JP2021148036A - Biogas power generator - Google Patents

Biogas power generator Download PDF

Info

Publication number
JP2021148036A
JP2021148036A JP2020047234A JP2020047234A JP2021148036A JP 2021148036 A JP2021148036 A JP 2021148036A JP 2020047234 A JP2020047234 A JP 2020047234A JP 2020047234 A JP2020047234 A JP 2020047234A JP 2021148036 A JP2021148036 A JP 2021148036A
Authority
JP
Japan
Prior art keywords
biogas
air
methane
gas
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020047234A
Other languages
Japanese (ja)
Other versions
JP7362222B2 (en
Inventor
真里 上西
Mari Uenishi
真里 上西
克昌 倉地
Katsumasa Kurachi
克昌 倉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2020047234A priority Critical patent/JP7362222B2/en
Publication of JP2021148036A publication Critical patent/JP2021148036A/en
Application granted granted Critical
Publication of JP7362222B2 publication Critical patent/JP7362222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To provide a biogas power generator capable of managing a methane fermentation tank without using an expensive carbon dioxide monitoring device.SOLUTION: A biogas power generation comprises: a methane fermentation tank 11 that generates biogas containing methane gas as a main component with an organic matter; a management unit 31 comprising management control means of managing and controlling a state in the methane fermentation tank 11; a power generation unit 21 that burns the biogas and air supplied from the methane fermentation tank 11 to generate power; a detection unit 41 that detects an air-fuel ratio of the biogas and air; and information providing means that provides information to the management control means based on the air-fuel ratio detected by the detection unit 41.SELECTED DRAWING: Figure 1

Description

本発明は、バイオガス発電機に関する。 The present invention relates to a biogas generator.

バイオガス発電機は、メタンガスと二酸化炭素からなるバイオガス燃料を用いて発電する発電機であり、ガスタービンやエンジンを利用している。バイオガスは、メタン菌により生成されるため、材料や温度、水分量の変化により、発生するメタンガス、二酸化炭素の濃度が変動する。従来のバイオガスエンジンは、調整時から二酸化炭素濃度が変動すると対応できない場合があった。燃料濃度が濃くなると未燃メタンが増えたり、燃料濃度が薄くなると失火してしまい発電ができない。そのため、メタンガスと二酸化炭素の成分濃度を検出して、ガスミキサーを手動で調整する必要があった(例えば、特許文献1参照)。一般に、バイオガス中のメタンガスや二酸化炭素の成分濃度を検出する検出器やガス濃度検出装置は一般に高価である。検出器の性能や精度を維持するためには、ガス中の水蒸気分やバイオガス成分に含まれる硫化水素等を除去したドライガスを検出器に通流する必要があり、例えばガスを冷却する設備と、そのメンテナンスおよび動力が必要となるからである。さらに、ガス濃度分析の信頼性および精度を確保するためには、定期的に標準ガス(濃度が正確なガス)を用いて校正する作業が必要となる場合がある。 A biogas generator is a generator that uses biogas fuel consisting of methane gas and carbon dioxide to generate electricity, and uses a gas turbine or an engine. Since biogas is produced by methane bacteria, the concentrations of methane gas and carbon dioxide generated vary depending on changes in the material, temperature, and water content. Conventional biogas engines may not be able to cope with fluctuations in carbon dioxide concentration from the time of adjustment. When the fuel concentration becomes high, unburned methane increases, and when the fuel concentration becomes low, a misfire occurs and power generation cannot be performed. Therefore, it is necessary to detect the component concentrations of methane gas and carbon dioxide and manually adjust the gas mixer (see, for example, Patent Document 1). In general, detectors and gas concentration detectors for detecting the component concentrations of methane gas and carbon dioxide in biogas are generally expensive. In order to maintain the performance and accuracy of the detector, it is necessary to pass dry gas from which water vapor in the gas and hydrogen sulfide contained in the biogas component have been removed to the detector. For example, equipment for cooling the gas. And that maintenance and power is required. Further, in order to ensure the reliability and accuracy of the gas concentration analysis, it may be necessary to periodically calibrate using a standard gas (a gas having an accurate concentration).

特開2005−81264号公報Japanese Unexamined Patent Publication No. 2005-81264

そこで、本発明は、高価な二酸化炭素モニタリング装置を用いることなくメタン発酵槽の管理を可能とする、バイオガス発電機を提供することを目的とする。 Therefore, an object of the present invention is to provide a biogas generator capable of managing a methane fermenter without using an expensive carbon dioxide monitoring device.

上記目的を達成するために、本発明のバイオガス発電機は、有機物によりメタンガスを主成分とするバイオガスを発生させるメタン発酵槽と、前記メタン発酵槽内の状態を管理制御する管理制御手段を備えた管理部と、前記メタン発酵槽から供給されるバイオガスと空気とを燃焼して発電する発電部と、前記バイオガスと空気との空燃比を検知する検知部と、前記検知部で検知された空燃比に基づいて、前記管理制御手段に情報提供する情報提供手段とを備えていることを特徴とする。 In order to achieve the above object, the biogas generator of the present invention includes a methane fermentation tank that generates biogas containing methane gas as a main component by an organic substance, and a management control means for managing and controlling the state in the methane fermentation tank. A management unit provided, a power generation unit that burns biogas and air supplied from the methane fermentation tank to generate power, a detection unit that detects the air-fuel ratio between the biogas and air, and a detection unit that detects the air-fuel ratio. It is characterized in that it is provided with an information providing means for providing information to the management control means based on the obtained air-fuel ratio.

本発明によれば、高価な二酸化炭素モニタリング装置を用いることなくメタン発酵槽の管理を可能とする、バイオガス発電機を提供することを目的とする。本発明によれば、一般的な車両用エンジンの電子制御を応用することで、メタン発酵槽の管理を、安価かつ高性能で行うことができる。 An object of the present invention is to provide a biogas generator capable of managing a methane fermenter without using an expensive carbon dioxide monitoring device. According to the present invention, the methane fermenter can be managed at low cost and with high performance by applying the electronic control of a general vehicle engine.

図1は、本発明の実施の形態にかかるバイオガス発電機の概略システム系統図の一例である。FIG. 1 is an example of a schematic system system diagram of a biogas generator according to an embodiment of the present invention.

以下、この発明の実施の形態を、図面を参照しながら説明する。ただし、本発明は、以下の例に限定および制限されない。なお、以下で参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to and limited to the following examples. The drawings referred to below are schematically described, and the dimensional ratio of the object drawn in the drawing may be different from the dimensional ratio of the actual object. The dimensional ratios of objects may differ between the drawings.

図1に、本発明の実施形態の一例に係るバイオガス発電機1の概略システム系統図を示す。このバイオガス発電機1は、一般的な車両用のエンジン23をガソリンに代替させてメタン発酵槽11から排出されるバイオガスを用いて駆動して発電機25を動作させる発電部21によって、発電を行うものである。 FIG. 1 shows a schematic system system diagram of the biogas generator 1 according to an example of the embodiment of the present invention. The biogas generator 1 is generated by a power generation unit 21 that operates a generator 25 by substituting gasoline for a general vehicle engine 23 and driving it using biogas discharged from a methane fermenter 11. Is to do.

エンジン23は、気筒に設けられた燃焼室に、吸気弁を介して吸気通路が接続され、排気弁を介して排気通路が接続される。吸気通路には、管理部であるECU(電子制御ユニット)31からの指示で必要な新気を導入するために開度制御されるスロットルバルブと、吸気通路に燃料ガスを噴射するインジェクタとが設けられる。本発明においては、インジェクタからはメタン発酵槽11から排出されるバイオガスが噴射され、吸気通路内の空気と混合された混合気は、エンジン23の燃焼室に供給される。 In the engine 23, an intake passage is connected to a combustion chamber provided in the cylinder via an intake valve, and an exhaust passage is connected via an exhaust valve. The intake passage is provided with a throttle valve whose opening is controlled to introduce fresh air required by an instruction from an ECU (electronic control unit) 31 which is a management unit, and an injector which injects fuel gas into the intake passage. Be done. In the present invention, the biogas discharged from the methane fermentation tank 11 is injected from the injector, and the air-fuel mixture mixed with the air in the intake passage is supplied to the combustion chamber of the engine 23.

インジェクタから噴射されるバイオガスの量は、吸気通路内の空気流量(スロットルバルブの開度)とエンジン23の回転数とに基づいて制御される。供給された混合気は、点火プラグによって点火され、エンジン23内のピストンが混合気の爆発によって上下動し、これによって発電機25のモーターを回転させる。 The amount of biogas injected from the injector is controlled based on the air flow rate (opening of the throttle valve) in the intake passage and the rotation speed of the engine 23. The supplied air-fuel mixture is ignited by a spark plug, and the piston in the engine 23 moves up and down due to the explosion of the air-fuel mixture, thereby rotating the motor of the generator 25.

電子制御エンジンでは、空気と燃料とが、適正な比率(化学等量比)になるように、酸素センサー41を用いて燃料投入のインジェクタにフィードバック制御している。酸素センサー41は、管理部であるECU(電子制御ユニット)31に電気的に接続されており、ECU31は、酸素センサー41によって検知された空燃比等の制御値情報を取得する(情報提供手段)。この酸素センサー41は、例えばジルコニアを含んでいる。酸素センサー41により得られる制御値は、本来は燃料の流量制御といったエンジン制御に用いるものであるが、この制御値から二酸化炭素濃度を推測し、メタン発酵槽11にフィードバックして、メタン菌の管理に使用する情報として提供するのが本発明である。 In the electronically controlled engine, feedback control is performed to the fuel input injector using the oxygen sensor 41 so that the air and the fuel have an appropriate ratio (chemical equal amount ratio). The oxygen sensor 41 is electrically connected to an ECU (electronic control unit) 31 which is a management unit, and the ECU 31 acquires control value information such as an air-fuel ratio detected by the oxygen sensor 41 (information providing means). .. The oxygen sensor 41 contains, for example, zirconia. The control value obtained by the oxygen sensor 41 is originally used for engine control such as fuel flow control, but the carbon dioxide concentration is estimated from this control value and fed back to the methane fermenter 11 to control methane bacteria. It is the present invention to provide as information to be used for.

ガスインジェクターは、ガス圧が一定であればガス供給量の再現性は比較的高いため、酸素センサーの値の変動は、バイオガス組成の変動と判断することができる。一方、設備管理のために二酸化炭素濃度を把握したいバイオガス発電機の場合は、高価な二酸化炭素モニタリング装置を導入せずに、発電機から二酸化炭素のラフな濃度情報を得られると、その濃度情報を基にしてメタン発酵槽の状態を把握することができる。そのため、二酸化炭素濃度の情報は有益な情報である。二酸化炭素の濃度情報としては、絶対値である必要はなく相対的な増減がモニタできれば十分活用できる。 Since the gas injector has a relatively high reproducibility of the gas supply amount when the gas pressure is constant, it can be determined that the fluctuation of the value of the oxygen sensor is the fluctuation of the biogas composition. On the other hand, in the case of a biogas generator that wants to know the carbon dioxide concentration for facility management, if rough carbon dioxide concentration information can be obtained from the generator without introducing an expensive carbon dioxide monitoring device, the concentration will be obtained. The state of the methane fermenter can be grasped based on the information. Therefore, the carbon dioxide concentration information is useful information. The carbon dioxide concentration information does not have to be an absolute value and can be fully utilized if the relative increase / decrease can be monitored.

酸素センサー41による二酸化炭素濃度情報は、次のようにして得られる。エンジン23には、インジェクターから、メタン発酵槽11で発生したバイオガスが燃料として供給される。バイオガスがメタンガスと二酸化炭素とを含んでおり、例えば、メタンガスの割合が減って二酸化炭素の割合が増えると、吸気通路内で混合される空気の量とメタンガスの量との比率が変わることになる。この状態においては、メタンガスの量が減って空気量がそのままなので、空気の量が多い燃焼(薄い燃焼)となり、空気中に含まれる酸素が余る。酸素センサー41では、この余った酸素が検知されることで、空燃比が検知される。酸素が過剰であることはメタンガスが化学等量比に達していないことを意味するので、酸素センサー41の検知情報である空燃比から、供給されたバイオガス中の二酸化炭素の割合が多くなっているとの二酸化炭素濃度情報が得られる。 The carbon dioxide concentration information obtained by the oxygen sensor 41 is obtained as follows. Biogas generated in the methane fermentation tank 11 is supplied to the engine 23 as fuel from the injector. Biogas contains methane gas and carbon dioxide.For example, when the ratio of methane gas decreases and the ratio of carbon dioxide increases, the ratio of the amount of air mixed in the intake passage to the amount of methane gas changes. Become. In this state, since the amount of methane gas is reduced and the amount of air remains the same, combustion with a large amount of air (thin combustion) occurs, and oxygen contained in the air is left over. The oxygen sensor 41 detects the excess oxygen to detect the air-fuel ratio. Excessive oxygen means that the methane gas has not reached the chemical equality ratio, so the proportion of carbon dioxide in the supplied biogas increases from the air-fuel ratio, which is the detection information of the oxygen sensor 41. Information on the concentration of carbon dioxide can be obtained.

本発明においては、上記の空燃比に基づいて得られた二酸化炭素濃度の情報を用いて、メタン発酵槽11の管理を行う。エンジン23としては、供給されるメタンガスの量と空気の量との比率が一定となるように、センサー値に基づきインジェクターを制御してガス量を増やす調整を行うが、元の燃料(バイオガス)のガスの比率が適切ではない状態となり、メタンガスが少なく二酸化炭素が多くなりすぎると(ある範囲を超えると)未燃となったり失火してしまい発電できなくなるおそれがある。メタンガスが少なく二酸化炭素が多くなると発電量が減ってしまう。このような事態を防止するため、原料側であるメタン発酵槽11の管理(調節)を行う必要がある。 In the present invention, the methane fermentation tank 11 is managed by using the carbon dioxide concentration information obtained based on the above air-fuel ratio. The engine 23 adjusts to increase the amount of gas by controlling the injector based on the sensor value so that the ratio of the amount of methane gas supplied to the amount of air is constant, but the original fuel (biogas) If the ratio of gas in the gas is not appropriate and the amount of methane gas is low and the amount of carbon dioxide is too high (beyond a certain range), it may become unburned or misfire and power generation may not be possible. If the amount of methane gas is low and the amount of carbon dioxide is high, the amount of power generated will decrease. In order to prevent such a situation, it is necessary to manage (adjust) the methane fermenter 11 on the raw material side.

メタン発酵槽11は、有機物を嫌気性生物により分解処理(嫌気性処理)してバイオガスを発生させる。有機物としては、発酵するものであればよく、生ごみ、し尿関係、畜産関係のゴミ、エネルギー作物と呼ばれる植物が使用できる。エネルギー作物の一例としては、トウモロコシが挙げられる。実の部分に限らず、葉や茎等も用いることができるが、糖質が含まれている部分は特に好ましく用いることができる。これらに限られず、有機物(炭素が含まれているもの)であれば適用が可能であり、再生可能エネルギーの活用や、ゼロエミッションの実現等の観点からも有用な手段である。 The methane fermenter 11 decomposes organic matter by anaerobic organisms (anaerobic treatment) to generate biogas. As the organic matter, any fermentable matter may be used, and kitchen waste, human waste-related waste, livestock-related waste, and plants called energy crops can be used. An example of an energy crop is corn. Not only the fruit part but also leaves, stems and the like can be used, but the part containing sugar can be particularly preferably used. Not limited to these, organic substances (those containing carbon) can be applied, and it is a useful means from the viewpoint of utilization of renewable energy and realization of zero emission.

嫌気性処理では、有機物に含まれる炭素源は分解の最終産物として、メタンガスと二酸化炭素になり、この2成分が発生するガスの総量の殆んどを占める。嫌気性生物への負荷が適当で良好な生育条件にあるとき、発生するメタンガスと二酸化炭素の合計に占める各ガスの比率はある一定範囲の値となる。しかし、過負荷となる量の有機物を投入した際には、投入後の二酸化炭素ガスの比率が大きくなる。また、メタン発酵槽11内に有機酸が蓄積しpHが低下すると、それにともない、嫌気性生物の活性が低下しバイオガス中のメタン濃度が低下するとともに二酸化炭素の濃度が上昇する。このようなメタン発酵槽11内の反応状態の把握を、エンジン23の空燃比を検知する酸素センサー41からの情報に基づき行うことで、従来のメタンガスや二酸化炭素の成分濃度を検出する検出器やガス濃度検出装置を用いることなく行うことができる。 In anaerobic treatment, the carbon source contained in the organic matter becomes methane gas and carbon dioxide as the final products of decomposition, and these two components account for most of the total amount of gas generated. When the load on anaerobic organisms is appropriate and the growth conditions are good, the ratio of each gas to the total of generated methane gas and carbon dioxide falls within a certain range. However, when an overloaded amount of organic matter is charged, the ratio of carbon dioxide gas after charging increases. Further, when the organic acid is accumulated in the methane fermenter 11 and the pH is lowered, the activity of anaerobic organisms is lowered, the methane concentration in the biogas is lowered, and the carbon dioxide concentration is raised. By grasping the reaction state in the methane fermentation tank 11 based on the information from the oxygen sensor 41 that detects the air-fuel ratio of the engine 23, a detector that detects the component concentration of conventional methane gas or carbon dioxide or the like. This can be done without using a gas concentration detector.

メタン発酵槽11は、管理制御手段を備えたECU31に電気的に接続されており、ECU31がメタン発酵槽11の状態を管理制御可能になっている。メタン発酵槽11の制御としては、槽温度調整、原料調整、pH調整を行うことによって、メタンガスの濃度が適正となるように調整する。例えば、二酸化炭素濃度が上昇傾向にあれば、メタン発酵槽11の温度を上げる、原料糖質を増やす、という対応を行う。図1では、原料および温度を制御する例を示しているが、本発明はこれらに限られず、他の条件、パラメータ等の制御を含んでもよい。また、メタン発酵槽11側における、発酵槽の状態と槽温度や原料等の情報との相関をECU31等に蓄積しておき、二酸化炭素濃度の変化傾向があったときの対処を効率的に行うことも可能である。一般的に、発酵槽は調整に時間がかかるものであり、インプットの条件変更をしてから、アウトプットで変化が出るまでに、例えば数日〜2週間程度の時間がかかる。そのため、二酸化炭素の相対的な濃度増減のモニタ情報によって、現状ではエンジンの燃焼には問題がないメタンガス比率であっても、メタン発酵槽11の状態が好ましくない方向に向かっていることが早めにわかれば、事前の対策を打つことができ、未燃や失火を防ぐことができる。 The methane fermentation tank 11 is electrically connected to an ECU 31 provided with management control means, and the ECU 31 can manage and control the state of the methane fermentation tank 11. The methane fermentation tank 11 is controlled so that the concentration of methane gas becomes appropriate by adjusting the tank temperature, the raw material, and the pH. For example, if the carbon dioxide concentration is on the rise, the temperature of the methane fermenter 11 is raised and the raw sugar is increased. Although FIG. 1 shows an example of controlling the raw material and the temperature, the present invention is not limited to these, and may include control of other conditions, parameters, and the like. In addition, the correlation between the state of the fermenter and information on the tank temperature, raw materials, etc. on the methane fermentation tank 11 side is accumulated in the ECU 31 or the like, and measures are efficiently taken when there is a tendency for the carbon dioxide concentration to change. It is also possible. Generally, it takes time to adjust the fermenter, and it takes several days to two weeks, for example, from the change of the input condition to the change of the output. Therefore, according to the monitor information of the relative concentration increase / decrease of carbon dioxide, it is early that the state of the methane fermenter 11 is heading in an unfavorable direction even if the methane gas ratio is not a problem in the combustion of the engine at present. If you know it, you can take proactive measures and prevent unburned or misfire.

1 …バイオガス発電機
11 …メタン発酵槽
21 …発電部
23 …エンジン
25 …発電機
31 …ECU(電子制御ユニット)(管理部)
41 …酸素センサー(検知部)
1 ... Biogas generator 11 ... Methan fermenter 21 ... Power generation unit 23 ... Engine 25 ... Generator 31 ... ECU (electronic control unit) (Management department)
41 ... Oxygen sensor (detector)

Claims (1)

有機物によりメタンガスを主成分とするバイオガスを発生させるメタン発酵槽と、
前記メタン発酵槽内の状態を管理制御する管理制御手段を備えた管理部と、
前記メタン発酵槽から供給されるバイオガスと空気とを燃焼して発電する発電部と、
前記バイオガスと空気との空燃比を検知する検知部と、
前記検知部で検知された空燃比に基づいて、前記管理制御手段に情報提供する情報提供手段とを備えていることを特徴とする、バイオガス発電機。
A methane fermenter that generates biogas containing methane gas as the main component by organic matter,
A management unit provided with a management control means for managing and controlling the state in the methane fermenter, and a management unit.
A power generation unit that burns biogas and air supplied from the methane fermenter to generate electricity.
A detector that detects the air-fuel ratio of biogas and air,
A biogas generator comprising an information providing means for providing information to the management control means based on the air-fuel ratio detected by the detecting unit.
JP2020047234A 2020-03-18 2020-03-18 biogas generator Active JP7362222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020047234A JP7362222B2 (en) 2020-03-18 2020-03-18 biogas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047234A JP7362222B2 (en) 2020-03-18 2020-03-18 biogas generator

Publications (2)

Publication Number Publication Date
JP2021148036A true JP2021148036A (en) 2021-09-27
JP7362222B2 JP7362222B2 (en) 2023-10-17

Family

ID=77848007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047234A Active JP7362222B2 (en) 2020-03-18 2020-03-18 biogas generator

Country Status (1)

Country Link
JP (1) JP7362222B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293860A (en) * 2002-04-05 2003-10-15 Takuma Co Ltd Methane fermentation treatment system and methane fermentation treatment method
JP2005081264A (en) * 2003-09-09 2005-03-31 Fuji Electric Holdings Co Ltd Methane fermentation apparatus and operation method therefor
KR20150104368A (en) * 2014-03-05 2015-09-15 한국기계연구원 Biomethane and Power Generation Unit by integrating membrane separation process and internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293860A (en) * 2002-04-05 2003-10-15 Takuma Co Ltd Methane fermentation treatment system and methane fermentation treatment method
JP2005081264A (en) * 2003-09-09 2005-03-31 Fuji Electric Holdings Co Ltd Methane fermentation apparatus and operation method therefor
KR20150104368A (en) * 2014-03-05 2015-09-15 한국기계연구원 Biomethane and Power Generation Unit by integrating membrane separation process and internal combustion engine

Also Published As

Publication number Publication date
JP7362222B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
CN105298664B (en) A kind of biogas internal combustion engine generator group auxiliary fuel supply-system and its control method
CN101321941B (en) Emissions sensors for fuel control in engines
CN109154241B (en) Device for controlling an engine
US7177752B2 (en) Method of regulating an internal combustion engine
EP2414659B1 (en) Controlling exhaust gas recirculation in a combustion engine
CN205101127U (en) Marsh gas internal combustion generating set air -fuel ratio control system
CN102418616B (en) Flexible fuel engine and controlling method thereof
Śmieja et al. The concept of an integrated laboratory control system for a dual-fuel diesel engine
JP7362222B2 (en) biogas generator
CN110608103B (en) Engine control system and control method matched with double-engine single-propeller engine
CN112523882B (en) Fuel control method for gas engine air inlet pressure closed loop
Walker Diesel tractor engine performance as affected by ethanol fumigation
KR20170124450A (en) An internal combustion engine with fuel gas property measurement system
CN110374736A (en) A method of control Biogas Generator Set stable operation
DE202016102762U1 (en) Device for operating an engine
WO2014020231A1 (en) Method of and a control system for controlling the operation of an internal combustion piston engine
Zhang et al. Research on application of fuel injection adaptive based on speed fluctuation in engine idle speed control
US6314953B1 (en) Method and system for regulating the air/fuel stream fed to an internal-combustion engine
Cioablă et al. Applications of biogas inside a motogenerator–case study
CN215595747U (en) Gas machine
Abdurrakhman et al. Design of speed control system in biogas fuel generator set by using PID control method
Kumaran et al. Investigation of emission control on VCR diesel engine with additive and turbocharger using algae biodiesel
CN117780528A (en) Engine water spray control method and device
CN201963412U (en) Control system for automatically compensating fuel charge of electric spray engine under different loads
Lee et al. Emission reduction for a small gasoline engine using fuzzy control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7362222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150