JP2021156658A - Friction testing device and friction testing method - Google Patents

Friction testing device and friction testing method Download PDF

Info

Publication number
JP2021156658A
JP2021156658A JP2020055339A JP2020055339A JP2021156658A JP 2021156658 A JP2021156658 A JP 2021156658A JP 2020055339 A JP2020055339 A JP 2020055339A JP 2020055339 A JP2020055339 A JP 2020055339A JP 2021156658 A JP2021156658 A JP 2021156658A
Authority
JP
Japan
Prior art keywords
friction
shaft member
peripheral surface
maximum static
static friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020055339A
Other languages
Japanese (ja)
Other versions
JP7387509B2 (en
Inventor
昌由 中村
Masayoshi Nakamura
昌由 中村
祐介 日比野
Yusuke Hibino
祐介 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020055339A priority Critical patent/JP7387509B2/en
Priority to CN202110319796.7A priority patent/CN113447429A/en
Publication of JP2021156658A publication Critical patent/JP2021156658A/en
Application granted granted Critical
Publication of JP7387509B2 publication Critical patent/JP7387509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

To enable detection of a friction characteristic between the inner circumferential surface of an annular member and the outer circumferential surface of a shaft member when the shaft member moves relatively in an axial direction.SOLUTION: The holding units 44a, 44b of a friction testing device 10 hold a shaft member 20 at one axial end side and the other axial end side of a roller 14. A body portion 48 arranges the holding units 44a, 44b axially movably via flat cages 46a, 46b. A support unit 50 is secured to the body portion 48 and abuts on an end surface 14b of the roller 14. A thrust load imparting unit 52 causes the shaft member 20 and the holding units 44a, 44b to relatively move with respect to the roller 14 and the body portion 48 while a radial load is imparted to a measurement object 18. A friction force measurement unit 54 measures a friction force generated when the thrust load imparting unit 52 causes the shaft member 20 and the holding units 44a, 44b to relatively move.SELECTED DRAWING: Figure 1

Description

本発明は、環状部材の内周面と軸部材の外周面との間の摩擦特性を検出する摩擦試験装置及びそれを用いた摩擦試験方法に関する。 The present invention relates to a friction test device for detecting friction characteristics between an inner peripheral surface of an annular member and an outer peripheral surface of a shaft member, and a friction test method using the same.

例えば、特許文献1には、2枚の固定試験片と、これらの固定試験片の間に挟み込まれた摺動試験片との間の摩擦係数を求めるための摩擦係数測定装置が提案されている。この摩擦係数測定装置は、2枚の固定試験片に挟み込んだ摺動試験片に面圧を負荷する面圧負荷手段と、該面圧付加手段の加圧方向に平行な部分に貼付されたストレインゲージと、固定試験片に対して摺動試験片を摺らせる負荷試験機とを備えている。そして、摩擦係数測定装置では、ストレインゲージにて測定された面圧と、負荷試験機にて検出された摩擦力及び摺り速度に基づくことで、上記の摩擦係数が求められるとしている。 For example, Patent Document 1 proposes a friction coefficient measuring device for obtaining a friction coefficient between two fixed test pieces and a sliding test piece sandwiched between these fixed test pieces. .. This friction coefficient measuring device includes a surface pressure loading means for applying a surface pressure to a sliding test piece sandwiched between two fixed test pieces and a strain attached to a portion of the surface pressure applying means parallel to the pressing direction. It is equipped with a gauge and a load tester that slides the sliding test piece against the fixed test piece. Then, in the friction coefficient measuring device, the above-mentioned friction coefficient is obtained based on the surface pressure measured by the strain gauge and the frictional force and the sliding speed detected by the load tester.

実開昭62−123550号公報JINO 62-123550 Gazette

上記の摩擦係数測定装置は、環状部材及び該環状部材に挿通された軸部材を有する被測定体について、環状部材の内周面と軸部材の外周面とが、軸部材の軸方向に摺接する際の摩擦特性(周面間摩擦特性)を検出することには対応していない。このため、特に、環状部材の径方向に沿ったラジアル荷重が付与されて、該環状部材の内周面が軸部材の外周面に押圧された状態で、環状部材に対し軸部材が軸方向に相対移動する際の周面間摩擦特性を検出することは困難である。 In the above friction coefficient measuring device, the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member are in sliding contact with each other in the axial direction of the annular member and the body to be measured having the shaft member inserted through the annular member. It does not correspond to the detection of the friction characteristics (friction characteristics between peripheral surfaces). Therefore, in particular, the shaft member is axially opposed to the annular member in a state where a radial load is applied along the radial direction of the annular member and the inner peripheral surface of the annular member is pressed against the outer peripheral surface of the shaft member. It is difficult to detect the frictional characteristics between the peripheral surfaces when moving relative to each other.

そこで、本発明は、環状部材及び該環状部材に挿通された軸部材を有する被測定体について、環状部材の径方向に沿ったラジアル荷重が付与された状態においても、軸部材が軸方向に相対移動する際の環状部材の内周面と軸部材の外周面との間の摩擦特性を検出可能とする摩擦試験装置及び摩擦試験方法を提供することを目的とする。 Therefore, in the present invention, the shaft member is relative to the axial direction even when a radial load along the radial direction of the annular member is applied to the object to be measured having the annular member and the shaft member inserted through the annular member. It is an object of the present invention to provide a friction test apparatus and a friction test method capable of detecting a friction characteristic between an inner peripheral surface of an annular member and an outer peripheral surface of a shaft member when moving.

本発明の一態様は、環状部材と、該環状部材に挿通された軸部材とを有する被測定体について、前記軸部材の軸方向に互いに摺接する前記環状部材の内周面と前記軸部材の外周面との間の摩擦特性を検出する摩擦試験装置であって、前記被測定体の前記環状部材よりも前記軸方向の一端側及び他端側で前記軸部材を保持する保持部と、前記保持部を摩擦低減部材を介して前記軸方向に移動可能に配置する本体部と、前記本体部に固定され、前記環状部材の前記軸方向の前記一端側の端面に当接する支持部と、前記被測定体に前記環状部材の径方向に沿ったラジアル荷重が付与された状態で、前記環状部材及び前記本体部に対して、前記軸部材及び前記保持部を前記軸方向の前記他端側から前記一端側に向かって相対移動させることが可能なスラスト荷重付与部と、前記スラスト荷重付与部が前記本体部に対して前記軸部材及び前記保持部を相対移動させる際の摩擦力を測定する摩擦力測定部と、を備える。 In one aspect of the present invention, with respect to a body to be measured having an annular member and a shaft member inserted through the annular member, an inner peripheral surface of the annular member and the shaft member that are in sliding contact with each other in the axial direction of the shaft member. A friction test device for detecting the friction characteristics between the outer peripheral surface, the holding portion for holding the shaft member on one end side and the other end side in the axial direction of the annular member of the object to be measured, and the above. A main body portion in which the holding portion is movably arranged in the axial direction via a friction reducing member, a support portion fixed to the main body portion and abutting on the end surface of the annular member on the one end side in the axial direction, and the above. With the radial load along the radial direction of the annular member applied to the object to be measured, the shaft member and the holding portion are attached to the annular member and the main body portion from the other end side in the axial direction. Friction that measures the frictional force when the thrust load applying portion that can be relatively moved toward one end side and the thrust load applying portion relatively move the shaft member and the holding portion with respect to the main body portion. It is equipped with a force measuring unit.

本発明の別の一態様は、上記の摩擦試験装置を用いた摩擦試験方法であって、前記被測定体の前記軸部材を前記保持部に保持させるとともに、前記保持部を前記フラットケージを介して前記本体部に配置して、前記被測定体を前記摩擦試験装置にセットする被測定体セット工程と、前記被測定体に前記ラジアル荷重を付与するラジアル荷重付与工程と、前記被測定体に前記ラジアル荷重を付与した状態で、前記スラスト荷重付与部により前記本体部に対して前記軸部材及び前記保持部を相対移動させる際に生じる摩擦力を前記摩擦力測定部により測定する摩擦力測定工程と、を有する。 Another aspect of the present invention is a friction test method using the above-mentioned friction test apparatus, in which the shaft member of the object to be measured is held by the holding portion and the holding portion is held via the flat cage. A step of setting the object to be measured, which is arranged in the main body and sets the object to be measured in the friction test device, a step of applying the radial load to the object to be measured, and a step of applying the radial load to the object to be measured. A frictional force measuring step of measuring the frictional force generated when the shaft member and the holding portion are relatively moved with respect to the main body portion by the thrust load applying portion in a state where the radial load is applied. And have.

摩擦試験装置の保持部は、被測定体の環状部材よりも軸方向の一端側及び他端側で軸部材を保持する。これによって、被測定体は、ラジアル荷重が環状部材を介して軸部材にも付与されるように、換言すると、環状部材の内周面を軸部材の外周面に押圧可能となるように保持部に保持される。また、保持部は、本体部に対し摩擦低減部材を介して軸方向に相対移動可能に配置される。この際、環状部材の軸方向の一端側の端面は、本体部に固定された支持部に当接可能である。支持部と環状部材の一端側の端面とが当接することで、環状部材は、本体部に対して、軸方向の他端側から一端側に向かう相対移動が規制される。 The holding portion of the friction test device holds the shaft member on one end side and the other end side in the axial direction with respect to the annular member of the object to be measured. As a result, the body to be measured is held so that the radial load is also applied to the shaft member via the annular member, in other words, the inner peripheral surface of the annular member can be pressed against the outer peripheral surface of the shaft member. Is held in. Further, the holding portion is arranged so as to be relatively movable in the axial direction with respect to the main body portion via the friction reducing member. At this time, the end surface of the annular member on one end side in the axial direction can come into contact with the support portion fixed to the main body portion. When the support portion and the end surface on one end side of the annular member come into contact with each other, the annular member is restricted from moving relative to the main body portion from the other end side in the axial direction toward one end side.

このため、スラスト荷重付与部は、被測定体にラジアル荷重が付与された状態でも、環状部材及び本体部に対して、軸部材及び保持部材を軸方向の他端側から一端側に向かって相対移動させることができる。すなわち、環状部材の内周面が軸部材の外周面に押圧された状態でも、環状部材に対し軸部材を軸方向に相対移動させることができる。このようにして軸部材及び保持部材を相対移動させる際の摩擦力を摩擦力測定部により測定することで、環状部材の内周面と軸部材の外周面とが軸方向に摺接する際の摩擦特性を検出することができる。 Therefore, the thrust load applying portion makes the shaft member and the holding member relative to the annular member and the main body portion from the other end side in the axial direction toward one end side even when the radial load is applied to the object to be measured. Can be moved. That is, even when the inner peripheral surface of the annular member is pressed against the outer peripheral surface of the shaft member, the shaft member can be relatively moved in the axial direction with respect to the annular member. By measuring the frictional force when the shaft member and the holding member are relatively moved in this way by the frictional force measuring unit, the friction when the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member are in sliding contact with each other in the axial direction. The characteristics can be detected.

以上から、本発明によれば、環状部材及び該環状部材に挿通された軸部材を有する被測定体について、環状部材の径方向に沿ったラジアル荷重が付与された状態においても、軸部材が軸方向に相対移動する際の環状部材の内周面と軸部材の外周面との間の摩擦特性を検出することが可能である。 From the above, according to the present invention, the shaft member is a shaft even when a radial load along the radial direction of the annular member is applied to the object to be measured having the annular member and the shaft member inserted through the annular member. It is possible to detect the frictional characteristics between the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member when moving relative to each other in the direction.

本発明の実施形態に係る摩擦試験装置及び被測定体の分解斜視図である。It is an exploded perspective view of the friction test apparatus and the body under test which concerns on embodiment of this invention. 被測定体がセットされた摩擦試験装置を圧縮試験機にセットした状態を説明する概略断面図である。It is schematic cross-sectional view explaining the state in which the friction test apparatus in which the object to be measured is set is set in the compression tester. 摩擦試験装置の保持部とフラットケージとの摩擦特性を検出する様子を説明する概略断面図である。It is schematic cross-sectional view explaining how to detect the friction characteristic between the holding part of a friction test apparatus and a flat cage. 被測定体のローラを備える等速ジョイントの要部概略断面図である。It is schematic cross-sectional view of the main part of the constant velocity joint provided with the roller of the object to be measured. 本実施形態に係る摩擦試験方法の一例を説明するフローチャートである。It is a flowchart explaining an example of the friction test method which concerns on this Embodiment.

本発明に係る摩擦試験装置及び摩擦試験方法について好適な実施形態を挙げ、添付の図面を参照しながら詳細に説明する。この摩擦試験装置は、環状部材と、該環状部材に挿通された軸部材とを有する被測定体について、軸部材の軸方向に互いに摺接する環状部材の内周面と軸部材の外周面との間の摩擦特性を検出する。 A suitable embodiment of the friction test apparatus and the friction test method according to the present invention will be described in detail with reference to the accompanying drawings. In this friction test device, with respect to a body to be measured having an annular member and a shaft member inserted through the annular member, an inner peripheral surface of the annular member and an outer peripheral surface of the shaft member that are in sliding contact with each other in the axial direction of the shaft member. Detects frictional characteristics between.

以下では、図1〜図3に示す本実施形態に係る摩擦試験装置10について、図4に示すトリポード型の等速ジョイント12のローラ14の内周面14aとトラニオン16の外周面16aとの摩擦特性を検出(推定)する場合に適用される例について説明する。 In the following, regarding the friction test device 10 according to the present embodiment shown in FIGS. 1 to 3, the friction between the inner peripheral surface 14a of the roller 14 of the tripod type constant velocity joint 12 and the outer peripheral surface 16a of the trunnion 16 shown in FIG. An example applied when detecting (estimating) a characteristic will be described.

つまり、図1及び図2に示すように、摩擦試験装置10における被測定体18は、環状部材19としてローラ14を有する。また、被測定体18の軸部材20は、ローラ14と摺動する摺接部22を有し、該摺接部22が図4のトラニオン16と同じ材料及び形状からなる。そして、ローラ14と、該ローラ14に摺接部22が挿通された軸部材20とを有する被測定体18について、ローラ14の内周面14aと摺接部22の外周面22aとの間の摩擦特性を検出することで、図4のローラ14の内周面14aとトラニオン16の外周面16aとの摩擦特性を検出(推定)する。しかしながら、摩擦試験装置10を適用して摩擦特性を検出することが可能な対象は、等速ジョイント12におけるローラ14及びトラニオン16に限定されるものではない。 That is, as shown in FIGS. 1 and 2, the object to be measured 18 in the friction test apparatus 10 has a roller 14 as an annular member 19. Further, the shaft member 20 of the body to be measured 18 has a sliding contact portion 22 that slides on the roller 14, and the sliding contact portion 22 is made of the same material and shape as the trunnion 16 in FIG. Then, with respect to the object to be measured 18 having the roller 14 and the shaft member 20 through which the sliding contact portion 22 is inserted, between the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 22a of the sliding contact portion 22. By detecting the friction characteristics, the friction characteristics between the inner peripheral surface 14a of the roller 14 of FIG. 4 and the outer peripheral surface 16a of the trunnion 16 are detected (estimated). However, the objects to which the friction test device 10 can be applied to detect the friction characteristics are not limited to the rollers 14 and the trunnion 16 in the constant velocity joint 12.

先ず、図4を参照しつつ、等速ジョイント12について簡単に説明する。等速ジョイント12は、アウタ部材24と、インナ部材(スパイダ)26と、ローラ14とを備える。アウタ部材24は、筒状部28と、軸部30とを有している。筒状部28は、例えば、金属材料を有底筒状に加工して得られ、その一端側(矢印X1側)に開口28aが設けられている。 First, the constant velocity joint 12 will be briefly described with reference to FIG. The constant velocity joint 12 includes an outer member 24, an inner member (spider) 26, and a roller 14. The outer member 24 has a cylindrical portion 28 and a shaft portion 30. The tubular portion 28 is obtained by processing, for example, a metal material into a bottomed cylindrical shape, and an opening 28a is provided on one end side (arrow X1 side) thereof.

筒状部28の外底壁面28bに軸部30が突設されている。軸部30は、その先端側(矢印X2側)に、車両のミッション等の回転軸(何れも不図示)が連結されている。筒状部28の内周壁には、該筒状部28の筒軸方向(矢印X1、X2方向)に沿って延在する案内溝28cが該アウタ部材24の周方向に間隔を置いて複数本(例えば3本)形成されている。 A shaft portion 30 is projected from the outer bottom wall surface 28b of the tubular portion 28. A rotation shaft (not shown) of a vehicle mission or the like is connected to the tip side (arrow X2 side) of the shaft portion 30. On the inner peripheral wall of the tubular portion 28, a plurality of guide grooves 28c extending along the cylindrical axial direction (arrows X1 and X2 directions) of the tubular portion 28 are spaced apart from each other in the circumferential direction of the outer member 24. (For example, three) are formed.

インナ部材26は、軸孔32aが設けられた円環部32と、円環部32の外周から突出するする複数個(例えば、3個)のトラニオン16とを有する。これらのトラニオン16が案内溝28c内にそれぞれ収容されるように、インナ部材26がアウタ部材24の筒状部28に対して開口28aを介して内挿されている。 The inner member 26 has an annulus portion 32 provided with a shaft hole 32a, and a plurality of (for example, three) trunnions 16 projecting from the outer circumference of the annulus portion 32. The inner member 26 is interpolated into the tubular portion 28 of the outer member 24 via the opening 28a so that the trunnions 16 are accommodated in the guide grooves 28c, respectively.

円環部32の軸孔32aには、伝達軸34の延在方向の一端側(矢印X2側)がセレーション嵌合されている。伝達軸34の延在方向の他端側(矢印X1側)は、例えば、不図示のバーフィールド型等の固定式等速ジョイントと連結されている。 One end side (arrow X2 side) of the transmission shaft 34 in the extending direction is serrated-fitted into the shaft hole 32a of the annulus portion 32. The other end side (arrow X1 side) of the transmission shaft 34 in the extending direction is connected to, for example, a fixed constant velocity joint such as a bar field type (not shown).

不図示ではあるが、筒状部28から突出する伝達軸34の外周面と、筒状部28の開口28a側の端部との間には、蛇腹部を有するゴム製又は樹脂製の継手用ブーツが装着され、該継手用ブーツ内には、潤滑材として、グリース組成物が封入されている。 Although not shown, for a rubber or resin joint having a bellows portion between the outer peripheral surface of the transmission shaft 34 protruding from the tubular portion 28 and the end portion of the tubular portion 28 on the opening 28a side. A boot is attached, and a grease composition is sealed in the joint boot as a lubricant.

ローラ14は、円柱状のトラニオン16の外周に回転自在に装着される円環状であり、トラニオン16とともに案内溝28c内に収容される。本実施形態では、ローラ14は、内側ローラ36と、転動部材38と、外側ローラ40とが一体化されて構成されている。 The roller 14 is an annular shape that is rotatably mounted on the outer circumference of the columnar trunnion 16, and is housed in the guide groove 28c together with the trunnion 16. In the present embodiment, the roller 14 is configured by integrating the inner roller 36, the rolling member 38, and the outer roller 40.

内側ローラ36は、トラニオン16の外周面16aに臨む円環状である。内側ローラ36の内周面、換言すると、ローラ14の内周面14aは、トラニオン16の外周面16aと部分的に接触可能な円弧状となっている。内側ローラ36の外周には、該内側ローラ36を周方向に取り囲むように、円柱状の転動部材38が複数配設されている。各転動部材38は、その回転軸が内側ローラ36の軸方向(矢印Y1、Y2方向)に沿うように配設されている。 The inner roller 36 is an annular shape facing the outer peripheral surface 16a of the trunnion 16. The inner peripheral surface of the inner roller 36, in other words, the inner peripheral surface 14a of the roller 14, has an arc shape that can partially contact the outer peripheral surface 16a of the trunnion 16. A plurality of columnar rolling members 38 are arranged on the outer periphery of the inner roller 36 so as to surround the inner roller 36 in the circumferential direction. Each rolling member 38 is arranged so that its rotation axis is along the axial direction (arrows Y1 and Y2 directions) of the inner roller 36.

外側ローラ40は、内側ローラ36の外周側に転動部材38を介して回転可能に装着される円環状である。すなわち、外側ローラ40は、内側ローラ36及び転動部材38を介してトラニオン16に回転可能に保持される。このようにトラニオン16に保持された状態で案内溝28c内に収容された外側ローラ40は、案内溝28c内を転動することが可能である。 The outer roller 40 is an annular shape that is rotatably mounted on the outer peripheral side of the inner roller 36 via a rolling member 38. That is, the outer roller 40 is rotatably held by the trunnion 16 via the inner roller 36 and the rolling member 38. The outer roller 40 housed in the guide groove 28c while being held by the trunnion 16 in this way can roll in the guide groove 28c.

ローラ14の内周面14aとトラニオン16の外周面16aとが接触し、且つローラ14の外周壁と案内溝28cの内壁とが接触することで、アウタ部材24とインナ部材26との間でローラ14を介してトルク伝達が行われる。このため、トルク伝達の際、ローラ14とアウタ部材24との間には径方向のラジアル荷重が生じる。このようにラジアル荷重が生じた状態で、ローラ14の内周面14aとトラニオン16の外周面16aとは、該トラニオン16の軸方向(矢印Y1、Y2方向)に沿って互いに摺接する。 The inner peripheral surface 14a of the roller 14 and the outer peripheral surface 16a of the trunnion 16 come into contact with each other, and the outer peripheral wall of the roller 14 and the inner wall of the guide groove 28c come into contact with each other. Torque transmission is performed via 14. Therefore, during torque transmission, a radial load in the radial direction is generated between the roller 14 and the outer member 24. With the radial load generated in this way, the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 16a of the trunnion 16 are in sliding contact with each other along the axial direction of the trunnion 16 (arrows Y1 and Y2 directions).

上記のように構成される等速ジョイント12の性能向上等を図るにあたっては、所定のラジアル荷重が生じた状態で、ローラ14の内周面14aとトラニオン16の外周面16aとが上記のように摺接する際の摩擦特性を検出することが求められる。なお、所定のラジアル荷重としては、例えば、等速ジョイント12を実際に不図示の車両に搭載してトルク伝達を行う際、ローラ14に生じることが想定されるラジアル荷重の最大値等が挙げられる。 In order to improve the performance of the constant velocity joint 12 configured as described above, the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 16a of the trunnion 16 are as described above in a state where a predetermined radial load is generated. It is required to detect the frictional characteristics at the time of sliding contact. Examples of the predetermined radial load include the maximum value of the radial load that is expected to be generated on the roller 14 when the constant velocity joint 12 is actually mounted on a vehicle (not shown) to transmit torque. ..

図1及び図2に示すように、本実施形態に係る摩擦試験装置10では、上記の通り、ローラ14と、トラニオン16(図4)に相当する軸部材20(摺接部22)とを有する被測定体18を用いて、ローラ14の内周面14aとトラニオン16の外周面16aとの間の摩擦特性を検出(推定)する。 As shown in FIGS. 1 and 2, the friction test apparatus 10 according to the present embodiment has a roller 14 and a shaft member 20 (sliding contact portion 22) corresponding to the trunnion 16 (FIG. 4) as described above. Using the body 18 to be measured, the friction characteristic between the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 16a of the trunnion 16 is detected (estimated).

軸部材20は、軸方向の他端側(矢印Y2側)にトラニオン16と同径の円柱状である摺接部22が設けられ、軸方向の一端側(矢印Y1側)に摺接部22よりも大径の円柱状である大径部42が設けられている。本実施形態では、摺接部22と大径部42とは、トラニオン16と同じ材料からなる1つの母材から一体に形成されることとする。しかしながら、摺接部22と大径部42とは、互いに別体に形成された後に一体化されてもよい。この場合、大径部42は、トラニオン16と異なる材料から形成されていてもよい。なお、軸部材20は、大径部42を有さず、全体が摺接部22と同径であってもよい。 The shaft member 20 is provided with a sliding contact portion 22 having a cylindrical shape having the same diameter as the trunnion 16 on the other end side (arrow Y2 side) in the axial direction, and the sliding contact portion 22 on one end side (arrow Y1 side) in the axial direction. A large-diameter portion 42 having a larger diameter than the columnar shape is provided. In the present embodiment, the sliding contact portion 22 and the large diameter portion 42 are integrally formed from one base material made of the same material as the trunnion 16. However, the sliding contact portion 22 and the large diameter portion 42 may be integrated after being formed separately from each other. In this case, the large diameter portion 42 may be formed of a material different from that of the trunnion 16. The shaft member 20 does not have a large diameter portion 42, and the entire shaft member 20 may have the same diameter as the sliding contact portion 22.

軸部材20の摺接部22にローラ14が挿通されて被測定体18が構成される。この被測定体18では、ローラ14の内周面14aと摺接部22の外周面22aとが軸部材20の軸方向(矢印Y1、Y2方向)に互いに摺接可能となっている。 The roller 14 is inserted through the sliding contact portion 22 of the shaft member 20 to form the object to be measured 18. In the body 18 to be measured, the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 22a of the sliding contact portion 22 can be slidably contacted with each other in the axial direction (arrows Y1 and Y2 directions) of the shaft member 20.

摩擦試験装置10は、2個の保持部44a、44bと、摩擦低減部材45である2個のフラットケージ46a、46bと、本体部48と、支持部50と、スラスト荷重付与部52と、摩擦力測定部54と、制御部56(図2)とを主に備える。なお、摩擦試験装置10が備える保持部44a、44bの個数は2個に限定されるものではなく、フラットケージ46a、46bの個数も2個に限定されるものではない。 The friction test device 10 has two holding portions 44a and 44b, two flat cages 46a and 46b which are friction reducing members 45, a main body portion 48, a support portion 50, a thrust load applying portion 52, and friction. It mainly includes a force measuring unit 54 and a control unit 56 (FIG. 2). The number of holding portions 44a and 44b included in the friction test device 10 is not limited to two, and the number of flat cages 46a and 46b is not limited to two.

保持部44a、44bは、被測定体18のローラ14よりも軸方向の一端側及び他端側で軸部材20をそれぞれ保持する。これによって、ローラ14に径方向(矢印Z方向、本実施形態では上下方向)に沿って付与されるラジアル荷重は、該ローラ14を介して軸部材20に付与される。保持部44a、44bのそれぞれは、例えば、金属等からなる直方体形状であり、上面及び底面は平面状に形成されている。 The holding portions 44a and 44b hold the shaft member 20 on one end side and the other end side in the axial direction with respect to the roller 14 of the object to be measured 18, respectively. As a result, the radial load applied to the roller 14 along the radial direction (arrow Z direction, vertical direction in the present embodiment) is applied to the shaft member 20 via the roller 14. Each of the holding portions 44a and 44b has a rectangular parallelepiped shape made of, for example, metal, and the upper surface and the bottom surface are formed in a flat shape.

保持部44aは、大径部42の直径に応じた円弧状の底部58aを有する切り欠き60aが上下方向(矢印Z方向)に沿って設けられ、該切り欠き60a内に大径部42を保持する。保持部44bは、摺接部22の直径に応じた円弧状の底部58bを有する切り欠き60bが上下方向に沿って設けられ、該切り欠き60b内に摺接部22を保持する。 The holding portion 44a is provided with a notch 60a having an arcuate bottom portion 58a corresponding to the diameter of the large diameter portion 42 along the vertical direction (arrow Z direction), and holds the large diameter portion 42 in the notch 60a. do. The holding portion 44b is provided with a notch 60b having an arc-shaped bottom portion 58b corresponding to the diameter of the sliding contact portion 22 along the vertical direction, and holds the sliding contact portion 22 in the notch 60b.

また、保持部44a、44bは、本体部48に設けられた収容部62a、62bにフラットケージ46a、46bを介して移動可能に配置される。フラットケージ46a、46bの各々は、複数のコロ64が、回転可能に保持器66に保持されて構成されている。フラットケージ46a、46bは、該フラットケージ46a、46b上にそれぞれ配置された保持部44a、44bを、コロ64の回転軸方向と直交する方向に直線運動可能とする。フラットケージ46a、46bによる直線運動方向は、矢印Y1、Y2方向に沿うように設定される。 Further, the holding portions 44a and 44b are movably arranged in the accommodating portions 62a and 62b provided in the main body portion 48 via the flat cages 46a and 46b. Each of the flat cages 46a and 46b is configured such that a plurality of rollers 64 are rotatably held by the cage 66. The flat cages 46a and 46b allow the holding portions 44a and 44b arranged on the flat cages 46a and 46b to linearly move in a direction orthogonal to the rotation axis direction of the roller 64. The direction of linear motion by the flat cages 46a and 46b is set to follow the directions of arrows Y1 and Y2.

フラットケージ46a、46bを介して本体部48の収容部62a、62bに保持部44a、44bをそれぞれ配置することで、収容部62a、62bに保持部44a、44bを直接配置した場合よりも小さい摩擦抵抗で、本体部48に対して保持部44a、44bを相対移動させることができる。なお、摩擦低減部材45は、フラットケージ46a、46bに限定されるものではなく、例えば、本体部48と保持部44a、44bとの間の摩擦抵抗を低減することが可能な不図示のシート部材等であってもよい。 By arranging the holding portions 44a and 44b in the accommodating portions 62a and 62b of the main body 48 via the flat cages 46a and 46b, respectively, the friction is smaller than when the holding portions 44a and 44b are directly arranged in the accommodating portions 62a and 62b. The holding portions 44a and 44b can be moved relative to the main body portion 48 by the resistance. The friction reducing member 45 is not limited to the flat cages 46a and 46b. For example, a sheet member (not shown) capable of reducing the frictional resistance between the main body portion 48 and the holding portions 44a and 44b. And so on.

図1に示すように、本体部48は、矢印Y1、Y2方向を長手方向とする矩形状の底壁部68と、該底壁部68を取り囲んで上方に立ち上がる周壁部70とを有する。また、本体部48には、底壁部68の長手方向の中ほどから上方に立ち上がるように、支持部50が固定されている。なお、底壁部68の形状は、特に上記の矩形状に限定されるものではなく、種々の形状を取り得る。また、底壁部68と、周壁部70と、支持部50とは、1つの母材から一体に形成されてもよいし、周壁部70及び支持部50の少なくとも何れか一方が、底壁部68とは別体に形成された後に、底壁部68と一体化されてもよい。 As shown in FIG. 1, the main body 48 has a rectangular bottom wall portion 68 whose longitudinal direction is the directions of arrows Y1 and Y2, and a peripheral wall portion 70 that surrounds the bottom wall portion 68 and rises upward. Further, a support portion 50 is fixed to the main body portion 48 so as to rise upward from the middle of the bottom wall portion 68 in the longitudinal direction. The shape of the bottom wall portion 68 is not particularly limited to the above-mentioned rectangular shape, and various shapes can be taken. Further, the bottom wall portion 68, the peripheral wall portion 70, and the support portion 50 may be integrally formed from one base material, and at least one of the peripheral wall portion 70 and the support portion 50 is the bottom wall portion. After being formed separately from the 68, it may be integrated with the bottom wall portion 68.

図2に示すように、本体部48の支持部50よりも矢印Y1側に、保持部44a及びフラットケージ46aを配置可能な収容部62aが設けられている。すなわち、収容部62aの底壁部68上にフラットケージ46aを配置し、該フラットケージ46a上に保持部44aを配置可能である。本体部48の支持部50よりも矢印Y2側には、保持部44b及びフラットケージ46bを配置可能な収容部62bが設けられている。すなわち、収容部62bの底壁部68上にフラットケージ46bを配置し、該フラットケージ46b上に保持部44bを配置可能である。 As shown in FIG. 2, an accommodating portion 62a into which the holding portion 44a and the flat cage 46a can be arranged is provided on the arrow Y1 side of the support portion 50 of the main body portion 48. That is, the flat cage 46a can be arranged on the bottom wall portion 68 of the accommodating portion 62a, and the holding portion 44a can be arranged on the flat cage 46a. On the arrow Y2 side of the support portion 50 of the main body portion 48, an accommodating portion 62b into which the holding portion 44b and the flat cage 46b can be arranged is provided. That is, the flat cage 46b can be arranged on the bottom wall portion 68 of the accommodating portion 62b, and the holding portion 44b can be arranged on the flat cage 46b.

支持部50には、上下方向に沿って切り欠き50aが設けられている。収容部62a、62b内の保持部44a、44bに軸部材20が保持された際、ローラ14の軸方向の一端側(矢印Y1側)の端面14bは、支持部50に当接可能となる。また、支持部50の切り欠き50aに、軸部材20の摺接部22が挿通される。 The support portion 50 is provided with a notch 50a along the vertical direction. When the shaft member 20 is held by the holding portions 44a and 44b in the accommodating portions 62a and 62b, the end surface 14b on one end side (arrow Y1 side) of the roller 14 in the axial direction can come into contact with the supporting portion 50. Further, the sliding contact portion 22 of the shaft member 20 is inserted through the notch 50a of the support portion 50.

周壁部70は、底壁部68の短辺に沿って延在する第1周壁部72a、72bと、底壁部68の長辺に沿って延在する第2周壁部74(図1)とを有する。第1周壁部72a、72bは、第2周壁部74の大部分よりも上下方向の高さが高くなっている。矢印Y1側の第1周壁部72aには、軸部材20の大径部42を挿通可能な切り欠き76が上下方向に沿って設けられている。矢印Y2側の第1周壁部72bには、スラスト荷重付与部52を構成する雌ねじ部78が設けられている。 The peripheral wall portion 70 includes a first peripheral wall portion 72a and 72b extending along the short side of the bottom wall portion 68 and a second peripheral wall portion 74 (FIG. 1) extending along the long side of the bottom wall portion 68. Has. The heights of the first peripheral wall portions 72a and 72b are higher in the vertical direction than most of the second peripheral wall portions 74. A notch 76 through which the large diameter portion 42 of the shaft member 20 can be inserted is provided in the first peripheral wall portion 72a on the side of the arrow Y1 along the vertical direction. A female screw portion 78 constituting a thrust load applying portion 52 is provided on the first peripheral wall portion 72b on the side of the arrow Y2.

収容部62a、62bに配置された保持部44a、44bにより軸部材20が保持され、ローラ14の端面14bが支持部50に当接した状態で、摩擦試験装置10に被測定体18がセットされる。この際、図2に示すように、ローラ14の径方向下端側の外周面14cは、本体部48と離間して配置される。また、軸部材20は、その軸方向が水平方向に沿い、且つ切り欠き50a、76等を介して本体部48及び支持部50と離間した状態で配置される。さらに、軸部材20の軸方向の他端側(矢印Y2側)の端部20aは、保持部44bよりも矢印Y2側に配置される。 The body 18 to be measured is set in the friction test device 10 in a state where the shaft member 20 is held by the holding portions 44a and 44b arranged in the accommodating portions 62a and 62b and the end surface 14b of the roller 14 is in contact with the supporting portion 50. NS. At this time, as shown in FIG. 2, the outer peripheral surface 14c on the lower end side in the radial direction of the roller 14 is arranged so as to be separated from the main body portion 48. Further, the shaft member 20 is arranged in a state in which the axial direction thereof is along the horizontal direction and is separated from the main body portion 48 and the support portion 50 via notches 50a, 76 and the like. Further, the end portion 20a on the other end side (arrow Y2 side) of the shaft member 20 in the axial direction is arranged on the arrow Y2 side with respect to the holding portion 44b.

上記のようにして被測定体18がセットされる摩擦試験装置10では、被測定体18にラジアル荷重を付与する際に、一般的な圧縮試験機80(図2)を用いることが可能になる。つまり、例えば、摩擦試験装置10を圧縮試験機80にセットし、該圧縮試験機80によりローラ14を下方に向かって押圧する。これによって、被測定体18に所定のラジアル荷重が付され、ローラ14の内周面14aが摺接部22の外周面22aに押圧される。なお、圧縮試験機80は、圧縮試験以外の試験(例えば引張試験等)も実施可能な万能試験機であってもよい。 In the friction test apparatus 10 in which the object to be measured 18 is set as described above, a general compression tester 80 (FIG. 2) can be used when applying a radial load to the object to be measured 18. .. That is, for example, the friction test device 10 is set in the compression tester 80, and the roller 14 is pressed downward by the compression tester 80. As a result, a predetermined radial load is applied to the object to be measured 18, and the inner peripheral surface 14a of the roller 14 is pressed against the outer peripheral surface 22a of the sliding contact portion 22. The compression tester 80 may be a universal tester capable of performing tests other than the compression test (for example, a tensile test).

スラスト荷重付与部52は、被測定体18にラジアル荷重が付与された状態においても、ローラ14及び本体部48に対して、軸部材20及び保持部44a、44bを軸方向の他端側から一端側に向かって相対移動させることが可能である。摩擦力測定部54は、スラスト荷重付与部52が軸部材20及び保持部44a、44bを相対移動させる際の摩擦力を測定する。 The thrust load applying portion 52 attaches the shaft member 20 and the holding portions 44a and 44b to the roller 14 and the main body portion 48 from the other end side in the axial direction even when the radial load is applied to the object to be measured 18. It is possible to move relative to the side. The frictional force measuring unit 54 measures the frictional force when the thrust load applying unit 52 relatively moves the shaft member 20 and the holding units 44a and 44b.

本実施形態では、スラスト荷重付与部52は、雌ねじ部78と、雄ねじ部82とを有する。雌ねじ部78は、軸方向に沿って本体部48の第1周壁部72bを貫通する貫通孔の内周に設けられている。雄ねじ部82は、雌ねじ部78に螺合することで軸方向に沿って軸部材20に接近又は離間することが可能である。また、摩擦力測定部54は、例えば、不図示の支持機構に支持されて、雄ねじ部82の軸方向の一端側(矢印Y1側)の端部82aと、軸部材20の他端側(矢印Y2側)の端部20aとの間に設けられる。 In the present embodiment, the thrust load applying portion 52 has a female screw portion 78 and a male screw portion 82. The female screw portion 78 is provided on the inner circumference of the through hole penetrating the first peripheral wall portion 72b of the main body portion 48 along the axial direction. The male screw portion 82 can approach or separate from the shaft member 20 along the axial direction by screwing the male screw portion 82 into the female screw portion 78. Further, the friction force measuring unit 54 is supported by, for example, a support mechanism (not shown), and has an end portion 82a on one end side (arrow Y1 side) of the male screw portion 82 in the axial direction and the other end side (arrow) of the shaft member 20. It is provided between the end portion 20a on the Y2 side).

すなわち、このスラスト荷重付与部52では、雄ねじ部82が軸方向の一端側に進行するように雄ねじ部82と雌ねじ部78を螺合させることで、摩擦力測定部54を介して軸部材20に軸方向の他端側から一端側に向かう荷重(スラスト荷重)を付与できる。これによって、軸部材20と、該軸部材20を保持する保持部44a、44bとを一体に、ローラ14及び本体部48に対して相対移動させることができる。 That is, in the thrust load applying portion 52, the male screw portion 82 and the female screw portion 78 are screwed so that the male screw portion 82 advances to one end side in the axial direction, so that the shaft member 20 is connected to the shaft member 20 via the friction force measuring portion 54. A load (thrust load) from the other end side in the axial direction toward one end side can be applied. As a result, the shaft member 20 and the holding portions 44a and 44b that hold the shaft member 20 can be integrally moved relative to the roller 14 and the main body portion 48.

摩擦力測定部54は、上記のスラスト荷重を、軸部材20及び保持部44a、44bが相対移動する際の摩擦力として測定する。摩擦力測定部54は、例えば、軸部材20及び保持部44a、44bが相対移動する直前のスラスト荷重を最大静止摩擦力として測定することができる。この場合、摩擦力測定部54では、第1最大静止摩擦力と、第2最大静止摩擦力とを合わせた全体最大静止摩擦力が測定される。第1最大静止摩擦力は、上記の相対移動の直前に、ローラ14の内周面14a及び摺接部22(軸部材20)の外周面22aの間に生じる最大静止摩擦力である。第2最大静止摩擦力は、上記の相対移動の直前に、保持部44a、44b及びフラットケージ46a、46bの間にそれぞれ生じる最大静止摩擦力である。 The frictional force measuring unit 54 measures the thrust load as a frictional force when the shaft member 20 and the holding units 44a and 44b move relative to each other. The frictional force measuring unit 54 can measure, for example, the thrust load immediately before the shaft member 20 and the holding units 44a and 44b move relative to each other as the maximum static frictional force. In this case, the friction force measuring unit 54 measures the total maximum static friction force, which is the sum of the first maximum static friction force and the second maximum static friction force. The first maximum static friction force is the maximum static friction force generated between the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 22a of the sliding contact portion 22 (shaft member 20) immediately before the relative movement. The second maximum static friction force is the maximum static friction force generated between the holding portions 44a and 44b and the flat cages 46a and 46b immediately before the relative movement.

なお、摩擦力測定部54は、軸部材20及び保持部44a、44bが相対移動している最中のスラスト荷重を動摩擦力として測定可能であってもよい。この場合、摩擦力測定部54で測定される摩擦力は、ローラ14の内周面14a及び摺接部22の外周面22aに生じる第1動摩擦力と、保持部44a、44b及びフラットケージ46a、46bに生じる第2動摩擦力とを合わせた全体動摩擦力である。 The frictional force measuring unit 54 may be able to measure the thrust load while the shaft member 20 and the holding units 44a and 44b are relatively moving as the dynamic frictional force. In this case, the frictional force measured by the frictional force measuring unit 54 is the first dynamic frictional force generated on the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 22a of the sliding contact portion 22, and the holding portions 44a, 44b and the flat cage 46a. It is the total dynamic friction force including the second dynamic friction force generated in 46b.

本実施形態では、制御部56は、摩擦力測定部54で求めた全体最大静止摩擦力と、ラジアル荷重と、予め求められた第2最大静止摩擦力の推定値とに基づいて、ローラ14の内周面14a及び摺接部22の外周面22aの静止摩擦係数μを算出する。この静止摩擦係数μは、例えば、次式1から求めることができる。
静止摩擦係数μ=全体最大静止摩擦力/ラジアル荷重−第2最大静止摩擦力の推定値/ラジアル荷重=(全体最大静止摩擦力−第2最大静止摩擦力の推定値)/ラジアル荷重…(式1)
In the present embodiment, the control unit 56 uses the roller 14 based on the total maximum static friction force obtained by the friction force measuring unit 54, the radial load, and the estimated value of the second maximum static friction force obtained in advance. The static friction coefficient μ of the inner peripheral surface 14a and the outer peripheral surface 22a of the sliding contact portion 22 is calculated. The coefficient of static friction μ can be obtained from, for example, the following equation 1.
Static friction coefficient μ = Overall maximum static friction force / Radial load-Second maximum static friction force estimate / Radial load = (Overall maximum static friction force-Second maximum static friction force estimate) / Radial load ... (Equation) 1)

なお、全体最大静止摩擦力をラジアル荷重で除すことにより、ローラ14の内周面14a及び摺接部22の外周面22aの間、及び保持部44a、44b及びフラットケージ46a、46bの間の全体最大静止摩擦係数が求められる。また、第2最大静止摩擦力の推定値をラジアル荷重で除すことにより、保持部44a、44b及びフラットケージ46a、46bの間の保持部静止摩擦係数が求められる。 By dividing the total maximum static friction force by the radial load, between the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 22a of the sliding contact portion 22, and between the holding portions 44a and 44b and the flat cages 46a and 46b. The total maximum static friction coefficient is obtained. Further, by dividing the estimated value of the second maximum static friction force by the radial load, the coefficient of static friction of the holding portions between the holding portions 44a and 44b and the flat cages 46a and 46b can be obtained.

本実施形態に係る摩擦試験装置10は、基本的には上記のように構成される。以下、摩擦試験装置10を用いた本実施形態に係る摩擦試験方法について説明する。この摩擦試験方法は、図5に示すように、被測定体セット工程S1と、ラジアル荷重付与工程S2と、摩擦力測定工程S3と、第2最大静止摩擦力算出工程S4と、静止摩擦係数算出工程S5とを有する。 The friction test device 10 according to the present embodiment is basically configured as described above. Hereinafter, the friction test method according to the present embodiment using the friction test device 10 will be described. As shown in FIG. 5, this friction test method includes an object setting step S1, a radial load applying step S2, a friction force measuring step S3, a second maximum static friction force calculation step S4, and a static friction coefficient calculation. It has a step S5.

被測定体セット工程S1では、図1に示すように、被測定体18を摩擦試験装置10にセットする。すなわち、被測定体18の軸部材20を保持部44a、44bに保持させるとともに、保持部44a、44bをフラットケージ46a、46bを介して本体部48の収容部62a、62b内に配置する。また、ローラ14の端面14bと、支持部50とが離間する場合には、軸部材20に対してローラ14を摺動させて、ローラ14の端面14bと支持部50とを当接させる。 In the body to be measured setting step S1, as shown in FIG. 1, the body to be measured 18 is set in the friction test device 10. That is, the shaft member 20 of the body to be measured 18 is held by the holding portions 44a and 44b, and the holding portions 44a and 44b are arranged in the accommodating portions 62a and 62b of the main body portion 48 via the flat cages 46a and 46b. When the end surface 14b of the roller 14 and the support portion 50 are separated from each other, the roller 14 is slid with respect to the shaft member 20 so that the end surface 14b of the roller 14 and the support portion 50 are brought into contact with each other.

ラジアル荷重付与工程S2では、図2に示すように、例えば、摩擦試験装置10を圧縮試験機80にセットし、該圧縮試験機80を用いて、被測定体18のローラ14に所定のラジアル荷重を付与する。これによって、ローラ14の内周面14aは、軸部材20の摺接部22の外周面22aに押圧される。 In the radial load applying step S2, for example, as shown in FIG. 2, the friction test device 10 is set in the compression tester 80, and the compression tester 80 is used to put a predetermined radial load on the roller 14 of the object to be measured 18. Is given. As a result, the inner peripheral surface 14a of the roller 14 is pressed against the outer peripheral surface 22a of the sliding contact portion 22 of the shaft member 20.

摩擦力測定工程S3では、上記のようにして被測定体18にラジアル荷重を付与した状態で、スラスト荷重付与部52により軸部材20及び保持部44a、44bを相対移動させる際に生じる摩擦力を摩擦力測定部54により測定する。具体的には、摩擦力測定工程S3では、雄ねじ部82と雌ねじ部78とを螺合させて、雄ねじ部82を矢印Y1側に進行させる。これによって、摩擦力測定部54を介して軸部材20に軸方向の他端側から一端側に向かうスラスト荷重を付与し、軸部材20及び保持部44a、44bを、ローラ14及び本体部48に対して相対移動させる。また、摩擦力測定部54により、軸部材20及び保持部44a、44bが相対移動する直前のスラスト荷重を摩擦力(全体最大静止摩擦力)として測定する。 In the frictional force measuring step S3, the frictional force generated when the shaft member 20 and the holding portions 44a and 44b are relatively moved by the thrust load applying portion 52 in a state where the radial load is applied to the object to be measured 18 as described above. It is measured by the frictional force measuring unit 54. Specifically, in the frictional force measuring step S3, the male screw portion 82 and the female screw portion 78 are screwed together to advance the male screw portion 82 toward the arrow Y1 side. As a result, a thrust load is applied to the shaft member 20 from the other end side in the axial direction toward one end side via the friction force measuring unit 54, and the shaft member 20 and the holding portions 44a and 44b are attached to the roller 14 and the main body portion 48. Move relative to each other. Further, the frictional force measuring unit 54 measures the thrust load immediately before the shaft member 20 and the holding units 44a and 44b move relative to each other as the frictional force (total maximum static frictional force).

本実施形態の第2最大静止摩擦力算出工程S4では、摩擦試験装置10を用いて第2最大静止摩擦力の推定値を求める。第2最大静止摩擦力算出工程S4は、第1工程と、第2工程と、第3工程と、第4工程とを有する。第1工程では、図3に示すように、軸部材20を保持しない状態の保持部44b(又は、保持部44a)を、一組のフラットケージ46a、46bで上下方向に挟んで本体部48に配置する。第2工程では、摩擦試験装置10を圧縮試験機80にセットし、フラットケージ46aを介した保持部44bに対して、ラジアル荷重付与工程S2と同様にしてラジアル荷重を付与する。 In the second maximum static friction force calculation step S4 of the present embodiment, the estimated value of the second maximum static friction force is obtained by using the friction test device 10. The second maximum static friction force calculation step S4 includes a first step, a second step, a third step, and a fourth step. In the first step, as shown in FIG. 3, the holding portion 44b (or the holding portion 44a) in a state where the shaft member 20 is not held is sandwiched in the vertical direction by a pair of flat cages 46a and 46b and is attached to the main body portion 48. Deploy. In the second step, the friction test device 10 is set in the compression tester 80, and a radial load is applied to the holding portion 44b via the flat cage 46a in the same manner as in the radial load applying step S2.

第3工程では、フラットケージ46a、46b及び保持部44bにラジアル荷重を付与した状態で、スラスト荷重付与部52により保持部44bを本体部48及びフラットケージ46a、46bに対して相対移動させ、この際の最大静止摩擦力を摩擦力測定部54により測定する。 In the third step, with the radial load applied to the flat cages 46a and 46b and the holding portion 44b, the holding portion 44b is moved relative to the main body portion 48 and the flat cages 46a and 46b by the thrust load applying portion 52. The maximum static frictional force is measured by the frictional force measuring unit 54.

つまり、第3工程では、雄ねじ部82と雌ねじ部78とを螺合させて、雄ねじ部82を矢印Y1側に進行させる。これによって、摩擦力測定部54を介して保持部44bにスラスト荷重を付与し、保持部44を本体部48及びフラットケージ46a、46bに対して相対移動させる。また、摩擦力測定部54によって、保持部44bが相対移動する直前のスラスト荷重を、保持部44及び2個のフラットケージ46a、46bの最大静止摩擦力として測定する。 That is, in the third step, the male screw portion 82 and the female screw portion 78 are screwed together to advance the male screw portion 82 toward the arrow Y1 side. As a result, a thrust load is applied to the holding portion 44b via the friction force measuring portion 54, and the holding portion 44 is moved relative to the main body portion 48 and the flat cages 46a and 46b. Further, the friction force measuring unit 54 measures the thrust load immediately before the holding unit 44b moves relative to each other as the maximum static friction force of the holding unit 44 and the two flat cages 46a and 46b.

第4工程では、第3工程で測定された最大静止摩擦力を2で除することにより、保持部44b及び1個のフラットケージ46bの最大静止摩擦力として第2最大静止摩擦力の推定値を得る。 In the fourth step, the maximum static friction force measured in the third step is divided by 2, so that the estimated value of the second maximum static friction force is obtained as the maximum static friction force of the holding portion 44b and one flat cage 46b. obtain.

静止摩擦係数算出工程S5では、ラジアル荷重と、全体最大静止摩擦力と、第2最大静止摩擦力の推定値とから、上記の式1に基づいて、ローラ14の内周面14aと摺接部22の外周面22aとの静止摩擦係数μを算出する。この静止摩擦係数算出工程S5の後、本実施形態に係る摩擦試験方法のフローチャートは終了する。 In the static friction coefficient calculation step S5, the inner peripheral surface 14a of the roller 14 and the sliding contact portion are based on the above equation 1 from the radial load, the total maximum static friction force, and the estimated value of the second maximum static friction force. The coefficient of static friction μ with the outer peripheral surface 22a of 22 is calculated. After the static friction coefficient calculation step S5, the flowchart of the friction test method according to the present embodiment ends.

上記の通り、軸部材20の摺接部22は、等速ジョイント12のトラニオン16に相当するように形成されている。このため、静止摩擦係数算出工程S5で求めた静止摩擦係数μを、図4のローラ14の内周面14aとトラニオン16の外周面16aとの間の静止摩擦係数として検出(推定)することができる。 As described above, the sliding contact portion 22 of the shaft member 20 is formed so as to correspond to the trunnion 16 of the constant velocity joint 12. Therefore, the static friction coefficient μ obtained in the static friction coefficient calculation step S5 can be detected (estimated) as the static friction coefficient between the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 16a of the trunnion 16 in FIG. can.

以上から、本実施形態に係る摩擦試験装置10及び摩擦試験方法によれば、被測定体18について、ローラ14の径方向に沿ったラジアル荷重が付与された状態においても、軸部材20が軸方向に相対移動する際のローラ14の内周面14aと軸部材20(摺接部22)の外周面22aとの間の摩擦特性を検出することができる。 From the above, according to the friction test device 10 and the friction test method according to the present embodiment, the shaft member 20 is axially oriented even when a radial load along the radial direction of the roller 14 is applied to the object to be measured 18. It is possible to detect the frictional characteristics between the inner peripheral surface 14a of the roller 14 and the outer peripheral surface 22a of the shaft member 20 (sliding contact portion 22) when moving relative to.

上記の実施形態に係る摩擦試験装置10では、スラスト荷重付与部52は、軸方向に沿って本体部48を貫通する貫通孔に設けられた雌ねじ部78と、雌ねじ部78に螺合することで軸部材20に接近又は離間可能な雄ねじ部82と、を有し、摩擦力測定部54は、雄ねじ部82と軸部材20との間に設けられ、雄ねじ部82が摩擦力測定部54を介して軸部材20に付与する軸方向の荷重(スラスト荷重)を摩擦力として測定することとした。 In the friction test device 10 according to the above embodiment, the thrust load applying portion 52 is screwed into the female screw portion 78 and the female screw portion 78 provided in the through hole penetrating the main body portion 48 along the axial direction. It has a male screw portion 82 that can approach or separate from the shaft member 20, a frictional force measuring portion 54 is provided between the male screw portion 82 and the shaft member 20, and the male screw portion 82 is provided via the frictional force measuring portion 54. It was decided to measure the axial load (thrust load) applied to the shaft member 20 as a frictional force.

この場合、スラスト荷重付与部52では、雄ねじ部82を雌ねじ部78に螺合させる簡単な構成及び操作によって、軸部材20及び保持部44a、44bを、ローラ14及び本体部48に対して相対移動させることができる。また、雄ねじ部82と軸部材20との間に摩擦力測定部54を介在させる簡単な構成によって、軸部材20及び保持部44a、44bを相対移動させる際の摩擦力を測定することができる。 In this case, in the thrust load applying portion 52, the shaft member 20 and the holding portions 44a and 44b are moved relative to the roller 14 and the main body portion 48 by a simple configuration and operation in which the male screw portion 82 is screwed into the female screw portion 78. Can be made to. Further, the frictional force when the shaft member 20 and the holding portions 44a and 44b are relatively moved can be measured by a simple configuration in which the frictional force measuring portion 54 is interposed between the male screw portion 82 and the shaft member 20.

なお、スラスト荷重付与部52は、雄ねじ部82及び雌ねじ部78を有する上記の構成に限定されるものではなく、軸部材20を軸方向の他端側から一端側に向かって押圧することが可能な種々の構成を採用することができる。 The thrust load applying portion 52 is not limited to the above configuration having the male screw portion 82 and the female screw portion 78, and can press the shaft member 20 from the other end side in the axial direction toward one end side. Various configurations can be adopted.

上記の実施形態に係る摩擦試験装置10では、摩擦低減部材45は、フラットケージ46a、46bであることとした。この場合、簡単な構成からなり耐久性に優れたフラットケージ46a、46bによって、本体部48と保持部44a、44bとの間の摩擦抵抗を低減することができる。 In the friction test device 10 according to the above embodiment, the friction reducing members 45 are flat cages 46a and 46b. In this case, the frictional resistance between the main body portion 48 and the holding portions 44a and 44b can be reduced by the flat cages 46a and 46b having a simple structure and excellent durability.

上記の実施形態に係る摩擦試験装置10では、摩擦力測定部54が測定する摩擦力は、ローラ14(環状部材19)の内周面14a及び摺接部22(軸部材20)の外周面22aの第1最大静止摩擦力と、保持部44b及びフラットケージ46b(又は、保持部44a及びフラットケージ46a)の第2最大静止摩擦力とを合わせた全体最大静止摩擦力であることとした。 In the friction test device 10 according to the above embodiment, the frictional force measured by the frictional force measuring unit 54 is the inner peripheral surface 14a of the roller 14 (annular member 19) and the outer peripheral surface 22a of the sliding contact portion 22 (shaft member 20). The first maximum static friction force of the above and the second maximum static friction force of the holding portion 44b and the flat cage 46b (or the holding portion 44a and the flat cage 46a) are combined to be the total maximum static friction force.

また、上記の実施形態に係る摩擦試験方法の摩擦力測定工程S3では、ローラ14(環状部材19)の内周面14a及び摺接部22(軸部材20)の外周面22aの第1最大静止摩擦力と、保持部44b及びフラットケージ46b(又は、保持部44a及びフラットケージ46a)の第2最大静止摩擦力とを合わせた全体最大静止摩擦力を測定することとした。 Further, in the frictional force measuring step S3 of the friction test method according to the above embodiment, the first maximum stationary surface of the inner peripheral surface 14a of the roller 14 (annular member 19) and the outer peripheral surface 22a of the sliding contact portion 22 (shaft member 20) is stopped. It was decided to measure the total maximum static friction force including the frictional force and the second maximum static friction force of the holding portion 44b and the flat cage 46b (or the holding portion 44a and the flat cage 46a).

上記の実施形態に係る摩擦試験装置10では、全体最大静止摩擦力と、ラジアル荷重と、予め求められた第2最大静止摩擦力の推定値と、に基づいて、ローラ14(環状部材19)の内周面14a及び摺接部22(軸部材20)の外周面22aの静止摩擦係数μを算出する制御部56を備えることとした。 In the friction test apparatus 10 according to the above embodiment, the roller 14 (annular member 19) is based on the total maximum static friction force, the radial load, and the estimated value of the second maximum static friction force obtained in advance. A control unit 56 for calculating the static friction coefficient μ of the inner peripheral surface 14a and the outer peripheral surface 22a of the sliding contact portion 22 (shaft member 20) is provided.

なお、摩擦試験装置10は、制御部56を備えていなくてもよい。例えば、摩擦試験装置10によって測定される全体最大静止摩擦力と、予め設定されるラジアル荷重と、予め求められる第2最大静止摩擦力の推定値とから、摩擦試験装置10とは別に設けられた不図示のコンピュータ等を利用して静止摩擦係数μを算出してもよい。 The friction test device 10 does not have to include the control unit 56. For example, it is provided separately from the friction test device 10 from the total maximum static friction force measured by the friction test device 10, the preset radial load, and the estimated value of the second maximum static friction force obtained in advance. The static friction coefficient μ may be calculated using a computer (not shown) or the like.

また、上記の実施形態に係る摩擦試験方法では、摩擦試験装置10を用いて第2最大静止摩擦力の推定値を求める第2最大静止摩擦力算出工程S4を有し、第2最大静止摩擦力算出工程S4は、軸部材20を保持しない状態の保持部44b(又は、保持部44a)を、一組のフラットケージ46a、46bで挟んで本体部48に配置する第1工程と、フラットケージ46aを介して保持部44bにラジアル荷重を付与する第2工程と、ラジアル荷重を付与した状態で、スラスト荷重付与部52により保持部44bを本体部48及びフラットケージ46a、46bに対して相対移動させる際の最大静止摩擦力を摩擦力測定部54により測定する第3工程と、第3工程での摩擦力測定部54の測定結果に基づいて第2最大静止摩擦力の推定値を求める第4工程と、を有し、第2最大静止摩擦力算出工程S4及び摩擦力測定工程S3の後に、ラジアル荷重と、全体最大静止摩擦力と、第2最大静止摩擦力の推定値と、に基づいて、ローラ14(環状部材19)の内周面14aと摺接部22(軸部材20)の外周面22aとの静止摩擦係数μを算出する静止摩擦係数算出工程S5を有することとした。 Further, the friction test method according to the above embodiment includes a second maximum static friction force calculation step S4 for obtaining an estimated value of the second maximum static friction force using the friction test device 10, and has a second maximum static friction force. The calculation step S4 includes a first step in which the holding portion 44b (or the holding portion 44a) in a state where the shaft member 20 is not held is sandwiched between a set of flat cages 46a and 46b and arranged in the main body portion 48, and the flat cage 46a. In the second step of applying a radial load to the holding portion 44b via the The third step of measuring the maximum static frictional force at the time by the frictional force measuring unit 54, and the fourth step of obtaining an estimated value of the second maximum static frictional force based on the measurement result of the frictional force measuring unit 54 in the third step. After the second maximum static friction force calculation step S4 and the frictional force measurement step S3, based on the radial load, the total maximum static friction force, and the estimated value of the second maximum static friction force. It is decided to have the static friction coefficient calculation step S5 for calculating the static friction coefficient μ between the inner peripheral surface 14a of the roller 14 (annular member 19) and the outer peripheral surface 22a of the sliding contact portion 22 (shaft member 20).

この場合、第2最大静止摩擦力の推定値を簡単に且つ高精度に求めることができる。しかしながら、第2最大静止摩擦力の推定値は、第2最大静止摩擦力算出工程S4とは異なる方法で求めることも可能である。また、上記の実施形態では、第2最大静止摩擦力算出工程S4を、被測定体セット工程S1と、ラジアル荷重付与工程S2と、摩擦力測定工程S3との後に行うこととした。しかしながら、第2最大静止摩擦力算出工程S4は、被測定体セット工程S1と、ラジアル荷重付与工程S2と、摩擦力測定工程S3との前に行ってもよい。 In this case, the estimated value of the second maximum static friction force can be easily and highly accurately obtained. However, the estimated value of the second maximum static friction force can be obtained by a method different from that of the second maximum static friction force calculation step S4. Further, in the above embodiment, the second maximum static friction force calculation step S4 is performed after the object setting step S1, the radial load applying step S2, and the friction force measuring step S3. However, the second maximum static friction force calculation step S4 may be performed before the object to be measured setting step S1, the radial load applying step S2, and the friction force measuring step S3.

さらに、制御部56は、第2最大静止摩擦力の推定値を算出することに代えて、予め記憶された保持部44a、44b及びフラットケージ46a、46bの保持部静止摩擦係数を用いて、静止摩擦係数μを算出してもよい。この場合、全体最大静止摩擦力をラジアル荷重で除すことにより求められる全体最大静止摩係数から予め記憶された保持部静止摩擦係数を減ずることで静止摩擦係数μが求められる。 Further, instead of calculating the estimated value of the second maximum static friction force, the control unit 56 uses the holding unit static friction coefficients of the holding units 44a and 44b and the flat cages 46a and 46b stored in advance to be stationary. The coefficient of friction μ may be calculated. In this case, the static friction coefficient μ is obtained by subtracting the pre-stored static friction coefficient of the holding portion from the total maximum static friction coefficient obtained by dividing the total maximum static friction force by the radial load.

本発明は、上記した実施形態に特に限定されるものではなく、その要旨を逸脱しない範囲で種々の変形が可能である。 The present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.

例えば、上記の実施形態では、圧縮試験機80は、摩擦試験装置10の構成要素ではなく、摩擦試験装置10をセット可能な外部構成であることとした。しかしながら、圧縮試験機80は、摩擦試験装置10の構成要素であってもよい。 For example, in the above embodiment, the compression tester 80 is not a component of the friction test device 10, but has an external configuration in which the friction test device 10 can be set. However, the compression tester 80 may be a component of the friction tester 10.

10…摩擦試験装置 12…等速ジョイント
14…ローラ 14a内周面
14b…端面 16…トラニオン
16a…外周面 18…被測定体
19…環状部材 20…軸部材
22…摺接部 22a…外周面
24…アウタ部材 26…インナ部材
44a、44b…保持部 45…摩擦低減部材
46a、46b…フラットケージ 48…本体部
50…支持部 52…スラスト荷重付与部
54…摩擦力測定部 56…制御部
78…雌ねじ部 82…雄ねじ部
μ…静止摩擦係数
10 ... Friction test device 12 ... Constant velocity joint 14 ... Roller 14a Inner peripheral surface 14b ... End surface 16 ... Trunnion 16a ... Outer peripheral surface 18 ... Body to be measured 19 ... Circular member 20 ... Shaft member 22 ... Sliding contact portion 22a ... Outer peripheral surface 24 ... Outer member 26 ... Inner member 44a, 44b ... Holding part 45 ... Friction reducing member 46a, 46b ... Flat cage 48 ... Main body 50 ... Supporting part 52 ... Thrust load applying part 54 ... Friction force measuring part 56 ... Control unit 78 ... Female thread 82 ... Male thread μ ... Static friction coefficient

Claims (11)

環状部材と、該環状部材に挿通された軸部材とを有する被測定体について、前記軸部材の軸方向に互いに摺接する前記環状部材の内周面と前記軸部材の外周面との間の摩擦特性を検出する摩擦試験装置であって、
前記被測定体の前記環状部材よりも前記軸方向の一端側及び他端側で前記軸部材を保持する保持部と、
前記保持部を摩擦低減部材を介して前記軸方向に移動可能に配置する本体部と、
前記本体部に固定され、前記環状部材の前記軸方向の前記一端側の端面に当接する支持部と、
前記被測定体に前記環状部材の径方向に沿ったラジアル荷重が付与された状態で、前記環状部材及び前記本体部に対して、前記軸部材及び前記保持部を前記軸方向の前記他端側から前記一端側に向かって相対移動させることが可能なスラスト荷重付与部と、
前記スラスト荷重付与部が前記本体部に対して前記軸部材及び前記保持部を相対移動させる際の摩擦力を測定する摩擦力測定部と、
を備える、摩擦試験装置。
Friction between the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member of the object to be measured having the annular member and the shaft member inserted through the annular member, which are in sliding contact with each other in the axial direction of the shaft member. A friction test device that detects characteristics
A holding portion that holds the shaft member on one end side and the other end side in the axial direction of the ring-shaped member of the object to be measured.
A main body portion in which the holding portion is arranged so as to be movable in the axial direction via a friction reducing member, and a main body portion.
A support portion fixed to the main body portion and abutting on the end surface of the annular member on the one end side in the axial direction, and a support portion.
With the radial load along the radial direction of the annular member applied to the object to be measured, the shaft member and the holding portion are placed on the other end side in the axial direction with respect to the annular member and the main body portion. A thrust load applying portion that can be moved relative to one end side from
A friction force measuring unit that measures the frictional force when the thrust load applying portion moves the shaft member and the holding portion relative to the main body portion.
A friction test device.
請求項1記載の摩擦試験装置において、
前記スラスト荷重付与部は、
前記軸方向に沿って前記本体部を貫通する貫通孔に設けられた雌ねじ部と、
前記雌ねじ部に螺合することで前記軸部材に接近又は離間可能な雄ねじ部と、
を有し、
前記摩擦力測定部は、前記雄ねじ部と前記軸部材との間に設けられ、前記雄ねじ部が該摩擦力測定部を介して前記軸部材に付与する前記軸方向の荷重を前記摩擦力として測定する、摩擦試験装置。
In the friction test apparatus according to claim 1,
The thrust load applying portion is
A female screw portion provided in a through hole penetrating the main body portion along the axial direction, and a female screw portion.
A male threaded portion that can approach or separate from the shaft member by being screwed into the female threaded portion.
Have,
The frictional force measuring unit is provided between the male screw portion and the shaft member, and the axial load applied to the shaft member by the male screw portion via the frictional force measuring unit is measured as the frictional force. Friction test equipment.
請求項1又は2記載の摩擦試験装置において、
前記摩擦低減部材は、フラットケージである、摩擦試験装置。
In the friction test apparatus according to claim 1 or 2.
The friction reducing member is a friction test device, which is a flat cage.
請求項3記載の摩擦試験装置において、
前記摩擦力測定部が測定する前記摩擦力は、前記環状部材の前記内周面及び前記軸部材の前記外周面の第1最大静止摩擦力と、前記保持部及び前記フラットケージの第2最大静止摩擦力とを合わせた全体最大静止摩擦力である、摩擦試験装置。
In the friction test apparatus according to claim 3,
The frictional force measured by the frictional force measuring unit includes the first maximum static frictional force of the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member, and the second maximum static frictional force of the holding portion and the flat cage. A friction test device that is the total maximum static friction force including the friction force.
請求項4記載の摩擦試験装置において、
前記全体最大静止摩擦力及び前記ラジアル荷重から求められる全体最大静止摩係数と、予め求められた前記保持部及び前記フラットケージの保持部静止摩擦係数と、に基づいて、前記環状部材の前記内周面及び前記軸部材の前記外周面の静止摩擦係数を算出する制御部を備える、摩擦試験装置。
In the friction test apparatus according to claim 4,
The inner circumference of the annular member is based on the total maximum static friction force and the total maximum static friction coefficient obtained from the radial load, and the static friction coefficient of the holding portion and the holding portion of the flat cage obtained in advance. A friction test apparatus including a control unit for calculating the coefficient of static friction of the surface and the outer peripheral surface of the shaft member.
請求項4記載の摩擦試験装置において、
前記全体最大静止摩擦力と、前記ラジアル荷重と、予め求められた前記第2最大静止摩擦力の推定値と、に基づいて、前記環状部材の前記内周面及び前記軸部材の前記外周面の静止摩擦係数を算出する制御部を備える、摩擦試験装置。
In the friction test apparatus according to claim 4,
Based on the total maximum static friction force, the radial load, and the estimated value of the second maximum static friction force obtained in advance, the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member. A friction test device including a control unit for calculating the coefficient of static friction.
請求項1〜6の何れか1項に記載の摩擦試験装置において、
前記環状部材は、アウタ部材及びインナ部材の間でトルク伝達を行うトリポード型の等速ジョイントのローラであり、
前記軸部材の前記環状部材と摺動する部分は、前記インナ部材のトラニオンと同じ材料及び形状からなる、摩擦試験装置。
In the friction test apparatus according to any one of claims 1 to 6.
The annular member is a tripod type constant velocity joint roller that transmits torque between an outer member and an inner member.
A friction test device in which a portion of the shaft member that slides with the annular member is made of the same material and shape as the trunnion of the inner member.
請求項3記載の摩擦試験装置を用いた摩擦試験方法であって、
前記被測定体の前記軸部材を前記保持部に保持させるとともに、前記保持部を前記フラットケージを介して前記本体部に配置して、前記被測定体を前記摩擦試験装置にセットする被測定体セット工程と、
前記被測定体に前記ラジアル荷重を付与するラジアル荷重付与工程と、
前記被測定体に前記ラジアル荷重を付与した状態で、前記スラスト荷重付与部により前記本体部に対して前記軸部材及び前記保持部を相対移動させる際に生じる摩擦力を前記摩擦力測定部により測定する摩擦力測定工程と、
を有する、摩擦試験方法。
A friction test method using the friction test apparatus according to claim 3.
A body to be measured in which the shaft member of the body to be measured is held by the holding portion, the holding part is arranged in the main body portion via the flat cage, and the body to be measured is set in the friction test apparatus. The setting process and
A radial load applying step of applying the radial load to the object to be measured, and
The frictional force measuring unit measures the frictional force generated when the shaft member and the holding portion are relatively moved with respect to the main body portion by the thrust load applying portion in a state where the radial load is applied to the object to be measured. Friction force measurement process and
Friction test method.
請求項8記載の摩擦試験方法において、
前記摩擦力測定工程では、前記環状部材の前記内周面及び前記軸部材の前記外周面の第1最大静止摩擦力と、前記保持部及び前記フラットケージの第2最大静止摩擦力とを合わせた全体最大静止摩擦力を測定する、摩擦試験方法。
In the friction test method according to claim 8,
In the frictional force measuring step, the first maximum static frictional force of the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member and the second maximum static frictional force of the holding portion and the flat cage are combined. A friction test method that measures the overall maximum static friction force.
請求項9記載の摩擦試験方法において、
前記摩擦力測定工程で測定された前記全体最大静止摩擦力と、前記ラジアル荷重付与工程で付与された前記ラジアル荷重とから全体最大静止摩擦係数を求め、前記全体最大静止摩擦係数と、前記保持部及び前記フラットケージの保持部静止摩擦係数と、に基づいて、前記環状部材の前記内周面及び前記軸部材の前記外周面の静止摩擦係数を算出する静止摩擦係数算出工程を有する、摩擦試験方法。
In the friction test method according to claim 9,
The total maximum static friction coefficient is obtained from the total maximum static friction force measured in the friction force measuring step and the radial load applied in the radial load applying step, and the total maximum static friction coefficient and the holding portion are obtained. A friction test method comprising a static friction coefficient calculation step of calculating the static friction coefficient of the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member based on the static friction coefficient of the holding portion of the flat cage. ..
請求項9記載の摩擦試験方法において、
摩擦試験装置を用いて前記第2最大静止摩擦力の推定値を求める第2最大静止摩擦力算出工程を有し、
前記第2最大静止摩擦力算出工程は、
前記軸部材を保持しない状態の前記保持部を、一組の前記フラットケージで挟んで前記本体部に配置する第1工程と、
前記フラットケージを介して前記保持部に前記ラジアル荷重を付与する第2工程と、
前記ラジアル荷重を付与した状態で、前記スラスト荷重付与部により前記保持部を前記本体部及び前記フラットケージに対して相対移動させる際の最大静止摩擦力を前記摩擦力測定部により測定する第3工程と、
前記第3工程での前記摩擦力測定部の測定結果に基づいて前記第2最大静止摩擦力の推定値を求める第4工程と、
を有し、
前記第2最大静止摩擦力算出工程及び前記摩擦力測定工程の後に、前記ラジアル荷重と、前記全体最大静止摩擦力と、前記第2最大静止摩擦力の推定値と、に基づいて、前記環状部材の前記内周面と前記軸部材の前記外周面との静止摩擦係数を算出する静止摩擦係数算出工程を有する、摩擦試験方法。
In the friction test method according to claim 9,
It has a second maximum static friction force calculation step for obtaining an estimated value of the second maximum static friction force using a friction test device.
The second maximum static friction force calculation step is
The first step of sandwiching the holding portion in a state of not holding the shaft member between the set of the flat cages and arranging the holding portion in the main body portion.
A second step of applying the radial load to the holding portion via the flat cage, and
A third step of measuring the maximum static friction force when the holding portion is relatively moved with respect to the main body portion and the flat cage by the thrust load applying portion in a state where the radial load is applied. When,
The fourth step of obtaining an estimated value of the second maximum static friction force based on the measurement result of the friction force measuring unit in the third step, and
Have,
After the second maximum static friction force calculation step and the friction force measurement step, the annular member is based on the radial load, the overall maximum static friction force, and the estimated value of the second maximum static friction force. A friction test method comprising a static friction coefficient calculation step of calculating the static friction coefficient between the inner peripheral surface and the outer peripheral surface of the shaft member.
JP2020055339A 2020-03-26 2020-03-26 Friction test device and friction test method Active JP7387509B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020055339A JP7387509B2 (en) 2020-03-26 2020-03-26 Friction test device and friction test method
CN202110319796.7A CN113447429A (en) 2020-03-26 2021-03-25 Friction test device and friction test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020055339A JP7387509B2 (en) 2020-03-26 2020-03-26 Friction test device and friction test method

Publications (2)

Publication Number Publication Date
JP2021156658A true JP2021156658A (en) 2021-10-07
JP7387509B2 JP7387509B2 (en) 2023-11-28

Family

ID=77809289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020055339A Active JP7387509B2 (en) 2020-03-26 2020-03-26 Friction test device and friction test method

Country Status (2)

Country Link
JP (1) JP7387509B2 (en)
CN (1) CN113447429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230085341A (en) * 2021-12-07 2023-06-14 주식회사 인팩 Apparatus for measuring screw efficiency

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123550U (en) * 1986-01-28 1987-08-05
JPH09138193A (en) * 1995-11-16 1997-05-27 Hitachi Cable Ltd Slip tester for pipe body
JPH1062273A (en) * 1996-08-15 1998-03-06 Nippon Seiko Kk Frictional force-measuring apparatus
JP2001032850A (en) * 1999-07-16 2001-02-06 Derufai Saginoo Nsk Kk Tripod type constant velocity joint
JP2010043982A (en) * 2008-08-14 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Dynamic friction coefficient measuring device and method
US20120186325A1 (en) * 2011-01-21 2012-07-26 Krones Ag Device and method for determining the friction between plastic hollow bodies of the same material composition
JP2015175779A (en) * 2014-03-17 2015-10-05 株式会社スペースクリエイション friction tester and friction testing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444906B (en) * 2018-06-05 2020-06-02 中国人民解放军国防科技大学 Testing device and testing method for surface friction coefficient of bean pod rod
CN108801903B (en) * 2018-06-14 2020-08-11 东华大学 Device for detecting relative sliding of goods on cross beam tray and test method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123550U (en) * 1986-01-28 1987-08-05
JPH09138193A (en) * 1995-11-16 1997-05-27 Hitachi Cable Ltd Slip tester for pipe body
JPH1062273A (en) * 1996-08-15 1998-03-06 Nippon Seiko Kk Frictional force-measuring apparatus
JP2001032850A (en) * 1999-07-16 2001-02-06 Derufai Saginoo Nsk Kk Tripod type constant velocity joint
JP2010043982A (en) * 2008-08-14 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Dynamic friction coefficient measuring device and method
US20120186325A1 (en) * 2011-01-21 2012-07-26 Krones Ag Device and method for determining the friction between plastic hollow bodies of the same material composition
JP2015175779A (en) * 2014-03-17 2015-10-05 株式会社スペースクリエイション friction tester and friction testing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230085341A (en) * 2021-12-07 2023-06-14 주식회사 인팩 Apparatus for measuring screw efficiency
KR102579888B1 (en) 2021-12-07 2023-09-18 주식회사 인팩 Apparatus for measuring screw efficiency

Also Published As

Publication number Publication date
CN113447429A (en) 2021-09-28
JP7387509B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
JP6148992B2 (en) Bearing test equipment
JP5769647B2 (en) Slip load test method of rotary inertia mass damper and rotary inertia mass damper
US20170241845A1 (en) Sensor assembly
JP2010256195A (en) Friction abrasion testing device
JP2021156658A (en) Friction testing device and friction testing method
JP2022035500A (en) Bearing gap measurement device
JP2010185680A (en) Axial load application apparatus
US6293151B1 (en) Ball bearing inspection apparatus
JP2015175779A (en) friction tester and friction testing method
WO2018235249A1 (en) Slip test device and slip test method
KR101684418B1 (en) Centering holder for inside-diameter measuring gauge
CN107764469B (en) Torque spanner calibrating device and bolt simulator thereof
US20150052758A1 (en) Method for setting the preload in a bearing assembly
KR101171845B1 (en) Mobile apparatus for measuring circularity
US4165636A (en) Method and means for measuring preloads in assembled mechanisms
US20210018387A1 (en) Preload force tool
KR20120019455A (en) Method and device for measuring the protrusion of bearing shells
US10036623B2 (en) Method for measuring bearing cup gap in universal joint and method for manufacturing universal joint to which the measuring method is applied
JP2022189616A (en) Load testing device, load detection unit, and load testing method
CN210014915U (en) Test device for detecting service life of bearing
JP4899307B2 (en) Bearing preload measurement method
KR101136400B1 (en) Testing device of ring-shaped test object and test system having the same
RU189253U1 (en) Friction machine
JP3185975U (en) Ball testing machine
CN110631830A (en) Radial rigidity measuring device for rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7387509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150