JP2021147261A - Cement, and manufacturing method of cement - Google Patents

Cement, and manufacturing method of cement Download PDF

Info

Publication number
JP2021147261A
JP2021147261A JP2020046901A JP2020046901A JP2021147261A JP 2021147261 A JP2021147261 A JP 2021147261A JP 2020046901 A JP2020046901 A JP 2020046901A JP 2020046901 A JP2020046901 A JP 2020046901A JP 2021147261 A JP2021147261 A JP 2021147261A
Authority
JP
Japan
Prior art keywords
cement
belite
particles
clinker
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020046901A
Other languages
Japanese (ja)
Other versions
JP7445370B2 (en
Inventor
真人 多田
Masato Tada
真人 多田
大亮 黒川
Daisuke Kurokawa
大亮 黒川
歩香 中口
Ayuka Nakaguchi
歩香 中口
俊一郎 内田
Shunichiro Uchida
俊一郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2020046901A priority Critical patent/JP7445370B2/en
Publication of JP2021147261A publication Critical patent/JP2021147261A/en
Application granted granted Critical
Publication of JP7445370B2 publication Critical patent/JP7445370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide cement having improved strength development for a long time by activating belite in clinker; and to provide a manufacturing method thereof.SOLUTION: Cement contains a ground product of cement clinker in which an average circularity determined by using following formula (1) is 0.6 or higher: circularity=4π×cross-sectional area of belite particle/(boundary length of belite particle)2...(1). In a manufacturing method of cement, cement is manufactured by firing at 1,350-1,500°C, a raw material in which a hydraulic modulus (HM) is 1.89-1.93, a silicic acid modulus (SM) is 4.83-4.89 and an iron modulus (IM) is 0.85-0.91.SELECTED DRAWING: Figure 1

Description

本発明は、長期の強度発現性に優れたセメント、およびその製造方法に関する。 The present invention relates to a cement having excellent long-term strength development and a method for producing the same.

マスコンクリートの施工では、セメントの水和熱に起因するコンクリートの温度ひび割れを減らすために、水和熱が低い低熱ポルトランドセメントが多用されている。また、近年、施工技術の進歩により超高層ビルが多く建設されており、この分野では低発熱に加えて、強度発現性がより高いセメントが求められている。
そして、セメントの強度発現性を高くするためには、セメントクリンカ(以下、単に「クリンカ」という。)中のビーライトの活性化が必要であるが、今まで、その方法は知られていなかった。
In the construction of mass concrete, low-heat Portland cement with low heat of hydration is often used in order to reduce the temperature cracks of concrete caused by the heat of hydration of cement. In recent years, many skyscrapers have been constructed due to advances in construction technology, and in this field, cement with higher strength development is required in addition to low heat generation.
And, in order to increase the strength development of cement, it is necessary to activate belite in cement clinker (hereinafter, simply referred to as "clinker"), but until now, the method has not been known. ..

ところで、特許文献1では、長期強度を維持しつつ初期強度を向上させた低熱ポルトランドセメントを製造することを目的として、低熱ポルトランドセメントクリンカ中の少量成分の含有量を調整することにより、この低熱ポルトランドセメントクリンカの粉末X線回折プロファイルをリートベルト法で解析して、判明する鉱物組成を管理する低熱ポルトランドセメントの製造方法が提案されている。
しかし、引用文献1には、クリンカ中の固溶アルカリ量を規定して、初期強度を改善するという記載はあるが、長期強度を改善する記載はない。また、全アルカリ量から水溶性アルカリ量を差し引いて固溶アルカリ量を算出しているため、固溶アルカリが、どのセメント鉱物に固溶しているか(例えば、ビーライトに固溶しているか否か)は不明である。
By the way, in Patent Document 1, this low-heat Portland cement is prepared by adjusting the content of a small amount of components in the low-heat Portland cement clinker for the purpose of producing low-heat Portland cement having improved initial strength while maintaining long-term strength. A method for producing low-temperature Portland cement, which controls the mineral composition found by analyzing the powder X-ray diffraction profile of clinker by the Rietveld method, has been proposed.
However, in Cited Document 1, there is a description that the amount of solid solution alkali in the clinker is specified to improve the initial strength, but there is no description that the long-term strength is improved. In addition, since the amount of solid solution alkali is calculated by subtracting the amount of water-soluble alkali from the total amount of alkali, which cement mineral the solid solution alkali is dissolved in (for example, whether or not it is dissolved in belite). Or) is unknown.

特開2010−120787号公報Japanese Unexamined Patent Publication No. 2010-12787

したがって、本発明はクリンカ中のビーライトを活性化して、長期の強度発現性が向上したセメント、およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a cement having improved long-term strength development by activating belite in clinker, and a method for producing the same.

本発明者は、前記目的にかなうセメントを検討したところ、ビーライトの円形度等が特定の範囲のクリンカを含むセメントは、前記目的を達成できることを見い出し、本発明を完成させた。すなわち、本発明は以下の構成を有するセメント等である。 When the present inventor examined a cement satisfying the above object, he found that a cement containing a clinker having a specific range of belite circularity and the like could achieve the above object, and completed the present invention. That is, the present invention is a cement or the like having the following constitution.

[1]下記(1)式を用いて求めたビーライト粒子の平均円形度が0.6以上であるクリンカの粉砕物を含む、セメント。
円形度=4π×ビーライト粒子の断面積/(ビーライト粒子の周囲長) ・・・(1)
[2]前記ビーライト粒子のSOの含有率が0.8質量%以上、およびCaO/SiOのモル比が2.15以上であるクリンカの粉砕物を含む、前記[1]に記載のセメント。
[3]前記ビーライト粒子の平均粒径が17μm以上であるクリンカの粉砕物を含有する、前記[1]または[2]に記載のセメント。
[4]前記クリンカ中のSOの含有率が0.7〜1.8質量%、KOの含有率が0.1〜0.9質量%であるクリンカの粉砕物を含む、前記[1]〜[3]のいずれかに記載のセメント。
[5]下記ボーグ式(i)〜(iv)を用いて算出した、前記クリンカ中のエーライト(CS)の含有率が21〜26質量%、ビーライト(CS)の含有率が50〜65質量%、アルミネート相(CA)の含有率が1〜3質量%、およびフェライト相(CAF)の含有率が8〜11質量%であるクリンカの粉砕物を含む、前記[1]〜[4]のいずれかに記載のセメント。
S=4.07×CaO−7.60×SiO−6.72×Al−1.43×Fe−2.85×SO ・・・(i)
S=2.87×SiO−0.754×CS ・・・(ii)
A=2.65×Al−1.69×Fe ・・・(iii)
AF=3.04×Fe ・・・(iv)
ただし、(i)〜(iv)式中の化学式は、クリンカ中の各化学式が表す化合物の含有率(質量%)を表す。
[6]水硬率(HM)が1.89〜1.93、けい酸率(SM)が4.83〜4.89、および鉄率(IM)が0.85〜0.91である原料を、ロータリキルンを用いて1350〜1500℃で焼成して、前記[1]〜[5]のいずれかに記載のセメントを製造する、セメントの製造方法。
[7]クリンカ中のビーライト粒子の円形度、およびビーライト粒子の粒子径に基づき、前記焼成温度を決定する、前記[6]に記載のセメントの製造方法。
[1] A cement containing a crushed clinker having an average circularity of belite particles having an average circularity of 0.6 or more, which is obtained by using the following formula (1).
Circularity = 4π × Cross-sectional area of belite particles / (perimeter of belite particles) 2 ... (1)
[2] The above-mentioned [1], which comprises a clinker pulverized product in which the SO 3 content of the belite particles is 0.8% by mass or more and the molar ratio of CaO / SiO 2 is 2.15 or more. cement.
[3] The cement according to the above [1] or [2], which contains a crushed clinker having an average particle size of 17 μm or more of the belite particles.
[4] The above-mentioned [4], which comprises a crushed product of clinker having an SO 3 content of 0.7 to 1.8% by mass and a K 2 O content of 0.1 to 0.9% by mass in the clinker. 1] The cement according to any one of [3].
[5] below Borg formula (i) was calculated using ~ a (iv), content of 21 to 26 wt% of the clinker in alite (C 3 S), the content of belite (C 2 S) Includes clinker pulverized material having a content of 50 to 65% by mass, an aluminate phase (C 3 A) content of 1 to 3% by mass, and a ferrite phase (C 4 AF) content of 8 to 11% by mass. , The cement according to any one of the above [1] to [4].
C 3 S = 4.07 × CaO- 7.60 × SiO 2 -6.72 × Al 2 O 3 -1.43 × Fe 2 O 3 -2.85 × SO 3 ··· (i)
C 2 S = 2.87 x SiO 2 -0.754 x C 3 S ... (ii)
C 3 A = 2.65 × Al 2 O 3 -1.69 × Fe 2 O 3 ··· (iii)
C 4 AF = 3.04 x Fe 2 O 3 ... (iv)
However, the chemical formulas in the formulas (i) to (iv) represent the content rate (mass%) of the compound represented by each chemical formula in the clinker.
[6] Raw materials having a water hardness (HM) of 1.89 to 1.93, a silicic acid ratio (SM) of 4.83 to 4.89, and an iron ratio (IM) of 0.85 to 0.91. 1350 to 1500 ° C. using a rotary kiln to produce the cement according to any one of [1] to [5] above.
[7] The method for producing cement according to the above [6], wherein the firing temperature is determined based on the circularity of the belite particles in the clinker and the particle size of the belite particles.

本発明のセメントは、クリンカ中のビーライトが活性化しているため、強度発現性がより高い。また、本発明のセメントの製造方法は、易焼性が高いため消費エネルギーが小さい。 The cement of the present invention has higher strength development because the belite in the clinker is activated. Further, the method for producing cement of the present invention has high flammability and therefore consumes a small amount of energy.

クリンカ中のビーライト粒子の写真であり、水和活性は(A)が高く(B)は低い。It is a photograph of belite particles in clinker, and the hydration activity is high in (A) and low in (B).

以下、本発明のセメント、およびセメントの製造方法について詳細に説明する。
1.セメント
本発明のセメントは、前記(1)式を用いて求めたビーライト粒子の平均円形度が0.6以上であるクリンカを含むセメントである。該条件を満たすセメントは強度発現性が高い。なお、ビーライト粒子の平均円形度は、好ましくは0.7以上、より好ましくは0.8以上である。
また、前記セメントは、好ましくは、前記ビーライト粒子のSOの含有率が0.8質量%以上、およびCaO/SiOのモル比は2.15以上であるクリンカの粉砕物を含むセメントである。該条件を満たすセメントは、長期の強度発現性が高い。なお、ビーライト粒子のSOの含有率は、より好ましくは0.85質量%以上、さらに好ましくは0.90質量%以上であり、CaO/SiOのモル比は、より好ましくは2.20以上、さらに好ましくは2.30以上である。
前記ビーライトの化学組成の測定は、鉱物粒子ごとに微小領域の化学組成を測定できる装置であればよく、例えば波長分散型X線分光器(WDS)、エネルギー分散型X線分光器(EDS)等が挙げられる。好ましくは5個以上の異なるクリンカ粒子中のビーライト、より好ましくは10個以上の異なるクリンカ粒子中のビーライトの化学組成を測定する。
また、ビーライトの化学組成はビーライト粒子ごとに異なる場合や、ビーライト粒子の中心部から周辺部にかけて異なる場合がある。そこで、好ましくは5個以上のビーライト粒子、より好ましくは10個以上のビーライト粒子の1粒子につき、好ましくは5点以上、より好ましくは10点以上の化学組成を測定し、これらの平均値を算出する。
Hereinafter, the cement of the present invention and the method for producing the cement will be described in detail.
1. 1. cement
The cement of the present invention is a cement containing clinker having an average circularity of belite particles of 0.6 or more determined by using the above formula (1). Cement satisfying the above conditions has high strength development. The average circularity of the belite particles is preferably 0.7 or more, more preferably 0.8 or more.
The cement is preferably a cement containing a crushed clinker having a SO 3 content of 0.8% by mass or more and a CaO / SiO 2 molar ratio of 2.15 or more. be. Cement satisfying the above conditions has high long-term strength development. The SO 3 content of the belite particles is more preferably 0.85% by mass or more, further preferably 0.90% by mass or more, and the molar ratio of CaO / SiO 2 is more preferably 2.20. Above, more preferably 2.30 or more.
The chemical composition of Beelite may be measured by any device capable of measuring the chemical composition of a minute region for each mineral particle, for example, a wavelength dispersive X-ray spectroscope (WDS) and an energy dispersive X-ray spectroscope (EDS). And so on. The chemical composition of belite in 5 or more different clinker particles is preferably measured, more preferably 10 or more different clinker particles.
Further, the chemical composition of belite may be different for each belite particle, or may be different from the central portion to the peripheral portion of the belite particle. Therefore, for each particle of preferably 5 or more belite particles, more preferably 10 or more belite particles, the chemical composition of preferably 5 points or more, more preferably 10 points or more is measured, and the average value thereof is measured. Is calculated.

また、前記セメントは、好ましくは、前記ビーライト粒子の平均粒径が17μm以上であるクリンカの粉砕物を含有するセメントである。該条件を満たすセメントは、長期の強度発現性が高い。なお、前記ビーライト粒子の平均粒径は、より好ましくは18μm以上、さらに好ましくは20μmである。
前記ビーライト粒子の円形度や粒径は、下記(a)〜(c)の方法により求めることができる。
(a)得られた顕微鏡写真について、画像解析ソフトを用いて解析する。
(b)得られた顕微鏡写真を、目視やトレースする。
(c)電子顕微鏡等を用いて、鉱物の化学組成分析によりビーライトを特定しつつ、電子線後方散乱回折(EBSD)により鉱物粒子境界を画像として得て、これを画像解析する。
前記ビーライト粒子の平均円形度および平均粒径は、好ましくは5個以上の異なるクリンカ粒子中のビーライト粒子の円形度および粒径、より好ましくは10個以上の異なるクリンカ粒子中のビーライト粒子の円形度および粒径を測定する。
また、ビーライト粒子の平均円形度および平均粒径は、好ましくはビーライト10個以上の粒子、より好ましくは20個以上の粒子の円形度および粒径を測定し、これらの平均値を算出する。
The cement is preferably a cement containing a crushed clinker having an average particle size of 17 μm or more of the belite particles. Cement satisfying the above conditions has high long-term strength development. The average particle size of the belite particles is more preferably 18 μm or more, still more preferably 20 μm.
The circularity and particle size of the belite particles can be determined by the methods (a) to (c) below.
(a) The obtained micrograph is analyzed using image analysis software.
(b) Visually or trace the obtained micrograph.
(c) Using an electron microscope or the like, while identifying belite by chemical composition analysis of minerals, the mineral particle boundary is obtained as an image by electron backscatter diffraction (EBSD), and this is image-analyzed.
The average circularity and average particle size of the belite particles are preferably the circularity and particle size of the belite particles in 5 or more different clinker particles, and more preferably the belite particles in 10 or more different clinker particles. Measure the roundness and particle size of.
Further, the average circularity and average particle size of the belite particles are preferably measured for the circularity and particle size of 10 or more belite particles, more preferably 20 or more particles, and the average value thereof is calculated. ..

前記セメントは、好ましくは、前記クリンカ中のSOの含有率が0.7〜1.8質量%、NaOの含有率が0.2〜0.4質量%、KOの含有率が0.1〜0.9質量%、およびPの含有率が0.2質量%以下であるクリンカの粉砕物を含むセメントである。該条件を満たすセメントは、長期の強度発現性が高い。なお、SOの含有率は、より好ましくは0.9〜1.6質量%、さらに好ましくは1.0〜1.4質量%であり、NaOの含有率は、より好ましくは0.3〜0.4質量%であり、KOの含有率は、より好ましくは0.3〜0.7質量%、さらに好ましくは0.5〜0.7質量%であり、TiOの含有率は、より好ましくは0.2〜0.3質量%であり、Pの含有率は、より好ましくは0.1質量%以下、さらに好ましくは0.08質量%以下である。 The cement preferably has an SO 3 content of 0.7 to 1.8% by mass, a Na 2 O content of 0.2 to 0.4% by mass, and a K 2 O content in the clinker. There 0.1-0.9 wt%, and the content of P 2 O 5 is a cement containing pulverized clinker is below 0.2 wt%. Cement satisfying the above conditions has high long-term strength development. The SO 3 content is more preferably 0.9 to 1.6% by mass, further preferably 1.0 to 1.4% by mass, and the Na 2 O content is more preferably 0. a 3 to 0.4 wt%, the content of K 2 O is more preferably 0.3 to 0.7 wt%, more preferably 0.5 to 0.7 wt%, content of TiO 2 rate is more preferably from 0.2 to 0.3 wt%, the content of P 2 O 5 is more preferably 0.1 mass% or less, more preferably not more than 0.08 mass%.

また、前記セメントは、好ましくは、前記ボーグ式(i)〜(iv)を用いて算出した、前記クリンカ中のエーライトの含有率が21〜26質量%、ビーライトの含有率が50〜65質量%、アルミネート相の含有率が1〜3質量%、およびフェライト相の含有率が8〜11質量%であるクリンカの粉砕物を含むセメントである。該条件を満たすセメントは、長期の強度発現性が高い。なお、エーライトの含有率は、より好ましくは22〜25質量%、さらに好ましくは23〜25質量%であり、ビーライトの含有率は、より好ましくは52〜63質量%、さらに好ましくは54〜60質量%であり、アルミネート相の含有率は、より好ましくは1〜2質量%であり、フェライト相の含有率は、より好ましくは8〜10質量%、さらに好ましくは9〜10質量%である。 In addition, the cement preferably has an alite content of 21 to 26% by mass and a belite content of 50 to 65 in the clinker calculated using the Borg equations (i) to (iv). It is a cement containing crushed clinker having a mass%, an aluminate phase content of 1 to 3% by mass, and a ferrite phase content of 8 to 11% by mass. Cement satisfying the above conditions has high long-term strength development. The content of alite is more preferably 22 to 25% by mass, further preferably 23 to 25% by mass, and the content of belite is more preferably 52 to 63% by mass, still more preferably 54 to 54 to The content of the aluminate phase is 60% by mass, more preferably 1 to 2% by mass, and the content of the ferrite phase is more preferably 8 to 10% by mass, still more preferably 9 to 10% by mass. be.

2.セメントの製造方法
本発明のセメントの製造方法は、水硬率が1.89〜1.93、けい酸率が4.83〜4.89、および鉄率が0.85〜0.91であるクリンカ原料を、1350〜1500℃で焼成して前記クリンカの粉砕物を含むセメントを製造する方法である。該条件を満たして製造されたセメントは、長期の強度発現性が高い。なお、前記水硬率は、好ましくは1.90〜1.93、より好ましくは1.91〜1.93であり、前記けい酸率は、好ましくは4.84〜4.88、より好ましくは4.85〜4.87であり、前記鉄率は、好ましくは0.86〜0.90、より好ましくは0.87〜0.90である。また、前記焼成温度は、好ましくは1370〜1480℃、より好ましくは1380〜1430℃である。焼成炉としては、トンネル炉、ロータリーキルン、流動床炉等の加熱炉が挙げられる。
2. Cement Manufacturing Method The cement manufacturing method of the present invention has a water hardness ratio of 1.89 to 1.93, a clinker ratio of 4.83 to 4.89, and an iron ratio of 0.85 to 0.91. This is a method of calcining a clinker raw material at 1350 to 1500 ° C. to produce a cement containing a crushed product of the clinker. Cement produced satisfying the above conditions has high long-term strength development. The water hardness ratio is preferably 1.90 to 1.93, more preferably 1.91 to 1.93, and the silicic acid ratio is preferably 4.84 to 4.88, more preferably. It is 4.85 to 4.87, and the iron ratio is preferably 0.86 to 0.90, more preferably 0.87 to 0.90. The firing temperature is preferably 1370 to 1480 ° C, more preferably 1380 to 1430 ° C. Examples of the firing furnace include heating furnaces such as tunnel furnaces, rotary kilns, and fluidized bed furnaces.

前記クリンカ原料は、好ましくは、SOの含有率が好ましくは1〜3質量%であり、KOの含有率は、好ましくは0.6〜2質量%である。該条件を満たすセメントは、長期の強度発現性が高い。なお、SOの含有率は、より好ましくは1.5〜2.5質量%であり、KOの含有率は、より好ましくは0.8〜1.5質量%である。 The clinker raw material preferably has a SO 3 content of preferably 1 to 3% by mass and a K 2 O content of preferably 0.6 to 2% by mass. Cement satisfying the above conditions has high long-term strength development. The SO 3 content is more preferably 1.5 to 2.5% by mass, and the K 2 O content is more preferably 0.8 to 1.5% by mass.

また、本発明のセメントの製造方法は、ビーライト粒子の円形度およびビーライト粒子の粒子径を観察することによって、クリンカの最適な焼成温度を決定することができる。焼成されたクリンカ中のビーライト粒子の平均円形度が0.6未満、およびビーライト粒子の平均粒子径が17μm未満の場合、さらに焼成温度を高くする。もっとも、焼成温度を高くし過ぎると、より多くのエネルギーを要するので、焼成温度は、好ましくは20〜100℃高くする。また、焼成温度は、クリンカ中のSOの含有率によっても決定することができる。この際、クリンカ中のSOの含有率が0.7〜1.8質量%になるように、焼成温度を高くする。前記焼成温度の決定方法により定めた温度でクリンカの焼成を行えば、ビーライト粒子の平均円形度が0.6以上、およびビーライト粒子の平均粒子径が17μm以上となり、セメントの強度発現性は向上する。 Further, in the method for producing cement of the present invention, the optimum firing temperature of clinker can be determined by observing the circularity of the belite particles and the particle size of the belite particles. When the average circularity of the belite particles in the calcined clinker is less than 0.6 and the average particle diameter of the belite particles is less than 17 μm, the calcining temperature is further increased. However, if the firing temperature is set too high, more energy is required, so the firing temperature is preferably increased by 20 to 100 ° C. The firing temperature can also be determined by the content of SO 3 in the clinker. At this time, the firing temperature is raised so that the content of SO 3 in the clinker is 0.7 to 1.8% by mass. When the clinker is fired at the temperature determined by the method for determining the firing temperature, the average circularity of the belite particles is 0.6 or more, the average particle size of the belite particles is 17 μm or more, and the strength development of the cement is high. improves.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.クリンカの製造
クリンカ原料として、石灰石、粘土、および鉄滓を用いて、該原料を調合して表1に記載の化学組成、および水硬率等の調合原料を得た。次に、ロータリーキルンを用いて、表1に記載の各焼点温度で焼成してクリンカを製造した。クリンカの化学組成は、JIS R 5204「セメントの蛍光X線分析方法」に準拠して、蛍光X線分析装置ZSR primusII(リガク社製)を用いて測定した。
表2にクリンカの化学組成、および該化学組成と前記ボーグ式(i)〜(iv)を用いて算出したクリンカ中のセメント鉱物の含有率を示す。なお、実施例1、2、および比較例1の原料の化学組成が同じにもかかわらず、クリンカの化学組成が異なるのは、焼成温度の違いに起因し、焼成温度が高い程、原料から揮発する成分の量が多くなるからである。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
1. 1. Production of Clinker Using limestone, clay, and iron slag as clinker raw materials, the raw materials were blended to obtain a blended raw material having the chemical composition and water hardness ratio shown in Table 1. Next, using a rotary kiln, clinker was produced by firing at each firing point temperature shown in Table 1. The chemical composition of clinker was measured using a fluorescent X-ray analyzer ZSR primusII (manufactured by Rigaku) in accordance with JIS R 5204 "Fluorescent X-ray analysis method for cement".
Table 2 shows the chemical composition of clinker and the content of cement minerals in the clinker calculated by using the chemical composition and the Borg formulas (i) to (iv). Although the chemical compositions of the raw materials of Examples 1 and 2 and Comparative Example 1 are the same, the difference in the chemical composition of the clinker is due to the difference in the firing temperature, and the higher the firing temperature, the more volatilized from the raw materials. This is because the amount of components to be used increases.

Figure 2021147261
Figure 2021147261

Figure 2021147261
Figure 2021147261

2.ビーライト粒子の円形度の算出
前記クリンカを1.2〜1.8mmに粉砕した後、該クリンカ粒子とエポキシ樹脂を、クリンカ/樹脂が2の体積比で混合して硬化体を作製した後、該硬化体の表面をシリコンカーバイド研磨材で研磨して、クリンカ中のビーライト粒子の粒径を測定し、また、その形状を観察した。
具体的には、ビーライト粒子の平均粒径は、倍率を100倍に設定した光学顕微鏡を用いて、複数個のビーライトの結晶が集合した視野を選び、4〜5か所の測定視野から計20個のビーライト粒子を選び、それらの中の平均的な大きさの粒子の直径(縦および横)を測り、これらを平均して求めた。なお、平均円形度は、NanoHunter NK2K-pro/Lt(ナノシステム社製)により断面積、および周囲長を測定し、前記(1)式を用いて算出し、これらを平均して求めた。表4にビーライト粒子の平均粒径と平均円形度を示す。また、図1にビーライト粒子の写真を示す。
2. Calculation of roundness of belite particles After crushing the clinker to 1.2 to 1.8 mm, the clinker particles and the epoxy resin are mixed at a volume ratio of 2 for the clinker / resin to prepare a cured product. The surface of the cured product was polished with a silicon carbide abrasive, the particle size of the belite particles in the clinker was measured, and the shape was observed.
Specifically, for the average particle size of the belite particles, a field in which a plurality of belite crystals are aggregated is selected using an optical microscope with a magnification set to 100 times, and the measurement field is selected from 4 to 5 measurement fields. A total of 20 belite particles were selected, the diameters (length and width) of the particles of average size among them were measured, and these were averaged. The average circularity was obtained by measuring the cross-sectional area and the peripheral length with NanoHunter NK2K-pro / Lt (manufactured by Nanosystem), calculating using the above equation (1), and averaging these. Table 4 shows the average particle size and the average circularity of the belite particles. In addition, FIG. 1 shows a photograph of belite particles.

3.ビーライト粒子の化学組成の測定
ビーライト粒子の化学組成の測定は、加速電圧を15keV、照射電流を1000pAに設定したエネルギー分散型X線分光器(EDS)を用いて、分析時間が1分析点につき10秒で、観察倍率は2500〜5000倍で、10または20視野からビーライト粒子を選択し、一粒子ごとに15点、計225点を測定し、その平均値をビーライト粒子の化学組成として算出した。その結果を表3に示す。
3. 3. Measurement of chemical composition of belite particles The chemical composition of belite particles is measured by using an energy dispersion type X-ray spectrometer (EDS) in which the acceleration voltage is set to 15 keV and the irradiation current is set to 1000 pA, and the analysis time is one analysis point. In 10 seconds per particle, the observation magnification is 2500 to 5000 times, belite particles are selected from 10 or 20 fields, 15 points are measured for each particle, a total of 225 points are measured, and the average value is the chemical composition of the belite particles. Calculated as. The results are shown in Table 3.

Figure 2021147261
Figure 2021147261

2.セメントの圧縮強さの測定
前記クリンカと二水石膏を、セメントのSOの含有率が2.0%となるよう混合した後、ボールミルで粉砕し、ブレーン表面積が3300±100cm2/gのセメントを製造した。
次に、該セメントを用いて、JIS R 5201「セメントの物理試験方法」に準拠してモルタル供試体を作製し、その材齢28日の圧縮強さを測定した。その結果を表4に示す。
2. Measurement of compressive strength of cement The clinker and dihydrate gypsum are mixed so that the SO 3 content of the cement is 2.0%, and then crushed with a ball mill to make a cement with a brain surface area of 3300 ± 100 cm 2 / g. Manufactured.
Next, using the cement, a mortar specimen was prepared in accordance with JIS R 5201 “Physical test method for cement”, and the compressive strength of the material was measured at 28 days of age. The results are shown in Table 4.

Figure 2021147261
Figure 2021147261

表4に示すように、材齢28日の圧縮強さは、比較例1の29.6N/mmと比べ、実施例2は49.4N/mm、実施例1では61.1N/mmと格段に高く、本発明のセメントは、クリンカ中のビーライトが活性化しているため、長期の強度発現性がより高いと云える。また、実施例1のビーライト粒子(図1(A))は、2方向のラメラを有し、周縁部が丸みを帯びて円形度が高いが、比較例1のビーライト粒子(図1(B))は、ラメラがなく、周縁部に切り込みが入っており円形度が低い。 As shown in Table 4, the compressive strength at 28 days of age was 49.4 N / mm 2 in Example 2 and 61.1 N / mm in Example 1 as compared with 29.6 N / mm 2 in Comparative Example 1. 2 and much higher, the cement of the present invention, since the belite in clinker is activated, the long-term strength development higher it can be said. Further, the belite particles of Example 1 (FIG. 1 (A)) have lamellae in two directions, and the peripheral edges are rounded and have a high circularity, but the belite particles of Comparative Example 1 (FIG. 1 (FIG. 1)). B)) has no lamella, has a notch in the peripheral edge, and has a low circularity.

また、比較例1はビーライト粒子の平均円形度が0.6未満、およびビーライト粒子の平均粒子径が17μm未満であったが、焼成温度を100℃高くした実施例1はビーライト粒子の平均円形度が0.6以上、およびビーライト粒子の平均粒子径が17μm以上となり、材齢28日の圧縮強さが高くなった。一方、比較例1より焼成温度を170℃高くした実施例2はクリンカ中のSOの含有率が0.7%未満となり、実施例1より材齢28日の圧縮強さが低かった。 Further, in Comparative Example 1, the average circularity of the belite particles was less than 0.6 and the average particle size of the belite particles was less than 17 μm, but in Example 1 in which the firing temperature was raised by 100 ° C., the belite particles were used. The average circularity was 0.6 or more, the average particle size of the belite particles was 17 μm or more, and the compressive strength at 28 days of age was high. On the other hand, in Example 2 in which the firing temperature was 170 ° C. higher than that in Comparative Example 1, the content of SO 3 in the clinker was less than 0.7%, and the compressive strength at 28 days of age was lower than in Example 1.

Claims (7)

下記(1)式を用いて求めたビーライト粒子の平均円形度が0.6以上であるセメントクリンカの粉砕物を含むセメント。
円形度=4π×ビーライト粒子の断面積/(ビーライト粒子の周囲長) ・・・(1)
A cement containing a pulverized cement clinker having an average circularity of belite particles of 0.6 or more, which is obtained by using the following formula (1).
Circularity = 4π × Cross-sectional area of belite particles / (perimeter of belite particles) 2 ... (1)
前記ビーライト粒子のSOの含有率が0.8質量%以上、およびCaO/SiOのモル比が2.15以上であるセメントクリンカの粉砕物を含む、請求項1に記載のセメント。 The cement according to claim 1, which comprises a pulverized cement clinker having a SO 3 content of 0.8% by mass or more and a CaO / SiO 2 molar ratio of 2.15 or more of the belite particles. 前記ビーライト粒子の平均粒径が17μm以上であるセメントクリンカの粉砕物を含有する、請求項1または2に記載のセメント。 The cement according to claim 1 or 2, which contains a pulverized product of cement clinker having an average particle size of belite particles of 17 μm or more. 前記クリンカ中のSOの含有率が0.7〜1.8質量%、KOの含有率が0.1〜0.9質量%であるセメントクリンカの粉砕物を含む、請求項1〜3のいずれか1項に記載のセメント。 Claims 1 to include a pulverized cement clinker having an SO 3 content of 0.7 to 1.8% by mass and a K 2 O content of 0.1 to 0.9% by mass in the clinker. The cement according to any one of 3. 下記ボーグ式(i)〜(iv)を用いて算出した、前記セメントクリンカ中のエーライト(CS)の含有率が21〜26質量%、ビーライト(CS)の含有率が50〜65質量%、アルミネート相(CA)の含有率が1〜3質量%、およびフェライト相(CAF)の含有率が8〜11質量%であるセメントクリンカの粉砕物を含む、請求項1〜4のいずれか1項に記載のセメント。
S=4.07×CaO−7.60×SiO−6.72×Al−1.43×Fe−2.85×SO ・・・(i)
S=2.87×SiO−0.754×CS ・・・(ii)
A=2.65×Al−1.69×Fe ・・・(iii)
AF=3.04×Fe ・・・(iv)
ただし、(i)〜(iv)式中の化学式は、セメントクリンカ中の各化学式が表す化合物の含有率(質量%)を表す。
Following Borg formula (i) was calculated using ~ a (iv), content of 21 to 26 wt% of the cement clinker in alite (C 3 S), the content of belite (C 2 S) 50 Includes pulverized cement clinker with ~ 65% by weight, an aluminate phase (C 3 A) content of 1-3% by weight, and a ferrite phase (C 4 AF) of 8 to 11% by weight. The cement according to any one of claims 1 to 4.
C 3 S = 4.07 × CaO- 7.60 × SiO 2 -6.72 × Al 2 O 3 -1.43 × Fe 2 O 3 -2.85 × SO 3 ··· (i)
C 2 S = 2.87 x SiO 2 -0.754 x C 3 S ... (ii)
C 3 A = 2.65 × Al 2 O 3 -1.69 × Fe 2 O 3 ··· (iii)
C 4 AF = 3.04 x Fe 2 O 3 ... (iv)
However, the chemical formulas in the formulas (i) to (iv) represent the content rate (mass%) of the compound represented by each chemical formula in the cement clinker.
水硬率(HM)が1.89〜1.93、けい酸率(SM)が4.83〜4.89、および鉄率(IM)が0.85〜0.91である原料を、ロータリキルンを用いて1350〜1500℃で焼成して、請求項1〜5のいずれか1項に記載のセメントを製造する、セメントの製造方法。 A rotary raw material having a water hardness (HM) of 1.89 to 1.93, a silicic acid ratio (SM) of 4.83 to 4.89, and an iron ratio (IM) of 0.85 to 0.91. A method for producing cement, which comprises firing at 1350 to 1500 ° C. using a kiln to produce the cement according to any one of claims 1 to 5. セメントクリンカ中のビーライト粒子の円形度、およびビーライト粒子の粒子径に基づき、前記焼成温度を決定する、請求項6に記載のセメントの製造方法。 The method for producing cement according to claim 6, wherein the firing temperature is determined based on the circularity of the belite particles in the cement clinker and the particle size of the belite particles.
JP2020046901A 2020-03-17 2020-03-17 cement Active JP7445370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020046901A JP7445370B2 (en) 2020-03-17 2020-03-17 cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020046901A JP7445370B2 (en) 2020-03-17 2020-03-17 cement

Publications (2)

Publication Number Publication Date
JP2021147261A true JP2021147261A (en) 2021-09-27
JP7445370B2 JP7445370B2 (en) 2024-03-07

Family

ID=77850832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046901A Active JP7445370B2 (en) 2020-03-17 2020-03-17 cement

Country Status (1)

Country Link
JP (1) JP7445370B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120787A (en) 2008-11-17 2010-06-03 Mitsubishi Materials Corp Method for manufacturing low-heat portland cement
JP5880069B2 (en) 2012-01-20 2016-03-08 住友大阪セメント株式会社 High belite clinker composition excellent in initial strength development, its production method and high belite cement composition
JP5954512B1 (en) 2016-04-12 2016-07-20 住友大阪セメント株式会社 Clinker composition and cement composition

Also Published As

Publication number Publication date
JP7445370B2 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
Zea-Garcia et al. Alite-belite-ye'elimite cements: Effect of dopants on the clinker phase composition and properties
JP4968390B1 (en) Cement composition and method for producing the same
JP5029768B1 (en) Cement composition and method for producing the same
JP2012246190A (en) Method for producing cement composition
CN108892401A (en) A kind of method and clinker of ardealite calcining belite sulphoaluminate cement clinker
Zhang et al. Preparation and properties of self-pulverizing calcium sulfoaluminate cement
EP3875444B1 (en) Cement admixture, expansion material, and cement composition
JP6855691B2 (en) Cement composition and its manufacturing method
JP2021147261A (en) Cement, and manufacturing method of cement
JP2012025635A (en) Cement clinker and cement composition
JP4775495B1 (en) Cement composition and method for producing the same
WO2020194671A1 (en) Cement composition for plastering and mortar for plastering
JP6206670B2 (en) Manufacturing method and manufacturing equipment for clinker with free lime content controlled based on quartz crystallite diameter
KR102255380B1 (en) Cement composition and method for preparing cement composition
Gitzen et al. Properties of some calcium aluminate cement compositions
WO2020183674A1 (en) Cement composition for high-temperature environments, and concrete for high-temperature environments
CN105217980B (en) Low-calcium silicate cement and preparation method thereof
JP6037074B2 (en) Cement composition
JP2012246189A (en) Method for producing cement composition
JP7341089B2 (en) B-lite clinker and its manufacturing method
JP7082509B2 (en) Portland cement
JP2018131361A (en) Method for producing cement composition, and method for evaluating the cement composition
JP6756150B2 (en) Environmental load reduction clinker, cement composition and its manufacturing method, and ground improvement method
JP2019172517A (en) Cement-based solidifying material composition
JP2013189342A (en) Cement composition, and method for manufacturing cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7445370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150