JP2021148040A - Exhaust emission control system and exhaust emission control method - Google Patents

Exhaust emission control system and exhaust emission control method Download PDF

Info

Publication number
JP2021148040A
JP2021148040A JP2020047420A JP2020047420A JP2021148040A JP 2021148040 A JP2021148040 A JP 2021148040A JP 2020047420 A JP2020047420 A JP 2020047420A JP 2020047420 A JP2020047420 A JP 2020047420A JP 2021148040 A JP2021148040 A JP 2021148040A
Authority
JP
Japan
Prior art keywords
exhaust gas
scr
exhaust
passage
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020047420A
Other languages
Japanese (ja)
Inventor
泰宏 大久保
Yasuhiro Okubo
泰宏 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2020047420A priority Critical patent/JP2021148040A/en
Publication of JP2021148040A publication Critical patent/JP2021148040A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

To provide an exhaust emission control system capable of maintaining an NOx elimination rate within an intended range without increasing cost and deteriorating fuel economy regardless of an operating condition.SOLUTION: An exhaust emission control system 3 includes: a turbine 11a provided in an exhaust passage 9 of an internal combustion engine 1; a compressor 11b provided in an intake passage 5; a high-pressure exhaust gas recirculation passage 27 for recirculating exhaust gas from an upstream side of the turbine 11a in the exhaust passage 9 to a downstream side of the compressor 11b in the intake passage 5; an SCR 21 provided in the exhaust passage; a temperature sensor 32 detecting a temperature of the SCR 21; an openable/closable heating bypass pipeline 29 communicating a portion upstream of the turbine 11a in the exhaust passage 9 and the SCR 21; and an ECU 30 controlling opening/closing of the heating bypass pipeline 29. When NOx amount discharged from the SCR 21 during opening of the heating bypass pipeline 29 is smaller than that during closing thereof at a temperature detected by the temperature sensor 32, the ECU 30 opens the heating bypass pipeline 29 to heat the SCR 21 by using the exhaust gas.SELECTED DRAWING: Figure 1

Description

本開示は、排ガス浄化システム及び排ガス浄化方法に関する。 The present disclosure relates to an exhaust gas purification system and an exhaust gas purification method.

内燃機関では燃焼で発生したNOxをNH3で還元して浄化する場合がある。具体的には、NOxをNH3が選択的に還元する反応を促進する選択還元触媒(Selective Catalytic Reduction、SCR)を排気路に設けてNH3を供給し、排ガス中のNOxを還元して浄化する。 In an internal combustion engine, NO x generated by combustion may be reduced by NH 3 to purify it. Specifically, a selective reduction catalyst (Selective Catalytic Reduction (SCR)) that promotes the reaction in which NH 3 selectively reduces NO x is provided in the exhaust passage to supply NH 3 and reduce NO x in the exhaust gas. Purify.

SCRは温度によってNOx浄化率が変わるため、SCRを加熱/冷却することでNOx浄化率を所望の範囲に維持する場合がある。特許文献1には電熱ヒータでSCRを加熱する構成が記載されている。特許文献2には、SCR上流の配管を冷却する水冷式の冷却装置を設けてSCRを冷却する構成が記載されている。特許文献3には排ガス温度を上げることでSCRを加熱する構成が記載されている。 SCR because the NO x purification rate is temperature dependent, there is a case to maintain the NO x purification rate in the desired range by heating / cooling the SCR. Patent Document 1 describes a configuration in which the SCR is heated by an electric heater. Patent Document 2 describes a configuration in which a water-cooled cooling device for cooling the piping upstream of the SCR is provided to cool the SCR. Patent Document 3 describes a configuration in which the SCR is heated by raising the exhaust gas temperature.

特開2013−124608号公報Japanese Unexamined Patent Publication No. 2013-124608 国際公開第2010/140262号明細書International Publication No. 2010/140262 特開2016−089730号公報Japanese Unexamined Patent Publication No. 2016-089730

しかしながら特許文献1、2に記載のように、電熱ヒータや冷却装置を取り付ける構成は、これらを駆動させるエネルギーが必要となり、コストと燃費が悪化する問題があった。 However, as described in Patent Documents 1 and 2, the configuration in which the electric heater and the cooling device are attached requires energy to drive them, and has a problem that cost and fuel consumption are deteriorated.

また、特許文献3の排ガス温度を上げる構成では、燃料供給量や供給タイミングを変える必要があり、コストと燃費が悪化すると共に運転条件によっては実施できない場合があった。 Further, in the configuration of raising the exhaust gas temperature of Patent Document 3, it is necessary to change the fuel supply amount and the supply timing, which deteriorates the cost and fuel consumption and may not be implemented depending on the operating conditions.

本開示は上記課題に鑑みてなされたものであり、運転条件によらずにコストと燃費を悪化させずNOx浄化率を所望の範囲に維持できる排ガス浄化システムの提供を目的とする。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an exhaust gas purification system capable of maintaining a NO x purification rate within a desired range without deteriorating cost and fuel consumption regardless of operating conditions.

上記の目的を達成するための本開示の一態様は、内燃機関の排気路に設けられて排ガスのガス圧で回転するタービンと、吸気路に設けられて前記タービンの動力が伝達され、伝達された前記動力で吸気を圧縮することで過給するコンプレッサを備える排気式過給機と、前記排気路の前記タービンよりも上流から、前記吸気路の前記コンプレッサよりも下流に前記排ガスの一部を環流する高圧排気再循環路と、前記排気路の前記タービンの下流に設けられNOxを分解する選択還元触媒を含むSCRと、前記SCRの温度を検出する検出部を備える排ガス浄化システムであって、前記排気路において、前記タービンよりも上流の部分と前記SCRを連通する開閉可能な加熱用バイパス管路と、前記加熱用バイパス管路の開閉を制御する制御部を備え、前記制御部は、前記検出部が検出した温度において、前記加熱用バイパス管路を閉じるよりも開いた状態の方が、前記SCRから排出されるNOx量が少ないと判断した場合、前記加熱用バイパス管路を開いて前記排ガスで前記SCRを加熱することを特徴とする。 One aspect of the present disclosure for achieving the above object is to transmit and transmit the power of a turbine provided in the exhaust passage of an exhaust gas engine and rotating by the gas pressure of the exhaust gas and the power of the turbine provided in the intake passage. An exhaust type supercharger including a compressor that supercharges by compressing the intake gas with the power, and a part of the exhaust gas from the upstream of the turbine in the exhaust passage to the downstream of the compressor in the intake passage. An exhaust gas purification system including a recirculating high-pressure exhaust recirculation passage, an SCR provided downstream of the turbine in the exhaust passage and containing a selective reduction catalyst for decomposing NO x, and a detection unit for detecting the temperature of the SCR. The exhaust passage includes a heat bypass pipeline that can be opened and closed to communicate the SCR with a portion upstream of the turbine, and a control unit that controls the opening and closing of the heating bypass pipeline. When it is determined that the amount of NO x discharged from the SCR is smaller in the open state than in the closed state at the temperature detected by the detection unit, the heating bypass line is opened. The SCR is heated by the exhaust gas.

また、本開示の他の態様は、内燃機関の排気路に設けられて排ガスのガス圧で回転するタービンと、吸気路に設けられて前記タービンの動力が伝達され、伝達された前記動力で吸気を圧縮することで過給するコンプレッサを備える排気式過給機と、前記排気路の前記タービンよりも上流から、前記吸気路の前記コンプレッサよりも下流に前記排ガスの一部を環流する高圧排気再循環路と、前記排気路の前記タービンの下流に設けられ、NH3が吸着されてNOxを分解する選択還元触媒を含むSCRを備える排ガス浄化システムの前記SCRの温度を検出するSCR温度検出工程と、前記SCR温度検出工程で検出された温度において、前記排気路において、前記タービンよりも上流の部分と前記SCRを連通する開閉可能な加熱用バイパス管路を閉じるよりも開いた状態の方が、前記SCRから排出されるNOx量が少ないと判断した場合、前記加熱用バイパス管路を開いて前記排ガスで前記SCRを加熱するSCR加熱工程を実施することを特徴とする排ガス浄化方法である。 Further, in another aspect of the present disclosure, a turbine provided in the exhaust passage of the internal combustion engine and rotating by the gas pressure of the exhaust gas, and the power of the turbine provided in the intake passage are transmitted, and the transmitted power is used for intake. An exhaust type supercharger including a compressor that supercharges by compressing the exhaust gas, and a high-pressure exhaust gas that recirculates a part of the exhaust gas from upstream of the turbine in the exhaust passage to downstream of the compressor in the intake passage. An SCR temperature detection step of detecting the temperature of the SCR of an exhaust gas purification system provided in the circulation path and downstream of the turbine of the exhaust path and including an SCR including a selective reduction catalyst in which NH 3 is adsorbed to decompose NO x. And, at the temperature detected in the SCR temperature detection step, in the exhaust passage, the open state is better than closing the openable and closable heating bypass pipeline that communicates the SCR with the portion upstream from the turbine. When it is determined that the amount of NO x discharged from the SCR is small, the exhaust gas purification method is characterized in that an SCR heating step of opening the heating bypass pipeline and heating the SCR with the exhaust gas is carried out. ..

本開示によれば、運転条件によらずにコストと燃費を悪化させずNOx浄化率を所望の範囲に維持できる排ガス浄化システムを提供できる。 According to the present disclosure, it is possible to provide an exhaust gas purification system capable of maintaining a NO x purification rate within a desired range without deteriorating cost and fuel consumption regardless of operating conditions.

本開示の実施形態に係る排ガス浄化システムを備える内燃機関の概略構成を示す図である。It is a figure which shows the schematic structure of the internal combustion engine provided with the exhaust gas purification system which concerns on embodiment of this disclosure. 図1の変形例である。This is a modification of FIG. SCRの温度と、SCRのNOx浄化率との関係を示す図である。It is a figure which shows the relationship between the temperature of SCR and NO x purification rate of SCR. 本開示の実施形態に係る排ガス浄化システムを用いた排ガス浄化方法の手順を示すフロー図であって、SCRを冷却する手順を示す。It is a flow chart which shows the procedure of the exhaust gas purification method using the exhaust gas purification system which concerns on embodiment of this disclosure, and shows the procedure of cooling SCR. 本開示の実施形態に係る排ガス浄化システムを用いた排ガス浄化方法の手順を示すフロー図であって、SCRを加熱する手順を示す。It is a flow chart which shows the procedure of the exhaust gas purification method using the exhaust gas purification system which concerns on embodiment of this disclosure, and shows the procedure of heating SCR.

以下、図面に基づき本開示の実施形態を詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.

まず図1を参照して本開示の実施形態に係る排ガス浄化システム3を備える内燃機関1の概略構成を説明する。図1では内燃機関1としてディーゼルエンジンを例示する。 First, a schematic configuration of the internal combustion engine 1 including the exhaust gas purification system 3 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 1 illustrates a diesel engine as the internal combustion engine 1.

図1に示すように内燃機関1は吸気路5、燃焼室7、排気路9、ターボチャージャ11、及び排ガス浄化システム3を備える。 As shown in FIG. 1, the internal combustion engine 1 includes an intake passage 5, a combustion chamber 7, an exhaust passage 9, a turbocharger 11, and an exhaust gas purification system 3.

吸気路5は内燃機関1の燃焼に必要な空気を導入する管路であり、一端が大気開放され、他端が燃焼室7に接続される。吸気路5の入口には、吸気に含まれる異物を物理的に除去するフィルタであるエアクリーナ4が設けられる。 The intake passage 5 is a conduit for introducing air necessary for combustion of the internal combustion engine 1, one end of which is open to the atmosphere and the other end of which is connected to the combustion chamber 7. At the inlet of the intake passage 5, an air cleaner 4 which is a filter for physically removing foreign matter contained in the intake air is provided.

燃焼室7は空気を酸化剤として燃料を燃焼させて機械仕事を得る部屋であり、円筒状の気筒7aと、気筒7a内に上下動可能に配置された円柱状のピストン7bと、気筒7aの上端部である図示しないシリンダヘッドに囲まれた空間である。 The combustion chamber 7 is a chamber for obtaining mechanical work by burning fuel using air as an oxidant, and is composed of a cylindrical cylinder 7a, a cylindrical piston 7b movably arranged in the cylinder 7a, and a cylinder 7a. It is a space surrounded by a cylinder head (not shown) which is the upper end portion.

この構造では、吸気路5から燃焼室7に導入された空気を、ピストン7bで燃料の発火点以上に圧縮加熱し、図示しない燃料噴射装置から燃焼室7に燃料を噴射して燃料を自己発火させピストン7bを押し出すことで機械仕事を得る。ピストン7bには図示しないコンロッドやクランクが連結されており、上下動を回転運動に変換する。 In this structure, the air introduced into the combustion chamber 7 from the intake passage 5 is compressed and heated by the piston 7b above the ignition point of the fuel, and the fuel is injected into the combustion chamber 7 from a fuel injection device (not shown) to self-ignite the fuel. Mechanical work is obtained by pushing out the piston 7b. A connecting rod and a crank (not shown) are connected to the piston 7b, and the vertical motion is converted into a rotary motion.

ターボチャージャ11は排ガスのガス圧を利用して吸気を過給する排気式過給機であり、タービン11aとコンプレッサ11bを備える。 The turbocharger 11 is an exhaust type turbocharger that supercharges intake air by using the gas pressure of exhaust gas, and includes a turbine 11a and a compressor 11b.

タービン11aは排気路9に設けられて排ガスの流れで回転する原動機である。コンプレッサ11bは吸気路5に設けられてタービン11aの動力が伝達されて回転することで吸気を圧縮する部材である。ターボチャージャ11で圧縮された空気は温度が上昇するため、図1では空気を冷却するインタークーラ5aを吸気路5のコンプレッサ11bの下流に設けている。 The turbine 11a is a prime mover provided in the exhaust passage 9 and rotated by the flow of exhaust gas. The compressor 11b is a member provided in the intake passage 5 and compresses the intake air by transmitting the power of the turbine 11a and rotating the compressor 11b. Since the temperature of the air compressed by the turbocharger 11 rises, an intercooler 5a for cooling the air is provided downstream of the compressor 11b in the intake passage 5 in FIG.

排ガス浄化システム3は排ガスを浄化する装置であり、特に排ガス中のNOxを低減する装置である。 The exhaust gas purification system 3 is a device for purifying exhaust gas, and in particular, a device for reducing NO x in the exhaust gas.

図1に示す排ガス浄化システム3は、低圧排気再循環路23、高圧排気再循環路27、低圧クーラ23a、SCR21、温度センサ32、冷却用バイパス管路25、加熱用バイパス管路29、及びECU30を備える。 The exhaust gas purification system 3 shown in FIG. 1 includes a low-pressure exhaust recirculation path 23, a high-pressure exhaust recirculation path 27, a low-pressure cooler 23a, SCR21, a temperature sensor 32, a cooling bypass line 25, a heating bypass line 29, and an ECU 30. To be equipped.

図1の排ガス浄化システム3は、尿素供給部17、ミキサ19、LNT(Lean NOx Trap)13、及びDPF(Diesel Particulate Filter)15も備える。 The exhaust gas purification system 3 of FIG. 1 also includes a urea supply unit 17, a mixer 19, an LNT (Lean NO x Trap) 13, and a DPF (Diesel Particulate Filter) 15.

低圧排気再循環路23は内燃機関1の排気路9から吸気路5に排ガスの一部を環流する管路である。低圧排気再循環路23を設けて吸気路5に排ガスの一部を環流すると、燃焼室7での燃焼温度が低下してNOxの発生が抑制される。なお排気再循環はEGR(Exhaust Gas Recirculation)と略記されることもある。 The low-pressure exhaust gas recirculation passage 23 is a pipeline for circulating a part of the exhaust gas from the exhaust passage 9 of the internal combustion engine 1 to the intake passage 5. When a low-pressure exhaust gas recirculation passage 23 is provided and a part of the exhaust gas is circulated in the intake passage 5, the combustion temperature in the combustion chamber 7 is lowered and the generation of NO x is suppressed. Exhaust gas recirculation is sometimes abbreviated as EGR (Exhaust Gas Recirculation).

図1の低圧排気再循環路23は排気路9のタービン11aよりも下流側と、吸気路5のコンプレッサ11bよりも上流側を連通している。 The low-pressure exhaust gas recirculation passage 23 of FIG. 1 communicates the downstream side of the exhaust passage 9 with respect to the turbine 11a and the upstream side of the intake passage 5 with respect to the compressor 11b.

低圧クーラ23aは低圧排気再循環路23内の排ガスを冷却するクーラであり、例えば冷媒と、冷媒を循環、冷却させるラジエターを備える。排ガスは燃焼時の発熱反応で吸気よりも温度が高いため、吸気路5に環流する際は温度を下げる必要がある。そのために低圧クーラ23aが低圧排気再循環路23に設けられる。 The low-pressure cooler 23a is a cooler that cools the exhaust gas in the low-pressure exhaust gas recirculation path 23, and includes, for example, a refrigerant and a radiator that circulates and cools the refrigerant. Since the temperature of the exhaust gas is higher than that of the intake air due to the exothermic reaction during combustion, it is necessary to lower the temperature when circulating the exhaust gas in the intake passage 5. Therefore, a low pressure cooler 23a is provided in the low pressure exhaust gas recirculation passage 23.

低圧排気再循環路23は環流される排ガス流量を調整する弁体である低圧EGRバルブ33を備える。低圧EGRバルブ33は内燃機関1の運転状況に応じて環流される排ガス流量を調整することで、EGR率と呼ばれる吸気量における環流ガス量の割合を調整する。排ガス流量を調整できるのであれば低圧EGRバルブ33の構造は機械式でも電動式でもよい。 The low-pressure exhaust gas recirculation passage 23 includes a low-pressure EGR valve 33 which is a valve body for adjusting the flow rate of exhaust gas to be circulated. The low-pressure EGR valve 33 adjusts the ratio of the recirculated gas amount to the intake amount called the EGR rate by adjusting the flow rate of the exhaust gas recirculated according to the operating condition of the internal combustion engine 1. The structure of the low pressure EGR valve 33 may be mechanical or electric as long as the exhaust gas flow rate can be adjusted.

高圧排気再循環路27も内燃機関1の排気路9から吸気路5に排ガスの一部を環流する管路であり、低圧排気再循環路23と同様に燃焼室7での燃焼温度を低下させてNOxの発生を抑制する。 The high-pressure exhaust gas recirculation passage 27 is also a conduit for circulating a part of the exhaust gas from the exhaust passage 9 of the internal combustion engine 1 to the intake passage 5, and similarly to the low-pressure exhaust recirculation passage 23, the combustion temperature in the combustion chamber 7 is lowered. It suppresses the generation of NO x.

ただし高圧排気再循環路27は排気路9のタービン11aよりも上流から、吸気路5のコンプレッサ11bよりも下流を連通して排ガスの一部を環流する管路である。よって高圧排気再循環路27に導入される排気はタービン11aを回転させないため、低圧排気再循環路23と比べて環流する排ガスのガス圧と温度が高い。ただし高圧排気再循環路27も内部に高圧クーラ27aが設けられる。高圧クーラ27aは低圧クーラ23aと同様に、高圧排気再循環路27の排ガスを冷却する装置である。 However, the high-pressure exhaust gas recirculation passage 27 is a pipeline that communicates from the upstream of the turbine 11a of the exhaust passage 9 to the downstream of the compressor 11b of the intake passage 5 to recirculate a part of the exhaust gas. Therefore, since the exhaust gas introduced into the high-pressure exhaust gas recirculation path 27 does not rotate the turbine 11a, the gas pressure and temperature of the exhaust gas recirculated are higher than those of the low-pressure exhaust gas recirculation path 23. However, the high-pressure exhaust recirculation path 27 is also provided with a high-pressure cooler 27a inside. The high-pressure cooler 27a is a device for cooling the exhaust gas of the high-pressure exhaust gas recirculation path 27, similarly to the low-pressure cooler 23a.

高圧排気再循環路27は環流される流量を調整する弁体である高圧EGRバルブ36を備える。高圧EGRバルブ36も内燃機関1の運転状況に応じて環流される排ガス流量を調整することで、EGR率を調整する。高圧EGRバルブ36の構造は低圧EGRバルブ33と同様である。 The high-pressure exhaust gas recirculation passage 27 includes a high-pressure EGR valve 36 which is a valve body for adjusting the flow rate to be recirculated. The high-pressure EGR valve 36 also adjusts the EGR rate by adjusting the flow rate of the exhaust gas recirculated according to the operating condition of the internal combustion engine 1. The structure of the high pressure EGR valve 36 is the same as that of the low pressure EGR valve 33.

SCR21はNOxをNH3が選択的に還元して水と窒素に分解して浄化する反応を促進する選択還元触媒を含む装置であり、排気路9に設けられる。図1では排気路9のタービン11aの下流にSCR21が設けられる。 The SCR 21 is a device including a selective reduction catalyst that promotes a reaction in which NO x is selectively reduced by NH 3 to decompose it into water and nitrogen to purify it, and is provided in the exhaust passage 9. In FIG. 1, the SCR 21 is provided downstream of the turbine 11a in the exhaust passage 9.

SCR21としてはNH3がNOxを選択的に還元する反応を促進する材料を含み、かつNH3が吸着できる材料・構造を含むものを適宜選択すればよい。具体的にはセラミックスのようにNH3やNOxに不活性な担体に、ゼオライトのような多孔質の結晶性アルミノ珪酸塩等の選択還元触媒を担持させたものが挙げられる。 As the SCR 21, a material containing a material that promotes the reaction in which NH 3 selectively reduces NO x and containing a material / structure capable of adsorbing NH 3 may be appropriately selected. Specific examples thereof include those in which a carrier that is inert to NH 3 or NO x , such as ceramics, is supported by a selective reduction catalyst such as porous crystalline aluminosilicate, such as zeolite.

温度センサ32はSCR21の温度を検出する検出部である。図1の温度センサ32はSCR21の入口である排ガス導入管22に設けられており、SCR21に流入する排ガス温度を検出している。これは、SCR21に流入する排ガスの温度が分かれば、排ガス流量やSCR21の熱容量からSCR21の温度を算出できるためである。よって「SCR21の温度を検出する」という動作は「SCR21に流入する排ガス温度を検出し、検出結果から排ガス温度を算出する」場合を含む。なお、ここでいうSCR21の温度とは、中心温度と呼ばれる、触媒中心付近の温度を例示できる。 The temperature sensor 32 is a detection unit that detects the temperature of the SCR 21. The temperature sensor 32 of FIG. 1 is provided in the exhaust gas introduction pipe 22 which is the inlet of the SCR 21, and detects the temperature of the exhaust gas flowing into the SCR 21. This is because if the temperature of the exhaust gas flowing into the SCR 21 is known, the temperature of the SCR 21 can be calculated from the flow rate of the exhaust gas and the heat capacity of the SCR 21. Therefore, the operation of "detecting the temperature of the SCR 21" includes the case of "detecting the exhaust gas temperature flowing into the SCR 21 and calculating the exhaust gas temperature from the detection result". The temperature of the SCR 21 referred to here can be an example of a temperature near the center of the catalyst, which is called the center temperature.

冷却用バイパス管路25はSCR21を冷却する部材であり、低圧排気再循環路23の低圧クーラ23aよりも吸気路5側の部分とSCR21の入口である排ガス導入管22とを連通する開閉可能な管路である。 The cooling bypass pipe 25 is a member that cools the SCR 21, and can open and close the portion of the low pressure exhaust recirculation passage 23 on the intake passage 5 side of the low pressure cooler 23a and the exhaust gas introduction pipe 22 which is the inlet of the SCR 21. It is a pipeline.

冷却用バイパス管路25は、通常運転時は閉鎖されているが、SCR21を冷却する必要がある場合に開放される。 The cooling bypass line 25 is closed during normal operation, but is opened when the SCR 21 needs to be cooled.

冷却用バイパス管路25が開放されると低圧排気再循環路23内の排ガスの一部がSCR21に直接導入される。導入される排ガスは低圧クーラ23aを通過しているため、低圧排気再循環路23を経ないでSCR21に導入される排ガスよりも温度が低い。そのため、低圧排気再循環路23内の排ガスの一部をSCR21に直接導入することで、SCR21の温度を下げることができる。 When the cooling bypass pipeline 25 is opened, a part of the exhaust gas in the low-pressure exhaust gas recirculation passage 23 is directly introduced into the SCR 21. Since the exhaust gas to be introduced passes through the low-pressure cooler 23a, the temperature is lower than that of the exhaust gas introduced into the SCR 21 without passing through the low-pressure exhaust gas recirculation path 23. Therefore, the temperature of the SCR 21 can be lowered by directly introducing a part of the exhaust gas in the low-pressure exhaust gas recirculation path 23 into the SCR 21.

冷却用バイパス管路25には冷却バイパス分配バルブ31が設けられる。 A cooling bypass distribution valve 31 is provided in the cooling bypass line 25.

冷却バイパス分配バルブ31は低圧排気再循環路23から冷却用バイパス管路25に導入される排ガスの流量を調整する弁体であり、低圧EGRバルブ33と同様の構造を備える。 The cooling bypass distribution valve 31 is a valve body that adjusts the flow rate of the exhaust gas introduced from the low-pressure exhaust gas recirculation passage 23 into the cooling bypass pipe line 25, and has the same structure as the low-pressure EGR valve 33.

図1では低圧EGRバルブ33を冷却用循環路分配バルブとして用いるため、冷却用循環路分配バルブと冷却バイパス分配バルブ31は別のバルブである。 In FIG. 1, since the low pressure EGR valve 33 is used as the cooling circulation path distribution valve, the cooling circulation path distribution valve and the cooling bypass distribution valve 31 are separate valves.

ただし、低圧排気再循環路23に導入されない排ガスの流量と吸気路5に環流される排ガス流量と冷却用バイパス管路25に導入される排ガス流量との比率を調整できれば、冷却用循環路分配バルブと冷却バイパス分配バルブ31は別のバルブである必要はない。例えば図2に示すように、低圧排気再循環路23と冷却用バイパス管路25の接続部に3方バルブ31aを設ければ、冷却用循環路分配バルブと冷却バイパス分配バルブ31の機能を1つの3方バルブ31aで実現できる。 However, if the ratio of the flow rate of the exhaust gas not introduced into the low-pressure exhaust recirculation passage 23, the flow rate of the exhaust gas recirculated in the intake passage 5, and the flow rate of the exhaust gas introduced in the cooling bypass pipeline 25 can be adjusted, the cooling circulation passage distribution valve And the cooling bypass distribution valve 31 need not be separate valves. For example, as shown in FIG. 2, if a three-way valve 31a is provided at the connection portion between the low-pressure exhaust gas recirculation passage 23 and the cooling bypass pipeline 25, the functions of the cooling circulation passage distribution valve and the cooling bypass distribution valve 31 are 1 This can be achieved with three three-way valves 31a.

また、排ガス浄化システム3のSCR21の冷却機構はEGRのクーラを利用した構造である。そのため、高圧排気再循環路27の高圧クーラ27aよりも吸気路5側とSCR21を冷却用バイパス管路25で連結する構造とし、高圧排気再循環路27の排ガスをSCR21に導入してSCR21を冷却することも可能である。 Further, the cooling mechanism of the SCR21 of the exhaust gas purification system 3 has a structure using an EGR cooler. Therefore, the structure is such that the intake passage 5 side and the SCR 21 are connected by the cooling bypass pipe 25 with respect to the high pressure cooler 27a of the high pressure exhaust recirculation passage 27, and the exhaust gas of the high pressure exhaust recirculation passage 27 is introduced into the SCR 21 to cool the SCR 21. It is also possible to do.

ただし、高圧排気再循環路27の排ガスよりも低圧排気再循環路23の排ガスの方が、排ガス温度が低い。そのため、SCR21に供給される排ガス温度をより低くでき、短時間でSCRを冷却でき、冷却後の温度も低くできる点では、低圧排気再循環路23に冷却用バイパス管路25を設ける方が有利である。 However, the exhaust gas temperature of the low-pressure exhaust recirculation path 23 is lower than that of the high-pressure exhaust recirculation path 27. Therefore, it is advantageous to provide the cooling bypass pipe 25 in the low-pressure exhaust gas recirculation passage 23 in that the temperature of the exhaust gas supplied to the SCR 21 can be lowered, the SCR can be cooled in a short time, and the temperature after cooling can also be lowered. Is.

加熱用バイパス管路29は、排気路9において、タービン11aよりも上流の部分とSCR21を連通する開閉可能な管路である。図1ではタービン11aよりも上流の部分とは、エキゾーストマニホールド9aのコレクターパイプ9bである。「SCR21を連通する」とは、タービン11aよりも下流でSCR21よりも上流の部分を連通することを意味する。 The heating bypass pipeline 29 is an openable / closable pipeline that communicates the SCR 21 with the portion upstream of the turbine 11a in the exhaust passage 9. In FIG. 1, the portion upstream of the turbine 11a is the collector pipe 9b of the exhaust manifold 9a. “Communicating the SCR 21” means communicating the portion downstream of the turbine 11a and upstream of the SCR 21.

加熱用バイパス管路29は、通常運転時は閉鎖されているが、SCR21を加熱する必要がある場合に開放される。 The heating bypass line 29 is closed during normal operation, but is opened when the SCR 21 needs to be heated.

加熱用バイパス管路29が開放されるとエキゾーストマニホールド9aのコレクターパイプ9bから出た排ガスの一部がタービン11aを経由せずにSCR21に導入される。図1ではLNT13やDPF15も経由していないため、これらの装置を経てSCR21に導入される排ガスよりも、排気路9での熱損失が少なく、SCR21に導入される排ガス温度が高い。そのため、SCR21の温度を上げることができる。 When the heating bypass pipe 29 is opened, a part of the exhaust gas emitted from the collector pipe 9b of the exhaust manifold 9a is introduced into the SCR 21 without passing through the turbine 11a. In FIG. 1, since the LNT 13 and the DPF 15 do not pass through, the heat loss in the exhaust passage 9 is smaller than that of the exhaust gas introduced into the SCR 21 via these devices, and the temperature of the exhaust gas introduced into the SCR 21 is high. Therefore, the temperature of the SCR 21 can be raised.

加熱用バイパス管路29には加熱バイパス分配バルブ37が設けられる。 A heating bypass distribution valve 37 is provided in the heating bypass line 29.

加熱バイパス分配バルブ37は排気路9から加熱用バイパス管路29に導入される排ガスの流量と、高圧排気再循環路27に導入される排ガスの流量の比率を調整するバルブであり、低圧EGRバルブ33と同様の構造を備える。 The heating bypass distribution valve 37 is a valve that adjusts the ratio of the flow rate of the exhaust gas introduced from the exhaust passage 9 into the heating bypass pipeline 29 and the flow rate of the exhaust gas introduced into the high-pressure exhaust recirculation passage 27, and is a low-pressure EGR valve. It has the same structure as 33.

また、排気路9において、エキゾーストマニホールド9aのコレクターパイプ9bとタービン11aの間には、過給分配バルブ35が設けられる。 Further, in the exhaust passage 9, a supercharging distribution valve 35 is provided between the collector pipe 9b of the exhaust manifold 9a and the turbine 11a.

過給分配バルブ35は、タービン11aに導入される排ガスの流量と、タービン11aに導入されずに高圧排気再循環路27又は加熱用バイパス管路29に導入される排ガスの流量の比率を調整する弁体である。過給分配バルブ35の構造は低圧EGRバルブ33と同様である。 The supercharging distribution valve 35 adjusts the ratio of the flow rate of the exhaust gas introduced into the turbine 11a to the flow rate of the exhaust gas introduced into the high-pressure exhaust gas recirculation passage 27 or the heating bypass pipeline 29 without being introduced into the turbine 11a. It is a valve body. The structure of the supercharging distribution valve 35 is the same as that of the low pressure EGR valve 33.

ECU30は排ガス浄化システム3の動作、特に冷却用バイパス管路25の開閉及び加熱用バイパス管路29の開閉を行う制御部であり、コンピュータを例示できる。具体的にはECU30は冷却バイパス分配バルブ31、低圧EGRバルブ33、過給分配バルブ35、加熱バイパス分配バルブ37、及び高圧EGRバルブ36と電気的に接続され、これらの開閉及びバルブ開度を制御する。 The ECU 30 is a control unit that operates the exhaust gas purification system 3, particularly opening and closing the cooling bypass pipe 25 and opening and closing the heating bypass pipe 29, and a computer can be exemplified. Specifically, the ECU 30 is electrically connected to the cooling bypass distribution valve 31, the low pressure EGR valve 33, the supercharging distribution valve 35, the heating bypass distribution valve 37, and the high pressure EGR valve 36, and controls their opening / closing and valve opening. do.

具体的なECU30の制御は以下の通りである。 The specific control of the ECU 30 is as follows.

まずSCR21の温度を下げる場合について説明する。 First, a case where the temperature of the SCR 21 is lowered will be described.

ECU30は、温度センサ32が検出したSCR21の温度が予め定められた上限温度Tmaxを超えた場合、冷却用バイパス管路25を開放して低圧排気再循環路23内の排ガスをSCR21に導入して上限温度Tmax以下に冷却する。 When the temperature of the SCR 21 detected by the temperature sensor 32 exceeds a predetermined upper limit temperature T max , the ECU 30 opens the cooling bypass pipeline 25 and introduces the exhaust gas in the low pressure exhaust recirculation passage 23 into the SCR 21. Cool to the upper limit temperature T max or less.

この点について図3を参照して説明する。 This point will be described with reference to FIG.

SCR21のNOx浄化率は温度依存性がある。具体的な温度依存性はSCR21の種類にもよるが、概ね図3に示すように、外気温T0では浄化率は0であり、ある程度の温度T1まで昇温されると浄化率が上昇し、一旦は浄化率の上昇が飽和する。さらに昇温を続けると温度の上昇と共に浄化率が低下する。内燃機関1の運転の際は、要求されるNOx浄化率の下限Raを満たす範囲で運転を行うため、図3の下限温度Tmin以上、上限温度Tmax以下の温度で運転を行う。 The NO x purification rate of SCR21 is temperature dependent. The specific temperature dependence depends on the type of SCR21, but as shown in FIG. 3, the purification rate is 0 at the outside air temperature T0, and the purification rate increases when the temperature is raised to a certain temperature T1. Once the increase in purification rate is saturated. If the temperature is further raised, the purification rate decreases as the temperature rises. When operating the internal combustion engine 1, in order to operate within a range that satisfies the required lower limit Ra of the NO x purification rate, the internal combustion engine 1 is operated at a temperature equal to or higher than the lower limit temperature T min and not lower than the upper limit temperature T max in FIG.

しかしながら例えば内燃機関1を動力源として搭載した車両が高速道路で長時間高速走行を続ける等して高負荷運転を続けた場合、排ガス温度が上昇してSCR21の温度がTmaxを超える可能性がある。この場合はNOx浄化率が低下するためECU30は、低圧排気再循環路23内の排ガスの一部をSCR21に直接導入することで、SCR21の温度を下げる。 However, if, for example, a vehicle equipped with the internal combustion engine 1 as a power source continues high-load operation on a highway for a long time, the exhaust gas temperature may rise and the temperature of the SCR 21 may exceed T max. be. In this case, since the NO x purification rate decreases, the ECU 30 lowers the temperature of the SCR 21 by directly introducing a part of the exhaust gas in the low-pressure exhaust gas recirculation path 23 into the SCR 21.

このように排ガス浄化システム3は冷却用バイパス管路25を開くだけでSCR21を冷却してNOx浄化率を向上させられる。この際の冷媒は低圧クーラ23aを通過した排ガスであり、低圧クーラ23aは低圧排気再循環路23に必ず設けられる。また、低圧排気再循環路23も一般的なディーゼル機関に広く採用されている。このように、排ガス浄化システム3は低圧排気再循環路23の低圧クーラ23aで冷却された排ガスを冷媒として用いるため、SCR21を冷却するクーラを別途設置する必要が無い。また、そのため、冷却用バイパス管路25を開放するのに要するエネルギーは冷却バイパス分配バルブ31と低圧EGRバルブ33を開閉するのに要するエネルギーのみである。よってクーラを設置した場合と比べてコストや燃費を低減できる。 In this way, the exhaust gas purification system 3 can cool the SCR 21 and improve the NO x purification rate simply by opening the cooling bypass pipe 25. The refrigerant at this time is exhaust gas that has passed through the low-pressure cooler 23a, and the low-pressure cooler 23a is always provided in the low-pressure exhaust gas recirculation path 23. The low-pressure exhaust gas recirculation path 23 is also widely used in general diesel engines. As described above, since the exhaust gas purification system 3 uses the exhaust gas cooled by the low-pressure cooler 23a of the low-pressure exhaust recirculation path 23 as the refrigerant, it is not necessary to separately install a cooler for cooling the SCR 21. Therefore, the energy required to open the cooling bypass line 25 is only the energy required to open and close the cooling bypass distribution valve 31 and the low pressure EGR valve 33. Therefore, the cost and fuel consumption can be reduced as compared with the case where the cooler is installed.

また、冷却用バイパス管路25の開閉は燃焼室7内での燃焼、つまり運転条件と直接の関係がないため、SCR21を冷却する際に内燃機関1の運転条件を大きく変える必要がない。 Further, since the opening and closing of the cooling bypass pipe 25 is not directly related to the combustion in the combustion chamber 7, that is, the operating conditions, it is not necessary to significantly change the operating conditions of the internal combustion engine 1 when cooling the SCR 21.

そのため排ガス浄化システム3は運転条件を変えずに、かつコストと燃費を悪化させずにNOx浄化率を所望の範囲に維持できる。 Therefore, the exhaust gas purification system 3 can maintain the NO x purification rate within a desired range without changing the operating conditions and without deteriorating the cost and fuel consumption.

なお冷却用バイパス管路25を開いてSCR21を冷却すると、冷却用バイパス管路25を閉じた状態と比べて低圧排気再循環路23から吸気路5に導入される排ガス量が減るため、EGR率が下がり、燃焼室7で発生するNOx量が増える場合がある。ただし、冷却用バイパス管路25を開くのはSCR21のNOx浄化率が下限Ra未満となる場合である。そのためSCR21のNOx浄化率を下限Ra以上になるようにSCR21を冷却できれば、燃焼室7で発生するNOx量が増えた場合でも、大気開放されるNOx量を許容範囲にできる。 When the cooling bypass line 25 is opened to cool the SCR 21, the amount of exhaust gas introduced from the low-pressure exhaust gas recirculation line 23 into the intake path 5 is reduced as compared with the state in which the cooling bypass line 25 is closed. May decrease and the amount of NO x generated in the combustion chamber 7 may increase. However, the cooling bypass line 25 is opened when the NO x purification rate of SCR21 is less than the lower limit Ra. If cooled SCR21 so therefore it becomes the the NO x purification rate of the SCR21 than the lower limit Ra, even when the amount of NO x generated in the combustion chamber 7 is increased, can be in the permissible range an amount of NO x being atmosphere.

ECU30は冷却用バイパス管路25を開放してSCR21を冷却する際に、排ガスの流量を以下のように調整する。 When the ECU 30 opens the cooling bypass pipe 25 to cool the SCR 21, the flow rate of the exhaust gas is adjusted as follows.

まず低圧EGRバルブ33のバルブ開度を調整することで、低圧排気再循環路23に導入される排ガス流量と、低圧排気再循環路23に導入されずに排気路9を流れる排ガスの流量の比率を調整する。 First, by adjusting the valve opening degree of the low-pressure EGR valve 33, the ratio of the exhaust gas flow rate introduced into the low-pressure exhaust gas recirculation path 23 to the flow rate of the exhaust gas flowing through the exhaust gas path 9 without being introduced into the low-pressure exhaust gas recirculation path 23. To adjust.

このように、排ガス浄化システム3では低圧EGRバルブ33を、EGR率の調整だけでなく、SCR21を冷却する際の冷媒となる排ガスの流量を調整する冷却用循環路分配バルブとしても利用できる。 As described above, in the exhaust gas purification system 3, the low-pressure EGR valve 33 can be used not only as an EGR rate adjustment but also as a cooling circulation path distribution valve for adjusting the flow rate of the exhaust gas as a refrigerant when cooling the SCR21.

排ガス流量は多いほどSCR21を冷却する排ガス量が多くなるため、SCR21の冷却効率のみを考慮すれば低圧排気再循環路23に流入される排ガス流量は多いほど好ましい。ただし、低圧排気再循環路23に導入される排ガス流量が多すぎると低圧クーラ23aの冷却能力を超えてしまい、冷媒が沸騰する等の不具合が生じる可能性がある。これは、低圧クーラ23aは、低圧排気再循環路23が想定するEGR率の最高値までの排ガス流量の冷却能力しか想定していないためである。よってECU30は、低圧クーラ23aの冷却能力を超えない流量の排ガスが排気再循環路に流れる開度に低圧EGRバルブ33のバルブ開度を調整する。具体的には低圧排気再循環路23が想定するEGR率の最高値に対応した排ガス流量を上限とする。 Since the larger the exhaust gas flow rate, the larger the amount of exhaust gas that cools the SCR 21, it is preferable that the larger the exhaust gas flow rate that flows into the low-pressure exhaust gas recirculation path 23 is, considering only the cooling efficiency of the SCR 21. However, if the flow rate of the exhaust gas introduced into the low-pressure exhaust recirculation passage 23 is too large, the cooling capacity of the low-pressure cooler 23a may be exceeded, causing problems such as boiling of the refrigerant. This is because the low-pressure cooler 23a assumes only the cooling capacity of the exhaust gas flow rate up to the maximum value of the EGR rate assumed by the low-pressure exhaust gas recirculation path 23. Therefore, the ECU 30 adjusts the valve opening degree of the low pressure EGR valve 33 to the opening degree at which the exhaust gas having a flow rate not exceeding the cooling capacity of the low pressure cooler 23a flows into the exhaust gas recirculation path. Specifically, the upper limit is the exhaust gas flow rate corresponding to the maximum value of the EGR rate assumed by the low-pressure exhaust gas recirculation path 23.

これにより、冷却用バイパス管路25の開放時に低圧排気再循環路23に導入される排ガスの流量が多すぎて低圧クーラ23aの冷媒が沸騰する等の不具合を防止できる。 As a result, it is possible to prevent problems such as the refrigerant of the low-pressure cooler 23a boiling due to an excessive flow rate of the exhaust gas introduced into the low-pressure exhaust gas recirculation passage 23 when the cooling bypass pipe 25 is opened.

次に、ECU30は、冷却バイパス分配バルブ31のバルブ開度を調整することで、吸気路5に環流される排ガスと、冷却用バイパス管路25に導入される排ガス流量の比率を調整する。 Next, the ECU 30 adjusts the valve opening degree of the cooling bypass distribution valve 31 to adjust the ratio of the exhaust gas recirculated in the intake passage 5 and the exhaust gas flow rate introduced in the cooling bypass pipe 25.

冷却用バイパス管路25に導入される排ガス流量が多いほどSCR21を冷却する排ガス量が多くなるため、SCR21の冷却効率のみを考慮すれば低圧排気再循環路23に流入される排ガス流量は多いほど好ましい。ただし、冷却用バイパス管路25に導入される排ガス流量が多くなりすぎると低圧排気再循環路23のEGR率が低下して燃焼室7で発生するNOx量が増える。またSCR21が冷却され過ぎて下限温度Tmin未満になるとNOx浄化率が下限Ra未満に低下する。そのため、ECU30は、SCR21の温度を上限温度Tmax以下に冷却するのに必要な流量の排ガスが冷却用バイパス管路25に導入される程度に冷却バイパス分配バルブ31のバルブ開度を設定するのが好ましい。 The larger the exhaust gas flow rate introduced into the cooling bypass pipeline 25, the larger the amount of exhaust gas that cools the SCR 21. Therefore, if only the cooling efficiency of the SCR 21 is considered, the larger the exhaust gas flow rate that flows into the low pressure exhaust gas recirculation passage 23. preferable. However, if the flow rate of the exhaust gas introduced into the cooling bypass pipe 25 becomes too large, the EGR rate of the low-pressure exhaust gas recirculation passage 23 decreases and the amount of NO x generated in the combustion chamber 7 increases. Further, when the SCR 21 is cooled too much and becomes less than the lower limit temperature T min , the NO x purification rate drops to less than the lower limit Ra. Therefore, the ECU 30 sets the valve opening degree of the cooling bypass distribution valve 31 so that the exhaust gas of the flow rate required to cool the temperature of the SCR 21 to the upper limit temperature T max or less is introduced into the cooling bypass pipeline 25. Is preferable.

これにより、SCR21の冷却が過少、過多になるのを防止できる。 As a result, it is possible to prevent the SCR 21 from being cooled too much or too much.

次にSCR21の温度を上げる場合について説明する。 Next, a case where the temperature of the SCR 21 is raised will be described.

ECU30は、加熱用バイパス管路29を閉じるよりも開いた状態の方が、SCR21から排出されるNOx量が少ないと判断した場合、加熱用バイパス管路29を開いて排ガスでSCR21を加熱する。 When the ECU 30 determines that the amount of NO x discharged from the SCR 21 is smaller when the heating bypass pipe 29 is opened than when the heating bypass pipe 29 is closed, the ECU 30 opens the heating bypass pipe 29 and heats the SCR 21 with exhaust gas. ..

具体的には、温度センサ32で測定した、ある温度において、加熱用バイパス管路29を閉じた状態と開いてSCR21を加熱した状態でSCR21から排出されるNOx量を実測又は推算して比較する。比較の結果、開いた状態の方が、SCR21から排出されるNOx量が少ないと判断される場合に加熱用バイパス管路29を開く。 Specifically, at a certain temperature measured by the temperature sensor 32, the amount of NO x discharged from the SCR 21 with the heating bypass line 29 closed and the SCR 21 heated is measured or estimated and compared. do. As a result of comparison, when it is determined that the amount of NO x discharged from the SCR 21 is smaller in the open state, the heating bypass pipe 29 is opened.

加熱用バイパス管路29を開いた状態の方が、SCR21から排出されるNOx量が少ないと判断される場合とは、具体的にはSCR21が予め定められた下限温度Tmin未満の場合である。内燃機関1が車両の動力源である場合、冷間始動時のようにSCR21の温度が低い場合が挙げられる。さらに、アイドリング時や市街地での低速走行時のように、低負荷の運転が続いてSCR21に導入される排ガスの温度が低下した場合も該当する。 When it is determined that the amount of NO x discharged from the SCR 21 is smaller when the heating bypass line 29 is open, specifically, when the SCR 21 is less than the predetermined lower limit temperature T min. be. When the internal combustion engine 1 is the power source of the vehicle, the temperature of the SCR 21 may be low as in the case of cold start. Further, this also applies when the temperature of the exhaust gas introduced into the SCR 21 drops due to continuous low-load operation such as when idling or when traveling at low speed in an urban area.

この場合、高圧排気再循環路27の排ガスをSCR21に導入して加熱することでSCR21のNOx浄化率を向上させられる。 In this case, the NO x purification rate of the SCR 21 can be improved by introducing the exhaust gas from the high-pressure exhaust gas recirculation path 27 into the SCR 21 and heating it.

なお、SCR21が下限温度Tmin未満の場合、排ガス温度が低いため低圧排気再循環路23内は排ガス中の水分が凝集してコンプレッサ11bに衝突して摩耗させる可能性がある。そのためSCR21が下限温度Tmin未満の場合、低圧排気再循環路23は低圧EGRバルブ33を閉鎖する等して、使用しない。よって加熱用バイパス管路29の開閉を判断する状態、及び加熱用バイパス管路29を開く場合に低圧排気再循環路23は使用せず、低圧EGRバルブ33を閉鎖して低圧排気再循環路23に排ガスを環流しないのが前提である。 When the SCR 21 is less than the lower limit temperature T min , the exhaust gas temperature is low, so that the moisture in the exhaust gas may aggregate in the low-pressure exhaust gas recirculation passage 23 and collide with the compressor 11b to cause wear. Therefore, when the SCR 21 is less than the lower limit temperature T min , the low pressure exhaust gas recirculation passage 23 is not used by closing the low pressure EGR valve 33 or the like. Therefore, the low-pressure exhaust gas recirculation path 23 is not used when the opening / closing of the heating bypass line 29 is determined, and when the heating bypass line 29 is opened, the low-pressure EGR valve 33 is closed and the low-pressure exhaust gas recirculation line 23 is closed. It is a prerequisite that the exhaust gas is not recirculated.

一方で加熱用バイパス管路29を開くと高圧排気再循環路27から吸気路5に環流される排ガス量が減るのでEGR率が低下して燃焼室7のNOx発生量が増える。そのため、SCR21のNOx浄化率が高くても、SCR21の下流に排出されるNOx量が増える可能性もある。 On the other hand, when the heating bypass pipe 29 is opened, the amount of exhaust gas recirculated from the high-pressure exhaust gas recirculation passage 27 to the intake passage 5 decreases, so that the EGR rate decreases and the amount of NO x generated in the combustion chamber 7 increases. Therefore, even if the NO x purification rate of SCR21 is high, the amount of NO x discharged downstream of SCR21 may increase.

そこで、排ガス浄化システム3は、加熱用バイパス管路29を閉じるよりも開いた状態の方が、SCR21の下流に排出されるNOx排出量が少ない場合に加熱用バイパス管路29を開く。 Therefore, the exhaust gas purification system 3 opens the heating bypass pipe 29 when the amount of NO x discharged downstream of the SCR 21 is smaller when the exhaust gas purification system 3 is opened than when the heating bypass pipe 29 is closed.

例えば加熱用バイパス管路29を閉じた状態の場合、SCR21から排出されるNOx量を実測し、その状態で加熱用バイパス管路29を開いたと仮定した場合にSCR21から排出が予測されるNOx量を推算して比較する。比較の結果、加熱用バイパス管路29を開いた状態の方が、SCR21から排出されるNOx量が少ないと判断される場合に加熱用バイパス管路29を開く。 For example, when the heating bypass pipe 29 is closed, the amount of NO x discharged from the SCR 21 is actually measured, and if it is assumed that the heating bypass pipe 29 is opened in that state, the NO expected to be discharged from the SCR 21 is predicted. Estimate and compare x quantities. As a result of comparison, when it is determined that the amount of NO x discharged from the SCR 21 is smaller in the state where the heating bypass line 29 is opened, the heating bypass line 29 is opened.

これにより、排ガス浄化システム3のSCR21の下流に排出されるNOx排出量を低減できる。なお、SCR21の下流に排出されるNOx排出量を実測する場合、SCR21の下流に設けた図示しないNOxセンサで実測すればよい、NOx排出量を推算する場合、内燃機関1の燃焼条件やEGR率から計算すればよい。 As a result, the amount of NO x emitted downstream of the SCR 21 of the exhaust gas purification system 3 can be reduced. When actually measuring the NO x emission amount discharged downstream of the SCR 21, it may be measured by a NO x sensor (not shown) provided downstream of the SCR 21. When estimating the NO x emission amount, the combustion conditions of the internal combustion engine 1 Or EGR rate.

このように排ガス浄化システム3は加熱用バイパス管路29を開くだけでSCR21を加熱してSCR21の下流に排出されるNOx排出量を低減できる。つまりSCR21のNOx浄化率も排ガス浄化システム3の全体としてのNOx浄化率も向上させられる。 In this way, the exhaust gas purification system 3 can heat the SCR 21 and reduce the amount of NO x discharged downstream of the SCR 21 simply by opening the heating bypass pipe 29. That the NO x purification rate of the entire of the NO x purification rate even exhaust gas purifying system 3 of SCR21 it is also improved.

この際の加熱媒体はエキゾーストマニホールド9aのコレクターパイプ9bから出た排ガスであるため、SCR21を加熱する伝熱ヒータ等を別途設置する必要が無い。そのため、伝熱ヒータ等を設置した場合と比べてコストや燃費を低減できる。 Since the heating medium at this time is the exhaust gas emitted from the collector pipe 9b of the exhaust manifold 9a, it is not necessary to separately install a heat transfer heater or the like for heating the SCR21. Therefore, the cost and fuel consumption can be reduced as compared with the case where a heat transfer heater or the like is installed.

また、加熱用バイパス管路29の開閉の可否はNOx排出量で決まるため、燃焼室7内での燃焼条件によらず実施される。よって加熱用バイパス管路29の開閉の可否は運転条件と直接の関係がないため、SCR21を加熱する際に内燃機関1の運転条件を大きく変える必要がない。 Further, since whether or not the heating bypass pipe 29 can be opened and closed is determined by the amount of NO x discharged, it is carried out regardless of the combustion conditions in the combustion chamber 7. Therefore, since whether or not the heating bypass pipeline 29 can be opened and closed is not directly related to the operating conditions, it is not necessary to significantly change the operating conditions of the internal combustion engine 1 when heating the SCR 21.

そのため排ガス浄化システム3は運転条件を変えずに、かつコストと燃費を悪化させずにNOx浄化率を所望の範囲に維持できる。 Therefore, the exhaust gas purification system 3 can maintain the NO x purification rate within a desired range without changing the operating conditions and without deteriorating the cost and fuel consumption.

なお、SCR21を加熱する際の目標温度は、加熱用バイパス管路29が閉じた状態よりもSCR21からのNOx排出量が減る温度である。具体的にはSCR21の温度が下限温度Tmin以上となる温度とすればよい。SCR21の温度は冷却用バイパス管路25を開放する場合と同様に、温度センサ32の検出温度を基に求められる。 The target temperature when heating the SCR 21 is a temperature at which the amount of NO x discharged from the SCR 21 is smaller than that in the state where the heating bypass pipe 29 is closed. Specifically, the temperature of the SCR 21 may be set to a temperature equal to or higher than the lower limit temperature T min. The temperature of the SCR 21 is obtained based on the temperature detected by the temperature sensor 32, as in the case of opening the cooling bypass pipe 25.

ECU30は加熱用バイパス管路29を開放してSCR21を加熱する際に、排ガスの流量を以下のように調整する。 When the ECU 30 opens the heating bypass pipe 29 to heat the SCR 21, the flow rate of the exhaust gas is adjusted as follows.

まず、吸気路5の過給が必要な場合、具体的には冷間始動時のように、SCR21が低温であるにもかかわらず負荷が急激に増えて過給が必要な場合、過給に必要な流量の排ガスがタービン11aに導入される開度で過給分配バルブ35を開放する。 First, when supercharging of the intake passage 5 is required, specifically, when the load increases rapidly even though the SCR21 is low temperature and supercharging is required, such as at the time of cold start, supercharging is performed. The supercharging distribution valve 35 is opened at the opening degree at which the exhaust gas of the required flow rate is introduced into the turbine 11a.

吸気路5の過給が不要な場合、具体的にはアイドリング時や市街地での低速走行時のように、低負荷運転が続いて負荷が大きく変動しない場合は、過給分配バルブ35を閉鎖する。 When supercharging of the intake passage 5 is unnecessary, specifically, when low load operation continues and the load does not fluctuate significantly, such as when idling or running at low speed in an urban area, the supercharging distribution valve 35 is closed. ..

このように、排ガス浄化システム3は、加熱用バイパス管路29を開放する際に過給が必要な場合は排ガスの一部をタービン11aに導入し、過給が不要な場合は排ガスをタービン11aに導入しない。 As described above, the exhaust gas purification system 3 introduces a part of the exhaust gas into the turbine 11a when supercharging is required when opening the heating bypass pipe 29, and introduces the exhaust gas into the turbine 11a when supercharging is not required. Do not introduce to.

よって加熱用バイパス管路29を開放する際に過給の要不要に応じて排ガスのタービン11aへの導入の可否を決めるので、加熱用バイパス管路29を開放する際に内燃機関1の運転条件を大きく変える必要がない。 Therefore, when the heating bypass pipe 29 is opened, whether or not the exhaust gas can be introduced into the turbine 11a is determined according to the necessity of supercharging. Therefore, the operating conditions of the internal combustion engine 1 when the heating bypass pipe 29 is opened. Does not need to be changed significantly.

次に、SCR21の温度を所定の温度以上、例えば下限温度Tmin以上に加熱するのに必要な流量の排ガスが加熱用バイパス管路29に導入されるように加熱バイパス分配バルブ37の開度を調整する。これにより、SCR32の加熱が過少、過多になるのを防止できる。 Next, the opening degree of the heating bypass distribution valve 37 is adjusted so that the exhaust gas of the flow rate required to heat the temperature of the SCR 21 to a predetermined temperature or higher, for example, the lower limit temperature T min or higher is introduced into the heating bypass pipeline 29. adjust. This makes it possible to prevent the SCR32 from being overheated or overheated.

なお、公知の高圧排気再循環路27は高圧EGRバルブ36を備える。高圧EGRバルブ36は低圧EGRバルブ33と同様の構造であり、高圧排気再循環路27に導入される排ガスの流量を調整する弁体である。そのため高圧EGRバルブ36を加熱バイパス分配バルブ37の補助として用いてもよい。 The known high-pressure exhaust gas recirculation path 27 includes a high-pressure EGR valve 36. The high-pressure EGR valve 36 has the same structure as the low-pressure EGR valve 33, and is a valve body that adjusts the flow rate of the exhaust gas introduced into the high-pressure exhaust gas recirculation passage 27. Therefore, the high pressure EGR valve 36 may be used as an auxiliary to the heating bypass distribution valve 37.

以上が具体的なECU30の制御の説明である。 The above is a specific description of the control of the ECU 30.

尿素供給部17はSCR21にNH3を供給する装置である。SCR21はNOxを還元するNH3を吸着する必要があるため、NH3の供給源が必要なためである。図1では、尿素供給部17は排気路9においてSCR21の上流に設けられる。尿素供給部17は例えば尿素水を供給する装置である。尿素は所定の温度以上で加水分解してNH3を生成するため、NH3の原料として用いられる。このような構造は尿素SCRとも呼ばれる。 The urea supply unit 17 is a device that supplies NH 3 to the SCR 21. This is because the SCR 21 needs to adsorb NH 3 that reduces NO x, and thus requires a source of NH 3. In FIG. 1, the urea supply unit 17 is provided upstream of the SCR 21 in the exhaust passage 9. The urea supply unit 17 is, for example, a device that supplies urea water. Urea To generate the NH 3 was hydrolyzed under a predetermined temperature or higher, it is used as a raw material of NH 3. Such a structure is also called urea SCR.

図1の尿素供給部17は低圧排気再循環路23と排気路9の接続部よりも下流に設けられる。これは、低圧排気再循環路23と排気路9の接続部よりも上流に接続部を設けると尿素供給部17が供給したNH3を含む排ガスが吸気路5に環流されるためである。 The urea supply unit 17 in FIG. 1 is provided downstream of the connection portion between the low-pressure exhaust gas recirculation passage 23 and the exhaust passage 9. This is because if the connection portion is provided upstream from the connection portion between the low-pressure exhaust recirculation passage 23 and the exhaust passage 9, the exhaust gas containing NH 3 supplied by the urea supply portion 17 is circulated to the intake passage 5.

図1の尿素供給部17は冷却用バイパス管路25と排気路9の接続部よりも上流に設けられる。これは、冷却用バイパス管路25から導入された低温の排ガスがNH3の生成の際に外乱となるのを防ぐためである。ただし冷却用バイパス管路25から導入された排ガスがNH3の生成の際に外乱とならないのであれば、尿素供給部17は低圧排気再循環路23と排気路9の接続部よりも下流に設けられてもよい。 The urea supply unit 17 in FIG. 1 is provided upstream of the connection portion between the cooling bypass pipe 25 and the exhaust passage 9. This is to prevent the low-temperature exhaust gas introduced from the cooling bypass line 25 from becoming a disturbance during the generation of NH 3. However, if the exhaust gas introduced from the cooling bypass pipe 25 does not become a disturbance when NH 3 is generated, the urea supply unit 17 is provided downstream from the connection portion between the low-pressure exhaust gas recirculation passage 23 and the exhaust passage 9. May be done.

図1の尿素供給部17は高圧排気再循環路27と排気路9のタービン11aよりも下流側の接続部29aよりも下流に設けられる。これは、尿素供給部17から導入された尿素が高圧排気再循環路27から導入される排ガスで昇温されることで、尿素の加水分解によるNH3の生成が促進されるためである。ただし尿素の昇温が不要な場合、尿素供給部17は接続部29aよりも上流に設けられてもよい。尿素供給部17は尿素の噴射量や噴射タイミングをECU30が制御してもよいし、ECU30とは別の制御部が制御してもよい。 The urea supply unit 17 of FIG. 1 is provided downstream of the connection portion 29a on the downstream side of the turbine 11a of the high-pressure exhaust recirculation passage 27 and the exhaust passage 9. This is because the urea introduced from the urea supply unit 17 is heated by the exhaust gas introduced from the high-pressure exhaust gas recirculation passage 27, so that the production of NH 3 by hydrolysis of urea is promoted. However, when it is not necessary to raise the temperature of urea, the urea supply unit 17 may be provided upstream of the connection unit 29a. The urea supply unit 17 may control the urea injection amount and the injection timing by the ECU 30, or may be controlled by a control unit other than the ECU 30.

ミキサ19は尿素供給部17が供給した尿素水を衝突させて液滴を微粒化することで排気ガスと尿素水を混合する部材であり、羽状の板状部材を例示できる。ミキサ19は尿素水を衝突させる必要があるため、尿素供給部17の下流、好ましくは直下に設けられる。 The mixer 19 is a member that mixes the exhaust gas and the urea water by colliding the urea water supplied by the urea supply unit 17 to atomize the droplets, and can be exemplified as a pinnate plate-shaped member. Since the mixer 19 needs to collide with urea water, it is provided downstream of the urea supply unit 17, preferably directly below.

LNT13は排ガスの空燃比が所定の範囲では排ガス中のNOxを吸蔵し、所定の範囲未満では吸蔵NOxを、NH3を含むガスに還元して排出するNOx吸蔵還元触媒を含む装置であり、排気路9に設けられる。 LNT13 is in the range air-fuel ratio is in a predetermined exhaust gas occludes NO x in the exhaust gas, the absorbing NO x is less than the predetermined range, the apparatus comprising the NO x storage-reduction catalyst for exhaust by reducing the gas containing NH 3 Yes, it is provided in the exhaust passage 9.

空燃比が所定の範囲とは、排ガス中の燃料比率が理論空燃比での燃料比率以下のリーンと呼ばれる範囲である。所定の範囲未満とは、排ガス中の燃料比率が理論空燃比での燃料比率を超えるリッチと呼ばれる範囲である。空燃比は空気質量を燃料質量で割った値である。 The range in which the air-fuel ratio is predetermined is a range called lean in which the fuel ratio in the exhaust gas is equal to or less than the fuel ratio in the stoichiometric air-fuel ratio. The range less than a predetermined range is a range called rich in which the fuel ratio in the exhaust gas exceeds the fuel ratio in the stoichiometric air-fuel ratio. The air-fuel ratio is the value obtained by dividing the mass of air by the mass of fuel.

NOx吸蔵還元触媒は空燃比に応じて排ガス中のNOxを吸蔵・還元できる材料を適宜選択する。具体的な材料としては、カリウムのようなアルカリ金属の酸化物、あるいはバリウムのようなアルカリ土類金属の酸化物が挙げられる。これらの材料は、NOxと反応して硝酸塩となることで、NOxを吸蔵し、燃料中の水素と反応することで吸蔵したNOxをアンモニアに還元して排出して酸化物に戻るためである。 For the NO x storage reduction catalyst, a material capable of storing and reducing NO x in the exhaust gas is appropriately selected according to the air-fuel ratio. Specific materials include alkali metal oxides such as potassium and alkaline earth metal oxides such as barium. These materials occlude NO x by reacting with NO x to form nitrate, and by reacting with hydrogen in the fuel, the occluded NO x is reduced to ammonia and discharged to return to oxides. Is.

排ガス浄化システム3はSCR21でNOxを還元する構造であるにも関わらず、SCR35の上流にNOxを還元するLNT13を設けているが、これはSCR35がNOxを還元可能な下限温度が、LNT13がNOxを吸蔵可能な温度よりも高いためである。そのため内燃機関1の始動時には、SCR21がNOxを還元可能な下限温度に排ガスの温度が達するまでの間、LNT13がNOxを吸蔵することで、始動時にNOxが外部に排出されるのを防いでいる。 Exhaust gas purification system 3 Despite the structure for reducing NO x in SCR21, is provided with the LNT13 for reducing NO x upstream of SCR35, which SCR35 reducible lower limit temperature is a is NO x, This is because LNT 13 is higher than the temperature at which NO x can be occluded. Therefore, when the internal combustion engine 1 is started, the LNT 13 occludes NO x until the temperature of the exhaust gas reaches the lower limit temperature at which the SCR 21 can reduce NO x , so that NO x is discharged to the outside at the time of starting. I'm preventing it.

図1では加熱用バイパス管路29と排気路9のタービン11aよりも下流側の接続部29aよりも上流にLNT13が設けられている。これは、加熱用バイパス管路29と排気路9の接続部よりも下流にLNT13を設けると、加熱用バイパス管路29を通過した排ガスの熱がLNT13で奪われて排ガスの温度が下がってしまい、SCR21の加熱効率が低下するためである。ただし、SCR21の加熱効率の低下を許容する場合は接続部29aよりも下流にLNT13を設けてもよい。 In FIG. 1, the LNT 13 is provided upstream of the connecting portion 29a on the downstream side of the turbine 11a of the heating bypass pipe 29 and the exhaust passage 9. This is because if the LNT 13 is provided downstream of the connection between the heating bypass pipe 29 and the exhaust passage 9, the heat of the exhaust gas that has passed through the heating bypass pipe 29 is taken away by the LNT 13 and the temperature of the exhaust gas drops. This is because the heating efficiency of the SCR 21 is lowered. However, if a decrease in the heating efficiency of the SCR 21 is allowed, the LNT 13 may be provided downstream of the connection portion 29a.

DPF15は排ガス中の微粒子を物理的に捕集して除去するフィルタであり、図1では排気路9におけるLNT13の直下に設けられる。DPF15は微粒子を捕集しつつ、排ガスを通過させるコージェライト(2MgO・2Al23・5SiO)、SiC、チタン酸アルミニウムのようなセラミックスの多孔質材で形成される。 The DPF 15 is a filter that physically collects and removes fine particles in the exhaust gas, and is provided directly below the LNT 13 in the exhaust passage 9 in FIG. DPF15 is while trapping particulate, cordierite passing the exhaust gas (2MgO · 2Al 2 O 3 · 5SiO), SiC, is formed of a porous material of ceramics such as aluminum titanate.

図1では加熱用バイパス管路29と排気路9のタービン11aよりも下流側の接続部29aよりも上流にDPF15が設けられている。これはLNT13と同様に加熱用バイパス管路29を通過した排ガスの熱がDPF15で奪われることによるSCR21の加熱効率の低下を防ぐためである。 In FIG. 1, the DPF 15 is provided upstream of the connecting portion 29a on the downstream side of the turbine 11a of the heating bypass pipe 29 and the exhaust passage 9. This is to prevent a decrease in the heating efficiency of the SCR 21 due to the heat of the exhaust gas passing through the heating bypass pipe 29 being taken away by the DPF 15 as in the LNT 13.

なお図1の構造では加熱用バイパス管路29からSCR21に流入する排ガスはDPF15を通過しないため、微粒子がSCR21の下流に排出される可能性が理論上は存在する。しかしながら、実際に加熱用バイパス管路29を開放する条件では微粒子がほとんど発生しないため、接続部29aよりも上流にDPF15を設けてもよい。加熱用バイパス管路29を開放する条件で微粒子がほとんど発生しない理由は以下の通りである。 In the structure of FIG. 1, since the exhaust gas flowing into the SCR 21 from the heating bypass pipe 29 does not pass through the DPF 15, there is a theoretical possibility that fine particles are discharged downstream of the SCR 21. However, since fine particles are hardly generated under the condition that the heating bypass pipe 29 is actually opened, the DPF 15 may be provided upstream of the connecting portion 29a. The reason why almost no fine particles are generated under the condition that the heating bypass pipe 29 is opened is as follows.

NOxの発生量と微粒子の発生量は概ねトレードオフの関係にある。具体的には空燃比が高い希薄雰囲気になるほど窒素と結合できる酸素が増えるためNOxが発生しやすいが、酸素が増えると燃料が完全燃焼しやすいため、微粒子が発生し難い。加熱用バイパス管路29を開放する場合は低負荷運転が続いた場合であるが、低負荷運転は燃料の供給量が少ない希薄雰囲気下で燃焼が進むため、NOxの発生量が多い反面、微粒子はほとんど発生しない。そのため、接続部29aよりも上流にDPF15を設けてもよい。ただし加熱効率よりも排ガス中の微粒子の低減を優先する場合は接続部29aよりも下流にDPF15を設けてもよい。 There is a general trade-off between the amount of NO x generated and the amount of fine particles generated. Specifically, the higher the air-fuel ratio and the leaner the atmosphere, the more oxygen that can be combined with nitrogen increases, so NO x is likely to be generated. However, if the oxygen increases, the fuel is likely to burn completely, so fine particles are unlikely to be generated. When the heating bypass pipeline 29 is opened, low load operation continues, but in low load operation, combustion proceeds in a dilute atmosphere where the fuel supply amount is small, so the amount of NO x generated is large, but on the other hand, Almost no fine particles are generated. Therefore, the DPF 15 may be provided upstream of the connection portion 29a. However, if the reduction of fine particles in the exhaust gas is prioritized over the heating efficiency, the DPF 15 may be provided downstream of the connection portion 29a.

以上が本実施形態に係る排ガス浄化システム3の構成の説明である。 The above is the description of the configuration of the exhaust gas purification system 3 according to the present embodiment.

次に図4及び図5を参照して本実施形態に係る排ガス浄化システム3を用いた排ガス浄化方法の例、具体的にはSCR21の冷却、加熱の手順を説明する。 Next, an example of an exhaust gas purification method using the exhaust gas purification system 3 according to the present embodiment, specifically, a procedure for cooling and heating the SCR21 will be described with reference to FIGS. 4 and 5.

まず図4を参照してSCR21を冷却する手順を説明する。 First, the procedure for cooling the SCR 21 will be described with reference to FIG.

前提として、内燃機関1が通常運転を行っているとする。通常運転とは、冷却用バイパス管路25と加熱用バイパス管路29が閉鎖され、かつ過給分配バルブ35が開放された状態である。この状態では図1の矢印A1に示すように吸気路5から吸気が導入されて燃焼室7で燃焼の酸化剤として用いられる。燃焼後は、図1の矢印A2に示すように排気路9に排ガスが流れてガス圧でタービン11aを回転させ、排ガス温度によってはLNT13でNOxが除去される。また、DPF15で微粒子が捕集されたのちに排ガスは図1の矢印A3に示すようにSCR21を通過してNOxが除去され、図示しない消音機等を介して大気放出される。また、運転状況に応じて低圧EGRバルブ33及び高圧EGRバルブ36のバルブ開度が設定され、図1の矢印A4及びA5に示すように低圧排気再循環路23及び高圧排気再循環路27から排ガスの一部が吸気路5に環流される。 As a premise, it is assumed that the internal combustion engine 1 is in normal operation. The normal operation is a state in which the cooling bypass line 25 and the heating bypass line 29 are closed and the supercharging distribution valve 35 is opened. In this state, as shown by the arrow A1 in FIG. 1, intake air is introduced from the intake passage 5 and used as an oxidant for combustion in the combustion chamber 7. After combustion, as shown by arrow A2 in FIG. 1, exhaust gas flows through the exhaust passage 9 to rotate the turbine 11a with gas pressure, and NO x is removed by LNT 13 depending on the exhaust gas temperature. Further, after the fine particles are collected by the DPF 15, the exhaust gas passes through the SCR 21 as shown by the arrow A3 in FIG. 1, NO x is removed, and is released to the atmosphere through a silencer or the like (not shown). Further, the valve openings of the low pressure EGR valve 33 and the high pressure EGR valve 36 are set according to the operating conditions, and as shown by arrows A4 and A5 in FIG. 1, exhaust gas is exhausted from the low pressure exhaust gas recirculation passage 23 and the high pressure exhaust recirculation passage 27. Is recirculated to the intake passage 5.

この状態でECU30は、温度センサ32を用いて排ガスの温度を検出する(図4のS1、検出工程)。 In this state, the ECU 30 detects the temperature of the exhaust gas using the temperature sensor 32 (S1, detection step in FIG. 4).

次にECU30は、温度センサ32の検出値を基にSCR21の温度を算出する(図4のS2、検出工程)具体的には、まず排ガスの流量を実測、又は内燃機関1の回転数や吸気流量等の燃焼条件から計算する。次にECU30に予め記憶された、SCR21の熱容量や形状に基づくSCR21の温度分布のモデルに排ガス温度と排ガス流量を当てはめ、SCR21の中心温度を求める。 Next, the ECU 30 calculates the temperature of the SCR 21 based on the detection value of the temperature sensor 32 (S2 in FIG. 4, detection step). Specifically, first, the flow rate of the exhaust gas is actually measured, or the rotation speed of the internal combustion engine 1 and the intake air. Calculated from combustion conditions such as flow rate. Next, the exhaust gas temperature and the exhaust gas flow rate are applied to the model of the temperature distribution of the SCR 21 based on the heat capacity and the shape of the SCR 21 stored in advance in the ECU 30, and the center temperature of the SCR 21 is obtained.

次にECU30は、S1で検出した温度が所定温度、ここでは図3の上限温度Tmaxを超えるか否かを判断し、超える場合はS4に進み、超えない場合はS5に進む(図4のS3)。 Next, the ECU 30 determines whether or not the temperature detected in S1 exceeds the predetermined temperature, here the upper limit temperature T max of FIG. 3, and if it exceeds, the process proceeds to S4, and if not, the process proceeds to S5 (FIG. 4). S3).

S3で上限温度Tmaxを超えると判断した場合、ECU30は冷却用バイパス管路25を開放して排ガスを図1の矢印B1に示すように冷却用バイパス管路25からSCR21に排ガスを流して冷却し、リターンする(図4のS4、冷却工程)。具体的には、まずS3で検出したSCR21の温度と上限温度Tmaxとの差分ΔTを求め、差分ΔTだけSCR21を冷却するのに必要な排ガス温度と排ガス流量を求める。次に求めた排ガス温度と流量の排ガスが冷却用バイパス管路25からSCR21に導入されるように低圧EGRバルブ33及び冷却バイパス分配バルブ31のバルブ開度を調節する。 When it is determined in S3 that the upper limit temperature T max is exceeded, the ECU 30 opens the cooling bypass line 25 and flows the exhaust gas from the cooling bypass line 25 to the SCR 21 to cool the exhaust gas as shown by the arrow B1 in FIG. And return (S4 in FIG. 4, cooling step). Specifically, first, the difference ΔT between the temperature of the SCR 21 detected in S3 and the upper limit temperature T max is obtained, and the exhaust gas temperature and the exhaust gas flow rate required to cool the SCR 21 by the difference ΔT are obtained. Next, the valve openings of the low pressure EGR valve 33 and the cooling bypass distribution valve 31 are adjusted so that the exhaust gas having the obtained exhaust gas temperature and flow rate is introduced into the SCR 21 from the cooling bypass line 25.

S3で上限温度Tmaxを超えないと判断した場合、ECU30は冷却用バイパス管路25を開放しない。この場合、仮に冷却用バイパス管路25が開放されている場合は冷却バイパス分配バルブ31を閉弁することで、冷却用バイパス管路25を閉鎖する(図4のS5)。 If it is determined in S3 that the upper limit temperature T max is not exceeded, the ECU 30 does not open the cooling bypass line 25. In this case, if the cooling bypass line 25 is open, the cooling bypass distribution valve 31 is closed to close the cooling bypass line 25 (S5 in FIG. 4).

以上がSCR21を冷却する手順の説明である。 The above is the description of the procedure for cooling the SCR21.

次に、図5を参照してSCR21を加熱する手順を説明する。 Next, the procedure for heating the SCR 21 will be described with reference to FIG.

最初にECU30は、温度センサ32を用いて排ガスの温度を検出する(図5のS11、SCR温度検出工程)。 First, the ECU 30 detects the temperature of the exhaust gas using the temperature sensor 32 (S11 in FIG. 5, SCR temperature detection step).

次にECU30は、温度センサ32の検出値を基にSCR21の温度を算出する(図5のS12、SCR温度検出工程)。SCR21の温度を算出する方法はS2と同じである。 Next, the ECU 30 calculates the temperature of the SCR 21 based on the detection value of the temperature sensor 32 (S12 in FIG. 5, SCR temperature detection step). The method for calculating the temperature of SCR21 is the same as that for S2.

次にECU30はS12で求めた温度条件で、かつ加熱用バイパス管路29が閉鎖された状態でSCR21の下流に流出するNOx量を算出する(図5のS13)。このNOx量を以下の説明では閉鎖時排出NOx量と称す。閉鎖時排出NOx量の算出方法としては、S13の時点で加熱用バイパス管路29が閉鎖された状態の場合、SCR21の下流に図示しないNOxセンサを設けてSCR21の下流に流出するNOx量を実測してもよい。 Next, the ECU 30 calculates the amount of NO x flowing downstream of the SCR 21 under the temperature conditions obtained in S12 and with the heating bypass line 29 closed (S13 in FIG. 5). The amount of NO x is referred to as closed when the discharge amount of NO x in the following description. As a method of calculating the amount of NO x discharged at the time of closing, when the heating bypass pipe 29 is closed at the time of S13, a NO x sensor (not shown) is provided downstream of the SCR 21 and the NO x flows out downstream of the SCR 21. The amount may be measured.

あるいは加熱用バイパス管路29が閉鎖されたと仮定した状態での内燃機関1の回転数や吸気流量、燃料噴射量の燃焼条件、高圧排気再循環路27のEGR率、SCR21の温度から、SCR21の下流に排出されると想定されるNOx量を算出してもよい。 Alternatively, from the rotation speed and intake flow rate of the internal combustion engine 1 assuming that the heating bypass pipeline 29 is closed, the combustion conditions of the fuel injection amount, the EGR rate of the high-pressure exhaust gas recirculation path 27, and the temperature of the SCR21, the SCR21 The amount of NO x that is expected to be discharged downstream may be calculated.

次にECU30はS12で求めた温度条件で、かつ加熱用バイパス管路29が開放された状態でSCR21の下流に流出するNOx量を算出する(図5のS14)。このNOx量を以下の説明では開放時排出NOx量と称す。開放時排出NOx量の算出方法としては、S14の時点で加熱用バイパス管路29が開放された状態の場合、SCR21の下流に図示しないNOxセンサを設けてSCR21の下流に流出するNOx量を実測してもよい。 Next, the ECU 30 calculates the amount of NO x flowing downstream of the SCR 21 under the temperature conditions obtained in S12 and with the heating bypass pipe 29 open (S14 in FIG. 5). The amount of NO x is referred to as open when the exhaust NO x amount in the following description. As a method of calculating the amount of NO x discharged at the time of opening, when the heating bypass pipe 29 is open at the time of S14, a NO x sensor (not shown) is provided downstream of the SCR 21 and the NO x flows out downstream of the SCR 21. The amount may be measured.

あるいは加熱用バイパス管路29が開放されたと仮定した場合の内燃機関1の燃焼条件、高圧排気再循環路27のEGR率、SCR21の温度から、SCR21の下流に排出が想定される開放時排出NOx量を算出してもよい。算出の際の、過給分配バルブ35、加熱バイパス分配バルブ37、及び高圧EGRバルブ36の開度は、過給の要不要やSCR21の温度に応じて予め定められた所定の値を用いてもよい。例えばSCR21を所定の温度、具体的には下限温度Tminまで昇温できる条件を用いてもよい。また過給が必要な場合は過給分配バルブ35を開放した状態と仮定し、過給が不要な場合は過給分配バルブ35を閉鎖した状態と仮定してSCR21の下流に流出するNOx量を実測してもよい。 Alternatively, based on the combustion conditions of the internal combustion engine 1 assuming that the heating bypass pipeline 29 is opened, the EGR rate of the high-pressure exhaust gas recirculation passage 27, and the temperature of the SCR 21, the exhaust NO at the time of opening is expected to be discharged downstream of the SCR 21. The x quantity may be calculated. The opening degree of the supercharging distribution valve 35, the heating bypass distribution valve 37, and the high-pressure EGR valve 36 at the time of calculation may be a predetermined value predetermined according to the necessity of supercharging or the temperature of the SCR 21. good. For example, a condition may be used in which the SCR 21 can be raised to a predetermined temperature, specifically, the lower limit temperature T min. Also when supercharging is required assuming an open state supercharging distribution valve 35, when supercharging is not required amount of NO x flowing downstream of SCR21 assuming the closed state of the supercharging distribution valve 35 May be measured.

開放時排出NOx量は過給分配バルブ35、加熱バイパス分配バルブ37、及び高圧EGRバルブ36の開度を変更させた条件で複数回算出し、最もNOx排出量が少ないものを、最終的な開放時排出NOx量としてもよい。 The amount of NO x discharged at the time of opening is calculated multiple times under the condition that the opening degree of the supercharging distribution valve 35, the heating bypass distribution valve 37, and the high pressure EGR valve 36 is changed, and the one with the smallest NO x discharge amount is the final one. It may be the amount of NO x discharged at the time of opening.

なおS13とS14を実施する順番は図5と逆でもよい。 The order in which S13 and S14 are carried out may be reversed from that in FIG.

次にECU30は閉鎖時排出NOx量よりも開放時排出NOx量が少ない場合はS16に進み、それ以外の場合、具体的には閉鎖時排出NOx量が開放時排出NOx量以下の場合はS17に進む(図5のS15)。 Then ECU30 advances to S16 when a small opening during the discharge amount of NO x than the closing time of the discharge amount of NO x is, otherwise, specifically during the discharge amount of NO x closing the open time of ejection amount of NO x following the In the case, the process proceeds to S17 (S15 in FIG. 5).

ECU30は閉鎖時排出NOx量よりも開放時排出NOx量が少ない場合、ECU30は過給が必要か否かを運転条件から判断する(図5のS16)。過給が不要な場合は過給分配バルブ35を閉鎖してS19に進む(図5のS18)。過給が必要な場合はS18を実施せずにS19に進む。 ECU 30 when a small opening during the discharge amount of NO x than the closing time of the discharge amount of NO x, ECU 30 determines whether it is necessary to boost the operating conditions (S16 in FIG. 5). When supercharging is not required, the supercharging distribution valve 35 is closed and the process proceeds to S19 (S18 in FIG. 5). If supercharging is required, proceed to S19 without executing S18.

次にECU30は加熱用バイパス管路29を開放して、図1の矢印B2に示すように排ガスを加熱用バイパス管路29からSCR21に流して加熱することで、NOx浄化率を高くする(図5のS19、SCR加熱工程)。開放の際の過給分配バルブ35、加熱バイパス分配バルブ37、及び高圧EGRバルブ36の開度の条件は、S15で閉鎖時排出NOx量との比較に用いた開放時排出NOx量を算出した場合の条件である。 Next, the ECU 30 opens the heating bypass line 29 and causes the exhaust gas to flow from the heating bypass line 29 to the SCR 21 to heat the exhaust gas as shown by the arrow B2 in FIG. 1, thereby increasing the NO x purification rate ( S19 in FIG. 5, SCR heating step). For the opening conditions of the supercharging distribution valve 35, the heating bypass distribution valve 37, and the high-pressure EGR valve 36 at the time of opening, the amount of exhaust NO x at the time of opening used for comparison with the amount of the exhaust NO x at the time of closing was calculated in S15. It is a condition when it is done.

S15で閉鎖時排出NOx量が開放時排出NOx量以下の場合は加熱用バイパス管路29を開放してもSCR21の下流に流出するNOx量が減らない。そのため、加熱用バイパス管路29を開放せず、仮に開放されている場合は閉鎖してリターンする(図5のS17)。 If the closure time of ejection amount of NO x is less than the open time of ejection amount of NO x in S15 the amount of NO x flowing downstream of SCR21 be opened the heating bypass line 29 does not decrease. Therefore, the heating bypass pipe 29 is not opened, and if it is opened, it is closed and returned (S17 in FIG. 5).

以上がSCR21を加熱する手順の説明である。 The above is the description of the procedure for heating the SCR21.

このように本実施形態の排ガス浄化システム3は、SCR21の温度が上限温度Tmaxを超えた場合、冷却用バイパス管路25を開放して低圧排気再循環路23内の排ガスをSCR21に導入して冷却することでSCR21のNOx浄化率を高くする。 As described above, in the exhaust gas purification system 3 of the present embodiment, when the temperature of the SCR 21 exceeds the upper limit temperature T max , the cooling bypass pipe 25 is opened and the exhaust gas in the low pressure exhaust recirculation passage 23 is introduced into the SCR 21. The NO x purification rate of SCR21 is increased by cooling.

また、本実施形態の排ガス浄化システム3は、閉鎖時排出NOx量よりも開放時排出NOx量が少ない場合は加熱用バイパス管路29を開放してコンプレッサ11bよりも下流の排ガスをSCR21に導入して冷却することでSCR21のNOx浄化率を高くする。 Further, the exhaust gas purifying system 3 of this embodiment, the downstream of the exhaust gas of the compressor 11b by opening the heating bypass line 29 is less open when the exhaust NO x amount than the closing time of the discharge amount of NO x in SCR21 By introducing and cooling, the NO x purification rate of SCR21 is increased.

そのため、運転条件によらずにコストと燃費を悪化させずNOx浄化率を所望の範囲に維持できる。 Therefore, the NO x purification rate can be maintained within a desired range without deteriorating cost and fuel consumption regardless of operating conditions.

以上、実施形態に基づき本開示を説明したが本開示は実施形態に限定されない。当業者であれば本開示の技術思想の範囲内において各種変形例及び改良例に想到するのは当然のことであり、これらも当然に本開示に含まれる。 Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the embodiments. It is natural for a person skilled in the art to come up with various modifications and improvements within the scope of the technical idea of the present disclosure, and these are also naturally included in the present disclosure.

1 :内燃機関
3 :排ガス浄化システム
4 :エアクリーナ
5 :吸気路
5a :インタークーラ
7 :燃焼室
7a :気筒
7b :ピストン
9 :排気路
9a :エキゾーストマニホールド
9b :コレクターパイプ
11 :ターボチャージャ
11a :タービン
11b :コンプレッサ
13 :LNT
15 :DPF
17 :尿素供給部
19 :ミキサ
21 :SCR
22 :排ガス導入管
23 :低圧排気再循環路
23a :低圧クーラ
25 :冷却用バイパス管路
27 :高圧排気再循環路
27a :高圧クーラ
29 :加熱用バイパス管路
29a :接続部
30 :ECU
31 :冷却バイパス分配バルブ
31a :3方バルブ
32 :温度センサ
33 :低圧EGRバルブ
35 :過給分配バルブ
36 :高圧EGRバルブ
37 :加熱バイパス分配バルブ
1: Internal combustion engine 3: Exhaust gas purification system 4: Air cleaner 5: Intake passage 5a: Intercooler 7: Combustion chamber 7a: Cylinder 7b: Piston 9: Exhaust passage 9a: Exhaust manifold 9b: Collector pipe 11: Turbocharger 11a: Turbine 11b : Compressor 13: LNT
15: DPF
17: Urea supply unit 19: Mixer 21: SCR
22: Exhaust gas introduction pipe 23: Low pressure exhaust recirculation line 23a: Low pressure cooler 25: Cooling bypass line 27: High pressure exhaust recirculation line 27a: High pressure cooler 29: Heating bypass line 29a: Connection 30: ECU
31: Cooling bypass distribution valve 31a: Three-way valve 32: Temperature sensor 33: Low pressure EGR valve 35: Supercharging distribution valve 36: High pressure EGR valve 37: Heating bypass distribution valve

Claims (5)

内燃機関の排気路に設けられて排ガスのガス圧で回転するタービンと、吸気路に設けられて前記タービンの動力が伝達され、伝達された前記動力で吸気を圧縮することで過給するコンプレッサを備える排気式過給機と、前記排気路の前記タービンよりも上流から、前記吸気路の前記コンプレッサよりも下流に前記排ガスの一部を環流する高圧排気再循環路と、前記排気路の前記タービンの下流に設けられNOxを分解する選択還元触媒を含むSCRと、前記SCRの温度を検出する検出部を備える排ガス浄化システムであって、
前記排気路において、前記タービンよりも上流の部分と前記SCRを連通する開閉可能な加熱用バイパス管路と、
前記加熱用バイパス管路の開閉を制御する制御部を備え、
前記制御部は、
前記検出部が検出した温度において、前記加熱用バイパス管路を閉じるよりも開いた状態の方が、前記SCRから排出されるNOx量が少ないと判断した場合、前記加熱用バイパス管路を開いて前記排ガスで前記SCRを加熱することを特徴とする排ガス浄化システム。
A turbine provided in the exhaust passage of the internal combustion engine and rotating by the gas pressure of the exhaust gas, and a compressor provided in the intake passage where the power of the turbine is transmitted and supercharged by compressing the intake air with the transmitted power. An exhaust type turbocharger, a high-pressure exhaust recirculation passage that circulates a part of the exhaust gas from upstream of the turbine in the exhaust passage to the downstream of the compressor in the intake passage, and the turbine of the exhaust passage. An exhaust gas purification system including an SCR provided downstream of the above and containing a selective reduction catalyst that decomposes NO x, and a detection unit that detects the temperature of the SCR.
In the exhaust passage, an openable and closable heating bypass pipe that communicates the upstream portion of the turbine with the SCR, and
A control unit for controlling the opening and closing of the heating bypass pipeline is provided.
The control unit
When it is determined that the amount of NO x discharged from the SCR is smaller in the open state than in the closed state at the temperature detected by the detection unit, the heating bypass line is opened. An exhaust gas purification system characterized in that the SCR is heated by the exhaust gas.
前記排気路の前記タービンに導入される前記排ガスの流量を調整する過給分配バルブを備え、
前記制御部は、
前記加熱用バイパス管路を開放する場合で、かつ前記吸気路の過給が必要な場合、前記排ガスの一部が前記タービンに導入されるように前記過給分配バルブを制御し、過給が不要な場合は前記過給分配バルブを閉鎖する請求項1に記載の排ガス浄化システム。
A supercharging distribution valve for adjusting the flow rate of the exhaust gas introduced into the turbine in the exhaust passage is provided.
The control unit
When the heating bypass pipeline is opened and the intake passage needs to be supercharged, the supercharging distribution valve is controlled so that a part of the exhaust gas is introduced into the turbine, and the supercharging is performed. The exhaust gas purification system according to claim 1, which closes the supercharging distribution valve when it is unnecessary.
前記排気路から前記加熱用バイパス管路に導入される前記排ガスの流量を調整する加熱バイパス分配バルブを備え、
前記制御部は、前記加熱用バイパス管路を開放する場合、前記SCRの温度を所定の温度以上に加熱するのに必要な流量の前記排ガスが前記加熱用バイパス管路に導入されるように前記加熱バイパス分配バルブを調整する請求項1又は2に記載の排ガス浄化システム。
A heating bypass distribution valve for adjusting the flow rate of the exhaust gas introduced from the exhaust passage to the heating bypass pipe is provided.
When the control unit opens the heating bypass line, the control unit causes the exhaust gas at a flow rate required to heat the SCR temperature to a predetermined temperature or higher to be introduced into the heating bypass line. The exhaust gas purification system according to claim 1 or 2, wherein the heating bypass distribution valve is adjusted.
前記排気路の前記タービンよりも下流側と、前記吸気路の前記コンプレッサよりも上流側を連通する低圧排気再循環路と、前記低圧排気再循環路に導入される前記排ガスの流量を調整する冷却用循環路分配バルブを備え、
前記制御部は、前記冷却用循環路分配バルブが閉鎖されて前記低圧排気再循環路に前記排ガスが環流されない状態で前記加熱用バイパス管路を閉じるよりも開いた状態の方が、前記SCRから排出されるNOx量が少ないと判断した場合、前記冷却用循環路分配バルブを閉鎖した状態で前記加熱用バイパス管路を開いて前記排ガスで前記SCRを加熱することを特徴とする請求項1〜3のいずれか一項に記載の排ガス浄化システム。
Cooling that adjusts the flow rate of the low-pressure exhaust recirculation path that communicates the downstream side of the exhaust passage with respect to the turbine, the upstream side of the intake passage with respect to the compressor, and the exhaust gas introduced into the low-pressure exhaust recirculation passage. Equipped with a circulation path distribution valve for
The control unit is opened from the SCR rather than closed in a state where the cooling circulation path distribution valve is closed and the exhaust gas is not recirculated to the low pressure exhaust recirculation path and the heating bypass line is closed. The first aspect of the present invention is that when it is determined that the amount of NO x discharged is small, the SCR is heated by the exhaust gas by opening the heating bypass pipe in a state where the cooling circulation path distribution valve is closed. The exhaust gas purification system according to any one of 3 to 3.
内燃機関の排気路に設けられて排ガスのガス圧で回転するタービンと、吸気路に設けられて前記タービンの動力が伝達され、伝達された前記動力で吸気を圧縮することで過給するコンプレッサを備える排気式過給機と、前記排気路の前記タービンよりも上流から、前記吸気路の前記コンプレッサよりも下流に前記排ガスの一部を環流する高圧排気再循環路と、前記排気路の前記タービンの下流に設けられ、NH3が吸着されてNOxを分解する選択還元触媒を含むSCRを備える排ガス浄化システムの前記SCRの温度を検出するSCR温度検出工程と、
前記SCR温度検出工程で検出された温度において、前記排気路において、前記タービンよりも上流の部分と前記SCRを連通する開閉可能な加熱用バイパス管路を閉じるよりも開いた状態の方が、前記SCRから排出されるNOx量が少ないと判断した場合、前記加熱用バイパス管路を開いて前記排ガスで前記SCRを加熱するSCR加熱工程を実施することを特徴とする排ガス浄化方法。
A turbine provided in the exhaust passage of the internal combustion engine and rotating by the gas pressure of the exhaust gas, and a compressor provided in the intake passage where the power of the turbine is transmitted and supercharged by compressing the intake air with the transmitted power. An exhaust type turbocharger, a high-pressure exhaust recirculation passage that circulates a part of the exhaust gas from upstream of the turbine in the exhaust passage to the downstream of the compressor in the intake passage, and the turbine of the exhaust passage. An SCR temperature detection step for detecting the temperature of the SCR of an exhaust gas purification system provided downstream of the exhaust gas purification system including an SCR including a selective reduction catalyst in which NH 3 is adsorbed and decomposes NO x.
At the temperature detected in the SCR temperature detection step, in the exhaust passage, the open state is more open than closing the openable and closable heating bypass pipe that communicates the SCR with the portion upstream of the turbine. An exhaust gas purification method characterized by carrying out an SCR heating step of opening the heating bypass pipe and heating the SCR with the exhaust gas when it is determined that the amount of NO x discharged from the SCR is small.
JP2020047420A 2020-03-18 2020-03-18 Exhaust emission control system and exhaust emission control method Pending JP2021148040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020047420A JP2021148040A (en) 2020-03-18 2020-03-18 Exhaust emission control system and exhaust emission control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047420A JP2021148040A (en) 2020-03-18 2020-03-18 Exhaust emission control system and exhaust emission control method

Publications (1)

Publication Number Publication Date
JP2021148040A true JP2021148040A (en) 2021-09-27

Family

ID=77848024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047420A Pending JP2021148040A (en) 2020-03-18 2020-03-18 Exhaust emission control system and exhaust emission control method

Country Status (1)

Country Link
JP (1) JP2021148040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738082A (en) * 2022-04-14 2022-07-12 昆明理工大学 Diesel engine tail gas aftertreatment integrated system with high-temperature emergency regulation and control mode
WO2024134987A1 (en) * 2022-12-20 2024-06-27 株式会社クボタ Diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738082A (en) * 2022-04-14 2022-07-12 昆明理工大学 Diesel engine tail gas aftertreatment integrated system with high-temperature emergency regulation and control mode
CN114738082B (en) * 2022-04-14 2023-12-29 昆明理工大学 Diesel engine tail gas aftertreatment integrated system with high-temperature emergency regulation and control mode
WO2024134987A1 (en) * 2022-12-20 2024-06-27 株式会社クボタ Diesel engine

Similar Documents

Publication Publication Date Title
US7640731B2 (en) Method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
JP4843035B2 (en) Engine and method for maintaining engine exhaust temperature
JP5302412B2 (en) Method and apparatus for reducing NOx content in exhaust gas of an internal combustion engine of a vehicle
CN101397953A (en) Turbocharged engine control operation with adjustable compressor bypass
JP6569710B2 (en) Engine exhaust purification system
JP5410960B2 (en) Engine having exhaust gas treatment device and method for treating engine exhaust gas
EP1550796B1 (en) Method for controlling the temperature of the exhaust gases in an engine and the relative engine apparatus
JP2021148040A (en) Exhaust emission control system and exhaust emission control method
JP2009185737A (en) Supercharger for engine
WO2012021061A1 (en) System for controlling exhaust gas temperature of an internal combustion engine with an exhaust gas after-treatment device and prime mover including same
JP2004245133A (en) Diesel engine
US20180266344A1 (en) Internal combustion engine
JP2003328864A (en) Exhaust gas recirculation device and heat exchanger used for the same as well as internal combustion engine
WO2010123411A1 (en) Method and arrangement for recirculation of exhaust gases of a combustion engine
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
JP6565993B2 (en) Engine exhaust purification system
JP2002364412A (en) Exhaust emission control device for engine with turbo supercharger
JP3897621B2 (en) Exhaust gas purification device for internal combustion engine
JP2021148039A (en) Exhaust emission control system and exhaust emission control method
JP4001019B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP3911406B2 (en) Exhaust gas purification device for internal combustion engine
JP2010151075A (en) Exhaust gas recirculation device for internal combustion engine
JP6073644B2 (en) Control device for exhaust pressure adjustment valve
JP6642545B2 (en) Engine exhaust purification device
JP4872824B2 (en) Exhaust gas recirculation device for internal combustion engine