JP2021176623A - Production method of separation membrane based on high solid silicon carbide slurry - Google Patents

Production method of separation membrane based on high solid silicon carbide slurry Download PDF

Info

Publication number
JP2021176623A
JP2021176623A JP2020126515A JP2020126515A JP2021176623A JP 2021176623 A JP2021176623 A JP 2021176623A JP 2020126515 A JP2020126515 A JP 2020126515A JP 2020126515 A JP2020126515 A JP 2020126515A JP 2021176623 A JP2021176623 A JP 2021176623A
Authority
JP
Japan
Prior art keywords
silicon carbide
separation membrane
solid content
emulsion
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020126515A
Other languages
Japanese (ja)
Other versions
JP7008990B2 (en
Inventor
慢 徐
Man Xu
凡 沈
Fan Shen
国蘇 韋
Guosu Wei
家友 季
Jiayou Ji
武斌 戴
Wubin Dai
常連 陳
Changlian Chen
麗 朱
Li Zhu
樹林 王
Shulin Wang
和彬 石
Hebin Shi
俊 薛
Shun Setsu
宏 曹
Hong Cao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Publication of JP2021176623A publication Critical patent/JP2021176623A/en
Application granted granted Critical
Publication of JP7008990B2 publication Critical patent/JP7008990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0044Inorganic membrane manufacture by chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

To provide a production method where problems such as cracks and the like in a sintering step after molding a separation membrane can be effectively avoided and the strength, yield and durability of a silicon carbide separation membrane are drastically improved and which is simple and suitable for popularization and application.SOLUTION: In a production method of a separation membrane based on a high solid silicon carbide slurry, at first, the silicon carbide slurry having a solid content of 58-70 vol.% and a viscosity of 800-1,000 mPa s is produced; next, the slurry is uniformly sprayed on a carrier by a spray-coating method; and the separation membrane is obtained via a predetermined sintering step.SELECTED DRAWING: None

Description

本発明は、セラミック膜の技術分野に属し、具体的に、高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法に関する。 The present invention belongs to the technical field of ceramic membranes, and specifically relates to a method for producing a separation membrane based on a high solid content silicon carbide slurry.

経済の急速な発展に伴い、大規模な工業生産中に、大量の複雑で有害な高温の排出ガスが生成及び放出され、大量の熱エネルギーと有用な資源の浪費をもたらし、生態環境の発展に繋がらない一連の問題も引き起こしている。この問題に対応して、中国は「グリーン生産」という工業発展コンセプトを提案し、工業汚染排出量の監視を強化し、有害な汚染物質の排出を削減するために対応する技術を採用した。例えば、排出ガスの処理には、従来の湿式分離・除塵技術を採用するが、除塵効果が低く、排出量を基準値以下にすることが困難であり、同時に、水資源の浪費や形成二次汚染を引き起こし、人々の健康に大きな害をもたらす。吸入可能な粒子排出と水資源の不足等の益々深刻な問題により、膜分離技術の開発とプロモーションは、社会が新しく効率的な分離技術を緊急に必要とする時に非常に高く評価されている。現在、膜分離技術は、既に国家の先導性産業の発展を促進し、人々の生活の質を向上させる一般的な技術となっている。 With the rapid development of the economy, during large-scale industrial production, a large amount of complex and harmful high-temperature exhaust gas is generated and released, resulting in a large amount of heat energy and waste of useful resources, leading to the development of the ecological environment. It also causes a series of unconnected problems. In response to this problem, China proposed the industrial development concept of "green production", strengthened the monitoring of industrial pollution emissions, and adopted the corresponding technology to reduce the emission of harmful pollutants. For example, the conventional wet separation / dust removal technology is adopted for the treatment of exhaust gas, but the dust removal effect is low, it is difficult to reduce the amount of exhaust gas to the standard value or less, and at the same time, waste of water resources and formation secondary It causes pollution and causes great harm to people's health. Due to increasingly serious problems such as inhalable particle emissions and lack of water resources, the development and promotion of membrane separation technology is highly valued when society urgently needs new and efficient separation technology. At present, membrane separation technology has already become a common technology that promotes the development of national leading industries and improves the quality of life of people.

膜分離技術は、高効率、低エネルギー消費、及び環境にやさしい等の一連の利点があり、食品加工や、廃水処理、バイオエネルギー工学等の分野で広く使用されている。その中でも、無機セラミック膜は、高強度、高安定性等の特徴があり、現在、膜材料開発のホットスポットになっている。炭化ケイ素セラミック膜は、新しいタイプの無機膜材料として、高温耐性や、耐腐食性、耐熱衝撃性、強い親水性、長寿命等の優れた利点を有しているため、様々な過酷な環境条件で使用できる。現在、前駆体法や反応焼結法等、炭化ケイ素セラミック膜の製造方法は数多くあるが、前駆体法で製造された炭化ケイ素膜は、孔径が小さく、透過フラックスが低く、除塵・濾過の効果が悪く、反応焼結法は焼結助剤を添加することで低温での作製が可能であるが、ほとんどの場合二酸化ケイ素を生成し、高温条件下で二酸化ケイ素が腐食しやすく、炭化ケイ素膜の耐久性に大きな影響を与える。また、これらの2種の方法によって製造された炭化ケイ素セラミック膜には、加工しにくく、プロセスが複雑で、製造サイクル及び歩留まりが低い等の問題があり、膜技術の発展を制限している。 Membrane separation technology has a series of advantages such as high efficiency, low energy consumption, and environmental friendliness, and is widely used in fields such as food processing, wastewater treatment, and bioenergy engineering. Among them, the inorganic ceramic film has features such as high strength and high stability, and is currently a hot spot for membrane material development. Silicon carbide ceramic membrane has excellent advantages such as high temperature resistance, corrosion resistance, thermal shock resistance, strong hydrophilicity, and long life as a new type of inorganic membrane material, and therefore has various harsh environmental conditions. Can be used in. Currently, there are many methods for producing silicon carbide ceramic films such as the precursor method and the reaction sintering method, but the silicon carbide film produced by the precursor method has a small pore diameter, a low permeation flux, and is effective in removing dust and filtering. In the worst case, the reaction sintering method can be produced at low temperature by adding a sintering aid, but in most cases, silicon dioxide is produced, and silicon dioxide is easily corroded under high temperature conditions, and a silicon carbide film is formed. It has a great influence on the durability of. Further, the silicon carbide ceramic film produced by these two methods has problems such as difficulty in processing, complicated process, low production cycle and yield, and limits the development of film technology.

焼結プロセスに加えて、成形プロセスも炭化ケイ素セラミック膜の性能に影響を与える。成形方式は問わず、グリーン体という段階を減る必要があり、現在の成形プロセスにはグラウト成形、キャスティング成形、加圧成形等があり、工業生産で広く使用されている。この段階の成形技術はほとんどコストが高く、収縮率が大きいため、高温条件下でクラックが発生しやすい。そのため、プロセスが複雑であるセラミック部品を製造する場合、成形が難しく、歩留まりが低くなる。成形過程における重要な問題の1つはスラリーの製造である。成形プロセスの開発に伴い、低粘度で高固形分のセラミックスラリーの製造は既に炭化ケイ素セラミック膜の成形プロセスに必要な条件になっている。 In addition to the sintering process, the forming process also affects the performance of the silicon carbide ceramic film. Regardless of the molding method, it is necessary to reduce the stage of green body, and the current molding process includes grout molding, casting molding, pressure molding, etc., which are widely used in industrial production. Most of the molding techniques at this stage are costly and have a high shrinkage rate, so that cracks are likely to occur under high temperature conditions. Therefore, when manufacturing ceramic parts having a complicated process, molding is difficult and the yield is low. One of the important problems in the molding process is the production of slurries. With the development of the molding process, the production of a ceramic slurry having a low viscosity and a high solid content has already become a necessary condition for the molding process of a silicon carbide ceramic film.

本発明の主な目的は、従来の炭化ケイ素セラミック膜の機械的強度が不十分であり、製造プロセスが複雑である等の問題に鑑みて、高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法であって、まず、固形分58〜70voL%、粘度800〜1000mPa・sの炭化ケイ素スラリーを製造し、次に吹付け塗装の方法により当該スラリーを担体上に均一に吹付け塗装し、所定の焼結工程を経て分離膜を製造する方法を提供することである。本発明の上記製造プロセスによれば、分離膜の成形後の焼結工程でのクラック等の問題を効果的に回避でき、炭化ケイ素の分離膜の強度、歩留まり、及び耐久性等を大幅に向上させる。 A main object of the present invention is to produce a separation membrane based on a high solid content silicon carbide slurry in view of problems such as insufficient mechanical strength of a conventional silicon carbide ceramic film and complicated production process. As a method, first, a silicon carbide slurry having a solid content of 58 to 70 voL% and a viscosity of 800 to 1000 mPa · s is produced, and then the slurry is uniformly spray-coated on a carrier by a spray coating method to determine a predetermined value. The present invention is to provide a method for producing a separation membrane through the sintering step of the above. According to the above-mentioned manufacturing process of the present invention, problems such as cracks in the sintering process after molding of the separation membrane can be effectively avoided, and the strength, yield, durability, etc. of the separation membrane of silicon carbide are significantly improved. Let me.

上記目的を達成するために、本発明の技術手段は以下の通りである。 In order to achieve the above object, the technical means of the present invention is as follows.

高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法は、まず、高固形分の炭化ケイ素スラリーを炭化ケイ素基体上に均一に吹付け塗装し、次に温度50〜70℃で真空乾燥した後、紫外線照射処理し、最後に高温焼成して分離膜を製造するステップを含み、前記高固形分の炭化ケイ素スラリーは、混合炭化ケイ素、バインダー、分散剤、シリカ、及びポリカルボン酸塩エマルジョンを主原料として複合してなる。 The method for producing a separation membrane based on a high-solid silicon carbide slurry is as follows: first, the high-solid silicon carbide slurry is uniformly spray-coated on a silicon carbide substrate, and then vacuum-dried at a temperature of 50 to 70 ° C. , UV irradiation treatment, and finally high temperature firing to produce a separation membrane, wherein the high solid content silicon carbide slurry is mainly composed of mixed silicon carbide, binder, dispersant, silica, and polycarboxylate emulsion. It is compounded as a raw material.

上記の解決策において、前記バインダーは、1:1〜2の質量比に従ってポリカルボシランとポリジメチルシランを混合してなる。 In the above solution, the binder is made up of a mixture of polycarbosilane and polydimethylsilane according to a mass ratio of 1: 1-2.

上記の解決策において、前記分散剤は、1:1〜2の質量比に従ってメチルセルロースと水酸化テトラメチルアンモニウムを混合してなる。 In the above solution, the dispersant is a mixture of methylcellulose and tetramethylammonium hydroxide according to a mass ratio of 1: 1-2.

上記の解決策において、前記混合炭化ケイ素は、90〜95:5〜10の質量比に従う2種粒径の粗粒炭化ケイ素粉末と細粒炭化ケイ素粉末で構成され、前記粗粒炭化ケイ素の粒度はD50=4〜6μmであり、前記細粒炭化ケイ素の粒度はD50=1.5〜3.5μmであり、2種粒径の炭化ケイ素粉末の純度はいずれも98wt%以上である。 In the above solution, the mixed silicon carbide is composed of coarse-grained silicon carbide powder and fine-grained silicon carbide powder having two kinds of particle sizes according to a mass ratio of 90 to 95: 5 to 10, and the particle size of the coarse-grained silicon carbide. Is D 50 = 4 to 6 μm, the particle size of the fine-grained silicon carbide is D 50 = 1.5 to 3.5 μm, and the purity of the two-kind particle size silicon carbide powder is 98 wt% or more.

上記の解決策において、前記シリカの粒度はD50=2.2〜4.5μmであり、純度は98wt%以上である。 In the above solution, the particle size of the silica is D 50 = 2.2-4.5 μm, and the purity is 98 wt% or more.

上記の解決策において、前記ポリカルボン酸塩エマルジョンは、粘度が2000〜2500mPa.sであり、固形分が50%よりも大きく、複合ポリマーモノマーと水を主原料として、開始剤、緩衝剤、アニオン界面活性剤、及び非イオン界面活性剤の作用下で重合してなる。 In the above solution, the polycarboxylic acid salt emulsion has a viscosity of 2000-2500 mPa. It is s, has a solid content of more than 50%, and is polymerized under the action of an initiator, a buffer, an anionic surfactant, and a nonionic surfactant, using a composite polymer monomer and water as main raw materials.

上記の解決策において、前記複合ポリマーモノマーは、酢酸ビニル、アクリル酸イソオクチル、アクリル酸ブチル、及びメタクリル酸のうちの少なくとも2種を調製してなり、複合ポリマーモノマーにおける各モノマーの質量比は、順に0〜5:0〜5:0〜5:0〜5である。 In the above solution, the composite polymer monomer is prepared from at least two kinds of vinyl acetate, isooctyl acrylate, butyl acrylate, and methacrylic acid, and the mass ratio of each monomer in the composite polymer monomer is in order. It is 0 to 5: 0 to 5: 0 to 5: 0 to 5.

上記の解決策において、前記ポリカルボン酸塩エマルジョン中の各原料の量として、複合ポリマーモノマー55〜62重量部と、水38〜45重量部とを含み、アニオン界面活性剤、非イオン界面活性剤、開始剤、及び緩衝剤の量は、複合ポリマーモノマーの質量に対して、それぞれ0.5〜1.5%、0.5〜1.5%、1〜2%、1〜2%である。 In the above solution, the amount of each raw material in the polycarboxylic acid salt emulsion contains 55 to 62 parts by weight of the composite polymer monomer and 38 to 45 parts by weight of water, and is an anionic surfactant and a nonionic surfactant. , Initiators, and buffers are 0.5-1.5%, 0.5-1.5%, 1-2%, 1-2%, respectively, relative to the mass of the composite polymer monomer. ..

上記の解決策において、前記アニオン界面活性剤は、テトラプロピレンベンゼンスルホン酸ナトリウム及びラウリル硫酸ナトリウムのうちの少なくとも1つであってもよく、前記非イオン界面活性剤は、OP−10及びポリアクリルアミドのうちの少なくとも1つであってもよい。 In the above solution, the anionic surfactant may be at least one of sodium tetrapropylene benzenesulfonate and sodium lauryl sulfate, and the nonionic surfactant may be OP-10 and polyacrylamide. It may be at least one of them.

上記の解決策において、前記開始剤は、過硫酸カリウム、過硫酸アンモニウム、及び過硫酸ナトリウムのうちの少なくとも1つであってもよく、緩衝剤は、重炭酸ナトリウム及び水酸化カルシウムの溶液のうちの少なくとも1つである。 In the above solution, the initiator may be at least one of potassium persulfate, ammonium persulfate, and sodium persulfate, and the buffer may be a solution of sodium bicarbonate and calcium hydroxide. At least one.

上記の解決策において、前記ポリカルボン酸塩エマルジョンの製造方法として、アニオン界面活性剤と非イオン界面活性剤を水に均一に溶解した後、重合性モノマーを添加し、160〜230r/minの撹拌条件下で、均一に混合してプレエマルジョンを取得するステップと、取得したプレエマルジョンの質量の20〜25%を取り、開始剤をそれに加え、70〜75℃まで加熱して保温反応させるステップと、次に残りのプレエマルジョンを加え、保温反応を続けるステップと、その後に、室温まで自然に冷却し、緩衝剤を加えて、得られた溶液系のpH値を8〜9に調整し、最後に、溶液を温度50〜60℃に加熱して20〜30min脱水処理するステップと、を含むことにより、前記ポリカルボン酸塩エマルジョンを取得する。 In the above solution, as a method for producing the polycarboxylate emulsion, an anionic surfactant and a nonionic surfactant are uniformly dissolved in water, a polymerizable monomer is added, and stirring is performed at 160 to 230 r / min. Under the conditions, there is a step of uniformly mixing to obtain a pre-emulsion, and a step of taking 20 to 25% of the mass of the obtained pre-emulsion, adding an initiator to it, and heating to 70 to 75 ° C. for a heat retention reaction. Then, the remaining pre-emulsion is added and the heat retention reaction is continued, and then naturally cooled to room temperature and a buffer is added to adjust the pH value of the obtained solution system to 8-9, and finally. The polycarboxylate emulsion is obtained by comprising the step of heating the solution to a temperature of 50 to 60 ° C. and dehydrating it for 20 to 30 minutes.

上記の解決策において、前記高固形分の炭化ケイ素スラリー中の各成分及びその質量百分率は、混合炭化ケイ素55〜65%、シリカ4〜10%、バインダー1〜3%、分散剤1〜3%、ポリマーエマルジョン28〜37%である。 In the above solution, each component in the high solid content silicon carbide slurry and its mass percentage are 55 to 65% of mixed silicon carbide, 4 to 10% of silica, 1 to 3% of a binder, and 1 to 3% of a dispersant. , Polymer emulsion 28-37%.

上記の解決策において、前記高固形分の炭化ケイ素スラリーの製造方法として、
1)粗粒炭化ケイ素粉末と細粒炭化ケイ素粉末を比率に従って混合し、均一に撹拌して、混合炭化ケイ素を用意するステップと、
2)混合炭化ケイ素にシリカ、バインダー、及び分散剤を添加して撹拌を続け、次に、得られた混合物にポリカルボン酸塩エマルジョンを加え、均一に撹拌して均一に分散した溶液を取得した後、真空吸引処理を実行して、溶液内の気泡を除去し、最後に、粘度と固形分の要件を満たす高固形分の炭化ケイ素スラリーを取得するステップとを含む。
In the above solution, as a method for producing the high solid content silicon carbide slurry,
1) A step of mixing coarse-grained silicon carbide powder and fine-grained silicon carbide powder in proportion to each other and stirring them uniformly to prepare mixed silicon carbide.
2) Silica, a binder, and a dispersant were added to the mixed silicon carbide, and stirring was continued. Next, a polycarboxylate emulsion was added to the obtained mixture, and the mixture was uniformly stirred to obtain a uniformly dispersed solution. After that, a vacuum suction process is performed to remove air bubbles in the solution, and finally, a step of obtaining a high solid content silicon carbide slurry that meets the requirements for viscosity and solid content is included.

上記の解決策において、前記高温焼成の処理ステップは、まず温度1400〜1450℃まで加熱し、30〜90min保温した後、温度2150〜2230℃まで加熱し、30〜120min保温した後、300℃〜400℃まで冷却し、20〜60min保温し、最後に、炉と共に室温まで自然に冷却することを含む。 In the above solution, the high temperature firing treatment step first heats to a temperature of 1400 to 1450 ° C., keeps the temperature for 30 to 90 minutes, then heats to a temperature of 2150 to 2230 ° C., keeps the temperature for 30 to 120 minutes, and then keeps the temperature from 300 ° C. to 300 ° C. It involves cooling to 400 ° C., keeping warm for 20-60 minutes, and finally cooling naturally to room temperature with the furnace.

従来技術と比較して、本発明の有益な効果は以下の通りである。
1)本発明で得られる高固形分の炭化ケイ素スラリーは、固形分が58〜70voL%にも達することができ、流動性や分散性能が良好で、様々な条件下での酸・アルカリに対する耐食性や、高温耐性、安定性が高く、酸化、還元、高塩素等の雰囲気で使用でき、その寿命を効果的に延ばし、様々な成形方式の使用を満足させ、得られた高固形分の炭化ケイ素スラリーの粘度が1000mPa.s未満であり、吹付け塗装による成膜に役立ち、その操作が便利で、制御が柔軟で、仕様、形状、及び厚さの異なる炭化ケイ素膜製品をニーズに応じて設計でき、係る製造方法は簡単で、操作しやすく、使用する機器が簡単で、経済的で環境に優しく、商業的価値が高く、工業的に生産される。
Compared with the prior art, the beneficial effects of the present invention are as follows.
1) The high solid content silicon carbide slurry obtained in the present invention can reach a solid content of 58 to 70 voL%, has good fluidity and dispersion performance, and has corrosion resistance to acids and alkalis under various conditions. It has high high temperature resistance and stability, can be used in atmospheres such as oxidation, reduction, and high chlorine, effectively extends its life, satisfies the use of various molding methods, and obtains high solid silicon carbide. The viscosity of the slurry is 1000 mPa. Silicon carbide film products with less than s, useful for film formation by spray coating, convenient operation, flexible control, and different specifications, shapes, and thicknesses can be designed according to needs. It is simple, easy to operate, easy to use, economical and environmentally friendly, has high commercial value and is industrially produced.

2)本発明は、混合炭化スラリーを製造する溶媒として自作の熱可塑性ポリカルボン酸塩エマルジョンと、優れた低温柔靭性と高い衝撃強度を有し、環境にやさしいため、従来の水溶媒と比較して、本発明によるポリマーエマルジョン溶媒系は、良好な分散性と気泡均一性を備えた高固形分の炭化ケイ素懸濁スラリーの形成を効果的に促進し、紫外線の作用下で迅速に硬化するため、吹付け塗装成形がより容易になり、吹付け塗装の成形サイクルが大幅に短縮され、温度が500℃未満の場合、エマルジョンは発揮による膜の収縮やクラックがなく、膜の初期強度が高く、保管や輸送に便利で、温度が750℃に達すると、膜内部のエマルジョンが炭化し始め、高固形分の炭化ケイ素粒子が密に重なり、重なり面積が大きく、均一に分布した孔構造が形成され、強度が増やし、有効濾過面積もさらに広がり、分離膜の生産率が向上する。 2) The present invention is compared with a self-made thermoplastic polycarboxylate emulsion as a solvent for producing a mixed carbonized slurry, and because it has excellent low temperature toughness and high impact strength and is environmentally friendly, it is compared with a conventional aqueous solvent. Therefore, the polymer emulsion solvent system according to the present invention effectively promotes the formation of a high solid content silicon carbide suspension slurry having good dispersibility and bubble uniformity, and is rapidly cured under the action of ultraviolet rays. , The spray coating molding becomes easier, the spray coating molding cycle is significantly shortened, and when the temperature is less than 500 ° C, the emulsion has no film shrinkage or cracks due to exertion, and the initial strength of the film is high. Convenient for storage and transportation, when the temperature reaches 750 ° C, the emulsion inside the membrane begins to carbonize, and the high solid content silicon carbide particles are densely overlapped, forming a large overlapping area and a uniformly distributed pore structure. , The strength is increased, the effective filtration area is further expanded, and the production rate of the separation membrane is improved.

3)本発明は、粗粒と細粒の2種粒径を持つ混合炭化ケイ素原料系を採用することで、高温焼結中に、粒径の小さい炭化ケイ素粒子が昇華後に凝固し、残りの大粒子結晶の一部を成長させ、最終的に得られる分離膜に形成したSi−Cがシートネットワーク状構造に結合され、同時に、適切に導入された二酸化ケイ素は高温でポリマーエマルジョンの炭化生成物と反応して炭化ケイ素を生成し、得られた分離膜に形成したSi−Cの結合系をさらに強化し、15Mpa以内のリコイル圧力に耐え、落下しないよう保証し、様々な過酷な濾過環境に適し、使用寿命を大幅に延ばしている。 3) In the present invention, by adopting a mixed silicon carbide raw material system having two kinds of particle diameters, coarse particles and fine particles, silicon carbide particles having a small particle size are solidified after sublimation during high-temperature sintering, and the rest. Si—C formed on the final separation membrane by growing a part of the large particle crystal is bonded to the sheet network structure, and at the same time, the appropriately introduced silicon dioxide is a carbide product of the polymer emulsion at high temperature. Reacts with to produce silicon carbide, further strengthening the Si—C bonding system formed on the resulting separation membrane, withstanding recoil pressure within 15 MPa, ensuring that it does not fall, and in a variety of harsh filtration environments. Suitable and greatly extends the service life.

本発明の目的、技術手段及び利点をさらに明らかにするために、以下に実施例を参照しながら、本発明をさらに詳細に説明する。ここで説明する具体的な実施例は本発明の解釈のために用いられ、本発明を限定するためのものではないことが理解されるべきである。 In order to further clarify the object, technical means and advantages of the present invention, the present invention will be described in more detail with reference to Examples below. It should be understood that the specific examples described herein are used for the interpretation of the present invention and are not intended to limit the present invention.

以下の実施例では、採用される粗粒炭化ケイ素の粒度はD50=5.3μmであり、細粒炭化ケイ素の粒度はD50=2.2μmであり、採用されるシリカの粒度D50=3.0μmであり、純度は98wt%以上である。 In the following examples, the particle size of the coarse-grained silicon carbide used is D 50 = 5.3 μm, the particle size of the fine-grained silicon carbide is D 50 = 2.2 μm, and the particle size of the silica used is D 50 =. It is 3.0 μm and has a purity of 98 wt% or more.

高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法として、具体的なステップは次の通りである。 Specific steps as a method for producing a separation membrane based on a high solid content silicon carbide slurry are as follows.

1)カルボキシレートエマルジョンの調製:ポリマーモノマーの質量に対して0.8%のテトラプロピレンベンゼンスルホン酸ナトリウム及びポリマーモノマーの質量に対して0.8%のOP−10を42重量部の水に均一に溶解し、次に58重量部の重合性モノマー(酢酸ビニル、アクリル酸イソオクチル、及びアクリル酸ブチルの質量比は2:2:1)を加え、160r/minの撹拌条件下で十分に混合してプレエマルジョンを取得し、
取得したプレエマルジョンの質量の25%を取り、ポリマーモノマーの質量に対して1%の過硫酸カリウムを加え、70℃まで加熱して保温反応させ、次に残りのプレエマルジョンを加え、70℃での保温反応を続け、その後に、室温まで自然に冷却し、ポリマーモノマーの質量に対して1%の重炭酸ナトリウムを加えて、得られた溶液系のpH値を8〜9に調整し、最後に、溶液を55℃の温度に加熱して30min脱水処理を行えばよい。
1) Preparation of carboxylate emulsion: 0.8% sodium tetrapropylenebenzenesulfonate based on the mass of the polymer monomer and 0.8% OP-10 based on the mass of the polymer monomer are uniformly added to 42 parts by weight of water. Then, 58 parts by weight of a polymerizable monomer (vinyl acetate, isooctyl acrylate, and butyl acrylate in a mass ratio of 2: 2: 1) was added, and the mixture was thoroughly mixed under stirring conditions of 160 r / min. To get the pre-emulsion,
Take 25% of the weight of the obtained pre-emulsion, add 1% potassium persulfate to the weight of the polymer monomer, heat to 70 ° C. for heat retention reaction, then add the remaining pre-emulsion and at 70 ° C. After that, the mixture was naturally cooled to room temperature, and 1% sodium bicarbonate was added to the mass of the polymer monomer to adjust the pH value of the obtained solution system to 8 to 9, and finally. Then, the solution may be heated to a temperature of 55 ° C. and dehydrated for 30 minutes.

2)90:10の質量比に従って粗粒炭化ケイ素粉末及び細粒炭化ケイ素粉末を混合し、均一に撹拌して、混合炭化ケイ素を用意し、その後に、各原料を比率で秤量し、各原料の質量百分率は、混合炭化ケイ素63%、シリカ5%、バインダー1%(その中のポリカルボシラン及びポリジメチルシランの質量比は1:1)、分散剤1%(その中のメチルセルロース及び水酸化テトラメチルアンモニウムの質量比は1:1)、カルボキシレートエマルジョン30%である。 2) Coarse-grained silicon carbide powder and fine-grained silicon carbide powder are mixed according to a mass ratio of 90:10 and stirred uniformly to prepare mixed silicon carbide, after which each raw material is weighed in a ratio and each raw material is used. The mass ratio of is 63% of mixed silicon carbide, 5% of silica, 1% of binder (mass ratio of polycarbosilane and polydimethylsilane in it is 1: 1), and 1% of dispersant (methylcellulose and hydroxide in it). The mass ratio of tetramethylammonium is 1: 1) and the carboxylate emulsion is 30%.

3)秤量した混合炭化ケイ素にシリカ、バインダー、及び分散剤を加え均一に撹拌し、得られた混合物に秤量したカルボキシレートエマルジョンを加え、8min撹拌して均一に分散した溶液を得た後、真空吸引処理を実行して、溶液内の気泡を除去し、前記高固形分の炭化ケイ素スラリーを取得する。 3) Silica, binder, and dispersant were added to the weighed mixed silicon carbide and stirred uniformly. To the obtained mixture, the weighed carboxylate emulsion was added, and the mixture was stirred for 8 minutes to obtain a uniformly dispersed solution, and then vacuumed. A suction treatment is performed to remove air bubbles in the solution and obtain the high solid content silicon carbide slurry.

4)得られた高固形分の炭化ケイ素スラリーを炭化ケイ素基体上に均一に吹付け塗装した後、温度50℃で真空乾燥し、紫外線照射下で急速硬化させ、その後に、高温炉に移し、2℃/minで1400℃まで昇温させ、60min保温してから、500ml/minの速度でアルゴンガスを通過させて炉を20min洗浄し、次に2℃/minで温度2180℃まで昇温させ、90min保温した後、2℃/minの冷却速度で400℃まで冷却し、30min保温し、最後に炉と共に室温まで自然に冷却すると、前記炭化ケイ素の分離膜が得られる。 4) The obtained high-solid silicon carbide slurry was uniformly spray-coated on a silicon carbide substrate, dried in a vacuum at a temperature of 50 ° C., rapidly cured under ultraviolet irradiation, and then transferred to a high-temperature furnace. The temperature is raised to 1400 ° C. at 2 ° C./min, kept warm for 60 min, then passed through argon gas at a rate of 500 ml / min to wash the furnace for 20 min, and then the temperature is raised to 2180 ° C. at 2 ° C./min. After keeping the temperature for 90 minutes, the mixture is cooled to 400 ° C. at a cooling rate of 2 ° C./min, kept warm for 30 minutes, and finally naturally cooled to room temperature together with the furnace to obtain the silicon carbide separation membrane.

本実施例で得られた炭化ケイ素スラリーの固形分は62.5voL%、粘度は825mPa.sであり、当該スラリーにより製造されたシート状の分離膜の厚さは0.8mmであり、走査型電子顕微鏡テストから、分離膜の微細孔の分布が均一で、孔径に大きな差がなく、膜の表現濾過孔径が1.6μmで、膜の有効濾過面積が0.16mで、濾過圧力が小さく、破裂強度が18MPaに達することが示され、耐久性の良い炭化ケイ素膜を製造する目的を達成した。 The solid content of the silicon carbide slurry obtained in this example was 62.5 voL%, and the viscosity was 825 mPa. The thickness of the sheet-shaped separation membrane produced by the slurry is 0.8 mm, and from the scanning electron microscope test, the distribution of the fine pores of the separation membrane is uniform, and there is no large difference in the pore diameter. Representation of Membrane It has been shown that the filtration pore diameter is 1.6 μm, the effective filtration area of the membrane is 0.16 m 2 , the filtration pressure is small, and the burst strength reaches 18 MPa. Achieved.

また、高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法として、具体的なステップは次の通りである。 Further, as a method for producing a separation membrane based on a high solid content silicon carbide slurry, specific steps are as follows.

1)カルボキシレートエマルジョンの調製:ポリマーモノマーの質量に対して1.5%のテトラプロピレンベンゼンスルホン酸ナトリウム及びポリマーモノマーの質量に対して1.5%のポリアクリルアミドを40重量部の水に均一に溶解し、次に60重量部の重合性モノマー(酢酸ビニル、アクリル酸イソオクチル、及びアクリル酸ブチルの質量比は2:2:2)を加え、200r/minの撹拌条件下で十分に混合してプレエマルジョンを取得し、取得したプレエマルジョンの質量の25%を取り、ポリマーモノマーの質量に対して1.5%の過硫酸カリウムを加え、75℃まで加熱して保温反応させ、次に残りのプレエマルジョンを加え、75℃での保温反応を続け、その後に、室温まで自然に冷却し、ポリマーモノマーの質量に対して1.5%の重炭酸ナトリウムを加えて、得られた溶液系のpH値を8〜9に調整し、最後に、溶液を55℃の温度に加熱して30min脱水処理を行えばよい。 1) Preparation of carboxylate emulsion: 1.5% sodium tetrapropylenebenzenesulfonate with respect to the mass of the polymer monomer and 1.5% polyacrylamide with respect to the mass of the polymer monomer are uniformly added to 40 parts by weight of water. After dissolution, 60 parts by weight of a polymerizable monomer (vinyl acetate, isooctyl acrylate, and butyl acrylate having a mass ratio of 2: 2: 2) was added, and the mixture was thoroughly mixed under stirring conditions of 200 r / min. Take the pre-emulsion, take 25% of the mass of the obtained pre-emulsion, add 1.5% potassium persulfate to the mass of the polymer monomer, heat to 75 ° C. to keep warm, then the rest The pH of the resulting solution system was obtained by adding a pre-emulsion, continuing the heat retention reaction at 75 ° C., then naturally cooling to room temperature and adding 1.5% sodium bicarbonate based on the mass of the polymer monomer. The value may be adjusted to 8 to 9, and finally, the solution may be heated to a temperature of 55 ° C. for 30 min dehydration treatment.

2)93:7の質量比に従って粗粒炭化ケイ素粉末及び細粒炭化ケイ素粉末を混合し、均一に撹拌して、混合炭化ケイ素を用意し、その後に、各原料を比率で秤量し、各原料の質量百分率は、混合炭化ケイ素62%、シリカ6%、バインダー1%(その中のポリカルボシラン及びポリジメチルシランの質量比は1:1.5)、分散剤1%(その中のメチルセルロース及び水酸化テトラメチルアンモニウムの質量比は1:1.5)、カルボキシレートエマルジョン30%である。 2) According to the mass ratio of 93: 7, coarse-grained silicon carbide powder and fine-grained silicon carbide powder are mixed and uniformly stirred to prepare mixed silicon carbide, and then each raw material is weighed in a ratio and each raw material is used. The mass ratio of is 62% of mixed silicon carbide, 6% of silica, 1% of binder (mass ratio of polycarbosilane and polydimethylsilane in it is 1: 1.5), 1% of dispersant (methylcellulose and methylcellulose in it). The mass ratio of tetramethylammonium hydroxide is 1: 1.5) and the carboxylate emulsion is 30%.

3)秤量した混合炭化ケイ素にシリカ、バインダー、及び分散剤を加え均一に撹拌し、得られた混合物に秤量したカルボキシレートエマルジョンを加え、6min撹拌して均一に分散した溶液を得た後、真空吸引処理を実行して、溶液内の気泡を除去し、前記高固形分の炭化ケイ素スラリーを取得する。 3) Silica, binder, and dispersant were added to the weighed mixed silicon carbide and stirred uniformly. To the obtained mixture, the weighed carboxylate emulsion was added, and the mixture was stirred for 6 minutes to obtain a uniformly dispersed solution, and then vacuumed. A suction treatment is performed to remove air bubbles in the solution and obtain the high solid content silicon carbide slurry.

4)得られた高固形分の炭化ケイ素スラリーを炭化ケイ素基体上に均一に吹付け塗装した後、温度50℃で真空乾燥し、紫外線照射下で急速硬化させ、その後に、高温炉に移し、2℃/minで1420℃まで昇温させ、55min保温してから、500ml/minの速度でアルゴンガスを通過させて炉を20min洗浄し、次に2℃/minで温度2150℃まで昇温させ、100min保温した後、2℃/minの冷却速度で400℃まで冷却し、25min保温し、最後に炉と共に室温まで自然に冷却すると、前記炭化ケイ素の分離膜が得られる。 4) The obtained high-solid silicon carbide slurry was uniformly spray-coated on a silicon carbide substrate, dried in a vacuum at a temperature of 50 ° C., rapidly cured under ultraviolet irradiation, and then transferred to a high-temperature furnace. The temperature is raised to 1420 ° C. at 2 ° C./min, kept warm for 55 min, then passed through argon gas at a rate of 500 ml / min to wash the furnace for 20 min, and then the temperature is raised to 2150 ° C. at 2 ° C./min. After keeping the temperature for 100 minutes, the mixture is cooled to 400 ° C. at a cooling rate of 2 ° C./min, kept warm for 25 minutes, and finally naturally cooled to room temperature together with the furnace to obtain the silicon carbide separation membrane.

本実施例で得られた炭化ケイ素スラリーの固形分は64.8voL%、粘度は856mPa.sであり、当該スラリーにより製造されたシート状の分離膜の厚さは0.95mmであり、走査型電子顕微鏡テストから、分離膜の微細孔の分布が均一で、孔径に大きな差がなく、膜の表現濾過孔径が1.5μmで、膜の有効濾過面積が0.17mで、濾過圧力が小さく、破裂強度が19.2Mpaに達することが示され、耐久性の良い炭化ケイ素膜を製造する目的を達成した。 The solid content of the silicon carbide slurry obtained in this example was 64.8 voL%, and the viscosity was 856 mPa. The thickness of the sheet-shaped separation membrane produced by the slurry is 0.95 mm, and from the scanning electron microscope test, the distribution of the fine pores of the separation membrane is uniform, and there is no large difference in the pore diameter. Membrane expression It has been shown that the filtration pore diameter is 1.5 μm, the effective filtration area of the membrane is 0.17 m 2 , the filtration pressure is small, and the burst strength reaches 19.2 Mpa, producing a durable silicon carbide membrane. Achieved the purpose of

また、高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法として、具体的なステップは次の通りである。 Further, as a method for producing a separation membrane based on a high solid content silicon carbide slurry, specific steps are as follows.

1)カルボキシレートエマルジョンの調製:ポリマーモノマーの質量に対して1.5%のテトラプロピレンベンゼンスルホン酸ナトリウム及びラウリル硫酸ナトリウム複合物(両方は1:1.5の質量比で複合)とポリマーモノマーの質量に対して1.5%のP−10及びポリアクリルアミド複合物(両方は1:1.5の質量比で複合)を45重量部の水に均一に溶解し、次に55重量部の重合性モノマー(酢酸ビニル、アクリル酸イソオクチル、及びアクリル酸ブチルの質量比は3:3:2)を加え、200r/minの撹拌条件下で十分に混合してプレエマルジョンを取得し、取得したプレエマルジョンの質量の20%を取り、ポリマーモノマーの質量に対して2%の開始剤(過硫酸カリウム及び過硫酸アンモニウムの質量比は1:1)を加え、75℃まで加熱して保温反応させ、次に残りのプレエマルジョンを加え、75℃での保温反応を続け、その後に、室温まで自然に冷却し、ポリマーモノマーの質量に対して2%の重炭酸ナトリウムを加えて、得られた溶液系のpH値を8〜9に調整し、最後に、溶液を55℃の温度に加熱して30min脱水処理を行えばよい。 1) Preparation of carboxylate emulsion: 1.5% of sodium tetrapropylenebenzenesulfonate and sodium laurylsulfate composite with respect to the mass of the polymer monomer (both are composited at a mass ratio of 1: 1.5) and the polymer monomer. 1.5% by weight of P-10 and polyacrylamide composite (both composited at a mass ratio of 1: 1.5) were uniformly dissolved in 45 parts by weight of water, followed by 55 parts by weight of polymerization. A sex monomer (vinyl acetate, isooctyl acrylate, and butyl acrylate having a mass ratio of 3: 3: 2) was added and mixed well under stirring conditions of 200 r / min to obtain a pre-emulsion, and the obtained pre-emulsion was obtained. 20% of the mass of the polymer monomer is taken, 2% of the initiator (mass ratio of potassium persulfate and ammonium persulfate is 1: 1) is added, and the mixture is heated to 75 ° C. for heat retention reaction, and then the reaction is carried out. The remaining pre-emulsion was added and the heat retention reaction at 75 ° C. was continued, after which it was naturally cooled to room temperature and 2% sodium bicarbonate based on the mass of the polymer monomer was added to obtain the pH of the solution system. The value may be adjusted to 8 to 9, and finally, the solution may be heated to a temperature of 55 ° C. and dehydrated for 30 minutes.

2)91:9の質量比に従って粗粒炭化ケイ素粉末及び細粒炭化ケイ素粉末を混合し、均一に撹拌して、混合炭化ケイ素を用意し、その後に、各原料を比率で秤量し、各原料の質量百分率は、混合炭化ケイ素58%、シリカ4%、バインダー2%(その中のポリカルボシラン及びポリジメチルシランの質量比は1:1.5)、分散剤2%(その中のメチルセルロース及び水酸化テトラメチルアンモニウムの質量比は1:1.5)、カルボキシレートエマルジョン34%である。 2) According to the mass ratio of 91: 9, coarse-grained silicon carbide powder and fine-grained silicon carbide powder are mixed and uniformly stirred to prepare mixed silicon carbide, and then each raw material is weighed in a ratio and each raw material is used. The mass ratio of the mixture is 58% of mixed silicon carbide, 4% of silica, 2% of binder (mass ratio of polycarbosilane and polydimethylsilane in it is 1: 1.5), and 2% of dispersant (methylcellulose and methylcellulose in it). The mass ratio of tetramethylammonium hydroxide is 1: 1.5), and the carboxylate emulsion is 34%.

3)秤量した混合炭化ケイ素にシリカ、バインダー、及び分散剤を加え均一に撹拌し、得られた混合物に秤量したカルボキシレートエマルジョンを加え、10min撹拌して均一に分散した溶液を得た後、真空吸引処理を実行して、溶液内の気泡を除去し、前記高固形分の炭化ケイ素スラリーを取得する。 3) Silica, binder, and dispersant were added to the weighed mixed silicon carbide and stirred uniformly. To the obtained mixture, the weighed carboxylate emulsion was added, and the mixture was stirred for 10 minutes to obtain a uniformly dispersed solution, and then vacuumed. A suction treatment is performed to remove air bubbles in the solution and obtain the high solid content silicon carbide slurry.

4)得られた高固形分の炭化ケイ素スラリーを炭化ケイ素基体上に均一に吹付け塗装した後、温度60℃で真空乾燥し、紫外線照射下で急速硬化させ、その後に、高温炉に移し、2℃/minで1450℃まで昇温させ、70min保温してから、500ml/minの速度でアルゴンガスを通過させて炉を20min洗浄し、次に2℃/minで温度2200℃まで昇温させ、110min保温した後、2℃/minの冷却速度で300℃まで冷却し、40min保温し、最後に炉と共に室温まで自然に冷却すると、前記炭化ケイ素の分離膜が得られる。 4) The obtained high-solid silicon carbide slurry was uniformly spray-coated on a silicon carbide substrate, dried in a vacuum at a temperature of 60 ° C., rapidly cured under ultraviolet irradiation, and then transferred to a high-temperature furnace. The temperature is raised to 1450 ° C. at 2 ° C./min, kept warm for 70 min, then passed through argon gas at a rate of 500 ml / min to wash the furnace for 20 min, and then the temperature is raised to 2200 ° C. at 2 ° C./min. After keeping the temperature for 110 minutes, the mixture is cooled to 300 ° C. at a cooling rate of 2 ° C./min, kept warm for 40 minutes, and finally naturally cooled to room temperature together with the furnace to obtain the silicon carbide separation membrane.

本実施例で得られた炭化ケイ素スラリーの固形分は67.3voL%、粘度は902mPa.sであり、当該スラリーにより製造されたシート状の分離膜の厚さは1.1mmであり、走査型電子顕微鏡テストから、分離膜の微細孔の分布が均一で、孔径に大きな差がなく、膜の表現濾過孔径が2.8μmで、膜の有効濾過面積が0.18mで、濾過圧力が小さく、破裂強度が18.5Mpaに達することが示され、耐久性の良い炭化ケイ素膜を製造する目的を達成した。 The solid content of the silicon carbide slurry obtained in this example was 67.3 voL%, and the viscosity was 902 mPa. The thickness of the sheet-shaped separation membrane produced by the slurry is 1.1 mm, and from the scanning electron microscope test, the distribution of the fine pores of the separation membrane is uniform, and there is no large difference in the pore diameter. Membrane expression It has been shown that the filtration pore diameter is 2.8 μm, the effective filtration area of the membrane is 0.18 m 2 , the filtration pressure is small, and the burst strength reaches 18.5 Mpa, and a durable silicon carbide membrane is produced. Achieved the purpose of

比較例1Comparative Example 1

高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法として、溶媒として脱イオン水を使用する以外、その具体的なステップは実施例2とほぼ同様である。具体的には、次のステップを含む。 As a method for producing a separation membrane based on a high solid content silicon carbide slurry, the specific steps thereof are almost the same as those in Example 2 except that deionized water is used as a solvent. Specifically, it includes the following steps.

1)93:7の質量比に従って粗粒炭化ケイ素粉末及び細粒炭化ケイ素粉末を混合し、均一に撹拌して用意する。 1) Prepare coarse-grained silicon carbide powder and fine-grained silicon carbide powder by mixing them according to a mass ratio of 93: 7, and stirring them uniformly.

2)質量比が62%の混合炭化ケイ素を秤量し、質量比が6%のシリカ、質量比が1%のバインダー(その中のポリカルボシラン及びポリジメチルシランの質量比は1:1.5)、質量比が1%の分散剤(その中のメチルセルロース及び水酸化テトラメチルアンモニウムの質量比は1:1.5)を加え、撹拌し続ける。 2) Weighing mixed silicon carbide with a mass ratio of 62%, silica with a mass ratio of 6% and a binder with a mass ratio of 1% (the mass ratio of polycarbosilane and polydimethylsilane in it is 1: 1.5. ), A dispersant having a mass ratio of 1% (the mass ratio of methylcellulose and tetramethylammonium hydroxide in it is 1: 1.5) is added, and stirring is continued.

3)ステップ2)で得られた混合物を質量比が30%の脱イオン水に加え、6min撹拌して均一に分散した溶液を取得した後、真空吸引処理を実行して、溶液内の気泡を除去し、炭化ケイ素スラリー(固形分は38.1voL%のみ)を取得する。 3) The mixture obtained in step 2) is added to deionized water having a mass ratio of 30%, and the mixture is stirred for 6 minutes to obtain a uniformly dispersed solution, and then a vacuum suction treatment is executed to remove air bubbles in the solution. Remove to obtain a silicon carbide slurry (solid content is only 38.1 voL%).

4)取得した炭化ケイ素スラリーを炭化ケイ素基体上に均一に吹付け塗装した後、温度50℃で真空乾燥し、紫外線照射下で急速硬化させ、その後に、高温炉に移し、2℃/minで1420℃まで昇温させ、55min保温してから、500ml/minの速度でアルゴンガスを通過させて炉を20min洗浄し、次に2℃/minで温度2150℃まで昇温させ、100min保温した後、2℃/minの冷却速度で400℃まで冷却し、25min保温し、最後に炉と共に室温まで自然に冷却すると、前記炭化ケイ素の分離膜が得られる。 4) The obtained silicon carbide slurry is uniformly spray-coated on a silicon carbide substrate, dried in a vacuum at a temperature of 50 ° C., rapidly cured under ultraviolet irradiation, and then transferred to a high-temperature furnace at 2 ° C./min. After raising the temperature to 1420 ° C. and keeping the temperature for 55 minutes, the furnace is washed for 20 minutes by passing argon gas at a rate of 500 ml / min, then the temperature is raised to 2150 ° C. at 2 ° C./min and the temperature is kept for 100 min. When the mixture is cooled to 400 ° C. at a cooling rate of 2 ° C./min, kept warm for 25 minutes, and finally naturally cooled to room temperature together with the furnace, the silicon carbide separation membrane is obtained.

テストによると、本比較例で得られたシート状の分離膜の厚さが2.2mmであり、当該分離膜の微細孔の分布が不均一であり、膜の表現濾過孔径が4.1μmで、膜の有効濾過面積が0.06mで、濾過圧力が大きく、破裂強度がただ9.3Mpaであった。当該スラリーにより製造された分離膜は成形が困難であり、本発明で採用する吹付け塗装法による成膜には適さない。 According to the test, the thickness of the sheet-shaped separation membrane obtained in this comparative example was 2.2 mm, the distribution of the fine pores of the separation membrane was uneven, and the expression filtration pore diameter of the membrane was 4.1 μm. The effective filtration area of the membrane was 0.06 m 2 , the filtration pressure was high, and the burst strength was only 9.3 Mpa. The separation film produced by the slurry is difficult to mold and is not suitable for film formation by the spray coating method adopted in the present invention.

比較例2Comparative Example 2

また、多孔質炭化ケイ素セラミック担体の製造方法として、その具体的なステップは、採用する粗粒炭化ケイ素の粒度がD50=9.2μmであり、細粒炭化ケイ素の粒度がD50=6.4μmであることを除いて、実施例1とほぼ同じである。 Further, as a specific step as a method for producing a porous silicon carbide ceramic carrier, the particle size of the coarse-grained silicon carbide to be adopted is D 50 = 9.2 μm, and the particle size of the fine-grained silicon carbide is D 50 = 6. It is almost the same as Example 1 except that it is 4 μm.

この比較例で得られた炭化ケイ素スラリーは、固形分が35.2%と低く、採用する炭化ケイ素の粒径が大きすぎるため、重力沈降の作用下で、スラリーの分散性や、懸濁性、流動性が不十分であり、結果として粘度が大きすぎて撹拌が困難になり、焼結が不十分という等の問題がよく発生して、カーボンとシリカが完全に反応せず、膜の強度に影響を与える。テストによると、本比較例で得られたシート状の分離膜の厚さが2.2mmであり、当該分離膜の微細孔の分布が不均一であり、膜の表現濾過孔径が4.1μmで、膜の有効濾過面積が0.06mで、濾過圧力が大きく、破裂強度がただ9.3Mpaであった。当該スラリーにより製造された分離膜は成形が困難であり、本発明で採用する吹付け塗装法による成膜には適さない。 The silicon carbide slurry obtained in this comparative example has a low solid content of 35.2% and the particle size of the silicon carbide used is too large, so that the slurry is dispersible and suspendable under the action of gravitational sedimentation. , Insufficient fluidity, resulting in too high viscosity and difficulty in stirring, inadequate sintering and other problems often occur, carbon and silica do not completely react, and film strength. Affects. According to the test, the thickness of the sheet-shaped separation membrane obtained in this comparative example was 2.2 mm, the distribution of the fine pores of the separation membrane was uneven, and the expression filtration pore diameter of the membrane was 4.1 μm. The effective filtration area of the membrane was 0.06 m 2 , the filtration pressure was high, and the burst strength was only 9.3 Mpa. The separation film produced by the slurry is difficult to mold and is not suitable for film formation by the spray coating method adopted in the present invention.

比較例3Comparative Example 3

また、高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法として、自作のエマルジョンの製造方法が以下のステップを含むことを除いて、その具体的なステップは実施例1とほぼ同様である。 Further, as a method for producing a separation membrane based on a high solid content silicon carbide slurry, the specific steps thereof are almost the same as those in Example 1 except that the method for producing a self-made emulsion includes the following steps.

まず、ポリマーモノマーの質量に対して2%のテトラプロピレンベンゼンスルホン酸ナトリウム及びポリマーモノマーの質量に対して2%のOP−10を70重量部の水に均一に溶解し、次に30重量部の重合性モノマー(酢酸ビニルとアクリル酸イソオクチルとアクリル酸ブチルは質量比2:2:1で重合される)を加え、160r/minの撹拌条件下で十分に混合してプレエマルジョンを取得するステップと、取得したプレエマルジョンの質量の25%を取り、ポリマーモノマーの質量に対して1%の過硫酸カリウムを加え、70℃まで加熱して保温反応させるステップと、次に残りの質量比75%のプレエマルジョンを加え、70℃での保温反応を続けるステップと、その後に、室温まで自然に冷却し、ポリマーモノマーの質量に対して1%の重炭酸ナトリウムを加えて、得られた溶液系のpH値を8〜9に調整し、最後に、溶液を55℃の温度に加熱して30min脱水処理を行うステップと、を含めばよい。 First, 2% of sodium tetrapropylenebenzenesulfonate based on the mass of the polymer monomer and 2% of OP-10 based on the mass of the polymer monomer were uniformly dissolved in 70 parts by weight of water, and then 30 parts by weight. A step of adding a polymerizable monomer (vinyl acetate, isooctyl acrylate and butyl acrylate are polymerized at a mass ratio of 2: 2: 1) and mixing them well under stirring conditions of 160 r / min to obtain a pre-emulsion. Take 25% of the mass of the obtained pre-emulsion, add 1% potassium persulfate to the mass of the polymer monomer, heat to 70 ° C. to keep it warm, and then the remaining mass ratio of 75%. The pH of the resulting solution system was obtained by adding a pre-emulsion and continuing the heat retention reaction at 70 ° C., followed by natural cooling to room temperature and 1% sodium bicarbonate based on the mass of the polymer monomer. The value may be adjusted to 8-9, and finally, a step of heating the solution to a temperature of 55 ° C. and performing a 30-minute dehydration treatment may be included.

本比較例では、エマルジョンを製造する時、重合性モノマーの量が多すぎて、モノマーの滞留が発生し、系内の反応が制御しにくく、共重合反応が不十分であり、得られた炭化ケイ素スラリーに凝集が発生して高懸濁液を形成しなかったため、固形分がただ40.3voL%であり、粘度がただ500mPa.sであり、当該スラリーにより製造されたシート状の分離膜の厚度さは1.2mmであり、当該分離膜の微細孔の分布が不均一で、膜の表現濾過孔径が3.9μmで、膜の有効濾過面積が0.05mで、濾過圧力が大きく、破裂強度がただ10.2Mpaであった。 In this comparative example, when the emulsion is produced, the amount of the polymerizable monomer is too large, the monomer stays, the reaction in the system is difficult to control, the copolymerization reaction is insufficient, and the obtained carbide is obtained. Since the silicon slurry did not form a high suspension due to aggregation, the solid content was only 40.3 voL% and the viscosity was only 500 mPa. The thickness of the sheet-shaped separation membrane produced by the slurry is 1.2 mm, the distribution of the fine pores of the separation membrane is non-uniform, the expression filtration pore diameter of the membrane is 3.9 μm, and the membrane. The effective filtration area was 0.05 m 2 , the filtration pressure was high, and the burst strength was only 10.2 Mpa.

上記の実施例は明確に説明ために例示したものに過ぎず、実施形態を制限するためのものではない。本分野に属する当業者であれば、上記の説明に基づいて他の異なる形態の変更又は修正を行うことができ、ここに全ての実施形態を列挙する必要はない。従って、明示的な変更又は修正は、依然として本発明の保護範囲内である。 The above embodiments are merely exemplary for clarity purposes and are not intended to limit embodiments. One of ordinary skill in the art can make other different forms of modification or modification based on the above description, and it is not necessary to list all the embodiments here. Therefore, explicit changes or modifications are still within the scope of the invention.

Claims (10)

高固形分の炭化ケイ素スラリーを炭化ケイ素基体上に均一に吹付け塗装し、真空乾燥した後、紫外線照射処理と高温焼成を行って分離膜を取得するステップを含み、
前記高固形分の炭化ケイ素スラリーは、混合炭化ケイ素、バインダー、分散剤、シリカ、及びポリカルボン酸塩エマルジョンを主原料として複合してなることを特徴とする高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。
A step of uniformly spray-coating a high-solid silicon carbide slurry onto a silicon carbide substrate, vacuum-drying it, and then performing ultraviolet irradiation treatment and high-temperature firing to obtain a separation film is included.
The high-solid silicon carbide slurry is separated based on the high-solid silicon carbide slurry, which is composed of a mixed silicon carbide, a binder, a dispersant, silica, and a polycarboxylic acid salt emulsion as a main raw material. Membrane manufacturing method.
前記混合炭化ケイ素は、90〜95:5〜10の質量比に従って2種粒径の粗粒炭化ケイ素及び細粒炭化ケイ素の粉末で構成され、前記粗粒炭化ケイ素の粒度はD50=4〜6μmであり、前記細粒炭化ケイ素の粒度はD50=1.5〜3.5μmであることを特徴とする請求項1に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。 The mixed silicon carbide is composed of powders of coarse-grained silicon carbide and fine-grained silicon carbide having two kinds of particle diameters according to a mass ratio of 90 to 95: 5 to 10, and the particle size of the coarse-grained silicon carbide is D 50 = 4 to. The method for producing a separation film based on a high solid content silicon carbide slurry according to claim 1, wherein the fine-grained silicon carbide has a particle size of 6 μm and D 50 = 1.5 to 3.5 μm. 前記シリカの粒度はD50=2.2〜4.5μmであることを特徴とする請求項1に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。 The method for producing a separation membrane based on a high solid content silicon carbide slurry according to claim 1, wherein the particle size of the silica is D 50 = 2.2 to 4.5 μm. 前記バインダーは、1:1〜2の質量比に従ってポリカルボシランとポリジメチルシランを混合してなり、前記分散剤は、1:1〜2の質量比に従ってメチルセルロースと水酸化テトラメチルアンモニウムを混合してなることを特徴とする請求項1に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。 The binder is made by mixing polycarbosilane and polydimethylsilane according to a mass ratio of 1: 1 to 2, and the dispersant is a mixture of methylcellulose and tetramethylammonium hydroxide according to a mass ratio of 1: 1 to 2. The method for producing a separation membrane based on a high solid content silicon carbide slurry according to claim 1. 前記ポリカルボン酸塩エマルジョンは、粘度が2000〜2500mPa.sであり、固形分が50%よりも大きく、複合ポリマーモノマーと水を主原料として、開始剤、緩衝剤、アニオン界面活性剤、及び非イオン界面活性剤の作用下で重合してなることを特徴とする請求項1に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。 The polycarboxylic acid salt emulsion has a viscosity of 2000 to 2500 mPa. It is s, has a solid content of more than 50%, and is polymerized under the action of an initiator, a buffer, an anionic surfactant, and a nonionic surfactant, using a composite polymer monomer and water as main raw materials. The method for producing a separation membrane based on the high solid content silicon carbide slurry according to claim 1. 前記複合ポリマーモノマーは、酢酸ビニル、アクリル酸イソオクチル、アクリル酸ブチル、及びメタクリル酸のうちの少なくとも2種を調製してなり、各モノマーの質量比は、順に0〜5:0〜5:0〜5:0〜5であることを特徴とする請求項5に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。 The composite polymer monomer is prepared by preparing at least two kinds of vinyl acetate, isooctyl acrylate, butyl acrylate, and methacrylic acid, and the mass ratio of each monomer is 0 to 5: 0 to 5: 0 in order. The method for producing a separation membrane based on a high solid content silicon carbide slurry according to claim 5, wherein the ratio is 5: 0 to 5. 前記ポリカルボン酸塩エマルジョン中の各原料の量として、複合ポリマーモノマー55〜62重量部と、水38〜45重量部とを含み、アニオン界面活性剤、非イオン界面活性剤、開始剤、及び緩衝剤の量は、複合ポリマーモノマーの質量に対して、それぞれ0.5〜1.5%、0.5〜1.5%、1〜2%、1〜2%であることを特徴とする請求項5に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。 The amount of each raw material in the polycarboxylate emulsion contains 55 to 62 parts by weight of the composite polymer monomer and 38 to 45 parts by weight of water, and contains an anionic surfactant, a nonionic surfactant, an initiator, and a buffer. Claims characterized in that the amount of the agent is 0.5-1.5%, 0.5-1.5%, 1-2%, 1-2%, respectively, with respect to the mass of the composite polymer monomer. Item 5. The method for producing a separation membrane based on the high-solid content silicon carbide slurry according to Item 5. 前記ポリカルボン酸塩エマルジョンの製造方法として、
アニオン界面活性剤と非イオン界面活性剤を水に均一に溶解した後、重合性モノマーを添加し、160〜230r/minの撹拌条件下で、均一に混合してプレエマルジョンを取得するステップと、
取得したプレエマルジョンの質量の20〜25%を取り、開始剤をそれに加え、70〜75℃まで加熱して保温反応させるステップと、
次に残りのプレエマルジョンを加え、保温反応を続けるステップと、
その後に、室温まで自然に冷却し、緩衝剤を加えて、得られた溶液系のpH値を8〜9に調整するステップと、を含むことにより、
前記ポリカルボン酸塩エマルジョンを取得することを特徴とする請求項5に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。
As a method for producing the polycarboxylic acid salt emulsion,
After uniformly dissolving the anionic surfactant and the nonionic surfactant in water, a polymerizable monomer is added, and the mixture is uniformly mixed under stirring conditions of 160 to 230 r / min to obtain a pre-emulsion.
A step of taking 20 to 25% of the mass of the obtained pre-emulsion, adding an initiator to it, and heating to 70 to 75 ° C. for a heat insulating reaction.
Next, add the remaining pre-emulsion and continue the heat insulation reaction.
Then, by including the step of naturally cooling to room temperature and adding a buffer to adjust the pH value of the resulting solution system to 8-9.
The method for producing a separation membrane based on a high solid content silicon carbide slurry according to claim 5, wherein the polycarboxylic acid salt emulsion is obtained.
前記高固形分の炭化ケイ素スラリー中の各成分及びその質量百分率は、混合炭化ケイ素55〜65%、シリカ4〜10%、バインダー1〜3%、分散剤1〜3%、ポリマーエマルジョン28〜37%であることを特徴とする請求項1に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。 Each component in the high solid content silicon carbide slurry and its mass percentage are 55 to 65% of mixed silicon carbide, 4 to 10% of silica, 1 to 3% of binder, 1 to 3% of dispersant, and 28 to 37 of polymer emulsion. The method for producing a separation membrane based on the high solid content silicon carbide slurry according to claim 1, wherein the content is%. 前記高温焼成の処理ステップは、まず温度1400〜1450℃まで加熱し、30〜90min保温した後、温度2150〜2230℃まで加熱し、30〜120min保温した後、300℃〜400℃まで冷却し、20〜60min保温し、最後に、炉と共に室温まで自然に冷却することを含むことを特徴とする請求項1に記載の高固形分の炭化ケイ素スラリーに基づく分離膜の製造方法。 In the high-temperature firing treatment step, the temperature is first heated to 1400 to 1450 ° C., kept warm for 30 to 90 minutes, then heated to a temperature of 2150 to 2230 ° C., kept warm for 30 to 120 minutes, and then cooled to 300 ° C. to 400 ° C. The method for producing a separation membrane based on a high solid content silicon carbide slurry according to claim 1, wherein the heat is kept for 20 to 60 minutes, and finally, the separation membrane is naturally cooled to room temperature together with the furnace.
JP2020126515A 2020-05-08 2020-07-27 Method for Producing Separation Membrane Based on High Solid Silicon Carbide Slurry Active JP7008990B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010383135.6 2020-05-08
CN202010383135.6A CN111470869B (en) 2020-05-08 2020-05-08 Preparation method of separation membrane based on high-solid-content silicon carbide slurry

Publications (2)

Publication Number Publication Date
JP2021176623A true JP2021176623A (en) 2021-11-11
JP7008990B2 JP7008990B2 (en) 2022-01-25

Family

ID=71762124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020126515A Active JP7008990B2 (en) 2020-05-08 2020-07-27 Method for Producing Separation Membrane Based on High Solid Silicon Carbide Slurry

Country Status (2)

Country Link
JP (1) JP7008990B2 (en)
CN (1) CN111470869B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253567A (en) * 2023-03-02 2023-06-13 南通三责精密陶瓷有限公司 Modification method of silicon carbide ultrafine powder and method for preparing silicon carbide ceramic by gel injection pressureless sintering
CN116284914A (en) * 2023-05-22 2023-06-23 山东森荣新材料股份有限公司 Preparation method and application of composite dielectric substrate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299871A (en) * 2020-11-16 2021-02-02 哈尔滨科友半导体产业装备与技术研究院有限公司 Preparation method of porous ceramic containing silicon carbide film
CN113511918B (en) * 2021-06-30 2022-09-27 武汉工程大学 SiC smoke particle collector and preparation method thereof
CN113582699B (en) * 2021-07-22 2023-03-17 武汉工程大学 Low-viscosity high-solid-content ceramic slurry and preparation method thereof
CN114573878B (en) * 2022-03-18 2023-03-17 潍坊潍森纤维新材料有限公司 Preparation method and application of food-pharmaceutical grade biological cellulose transparent material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192513A (en) * 2013-03-26 2013-07-10 天津市力特机械制造有限公司 Open head drum sealing rubber ring traction device
CN104174298A (en) * 2014-08-20 2014-12-03 武汉工程大学 Preparation method of gradient silicon carbide ceramic membrane for water purification
CN105175005A (en) * 2015-10-15 2015-12-23 山东金德新材料有限公司 Preparation method of high-strength uniform-hole silicon carbide ceramic membrane
CN105601830A (en) * 2016-01-07 2016-05-25 中国科学院宁波材料技术与工程研究所 Photocuring material and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264723B2 (en) * 2002-11-01 2007-09-04 Sandia Corporation Dialysis on microchips using thin porous polymer membranes
KR100954354B1 (en) * 2008-01-04 2010-04-21 (주) 나노랩 Ceramics feed-stock and manufacturing method thereof
CN105693276B (en) * 2014-11-27 2019-02-19 中国科学院金属研究所 A kind of silicon carbide filter film layer and its low temperature preparation method
CN109534819A (en) * 2017-09-22 2019-03-29 萍乡市普天高科实业有限公司 Filter plate ceramic membrane and preparation method thereof
CN107619296A (en) * 2017-09-22 2018-01-23 山东理工大学 A kind of preparation method of the full silicon carbide filter film of dish-style

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192513A (en) * 2013-03-26 2013-07-10 天津市力特机械制造有限公司 Open head drum sealing rubber ring traction device
CN104174298A (en) * 2014-08-20 2014-12-03 武汉工程大学 Preparation method of gradient silicon carbide ceramic membrane for water purification
CN105175005A (en) * 2015-10-15 2015-12-23 山东金德新材料有限公司 Preparation method of high-strength uniform-hole silicon carbide ceramic membrane
CN105601830A (en) * 2016-01-07 2016-05-25 中国科学院宁波材料技术与工程研究所 Photocuring material and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253567A (en) * 2023-03-02 2023-06-13 南通三责精密陶瓷有限公司 Modification method of silicon carbide ultrafine powder and method for preparing silicon carbide ceramic by gel injection pressureless sintering
CN116253567B (en) * 2023-03-02 2023-11-24 南通三责精密陶瓷有限公司 Modification method of silicon carbide ultrafine powder and method for preparing silicon carbide ceramic by gel injection pressureless sintering
CN116284914A (en) * 2023-05-22 2023-06-23 山东森荣新材料股份有限公司 Preparation method and application of composite dielectric substrate
CN116284914B (en) * 2023-05-22 2023-08-15 山东森荣新材料股份有限公司 Preparation method and application of composite dielectric substrate

Also Published As

Publication number Publication date
CN111470869B (en) 2022-07-19
CN111470869A (en) 2020-07-31
JP7008990B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP7008990B2 (en) Method for Producing Separation Membrane Based on High Solid Silicon Carbide Slurry
CN111533572B (en) Preparation method of porous silicon carbide ceramic support
CN103819219B (en) Acid and alkali corrosion-resistant silicon carbide porous support
CN106747634B (en) Mullite light refractory material and preparation method thereof
CN104876638A (en) Pore-forming agent for nanoscale porous ceramics as well as preparation method and application of pore-forming agent
CN106946571B (en) A kind of fiber reinforced silicon carbide ceramic impeller and its gel casting forming preparation method
CN104926316A (en) Porous silicon nitride-silicon carbide composite ceramic material and preparation method thereof
CN109384437B (en) Hybrid fiber cement-based composite material for 3D printing and preparation method thereof
CN109180169B (en) Ceramic membrane support with high thermal shock resistance and preparation method thereof
CN113999046B (en) Preparation method of low-temperature reaction sintered silicon carbide ceramic membrane
CN112321297B (en) Method for preparing porous oxide microspheres by using geopolymer as binder
CN107512902B (en) Multi-fiber reinforced magnesium-aluminum-carbon refractory material and preparation process thereof
CN115893980B (en) Process for preparing porous support ceramic by using nodulizer micropowder
CN110002863B (en) Preparation method of yttrium aluminum garnet porous ceramic
CN105693286B (en) A kind of Inorganic Nanofiltration Membranes and preparation method thereof
CN114133270B (en) Hollow flat plate ceramic filter membrane and preparation method thereof
CN108503360B (en) Preparation method of LSM bulk material
CN115304386A (en) Mullite composite refractory brick and processing technology thereof
CN107721450A (en) A kind of preparation method of porous ceramic film material
Huang et al. Feasibility Study of Metakaolin-Based Geopolymer as Binder for Construction Mortar
CN112279657A (en) Lightweight bauxite-based refractory brick and preparation method thereof
CN113788683A (en) Preparation method of SiC ceramic powder
CN112341169A (en) In-situ silicon carbide whisker reinforced light-weight alumina clinker and preparation method thereof
JP2005170709A (en) Pore-forming agent for porous ceramic
CN115490534B (en) Alumina setter plate for MIM continuous sintering furnace and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220104

R150 Certificate of patent or registration of utility model

Ref document number: 7008990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150