JP2021175256A - Wireless power supply device - Google Patents

Wireless power supply device Download PDF

Info

Publication number
JP2021175256A
JP2021175256A JP2020076708A JP2020076708A JP2021175256A JP 2021175256 A JP2021175256 A JP 2021175256A JP 2020076708 A JP2020076708 A JP 2020076708A JP 2020076708 A JP2020076708 A JP 2020076708A JP 2021175256 A JP2021175256 A JP 2021175256A
Authority
JP
Japan
Prior art keywords
power
unit
electrode unit
power transmission
transmission electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020076708A
Other languages
Japanese (ja)
Inventor
中 市川
Ataru Ichikawa
聡史 田中
Satoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020076708A priority Critical patent/JP2021175256A/en
Publication of JP2021175256A publication Critical patent/JP2021175256A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a wireless power supply device which improves power transmission efficiency and reduces apparatus damage by turning on and turning off supply of power on the basis of overlapping of a power transmitting electrode part at a facility side and a power receiving electrode part of a movable apparatus.SOLUTION: A wireless power supply device 10 comprises a power transmitting electrode part 21, a movable apparatus 12, a power receiving electrode part 22, a detection section 23 and a control section 24. The power transmitting electrode part 21 is provided in a facility 11 which is a stationary side, and supplies power. The movable electrode apparatus 12 is movable with respect to the facility 11. The power receiving electrode part 22 is provided in the movable apparatus 12 and faces the power transmitting electrode part 21, thereby receiving power from the power transmitting electrode part 21 in a non-contact manner. The detection section 23 detects overlapping of the power transmitting electrode part 21 and the power receiving electrode part 22 as an overlap amount. On the basis of the overlap amount detected by the detection section 23, the control section 24 controls start and end of power supply from the power transmitting electrode part 21.SELECTED DRAWING: Figure 1

Description

本実施形態は、無線給電装置に関する。 The present embodiment relates to a wireless power supply device.

例えばAGV(Automated Guided Vehicle)、ロボットあるいはドローンなどの可動機器を有する設備は、これらの可動機器への電力の供給が必要である。この電力の供給の手法として、電磁誘導、磁界結合あるいは電界結合など、多様な無線給電の手法が提案されている。このような無線給電を利用する場合、電力を供給する固定側の設備と、電力を受け取る可動機器側との間では送電効率を向上するために整合回路によって例えばインピーダンス整合が図られる。無線給電装置は、設備から可動機器へ電力を供給するときオンになり、電力の供給が不要なときオフされる(無線給電に関して特許文献1〜3参照)。 For example, equipment having mobile devices such as AGVs (Automated Guided Vehicles), robots, and drones needs to supply electric power to these mobile devices. As a method of supplying this electric power, various wireless power feeding methods such as electromagnetic induction, magnetic field coupling, and electric field coupling have been proposed. When such wireless power supply is used, impedance matching is achieved, for example, by a matching circuit in order to improve transmission efficiency between the equipment on the fixed side that supplies electric power and the mobile device side that receives electric power. The wireless power supply device is turned on when power is supplied from the equipment to the mobile device, and is turned off when the power supply is not required (see Patent Documents 1 to 3 regarding wireless power supply).

しかしながら、設備側の送電電極部と可動機器側の受電電極部との物理的な重なりが不完全な状態で電力の供給をオンすると、送電効率の低下や電力の反射にともなう機器の損傷の原因となる。また、無線給電装置は、電力を供給する対象となる可動機器の数にあわせて、整合回路を切り替え、送電効率の向上を図っている。このような場合にも、可動機器が受電可能な状態となる前に電力の供給をオンすると、送電効率の低下や機器の損傷を招くおそれがある。 However, if the power supply is turned on when the physical overlap between the power transmission electrode on the equipment side and the power receiving electrode on the mobile device side is incomplete, the power transmission efficiency may drop and the equipment may be damaged due to power reflection. It becomes. In addition, the wireless power supply device switches matching circuits according to the number of mobile devices to which power is supplied to improve power transmission efficiency. Even in such a case, if the power supply is turned on before the movable device is ready to receive power, the power transmission efficiency may be lowered or the device may be damaged.

特開2013−115909号公報Japanese Unexamined Patent Publication No. 2013-115909 特開2016−027782号公報Japanese Unexamined Patent Publication No. 2016-027782 特開2017−184438号公報Japanese Unexamined Patent Publication No. 2017-184438

そこで、設備側の送電電極部と可動機器の受電電極部との重なりに基づいて電力の供給をオンおよびオフすることにより、送電効率を向上し、機器の損傷が低減される無線給電装置を提供することを目的とする。 Therefore, we provide a wireless power supply device that improves power transmission efficiency and reduces damage to equipment by turning on and off the power supply based on the overlap between the power transmission electrode on the equipment side and the power receiving electrode on the mobile device. The purpose is to do.

上記の課題を解決するために一実施形態の無線給電装置は、固定側の送電電極部と可動機器側の受電電極部との重なりをオーバラップ量として検出部で検出する。制御部は、検出部で検出したオーバラップ量に基づいて、送電電極部から受電電極部への電力の供給開始および供給終了を制御する。これにより、制御部は、設備の送電電極部と可動機器の受電電極部とが十分に重なり合ってオーバラップ量が大きくなると電力の供給を開始する。これとともに、制御部は、オーバラップ量が小さくなると電力の供給を終了する。その結果、送電電極部から受電電極部への電力の供給は、設備側の送電電極部と可動機器の受電電極部との重なりであるオーバラップ量に基づいてオンおよびオフされる。したがって、送電効率を向上することができるとともに、電力の反射などにともなう機器の損傷を低減することができる。 In order to solve the above problems, in the wireless power feeding device of one embodiment, the detection unit detects the overlap between the power transmission electrode portion on the fixed side and the power receiving electrode portion on the movable device side as an overlap amount. The control unit controls the start and end of supply of electric power from the power transmission electrode unit to the power reception electrode unit based on the amount of overlap detected by the detection unit. As a result, the control unit starts supplying electric power when the power transmission electrode portion of the equipment and the power receiving electrode portion of the movable device sufficiently overlap each other and the overlap amount becomes large. At the same time, the control unit ends the power supply when the overlap amount becomes small. As a result, the supply of electric power from the power transmission electrode unit to the power reception electrode unit is turned on and off based on the amount of overlap, which is the overlap between the power transmission electrode unit on the equipment side and the power reception electrode unit of the movable device. Therefore, it is possible to improve the power transmission efficiency and reduce the damage to the equipment due to the reflection of electric power.

第1実施形態による無線給電装置の構成を示すブロック図Block diagram showing the configuration of the wireless power supply device according to the first embodiment 第1実施形態による無線給電装置を適用した設備を示す模式図Schematic diagram showing equipment to which the wireless power supply device according to the first embodiment is applied. 第1実施形態による無線給電装置の可動機器およびその近傍を拡大した模式図Schematic diagram of the movable device of the wireless power feeding device according to the first embodiment and its vicinity enlarged. 図3の矢印IV方向から見た模式図Schematic diagram seen from the direction of arrow IV in FIG. 第1実施形態による無線給電装置において、可動機器とオーバラップ量との関係を説明する模式図Schematic diagram illustrating the relationship between the movable device and the overlap amount in the wireless power feeding device according to the first embodiment. 第1実施形態による無線給電装置において、可動機器とオーバラップ量との関係を説明する模式図Schematic diagram illustrating the relationship between the movable device and the overlap amount in the wireless power feeding device according to the first embodiment. 第1実施形態による無線給電装置において、可動機器とオーバラップ量との関係を説明する模式図Schematic diagram illustrating the relationship between the movable device and the overlap amount in the wireless power feeding device according to the first embodiment. 第2実施形態による無線給電装置の構成を示すブロック図Block diagram showing the configuration of the wireless power supply device according to the second embodiment 第3実施形態による無線給電装置の構成を示すブロック図Block diagram showing the configuration of the wireless power supply device according to the third embodiment

以下、無線給電装置の複数の実施形態について図面に基づいて説明する。なお、複数の実施形態において、実質的に共通する構成部位には同一の符号を付し、説明を省略する。
(第1実施形態)
図1および図2に示すように第1実施形態による無線給電装置10は、例えば工場などの設備11に用いられる。設備11は、固定側であり、複数の可動機器12および給電ステーション13を備えている。第1実施形態の場合、可動機器12は、例えば工場などの設備11において部品や製品を運搬するAGVである。給電ステーション13は、設備11において予め設定された位置に設けられており、可動機器12に電力を供給する。給電ステーション13は、1台または複数台の可動機器12に電力を供給する。可動機器12は、設備11に設定されている移動路14に沿って移動する。なお、設備11としての工場および可動機器12としてのAGVなどは、無線給電装置10を適用する一例である。可動機器12は、例えば固定された設備11に相当するレールに沿って移動するロボットの可動部など、固定の設備11に対して移動可能であれば任意の機器とすることができる。
Hereinafter, a plurality of embodiments of the wireless power feeding device will be described with reference to the drawings. In addition, in a plurality of embodiments, substantially common constituent parts are designated by the same reference numerals, and the description thereof will be omitted.
(First Embodiment)
As shown in FIGS. 1 and 2, the wireless power feeding device 10 according to the first embodiment is used for equipment 11 such as a factory. The equipment 11 is on the fixed side and includes a plurality of movable devices 12 and a power supply station 13. In the case of the first embodiment, the movable device 12 is an AGV that transports parts and products in equipment 11 such as a factory. The power supply station 13 is provided at a preset position in the equipment 11 to supply electric power to the movable device 12. The power supply station 13 supplies electric power to one or a plurality of mobile devices 12. The movable device 12 moves along the moving path 14 set in the equipment 11. The factory as the equipment 11 and the AGV as the movable device 12 are examples in which the wireless power feeding device 10 is applied. The movable device 12 can be any device as long as it can be moved with respect to the fixed equipment 11, such as a movable part of a robot that moves along a rail corresponding to the fixed equipment 11.

無線給電装置10は、図1に示すように上述の可動機器12に加え、送電電極部21、受電電極部22、検出部23および制御部24を備えている。第1実施形態の場合、送電電極部21は、設備11の給電ステーション13に設けられている。第1実施形態の場合、送電電極部21は、例えば金属板などで形成され、設備11の床面25に設置されている。送電電極部21は、設備11の床面25に限らず、壁面などに設置してもよい。このように、送電電極部21は、設備11に固定されている。送電電極部21は、一対の送電電極部材26を有している。送電電極部21を構成する一対の送電電極部材26は、設備11の給電ステーション13においてほぼ平行に設けられている。 As shown in FIG. 1, the wireless power feeding device 10 includes a power transmission electrode unit 21, a power receiving electrode unit 22, a detection unit 23, and a control unit 24, in addition to the above-mentioned movable device 12. In the case of the first embodiment, the power transmission electrode unit 21 is provided at the power supply station 13 of the equipment 11. In the case of the first embodiment, the power transmission electrode portion 21 is formed of, for example, a metal plate and is installed on the floor surface 25 of the equipment 11. The power transmission electrode portion 21 is not limited to the floor surface 25 of the equipment 11, and may be installed on a wall surface or the like. In this way, the power transmission electrode portion 21 is fixed to the equipment 11. The power transmission electrode unit 21 has a pair of power transmission electrode members 26. The pair of power transmission electrode members 26 constituting the power transmission electrode unit 21 are provided substantially in parallel at the power supply station 13 of the equipment 11.

受電電極部22は、可動機器12に設けられている。具体的には、受電電極部22は、例えば金属板などで形成され、図3および図4に示すように可動機器12の本体27において、底面側すなわち設備11の床面25側に設けられている。受電電極部22は、一対の受電電極部材28を有している。可動機器12が設備11の給電ステーション13に移動すると、可動機器12の受電電極部22は設備11の送電電極部21と対向する。このとき、受電電極部22は、送電電極部21との間に空間を形成しつつ対向する。これにより、受電電極部22は、送電電極部21との間に誘電体である空気を挟み込む。 The power receiving electrode portion 22 is provided on the movable device 12. Specifically, the power receiving electrode portion 22 is formed of, for example, a metal plate, and is provided on the bottom surface side of the main body 27 of the movable device 12, that is, on the floor surface 25 side of the equipment 11 as shown in FIGS. 3 and 4. There is. The power receiving electrode unit 22 has a pair of power receiving electrode members 28. When the movable device 12 moves to the power supply station 13 of the equipment 11, the power receiving electrode portion 22 of the movable device 12 faces the power transmission electrode portion 21 of the equipment 11. At this time, the power receiving electrode unit 22 faces the power transmission electrode unit 21 while forming a space. As a result, the power receiving electrode unit 22 sandwiches air, which is a dielectric, between the power receiving electrode unit 22 and the power transmission electrode unit 21.

図1に示すように検出部23および制御部24は、固定側の設備11に設けられている。無線給電装置10は、これらに加え、固定側の設備11に、電源31、高周波生成部32および整合器33を備えている。高周波生成部32は、例えばインバータなどを有しており、電源31からの電力を用いて高周波を生成する。高周波生成部32で生成した高周波は、送電電極部21へ供給される。送電電極部21と受電電極部22とが対向しているとき、送電電極部21へ高周波を供給することにより、例えば電界結合や磁界結合によって送電電極部21から受電電極部22へ非接触で電力が供給される。すなわち、電力は、固定側の設備11から移動側の可動機器12へ無線による非接触で供給される。 As shown in FIG. 1, the detection unit 23 and the control unit 24 are provided in the equipment 11 on the fixed side. In addition to these, the wireless power supply device 10 includes a power supply 31, a high frequency generator 32, and a matching unit 33 in the equipment 11 on the fixed side. The high frequency generation unit 32 has, for example, an inverter or the like, and generates high frequencies by using the electric power from the power source 31. The high frequency generated by the high frequency generation unit 32 is supplied to the power transmission electrode unit 21. When the power transmission electrode unit 21 and the power reception electrode unit 22 face each other, power is supplied to the power transmission electrode unit 21 in a non-contact manner from the power transmission electrode unit 21 to the power reception electrode unit 22 by, for example, electric field coupling or magnetic field coupling. Is supplied. That is, electric power is wirelessly and non-contactly supplied from the equipment 11 on the fixed side to the movable device 12 on the mobile side.

整合器33は、図示しない電気的な複数の整合回路を有している。無線給電装置10は、送電電極部21から受電電極部22へ電力を供給するとき、例えばインピーダンスなどの整合を図る必要がある。この送電電極部21と受電電極部22との間の整合は、給電ステーション13において電力の供給を受ける可動機器12の種類や台数によって変化する。整合器33は、例えばインピーダンスやインダクタンスなどの特性の異なる複数の整合回路を有している。整合器33は、これら複数の整合回路を条件にあわせて切り替えることにより、送電電極部21と受電電極部22との間の整合を最適化する。 The matching device 33 has a plurality of electrical matching circuits (not shown). When the wireless power feeding device 10 supplies electric power from the power transmitting electrode unit 21 to the power receiving electrode unit 22, it is necessary to match the impedance and the like, for example. The alignment between the power transmission electrode unit 21 and the power reception electrode unit 22 changes depending on the type and number of movable devices 12 to which power is supplied at the power supply station 13. The matching device 33 has a plurality of matching circuits having different characteristics such as impedance and inductance. The matching device 33 optimizes the matching between the power transmitting electrode unit 21 and the power receiving electrode unit 22 by switching the plurality of matching circuits according to the conditions.

検出部23は、送電電極部21と受電電極部22との重なりをオーバラップ量Mとして検出する。すなわち、検出部23は、固定側の設備11に設けられている送電電極部21と移動側の可動機器12に設けられている受電電極部22とが給電ステーション13において対向しているとき、これらの重なりをオーバラップ量Mとして検出する。オーバラップ量Mは、可動機器12の移動とともに変化する。つまり、図5に示すように可動機器12が給電ステーション13に進入するとき、オーバラップ量Mは可動機器12の移動とともに「0」から最大値Maへ増加する。図6に示すように可動機器12が給電ステーション13に位置しているとき、オーバラップ量Mは最大値Maで一定となる。一方、図7に示すように可動機器12が給電ステーション13から離脱するとき、オーバラップ量Mは可動機器12の移動とともに最大値Maから「0」へ減少する。検出部23は、このように給電ステーション13において可動機器12の移動とともに変化するオーバラップ量Mを検出する。 The detection unit 23 detects the overlap between the power transmission electrode unit 21 and the power reception electrode unit 22 as the overlap amount M. That is, in the detection unit 23, when the power transmission electrode unit 21 provided in the equipment 11 on the fixed side and the power reception electrode unit 22 provided in the movable device 12 on the moving side face each other in the power supply station 13, these The overlap is detected as the overlap amount M. The overlap amount M changes with the movement of the movable device 12. That is, as shown in FIG. 5, when the movable device 12 enters the power feeding station 13, the overlap amount M increases from “0” to the maximum value Ma as the movable device 12 moves. As shown in FIG. 6, when the movable device 12 is located at the power supply station 13, the overlap amount M is constant at the maximum value Ma. On the other hand, as shown in FIG. 7, when the movable device 12 is separated from the power feeding station 13, the overlap amount M decreases from the maximum value Ma to “0” as the movable device 12 moves. In this way, the detection unit 23 detects the overlap amount M that changes with the movement of the movable device 12 at the power supply station 13.

制御部24は、検出部23で検出したオーバラップ量Mに基づいて、送電電極部21からの電力の供給開始および供給終了を制御する。制御部24は、例えば図示しないCPU、ROMおよびRAMを有するマイクロコンピュータで構成されている。制御部24は、ROMに記憶されているコンピュータプログラムを実行することにより、高周波生成部32および整合器33を含む設備11をソフトウェア的に制御する。なお、制御部24は、ハードウェア的、またはソフトウェアとハードウェアとの協働によって高周波生成部32および整合器33を含む設備11を制御する構成としてもよい。 The control unit 24 controls the start and end of supply of electric power from the power transmission electrode unit 21 based on the overlap amount M detected by the detection unit 23. The control unit 24 is composed of, for example, a microcomputer having a CPU, a ROM, and a RAM (not shown). The control unit 24 controls the equipment 11 including the high frequency generation unit 32 and the matching unit 33 by software by executing the computer program stored in the ROM. The control unit 24 may be configured to control the equipment 11 including the high frequency generation unit 32 and the matching unit 33 in terms of hardware or in collaboration with software and hardware.

制御部24は、検出部23で検出したオーバラップ量Mが予め設定した開始設定値Ms以上になると、送電電極部21からの電力の供給を開始する。すなわち、制御部24は、オーバラップ量Mが開始設定値Ms以上、つまりM≧Msのとき、高周波生成部32をオンにし、高周波生成部32から送電電極部21へ電力を供給する。一方、制御部24は、検出部23で検出したオーバラップ量Mが予め設定した終了設定値Me以下になると、送電電極部21からの電力の供給を終了する。すなわち、制御部24は、オーバラップ量Mが終了設定値Me以下、つまりM≦Meのとき、高周波生成部32をオフにし、高周波生成部32から送電電極部21への電力の供給を停止する。開始設定値Msおよび終了設定値Meは、同一であってもよく、異なっていてもよい。例えば開始設定値Msおよび終了設定値Meをオーバラップ量Mの最大値Maの90%、つまりMs=Me=Ma×0.9と設定する。そして、制御部24は、オーバラップ量Mが最大値Maの90%以上つまりM≧Ma×0.9になると高周波生成部32をオンにし、90%未満つまりM<Ma×0.9になると高周波生成部32をオフにする構成としてもよい。開始設定値Msおよび終了設定値Meは、適用する無線給電装置10、ならびに設備11および可動機器12の性能や特性などにあわせて、オーバラップ量Mの最大値Maの90%に限らず、任意の値に設定することができる。 When the overlap amount M detected by the detection unit 23 becomes equal to or greater than the preset start set value Ms, the control unit 24 starts supplying electric power from the power transmission electrode unit 21. That is, when the overlap amount M is equal to or greater than the start set value Ms, that is, M ≧ Ms, the control unit 24 turns on the high frequency generation unit 32 and supplies power from the high frequency generation unit 32 to the power transmission electrode unit 21. On the other hand, when the overlap amount M detected by the detection unit 23 becomes equal to or less than the preset end set value Me, the control unit 24 ends the supply of electric power from the power transmission electrode unit 21. That is, when the overlap amount M is equal to or less than the end set value Me, that is, when M ≦ Me, the control unit 24 turns off the high frequency generation unit 32 and stops the supply of electric power from the high frequency generation unit 32 to the power transmission electrode unit 21. .. The start set value Ms and the end set value Me may be the same or different. For example, the start set value Ms and the end set value Me are set to 90% of the maximum value Ma of the overlap amount M, that is, Ms = Me = Ma × 0.9. Then, when the overlap amount M is 90% or more of the maximum value Ma, that is, M ≧ Ma × 0.9, the control unit 24 turns on the high frequency generation unit 32, and when it is less than 90%, that is, M <Ma × 0.9. The high frequency generator 32 may be turned off. The start set value Ms and the end set value Me are not limited to 90% of the maximum value Ma of the overlap amount M, and are arbitrary according to the performance and characteristics of the wireless power feeding device 10 to be applied, the equipment 11 and the movable device 12. Can be set to the value of.

可動機器12は、図1に示すように上述の受電電極部22に加え、整流回路部41、コンバータ42、蓄電部43、駆動制御部44および駆動部45を有している。整流回路部41は、図示しないコイルやダイオードなどを有しており、受電電極部22において受け取った高周波の電力を整流する。コンバータ42は、例えばDC−DCコンバータなどを有しており、整流回路部41で整流された電力の電圧を調整する。蓄電部43は、例えば図示しないバッテリやキャパシタなどを有しており、整流および電圧が調整された後の電力を蓄える。駆動制御部44は、例えば図示しないCPU、ROMおよびRAMを有するマイクロコンピュータで構成されている。駆動制御部44は、ROMに記憶されているコンピュータプログラムを実行することにより、駆動部45を含む可動機器12の全体をソフトウェア的に制御する。なお、駆動制御部44は、ハードウェア的、またはソフトウェアとハードウェアとの協働によって駆動部45を含む可動機器12を制御する構成としてもよい。駆動部45は、図3に示すようにモータ46および駆動輪47などを有しており、蓄電部43に蓄えられた電力を用いて可動機器12を駆動するための力を発生する。 As shown in FIG. 1, the movable device 12 includes a rectifier circuit unit 41, a converter 42, a power storage unit 43, a drive control unit 44, and a drive unit 45 in addition to the power receiving electrode unit 22 described above. The rectifier circuit unit 41 has a coil, a diode, and the like (not shown), and rectifies the high-frequency power received by the power receiving electrode unit 22. The converter 42 includes, for example, a DC-DC converter, and adjusts the voltage of the electric power rectified by the rectifier circuit unit 41. The power storage unit 43 has, for example, a battery or a capacitor (not shown), and stores power after rectification and voltage adjustment. The drive control unit 44 is composed of, for example, a microcomputer having a CPU, a ROM, and a RAM (not shown). The drive control unit 44 controls the entire movable device 12 including the drive unit 45 by software by executing a computer program stored in the ROM. The drive control unit 44 may be configured to control the movable device 12 including the drive unit 45 in terms of hardware or in collaboration with software and hardware. As shown in FIG. 3, the drive unit 45 has a motor 46, drive wheels 47, and the like, and uses the electric power stored in the power storage unit 43 to generate a force for driving the movable device 12.

第1実施形態の場合、無線給電装置10は、図1に示すように位置センサ51を備えている。位置センサ51は、設備11の給電ステーション13に設けられている。位置センサ51は、給電ステーション13における可動機器12の位置を検出する。位置センサ51は、例えば光、画像、質量または電磁波などにより、非接触で可動機器12の位置を検出する。また、位置センサ51は、例えばスイッチなどのように物理的な接触によって可動機器12の位置を検出する構成としてもよい。位置センサ51は、検出した可動機器12の位置を電気信号として検出部23へ出力する。検出部23は、位置センサ51で検出した可動機器12の位置に基づいて、送電電極部21と受電電極部22とのオーバラップ量Mを検出する。送電電極部21は、設備11の給電ステーション13において、床面25に所定の長さで設けられている。給電ステーション13での給電時にこの送電電極部21と対向する受電電極部22は、可動機器12に設けられているものの、全長が可動機器12の本体27と同一であるとは限らない。一方、可動機器12の本体27と受電電極部22との位置関係は、設計的な値であり既知である。そこで、検出部23は、位置センサ51によって可動機器12の位置を検出するとともに、この可動機器12の位置と既知である受電電極部22の位置との関係から、給電ステーション13における送電電極部21と受電電極部22とのオーバラップ量Mを検出する。 In the case of the first embodiment, the wireless power feeding device 10 includes a position sensor 51 as shown in FIG. The position sensor 51 is provided at the power supply station 13 of the equipment 11. The position sensor 51 detects the position of the movable device 12 in the power feeding station 13. The position sensor 51 detects the position of the movable device 12 in a non-contact manner by, for example, light, an image, a mass, or an electromagnetic wave. Further, the position sensor 51 may be configured to detect the position of the movable device 12 by physical contact, such as a switch. The position sensor 51 outputs the detected position of the movable device 12 as an electric signal to the detection unit 23. The detection unit 23 detects the overlap amount M between the power transmission electrode unit 21 and the power reception electrode unit 22 based on the position of the movable device 12 detected by the position sensor 51. The power transmission electrode unit 21 is provided on the floor surface 25 with a predetermined length in the power supply station 13 of the equipment 11. Although the power receiving electrode unit 22 facing the power transmission electrode unit 21 at the time of power supply at the power supply station 13 is provided in the movable device 12, the total length is not always the same as the main body 27 of the movable device 12. On the other hand, the positional relationship between the main body 27 of the movable device 12 and the power receiving electrode portion 22 is a design value and is known. Therefore, the detection unit 23 detects the position of the movable device 12 by the position sensor 51, and from the relationship between the position of the movable device 12 and the known position of the power receiving electrode unit 22, the power transmission electrode unit 21 in the power feeding station 13 The amount of overlap M between the power receiving electrode portion 22 and the power receiving electrode portion 22 is detected.

制御部24は、検出部23で検出したオーバラップ量Mに基づいて、高周波生成部32のオンおよびオフを制御する。また、検出部23は、検出したオーバラップ量Mから、給電ステーション13の送電電極部21から電力の供給を受ける可動機器12の台数を検出する。制御部24は、オーバラップ量Mに基づいて高周波生成部32のオンおよびオフを制御するとともに、電力の供給を受ける可動機器12の台数に応じて整合器33の整合回路部を切り替える。これにより、給電ステーション13における可動機器12の状態に応じて、送電電極部21と受電電極部22との間の適切な整合が実行され、送電電極部21から受電電極部22への送電効率の向上が図られる。 The control unit 24 controls the on / off of the high frequency generation unit 32 based on the overlap amount M detected by the detection unit 23. Further, the detection unit 23 detects the number of mobile devices 12 that receive power from the power transmission electrode unit 21 of the power supply station 13 from the detected overlap amount M. The control unit 24 controls the on / off of the high frequency generation unit 32 based on the overlap amount M, and switches the matching circuit unit of the matching device 33 according to the number of movable devices 12 to be supplied with electric power. As a result, appropriate matching between the power transmission electrode unit 21 and the power reception electrode unit 22 is executed according to the state of the movable device 12 in the power supply station 13, and the power transmission efficiency from the power transmission electrode unit 21 to the power reception electrode unit 22 is increased. Improvement is planned.

以上説明した第1実施形態では、検出部23は、設備11側の送電電極部21と可動機器12側の受電電極部22との重なりを、オーバラップ量Mとして検出する。制御部24は、検出部23で検出したオーバラップ量Mに基づいて、整合器33の整合回路を切り替えるとともに、送電電極部21から受電電極部22への電力の供給開始および供給終了を制御する。これにより、設備11の送電電極部21と可動機器12の受電電極部22とが十分に重なり合っていることが検出されると、制御部24は電力の供給を開始するとともに、オーバラップ量Mが小さくなると、制御部24は電力の供給を終了する。したがって、設備11側の送電電極部21と可動機器12の受電電極部22との重なりに基づいて電力の供給をオンおよびオフすることができ、送電効率を向上することができるとともに、電力の反射などにともなう機器の損傷を低減することができる。 In the first embodiment described above, the detection unit 23 detects the overlap between the power transmission electrode unit 21 on the equipment 11 side and the power reception electrode unit 22 on the movable device 12 side as the overlap amount M. The control unit 24 switches the matching circuit of the matching device 33 based on the overlap amount M detected by the detecting unit 23, and controls the start and end of power supply from the power transmission electrode unit 21 to the power receiving electrode unit 22. .. As a result, when it is detected that the power transmission electrode unit 21 of the equipment 11 and the power reception electrode unit 22 of the movable device 12 are sufficiently overlapped with each other, the control unit 24 starts supplying electric power and the overlap amount M is increased. When it becomes smaller, the control unit 24 ends the power supply. Therefore, the power supply can be turned on and off based on the overlap between the power transmission electrode unit 21 on the equipment 11 side and the power reception electrode unit 22 of the movable device 12, the power transmission efficiency can be improved, and the power reflection can be performed. It is possible to reduce the damage to the equipment due to such factors.

また、第1実施形態では、可動機器12の位置からオーバラップ量Mを検出する位置センサ51を備えている。これにより、検出部23は、給電ステーション13に設けられている位置センサ51で検出した可動機器12の位置に基づいて、送電電極部21と受電電極部22とのオーバラップ量Mを検出する。したがって、位置センサ51の設置という簡単な構造でオーバラップ量Mを検出することができる。 Further, in the first embodiment, the position sensor 51 that detects the overlap amount M from the position of the movable device 12 is provided. As a result, the detection unit 23 detects the overlap amount M between the power transmission electrode unit 21 and the power reception electrode unit 22 based on the position of the movable device 12 detected by the position sensor 51 provided in the power supply station 13. Therefore, the overlap amount M can be detected with a simple structure of installing the position sensor 51.

(第2実施形態)
第2実施形態による無線給電装置を図8に示す。
図8に示すように第2実施形態による無線給電装置10は、容量検出部52を備えている。容量検出部52は、送電電極部21と受電電極部22との間に形成される電気的な容量を検出する。第1実施形態で説明したように、対向する送電電極部21と受電電極部22との間は空気が満たされている。そのため、送電電極部21と受電電極部22とは、電気的な容量であるコンデンサを形成する。この送電電極部21と受電電極部22との間の電気的な容量は、送電電極部21と受電電極部22との重なり量すなわちオーバラップ量Mに相関する。そこで、容量検出部52は、これら送電電極部21と受電電極部22との間の電気的な容量を検出する。容量検出部52は、検出した容量を電気信号として検出部23へ出力する。検出部23は、容量検出部52で検出した電気的な容量に基づいて、送電電極部21と受電電極部22とのオーバラップ量Mを検出する。
(Second Embodiment)
The wireless power feeding device according to the second embodiment is shown in FIG.
As shown in FIG. 8, the wireless power feeding device 10 according to the second embodiment includes a capacity detecting unit 52. The capacity detection unit 52 detects the electrical capacity formed between the power transmission electrode unit 21 and the power reception electrode unit 22. As described in the first embodiment, air is filled between the power transmitting electrode unit 21 and the power receiving electrode unit 22 facing each other. Therefore, the power transmission electrode unit 21 and the power reception electrode unit 22 form a capacitor having an electrical capacity. The electrical capacity between the power transmission electrode unit 21 and the power reception electrode unit 22 correlates with the amount of overlap between the power transmission electrode unit 21 and the power reception electrode unit 22, that is, the overlap amount M. Therefore, the capacity detection unit 52 detects the electrical capacity between the power transmission electrode unit 21 and the power reception electrode unit 22. The capacity detection unit 52 outputs the detected capacity as an electric signal to the detection unit 23. The detection unit 23 detects the overlap amount M between the power transmission electrode unit 21 and the power reception electrode unit 22 based on the electrical capacity detected by the capacity detection unit 52.

制御部24は、検出部23で検出したオーバラップ量Mに基づいて、高周波生成部32のオンおよびオフを実行する。これとともに、制御部24は、検出部23で検出したオーバラップ量Mに基づいて、給電ステーション13において送電電極部21から電力の供給を受ける可動機器12の台数を検出し、この可動機器12の台数に応じて整合器33の整合回路部を切り替える。 The control unit 24 turns on and off the high frequency generation unit 32 based on the overlap amount M detected by the detection unit 23. At the same time, the control unit 24 detects the number of mobile devices 12 that receive power from the power transmission electrode unit 21 at the power supply station 13 based on the overlap amount M detected by the detection unit 23, and the control unit 24 detects the number of mobile devices 12 that receive power from the power transmission electrode unit 21. The matching circuit unit of the matching device 33 is switched according to the number of units.

第2実施形態では、送電電極部21と受電電極部22との間の電気的な容量を検出する容量検出部52を有している。これにより、検出部23は、容量検出部52で検出した送電電極部21と受電電極部22との間の電気的な容量に基づいて、送電電極部21と受電電極部22とのオーバラップ量Mを検出する。したがって、電気的な容量の検出という簡単な構造かつ電気的な手法でオーバラップ量Mを検出することができる。 In the second embodiment, the capacity detection unit 52 that detects the electrical capacity between the power transmission electrode unit 21 and the power reception electrode unit 22 is provided. As a result, the detection unit 23 has an overlap amount between the power transmission electrode unit 21 and the power reception electrode unit 22 based on the electrical capacity between the power transmission electrode unit 21 and the power reception electrode unit 22 detected by the capacity detection unit 52. Detect M. Therefore, the overlap amount M can be detected by a simple structure and an electric method of detecting the electric capacity.

(第3実施形態)
第3実施形態による無線給電装置を図9に示す。
図9に示すように第3実施形態による無線給電装置10は、反射検出部53を備えている。反射検出部53は、送電電極部21と受電電極部22との間の電気的な反射を反射電力として検出する。送電電極部21から出力された電力は、その一部が受電電極部22で受電されずに高周波生成部32側へ反射する。すなわち、送電電極部21から出力された電力の一部は、電気的な反射によって高周波生成部32側へ戻される。この電気的な反射電力は、送電電極部21と受電電極部22との重なり量すなわちオーバラップ量Mに相関する。そこで、反射検出部53は、電力の供給時に反射される電力を反射電力として検出する。反射検出部53は、検出した反射電力を電気信号として検出部23へ出力する。検出部23は、反射検出部53で検出した反射電力に基づいて、送電電極部21と受電電極部22とのオーバラップ量Mを検出する。
(Third Embodiment)
The wireless power feeding device according to the third embodiment is shown in FIG.
As shown in FIG. 9, the wireless power feeding device 10 according to the third embodiment includes a reflection detecting unit 53. The reflection detection unit 53 detects the electrical reflection between the power transmission electrode unit 21 and the power reception electrode unit 22 as reflected power. A part of the electric power output from the power transmission electrode unit 21 is reflected to the high frequency generation unit 32 side without being received by the power reception electrode unit 22. That is, a part of the electric power output from the power transmission electrode unit 21 is returned to the high frequency generation unit 32 side by electrical reflection. This electrically reflected power correlates with the amount of overlap, that is, the amount of overlap M between the power transmission electrode unit 21 and the power reception electrode unit 22. Therefore, the reflection detection unit 53 detects the power reflected when the power is supplied as the reflected power. The reflection detection unit 53 outputs the detected reflected power as an electric signal to the detection unit 23. The detection unit 23 detects the overlap amount M between the power transmission electrode unit 21 and the power reception electrode unit 22 based on the reflected power detected by the reflection detection unit 53.

制御部24は、検出部23で検出したオーバラップ量Mに基づいて、高周波生成部32のオンおよびオフを実行する。これとともに、制御部24は、検出部23で検出したオーバラップ量Mに基づいて、給電ステーション13において送電電極部21から電力の供給を受ける可動機器12の台数を検出し、この可動機器12の台数に応じて整合器33の整合回路部を切り替える。 The control unit 24 turns on and off the high frequency generation unit 32 based on the overlap amount M detected by the detection unit 23. At the same time, the control unit 24 detects the number of mobile devices 12 that receive power from the power transmission electrode unit 21 at the power supply station 13 based on the overlap amount M detected by the detection unit 23, and the control unit 24 detects the number of mobile devices 12 that receive power from the power transmission electrode unit 21. The matching circuit unit of the matching device 33 is switched according to the number of units.

第3実施形態では、送電電極部21と受電電極部22との間で生じる電気的な反射を反射電力として検出する反射検出部53を有している。これにより、検出部23は、反射検出部53で検出した電気的な反射に基づいて、送電電極部21と受電電極部22とのオーバラップ量Mを検出する。したがって、電気的な反射の検出という簡単な構造かつ電気的な手法でオーバラップ量Mを検出することができる。 In the third embodiment, the reflection detection unit 53 detects the electrical reflection generated between the power transmission electrode unit 21 and the power reception electrode unit 22 as reflected power. As a result, the detection unit 23 detects the overlap amount M between the power transmission electrode unit 21 and the power reception electrode unit 22 based on the electrical reflection detected by the reflection detection unit 53. Therefore, the overlap amount M can be detected by a simple structure and an electrical method of detecting electrical reflection.

以上説明した本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
本開示に記載の制御部およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部およびその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部およびその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
The present invention described above is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.
Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.
The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the controls and methods described herein are by a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

図面中、10は無線給電装置、11は設備、12は可動機器、21は送電電極部、22は受電電極部、23は検出部、24は制御部、51は位置センサ、52は容量検出部、53は反射検出部を示す。 In the drawing, 10 is a wireless power feeding device, 11 is equipment, 12 is a movable device, 21 is a power transmission electrode unit, 22 is a power receiving electrode unit, 23 is a detection unit, 24 is a control unit, 51 is a position sensor, and 52 is a capacity detection unit. , 53 indicate a reflection detection unit.

Claims (6)

固定側である設備(11)に設けられ、電力を供給する送電電極部(21)と、
前記設備(11)に対して移動可能な可動機器(12)と、
前記可動機器(12)に設けられ、前記送電電極部(21)と対向することにより、前記送電電極部(21)から非接触で電力を受け取る受電電極部(22)と、
前記送電電極部(21)と前記受電電極部(22)との重なりをオーバラップ量として検出する検出部(23)と、
前記検出部(23)で検出した前記オーバラップ量に基づいて、前記送電電極部(21)からの電力の供給開始および供給終了を制御する制御部(24)と、
を備える無線給電装置。
A power transmission electrode unit (21) provided in the equipment (11) on the fixed side and supplying electric power,
A movable device (12) that can be moved with respect to the equipment (11), and
A power receiving electrode unit (22) provided on the movable device (12) and receiving power from the power transmission electrode unit (21) in a non-contact manner by facing the power transmission electrode unit (21).
A detection unit (23) that detects the overlap between the power transmission electrode unit (21) and the power reception electrode unit (22) as an overlap amount, and
A control unit (24) that controls the start and end of power supply from the power transmission electrode unit (21) based on the overlap amount detected by the detection unit (23).
A wireless power supply device equipped with.
前記制御部(24)は、前記検出部(23)で検出した前記オーバラップ量が予め設定した開始設定値以上になると前記送電電極部(21)からの電力の供給を開始する請求項1記載の無線給電装置。 The first aspect of claim 1, wherein the control unit (24) starts supplying electric power from the power transmission electrode unit (21) when the overlap amount detected by the detection unit (23) becomes equal to or more than a preset start set value. Wireless power supply device. 前記制御部(24)は、前記検出部(23)で検出した前記オーバラップ量が予め設定した終了設定値以下になると前記送電電極部()からの電力の供給を終了する請求項1記載の無線給電装置。 The first aspect of claim 1, wherein the control unit (24) terminates the supply of electric power from the power transmission electrode unit () when the overlap amount detected by the detection unit (23) becomes equal to or less than a preset end set value. Wireless power supply device. 前記可動機器(12)の位置を検出する位置センサ(51)をさらに備え、
前記検出部(23)は、前記位置センサ(51)で検出した前記可動機器(12)の位置から前記オーバラップ量を検出する請求項1から3のいずれか一項記載の無線給電装置。
A position sensor (51) for detecting the position of the movable device (12) is further provided.
The wireless power supply device according to any one of claims 1 to 3, wherein the detection unit (23) detects the overlap amount from the position of the movable device (12) detected by the position sensor (51).
前記送電電極部(21)と前記受電電極部(22)との間に形成される電気的な容量を検出する容量検出部(52)をさらに備え、
前記検出部(23)は、前記容量検出部(52)で検出した前記容量から前記オーバラップ量を検出する請求項1から3のいずれか一項記載の無線給電装置。
A capacity detection unit (52) for detecting an electrical capacity formed between the power transmission electrode unit (21) and the power reception electrode unit (22) is further provided.
The wireless power feeding device according to any one of claims 1 to 3, wherein the detection unit (23) detects the overlap amount from the capacity detected by the capacity detection unit (52).
前記送電電極部(21)から前記受電電極部(22)へ電力を供給するとき、前記受電電極部(22)から前記送電電極部(21)へ反射する電力を反射電力として検出する反射検出部(53)をさらに備え、
前記検出部(23)は、前記反射検出部(53)で検出した前記反射電力から前記オーバラップ量を検出する請求項1から3のいずれか一項記載の無線給電装置。
When power is supplied from the power transmission electrode unit (21) to the power reception electrode unit (22), the reflection detection unit detects the power reflected from the power reception electrode unit (22) to the power transmission electrode unit (21) as reflected power. Further equipped with (53)
The wireless power feeding device according to any one of claims 1 to 3, wherein the detection unit (23) detects the overlap amount from the reflected power detected by the reflection detection unit (53).
JP2020076708A 2020-04-23 2020-04-23 Wireless power supply device Pending JP2021175256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076708A JP2021175256A (en) 2020-04-23 2020-04-23 Wireless power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076708A JP2021175256A (en) 2020-04-23 2020-04-23 Wireless power supply device

Publications (1)

Publication Number Publication Date
JP2021175256A true JP2021175256A (en) 2021-11-01

Family

ID=78280114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076708A Pending JP2021175256A (en) 2020-04-23 2020-04-23 Wireless power supply device

Country Status (1)

Country Link
JP (1) JP2021175256A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123814A (en) * 1989-10-09 1991-05-27 Tokin Corp Electrostatic capacity type displacement sensor
JP2016119756A (en) * 2014-12-19 2016-06-30 Tdk株式会社 Wireless power transmission system
WO2019117140A1 (en) * 2017-12-11 2019-06-20 パナソニックIpマネジメント株式会社 Wireless power transmission system, power transmitting device, and power receiving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123814A (en) * 1989-10-09 1991-05-27 Tokin Corp Electrostatic capacity type displacement sensor
JP2016119756A (en) * 2014-12-19 2016-06-30 Tdk株式会社 Wireless power transmission system
WO2019117140A1 (en) * 2017-12-11 2019-06-20 パナソニックIpマネジメント株式会社 Wireless power transmission system, power transmitting device, and power receiving device

Similar Documents

Publication Publication Date Title
US10336201B2 (en) Contactless power transmission system
JP5285418B2 (en) Resonant non-contact power supply device
JP5804052B2 (en) Wireless power receiving and receiving device and wireless power transmission system
JP5126324B2 (en) Power supply apparatus and control method of power supply system
JP5224295B2 (en) Non-contact power feeding apparatus and non-contact power feeding method
JP2012257395A (en) Non-contact power reception device, vehicle having the same, non-contact transmission device, and non-contact power transmission system
JP2012138976A (en) Power transmission system
WO2014147819A1 (en) Vehicle, and contactless power supply system
WO2019117140A1 (en) Wireless power transmission system, power transmitting device, and power receiving device
US20150171820A1 (en) Non-contact power transmission device
EP3419144B1 (en) Wireless power transmission system, power transmitting device, and power receiving device
JP2012070463A (en) Non-contact power supply device
JP2012135117A (en) Non-contact power transmission system
JP2012023913A (en) Non-contact power feeding device
JPWO2018221532A1 (en) Power transmission device, wireless power transmission system, and control device
WO2020241677A1 (en) Power transmission device and wireless power transfer system
WO2020203689A1 (en) Electricity transmitting device, and wireless electric power transmission system
JP2021175256A (en) Wireless power supply device
JP2013132141A (en) Power transmission system
US10305330B2 (en) Power transmission device
JP6040510B2 (en) Power transmission system
US10826327B2 (en) Power feeding system and power feeding method
JP2017147822A (en) Wireless power transmission system
JP6672547B2 (en) Non-contact power transmission system and power receiving device
WO2019176358A1 (en) Power reception device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231017