pressure prediction method of air preheater

Publications (2)

Publication Number Publication Date
JP2021185339A true JP2021185339A (en) 2021-12-09
JP7095949B2 JP7095949B2 (en) 2022-07-05

Family

ID=65478114

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017151075A Pending JP2019027763A (en) 2017-08-03 2017-08-03 Boiler equipment, power generation equipment, air preheating equipment and differential pressure prediction method of air preheater
JP2021150603A Active JP7095949B2 (en) 2017-08-03 2021-09-15 Boiler equipment, power generation equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017151075A Pending JP2019027763A (en) 2017-08-03 2017-08-03 Boiler equipment, power generation equipment, air preheating equipment and differential pressure prediction method of air preheater

Country Status (1)

Country Link
JP (2) JP2019027763A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414163B (en) * 2022-01-05 2024-02-02 华北电力科学研究院有限责任公司 Method and device for determining air leakage rate of air preheater with three bins

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298719A (en) * 1989-05-11 1990-12-11 Babcock Hitachi Kk Performance diagnosis method for air preheater
JP2002058942A (en) * 2000-08-19 2002-02-26 Electric Power Dev Co Ltd Pressure drop analysis simulation method for dust removing system and simulator for analyzing pressure drop
JP2010196949A (en) * 2009-02-24 2010-09-09 Chugoku Electric Power Co Inc:The Device and method for controlling air preheater
JP2011112243A (en) * 2009-11-25 2011-06-09 Chubu Electric Power Co Inc Method of suppressing differential pressure for air preheater
WO2016098173A1 (en) * 2014-12-15 2016-06-23 中国電力株式会社 Air pre-heater cleaning time predicting method and air pre-heater cleaning time predicting apparatus
JP2017067414A (en) * 2015-10-01 2017-04-06 中国電力株式会社 Abnormality discrimination device for air preheater, and abnormality discrimination method for air preheater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120580A (en) * 1998-04-15 2000-09-19 Hera, Llc Method for testing systems designed for NOx reduction in the combustion of carbonaceous fuels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298719A (en) * 1989-05-11 1990-12-11 Babcock Hitachi Kk Performance diagnosis method for air preheater
JP2002058942A (en) * 2000-08-19 2002-02-26 Electric Power Dev Co Ltd Pressure drop analysis simulation method for dust removing system and simulator for analyzing pressure drop
JP2010196949A (en) * 2009-02-24 2010-09-09 Chugoku Electric Power Co Inc:The Device and method for controlling air preheater
JP2011112243A (en) * 2009-11-25 2011-06-09 Chubu Electric Power Co Inc Method of suppressing differential pressure for air preheater
WO2016098173A1 (en) * 2014-12-15 2016-06-23 中国電力株式会社 Air pre-heater cleaning time predicting method and air pre-heater cleaning time predicting apparatus
JP2017067414A (en) * 2015-10-01 2017-04-06 中国電力株式会社 Abnormality discrimination device for air preheater, and abnormality discrimination method for air preheater

Also Published As

Publication number Publication date
JP7095949B2 (en) 2022-07-05
JP2019027763A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US7383790B2 (en) Method and apparatus for controlling soot blowing using statistical process control
JP7095949B2 (en) Boiler equipment, power generation equipment
CN105069185A (en) Method for establishing air pre-heater clean factor calculation model by using smoke pressure difference, and application
TW202001462A (en) Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant
JP2008202529A (en) Exhaust emission control device for internal combustion engine
JP2016183668A (en) Systems and methods for controlling aftertreatment systems
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
IT201900003267A1 (en) METHOD FOR ASSESSING THE AGING OF A THREE-WAY CATALYST
KR101470784B1 (en) Denitrator and denitration method
JP2018173217A (en) Air preheater pressure difference rise prediction device
US11161075B2 (en) System and method for optimized operation of flue gas desulfurization unit
JP2019152419A (en) Boiler equipment, power generation equipment and generation amount prediction method of solid matter
AU2020313571B2 (en) Control system
CN108730943B (en) Flue gas dynamic temperature evaluation method
JP4933496B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
KR101779891B1 (en) Corrosion preventing system for combustion process and corrosion preventing method for the same
Šulc et al. Control for ecological improvement of small biomass boilers
Gao et al. Enhancement of SCR denitrification control strategy considering fluegas temperature fluctuation: Fundamental principle and performance evaluation
JP6899766B2 (en) Information processing device and information processing method
CN113901381B (en) Real-time calculation method for garbage incineration amount of two-furnace one-machine household garbage incineration power plant
JP7211388B2 (en) Catalyst reuse evaluation system
JP2019124386A (en) Combustion control method of incinerator attached to biogas combustion engine
EP4015062A1 (en) Method of controlling lances in sncr system
JPS63286609A (en) Control of soot blower
PL241928B1 (en) Method of determining temperatures inside the combustion chamber of a water-tube boiler for the purposes of selective non-catalytic reduction of nitrogen oxides (SNCR) process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220622

R150 Certificate of patent or registration of utility model

Ref document number: 7095949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150