JP2021143110A - Particle-linked silica microparticle dispersion and method for producing the same, and abrasive particle dispersion for polishing - Google Patents

Particle-linked silica microparticle dispersion and method for producing the same, and abrasive particle dispersion for polishing Download PDF

Info

Publication number
JP2021143110A
JP2021143110A JP2020044287A JP2020044287A JP2021143110A JP 2021143110 A JP2021143110 A JP 2021143110A JP 2020044287 A JP2020044287 A JP 2020044287A JP 2020044287 A JP2020044287 A JP 2020044287A JP 2021143110 A JP2021143110 A JP 2021143110A
Authority
JP
Japan
Prior art keywords
particle
silica fine
linked
particles
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020044287A
Other languages
Japanese (ja)
Other versions
JP7455623B2 (en
Inventor
和洋 中山
Kazuhiro Nakayama
和洋 中山
真也 碓田
Masaya Usuda
真也 碓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2020044287A priority Critical patent/JP7455623B2/en
Publication of JP2021143110A publication Critical patent/JP2021143110A/en
Application granted granted Critical
Publication of JP7455623B2 publication Critical patent/JP7455623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a particle-linked silica microparticle dispersion having excellent characteristics such as abradability and a method for producing the same, and an abrasive particle dispersion.SOLUTION: Provided is a particle-linked silica microparticle dispersion comprising particle-linked silica microparticles constituted of a structure where silica primary microparticles are linked. The silica microparticles, contained in the particle-linked silica microparticle dispersion comprising particle-linked silica microparticles constituted of a structure where silica primary microparticles are linked, satisfy the following requirement [1] and the particle-linked silica microparticles, included in the silica microparticles and having a three-dimensional branched structure, satisfy the following requirement [2]. [1] An average particle diameter (D1) of the silica microparticles, as measured by a dynamic light scattering method, is in a range of 50 nm to 600 nm. [2] The particle-linked silica microparticles having the three-dimensional branched structure has a structure which is linear and has at least one branch (a) and a three-dimensional structure corresponding to this structure.SELECTED DRAWING: None

Description

本発明は、粒子連結型シリカ微粒子分散液およびその製造方法、並びに研磨用砥粒分散液に関する。 The present invention relates to a particle-linked silica fine particle dispersion, a method for producing the same, and an abrasive grain dispersion for polishing.

溶媒に分散してなる粒子連結型シリカゾルのうち、球状以外の形状からなる粒子連結型シリカゾルとしては、鎖状、数珠状または長球状のものが知られている。この様な粒子連結型シリカゾルは、例えば、各種研磨剤として使用されている。 Among the particle-linked silica sol dispersed in a solvent, chain-shaped, bead-shaped, or oblong spherical particles are known as the particle-linked silica sol having a shape other than the spherical shape. Such particle-linked silica sol is used as, for example, various abrasives.

特許文献1には、画像解析法により測定される平均粒子径が5〜300nmの範囲にあるアルミナ−シリカ複合一次粒子が2個以上結合した構造を含む粒子連結型アルミナ−シリカ複合微粒子が分散媒に分散してなる粒子連結型アルミナ−シリカ複合ゾルおよびその製造方法の発明が開示されている。特許文献1では、この粒子連結型アルミナ−シリカ複合微粒子が、アルミナ−シリカ複合一次粒子として、表面に複数の疣状突起を有する球状粒子を含むことを特徴とする。この発明は、通常の粒子連結型シリカ微粒子または非球状アルミナ−シリカ複合微粒子とは異なる特異な構造を有する。このため、例えば、研磨材および研磨用組成物として有用であり、特に高研磨速度の効果において優れるものとされている。しかし、アルミニウムは研磨基板の種類によっては汚染物質となってしまうため、好ましくない。 In Patent Document 1, particle-linked alumina-silica composite fine particles containing a structure in which two or more alumina-silica composite primary particles having an average particle diameter in the range of 5 to 300 nm measured by an image analysis method are bonded are used as a dispersion medium. The invention of a particle-linked alumina-silica composite sol dispersed in the above and a method for producing the same is disclosed. Patent Document 1 is characterized in that the particle-linked alumina-silica composite fine particles include spherical particles having a plurality of wart-like protrusions on the surface as alumina-silica composite primary particles. The present invention has a unique structure different from ordinary particle-linked silica fine particles or non-spherical alumina-silica composite fine particles. Therefore, for example, it is useful as an abrasive and a composition for polishing, and is particularly excellent in the effect of high polishing speed. However, aluminum is not preferable because it becomes a pollutant depending on the type of polishing substrate.

特許文献2には、画像解析法により測定される平均粒子径が5〜300nmの範囲にあるシリカ一次粒子が2個以上結合した構造を含む粒子連結型シリカ微粒子が分散媒に分散してなる粒子連結型シリカゾルおよびその製造方法の発明が開示されている。特許文献2では、この粒子連結型シリカ微粒子が、シリカ一次粒子として、表面に複数の疣状突起を有する球状粒子を含むことを特徴とする。この発明は、通常の粒子連結型シリカ微粒子または非球状シリカ微粒子とは異なる特異な構造を有することから、例えば、研磨材および研磨用組成物として有用であり、特に高研磨速度の効果において優れるものであるとされている。しかし、結合様態としてテトラポット型を含み、さらには疣状突起を含むことにより局所的な研磨基板への応力集中が発生しやすいためか、スクラッチ等の研磨傷を生じやすい。 Patent Document 2 describes particles obtained by dispersing particle-linked silica fine particles containing two or more bonded primary silica particles having an average particle size in the range of 5 to 300 nm measured by an image analysis method in a dispersion medium. The invention of the articulated silica sol and the method for producing the same is disclosed. Patent Document 2 is characterized in that the particle-connected silica fine particles include spherical particles having a plurality of wart-like protrusions on the surface as silica primary particles. Since the present invention has a unique structure different from ordinary particle-connected silica fine particles or non-spherical silica fine particles, it is useful as, for example, an abrasive and a polishing composition, and is particularly excellent in the effect of high polishing speed. Is said to be. However, since the tetrapod type is included as the bonding mode and the wart-shaped protrusions are included, stress concentration is likely to occur locally on the polishing substrate, and polishing scratches such as scratches are likely to occur.

特開2009−155180号公報Japanese Unexamined Patent Publication No. 2009-155180 特開2011−16702号公報Japanese Unexamined Patent Publication No. 2011-16702

本発明は、研磨性等の優れた特性を有する粒子連結型シリカ微粒子分散液およびその製造方法並びに砥粒分散液を提供することを課題とする。 An object of the present invention is to provide a particle-linked silica fine particle dispersion having excellent properties such as abrasiveness, a method for producing the same, and an abrasive grain dispersion.

本発明の一態様によれば、シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液であって、前記シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子は、下記[1]の要件を備え、かつ前記シリカ微粒子に包含される立体状分岐構造を有する粒子連結型シリカ微粒子が、下記[2]の要件を備えることを特徴とする粒子連結型シリカ微粒子分散液が提供される。
[1]前記シリカ微粒子の動的光散乱法により測定した平均粒子径(D1)が、50nm以上600nm以下の範囲にあること。
[2]前記立体状分岐構造を有する粒子連結型シリカ微粒子が、鎖状で、かつ少なくとも1つの分岐(a)を有する構造と、この構造に対する立体構造を有すること。
According to one aspect of the present invention, it is a particle-linked silica fine particle dispersion liquid containing particle-linked silica fine particles having a structure in which silica primary fine particles are linked, and is a particle-linked silica having a structure in which the silica primary fine particles are linked. The silica fine particles contained in the particle-linked silica fine particle dispersion liquid containing fine particles include the following [1], and the particle-connected silica fine particles having a three-dimensional branched structure included in the silica fine particles are described in the following [2]. ] The particle-linked silica fine particle dispersion liquid is provided.
[1] The average particle size (D1) measured by the dynamic light scattering method of the silica fine particles is in the range of 50 nm or more and 600 nm or less.
[2] The particle-connected silica fine particles having the three-dimensional branched structure have a chain-like structure having at least one branch (a) and a three-dimensional structure for this structure.

本発明の一態様に係る粒子連結型シリカ微粒子分散液において、前記立体構造が、下記(1)および(2)の構造のうちの少なくとも1つであることが好ましい。
(1)前記分岐(a)に対し、立体方向に伸長してなる分岐(b)
(2)前記分岐(a)に対し、立体方向に伸長してなる末端(c)
In the particle-linked silica fine particle dispersion liquid according to one aspect of the present invention, it is preferable that the three-dimensional structure is at least one of the following structures (1) and (2).
(1) A branch (b) extending in a three-dimensional direction with respect to the branch (a).
(2) The end (c) extending in the three-dimensional direction with respect to the branch (a).

本発明の一態様に係る粒子連結型シリカ微粒子分散液において、前記立体状分岐構造を有する粒子連結型シリカ微粒子は、下記[3]および[4]の要件を備えることが好ましい。
[3]50nm≦DLa≦1,000nm
DLa:前記立体状分岐構造を有する粒子連結型シリカ微粒子の長さ方向における最長径(DL)の平均値
[4]10nm≦DTa≦800nm
DTa:前記立体状分岐構造を有する粒子連結型シリカ微粒子の太さ方向における直径(DT)の平均値
In the particle-linked silica fine particle dispersion liquid according to one aspect of the present invention, the particle-linked silica fine particles having the three-dimensional branched structure preferably satisfy the following requirements [3] and [4].
[3] 50 nm ≤ DLa ≤ 1,000 nm
DLa: Average value of the longest diameter (DL) in the length direction of the particle-connected silica fine particles having the three-dimensional branched structure [4] 10 nm ≤ DTa ≤ 800 nm
DT: The average value of the diameter (DT) in the thickness direction of the particle-connected silica fine particles having the three-dimensional branched structure.

本発明の一態様に係る粒子連結型シリカ微粒子分散液において、前記立体状分岐構造を有する粒子連結型シリカ微粒子は、下記[5]の要件を備えることが好ましい。
[5]10%≦C.V.≦40%
C.V.:前記立体状分岐構造を有する粒子連結型シリカ微粒子の太さ方向における直径(DT)の平均変動係数
In the particle-linked silica fine particle dispersion liquid according to one aspect of the present invention, the particle-linked silica fine particles having the three-dimensional branched structure preferably satisfy the following requirements [5].
[5] 10% ≤ C.I. V. ≤40%
C. V. : Average coefficient of variation of diameter (DT) in the thickness direction of the particle-connected silica fine particles having the three-dimensional branched structure

本発明の一態様に係る粒子連結型シリカ微粒子分散液において、前記立体状分岐構造を有する粒子連結型シリカ微粒子は、シリカ一次微粒子の平均連結個数が、5個以上20個以下の範囲にあることが好ましい。 In the particle-linked silica fine particle dispersion liquid according to one aspect of the present invention, in the particle-linked silica fine particles having the three-dimensional branched structure, the average number of silica primary fine particles connected is in the range of 5 or more and 20 or less. Is preferable.

本発明の一態様に係る粒子連結型シリカ微粒子分散液において、前記シリカ微粒子に含まれるCa、MgおよびAlの割合が、下記のとおりであることが好ましい。
Ca:25ppm以下
Mg:25ppm以下
Al:150ppm以下
In the particle-linked silica fine particle dispersion liquid according to one aspect of the present invention, the proportions of Ca, Mg and Al contained in the silica fine particles are preferably as follows.
Ca: 25ppm or less Mg: 25ppm or less Al: 150ppm or less

本発明の一態様に係る粒子連結型シリカ微粒子分散液において、前記立体状分岐構造を有する粒子連結型シリカ微粒子を5個数%以上50個数%以下含むことが好ましい。 The particle-linked silica fine particle dispersion liquid according to one aspect of the present invention preferably contains 5% or more and 50% or less of the particle-linked silica fine particles having the three-dimensional branched structure.

本発明の一態様に係る粒子連結型シリカ微粒子分散液において、前記粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子のシラノール基密度が、0.1個/nm以上5.0個/nm以下の範囲にあることが好ましい。 In the particle-linked silica fine particle dispersion according to one aspect of the present invention, the silanol group density of the silica fine particles contained in the particle-linked silica fine particle dispersion is 0.1 / nm 2 or more and 5.0 / nm 2. It is preferably in the following range.

本発明の一態様に係る粒子連結型シリカ微粒子分散液において、カチオンコロイド滴定を行った場合に、下記数式(F1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−350以上−10以下となる流動電位曲線が得られることが好ましい。
ΔPCD/V=(I−C)/V・・・(F1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(mL)
When cationic colloid titration is performed in the particle-linked silica fine particle dispersion according to one aspect of the present invention, the flow potential change amount (ΔPCD) represented by the following formula (F1) and the cationic colloid titration solution in the knick are used. It is preferable to obtain a flow potential curve in which the ratio (ΔPCD / V) to the addition amount (V) is −350 or more and −10 or less.
ΔPCD / V = (IC) / V ... (F1)
C: Flow potential (mV) in the knick
I: Flow potential (mV) at the start point of the flow potential curve
V: Addition amount (mL) of the cationic colloid titration solution in the knick

本発明の一態様によれば、前述の本発明の一態様に係る粒子連結型シリカ微粒子分散液を含むことを特徴とする砥粒分散液が提供される。 According to one aspect of the present invention, there is provided an abrasive grain dispersion liquid containing the particle-linked silica fine particle dispersion liquid according to the above-mentioned one aspect of the present invention.

本発明の一態様によれば、下記工程1を含む、前述の本発明の一態様に係る粒子連結型シリカ微粒子分散液の製造方法が提供される。
工程1:SiO濃度1.5質量%以上30質量%以下のシリカ微粒子分散液に、pH緩衝剤またはpH調整剤を、下記の割合(WB/WLP)の範囲内で添加し、続いて、40℃以上98℃以下に加熱し、1時間以上保持し、粒子連結型シリカ微粒子分散液を得る工程
0.01≦WB/WLP≦0.1
(ここで、WLPは、シリカ微粒子分散液中のシリカ質量であり、WBは、pH緩衝剤またはpH調整剤の質量である。)
According to one aspect of the present invention, there is provided a method for producing a particle-linked silica fine particle dispersion liquid according to the above-mentioned aspect of the present invention, which comprises the following step 1.
Step 1: A pH buffer or a pH adjuster is added to the silica fine particle dispersion having a SiO 2 concentration of 1.5% by mass or more and 30% by mass or less within the following ratio (WB / WLP 1 ), followed by , 40 ° C. or higher and 98 ° C. or lower, and held for 1 hour or longer to obtain a particle-linked silica fine particle dispersion 0.01 ≤ WB / WLP 1 ≤ 0.1
(Here, WLP 1 is the mass of silica in the silica fine particle dispersion, and WB is the mass of the pH buffer or pH adjuster.)

本発明の一態様に係る粒子連結型シリカ微粒子分散液の製造方法において、前記工程1でpH緩衝剤またはpH調整剤の全量添加後のpHが2.0以上6.0以下の範囲にあることが好ましい。 In the method for producing a particle-linked silica fine particle dispersion according to one aspect of the present invention, the pH after the addition of the entire amount of the pH buffer or pH adjuster in step 1 is in the range of 2.0 or more and 6.0 or less. Is preferable.

本発明の一態様に係る粒子連結型シリカ微粒子分散液の製造方法において、前記工程1に続いて、下記工程2を含むことが好ましい。
工程2:前記工程1で得た粒子連結型シリカ微粒子分散液に対し、下記(i)および(ii)の処理のうちの少なくとも1つにより、pH10.0以上にpH調整処理し、続いて酸性珪酸液を、下記の割合(WS/WLP)となるように連続的または断続的に添加し、粒子成長させる処理を施す工程
0.01≦WS/WLP≦10
(ここで、WLPは、粒子連結型シリカ微粒子分散液中のシリカ質量であり、WSは、酸性珪酸液中のシリカ質量である。)
(i)陰イオン交換処理
(ii)アルカリ添加
In the method for producing a particle-linked silica fine particle dispersion liquid according to one aspect of the present invention, it is preferable to include the following step 2 following the step 1.
Step 2: The particle-linked silica fine particle dispersion obtained in Step 1 is pH-adjusted to pH 10.0 or higher by at least one of the following treatments (i) and (ii), followed by acidity. Step of continuously or intermittently adding the silicic acid solution in the following ratio (WS / WLP 2 ) to grow particles 0.01 ≤ WS / WLP 2 ≤ 10
(Here, WLP 2 is the mass of silica in the particle-linked silica fine particle dispersion, and WS is the mass of silica in the acidic silicic acid solution.)
(I) Anion exchange treatment (ii) Add alkali

本発明の一態様に係る粒子連結型シリカ微粒子分散液の製造方法において、前記工程2に続いて、下記工程3を含むことが好ましい。
工程3:前記工程2を施している粒子連結型シリカ微粒子分散液に対し、下記(i)および(ii)の処理のうちの少なくとも1つにより、pH10.0以上にpH調整処理し、続いて、酸性珪酸液を下記の割合(WS/WLP)となるように連続的または断続的に添加し、粒子成長させる処理を施す工程を含むことを特徴とする粒子連結型シリカ微粒子分散液の製造方法。
0.5≦WS/WLP≦10
(ここで、WLPは、粒子連結型シリカ微粒子分散液中のシリカ質量であり、WSは、酸性珪酸液中のシリカ質量である。)
(i)陰イオン交換処理
(ii)アルカリ添加
In the method for producing a particle-linked silica fine particle dispersion liquid according to one aspect of the present invention, it is preferable to include the following step 3 following the step 2.
Step 3: The particle-linked silica fine particle dispersion liquid subjected to the step 2 is subjected to pH adjustment treatment to pH 10.0 or higher by at least one of the following treatments (i) and (ii), followed by a pH adjustment treatment. , Production of a particle-linked silica fine particle dispersion, which comprises a step of continuously or intermittently adding an acidic silicic acid solution at the following ratio (WS / WLP 2) to grow particles. Method.
0.5 ≤ WS / WLP 2 ≤ 10
(Here, WLP 2 is the mass of silica in the particle-linked silica fine particle dispersion, and WS is the mass of silica in the acidic silicic acid solution.)
(I) Anion exchange treatment (ii) Add alkali

本発明の立体状分岐構造を有する粒子連結型シリカ微粒子は、従来の粒子連結型シリカ微粒子あるいは非球状シリカ微粒子とは異なる特異な構造(立体状分岐構造)を有する。そのため、例えば、研磨用途に適用した場合、本発明の立体状分岐構造を有する粒子連結型シリカ微粒子と、研磨機基板との複数の接触点において応力が集中し易いため、高い研磨速度を得ることができる。さらに、連結構造を有することで砥粒の回転運動による動的な接触面積を効果的に得ることができるので、優れた研磨特性を達成できる。このため、本発明の立体状分岐構造を有する粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液は、例えば砥粒分散液および研磨用組成物の原料として有用であり、特に高研磨速度の効果において優れるものである。
また、本発明の粒子連結型シリカ微粒子分散液は、その分散質である粒子連結型シリカ微粒子が、シリカ一次微粒子どうしで結合してなる連結粒子であり、結合剤(例えば、CaO、MgOあるいはAl)を含むことがないので、研磨用途に適用した場合、半導体基板等の汚染の問題を生じることが無く、有用性が高いものといえる。
The particle-linked silica fine particles having the three-dimensional branched structure of the present invention have a unique structure (three-dimensional branched structure) different from the conventional particle-linked silica fine particles or non-spherical silica fine particles. Therefore, for example, when applied to a polishing application, stress is likely to be concentrated at a plurality of contact points between the particle-connected silica fine particles having the three-dimensional branched structure of the present invention and the polishing machine substrate, so that a high polishing rate can be obtained. Can be done. Further, by having the connecting structure, it is possible to effectively obtain a dynamic contact area due to the rotational movement of the abrasive grains, so that excellent polishing characteristics can be achieved. Therefore, the particle-linked silica fine particle dispersion liquid containing the particle-linked silica fine particles having a three-dimensional branched structure of the present invention is useful as, for example, an abrasive grain dispersion liquid and a raw material for a polishing composition, and has a particularly high polishing rate. It is excellent in effect.
Further, the particle-linked silica fine particle dispersion liquid of the present invention is a connecting particle formed by bonding the particle-linked silica fine particles which are the dispersoids of the silica primary fine particles to each other, and is a binder (for example, CaO, MgO or Al). Since it does not contain 2 O 3 ), it can be said that it is highly useful because it does not cause a problem of contamination of semiconductor substrates and the like when applied to polishing applications.

本発明に係る立体状分岐構造を有する粒子連結型シリカ微粒子を示す概略図である。It is a schematic diagram which shows the particle connection type silica fine particle which has a three-dimensional branched structure which concerns on this invention.

[シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液(連結粒子分散液)]
本発明の粒子連結型シリカ微粒子分散液は、シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液であって、前記シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子が下記[1]の要件を備え、かつ前記シリカ微粒子に包含される立体状分岐構造を有する粒子連結型シリカ微粒子が、下記[2]の要件を備えることを特徴とする。
[1]前記シリカ微粒子の動的光散乱法により測定した平均粒子径(D1)が、50nm以上600nm以下の範囲にあること。
[2]前記立体状分岐構造を有する粒子連結型シリカ微粒子が、鎖状で、かつ少なくとも1つの分岐(a)を有する構造と、この構造に対する立体構造を有すること。
[Particle-linked silica fine particle dispersion liquid containing particle-linked silica fine particles having a structure in which silica primary fine particles are linked (linked particle dispersion liquid)]
The particle-linked silica fine particle dispersion of the present invention is a particle-linked silica fine particle dispersion containing particle-linked silica fine particles having a structure in which silica primary fine particles are linked, and particles having a structure in which the silica primary fine particles are linked. Particles Concatenated Silica Fine Particles Containing Particles Concatenated Silica Fine Particles A particle-linked silica fine particles containing the following requirements [1] and having a three-dimensional branched structure included in the silica fine particles are described below. It is characterized by having the requirements of [2].
[1] The average particle size (D1) measured by the dynamic light scattering method of the silica fine particles is in the range of 50 nm or more and 600 nm or less.
[2] The particle-connected silica fine particles having the three-dimensional branched structure have a chain-like structure having at least one branch (a) and a three-dimensional structure for this structure.

ここで、シリカ一次微粒子が連結したとは、隣接するシリカ一次微粒子の間に生成した結合によって、隣接するシリカ一次微粒子同士が互いに固定化したことをいう。ここで結合の種類は特に限定されるものではないが、例えば隣接するシリカ一次微粒子のそれぞれの表面シラノール基同士の縮合反応により生じたシロキサン結合等の化学的結合を挙げることができる。
以下、本発明の粒子連結型シリカ微粒子分散液を「粒子連結型シリカ微粒子分散液」または「連結粒子分散液」ともいう。
また、本発明のシリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を「連結粒子」ともいう。本発明のシリカ一次微粒子が連結した構造からなる立体状分岐構造を有する粒子連結型シリカ微粒子を「立体状連結粒子」ともいう。
さらに、本発明のシリカ一次微粒子が連結した構造からなる立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)以外のシリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子(連結粒子)を、「平面状連結粒子」ともいう。
連結粒子は、多数のシリカ一次微粒子が結合した構造を有する。連結粒子において、シリカ一次微粒子1個を含んだ最小の構成単位を、本願においては、便宜上、「単位構造」という場合がある。ここで「単位構造」とは、シリカ一次微粒子1個を含み、更に該シリカ一次微粒子に隣接したシリカ一次微粒子との間に形成されるネック部の一部を含んでなる。本発明における粒子連結型シリカ微粒子は、前記単位構造が連結した構造からなる粒子連結型シリカ微粒子ということもできる。前記立体状連結粒子、前記平面状連結粒子についても同様である。
後述するように、本発明の本発明の粒子連結型シリカ微粒子分散液を製造するための主要な原料のひとつであるシリカ微粒子分散液ないしシリカ微粒子を、それぞれ「原料としたシリカ微粒子分散液」、「原料としたシリカ微粒子」と称する場合がある。
加えて、連結粒子以外のシリカ一次微粒子を「単粒子」という。
本発明の粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子とは、粒子連結型シリカ微粒子分散液に含まれるすべてのシリカ微粒子(連結粒子および単粒子)をいう。
本発明において、粒子の特徴を、透過型顕微鏡写真または走査型顕微鏡写真を用いて特定する場合がある。この場合において、写真の代わりに透過型顕微鏡画像を用いても同様に行うことができる。走査型顕微鏡写真においても、同様に走査型顕微鏡画像を用いることができる。
Here, the fact that the silica primary fine particles are linked means that the adjacent silica primary fine particles are immobilized on each other by the bond formed between the adjacent silica primary fine particles. Here, the type of bond is not particularly limited, and examples thereof include chemical bonds such as a siloxane bond generated by a condensation reaction between the surface silanol groups of the adjacent silica primary fine particles.
Hereinafter, the particle-linked silica fine particle dispersion of the present invention is also referred to as "particle-linked silica fine particle dispersion" or "linked particle dispersion".
Further, the particle-linked silica fine particles having a structure in which the silica primary fine particles of the present invention are linked are also referred to as “linking particles”. The particle-linked silica fine particles having a three-dimensional branched structure having a structure in which the silica primary fine particles of the present invention are linked are also referred to as "three-dimensional linked particles".
Further, the particle-linked silica fine particles (connected particles) having a structure in which the silica primary fine particles other than the particle-linked silica fine particles (three-dimensional linked particles) having a three-dimensional branched structure in which the silica primary fine particles of the present invention are linked are linked. ) Is also referred to as "planar connecting particles".
The connecting particles have a structure in which a large number of primary silica fine particles are bonded. In the linked particles, the smallest structural unit containing one silica primary fine particle may be referred to as a "unit structure" in the present application for convenience. Here, the "unit structure" includes one silica primary fine particle, and further includes a part of a neck portion formed between the silica primary fine particle and the silica primary fine particle adjacent to the silica primary fine particle. The particle-linked silica fine particles in the present invention can also be said to be particle-linked silica fine particles having a structure in which the unit structures are linked. The same applies to the three-dimensional connecting particles and the planar connecting particles.
As will be described later, the silica fine particle dispersion liquid or the silica fine particle dispersion liquid, which is one of the main raw materials for producing the particle-linked silica fine particle dispersion liquid of the present invention of the present invention, is used as a “silica fine particle dispersion liquid as a raw material”, respectively. It may be referred to as "silica fine particles used as a raw material".
In addition, silica primary fine particles other than connecting particles are called "single particles".
The silica fine particles contained in the particle-linked silica fine particle dispersion of the present invention refer to all the silica fine particles (connected particles and single particles) contained in the particle-linked silica fine particle dispersion.
In the present invention, the characteristics of particles may be specified by using a transmission micrograph or a scanning micrograph. In this case, the same can be performed by using a transmission microscope image instead of the photograph. Similarly, a scanning microscope image can be used in a scanning microscope photograph.

前記シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子の動的光散乱法で測定された平均粒子径(D1)は、50nm以上600nm以下の範囲、好ましくは80nm以上400nm以下、より好ましくは100nm以上350nm以下の範囲である。
平均粒子径(D1)が、50nm未満であると、十分な研磨速度を得られない場合があり、好ましくない。また、平均粒子径(D1)が600nmを超えると、研磨基板に傷が生じる傾向が強まり好ましくない。
The average particle diameter (D1) measured by the dynamic light scattering method of the silica fine particles contained in the particle-linked silica fine particle dispersion containing the particle-linked silica fine particles having a structure in which the primary silica fine particles are linked is 50 nm or more and 600 nm. The range is as follows, preferably 80 nm or more and 400 nm or less, and more preferably 100 nm or more and 350 nm or less.
If the average particle size (D1) is less than 50 nm, a sufficient polishing rate may not be obtained, which is not preferable. Further, if the average particle size (D1) exceeds 600 nm, the polished substrate tends to be scratched, which is not preferable.

[シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子(連結粒子)]
本発明のシリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子(連結粒子)は、立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)と、立体状分岐構造を有する粒子連結型シリカ微粒子以外の粒子連結型シリカ微粒子(平面状連結粒子)とからなる。
[Particle-linked silica fine particles (connected particles) having a structure in which primary silica fine particles are linked]
The particle-linked silica fine particles (linking particles) having a structure in which the silica primary fine particles of the present invention are linked are the particle-linking silica fine particles (three-dimensional connecting particles) having a three-dimensional branched structure and the particle linkage having a three-dimensional branched structure. It is composed of particle-connected silica fine particles (planar connecting particles) other than the type silica fine particles.

前記「シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子」におけるシリカ一次微粒子については、その形状が球状ないし略球状であることが好ましい。なお、係る球状粒子等と共に他の形状の粒子(例えば、卵状、立方体状または棒状の粒子)が少量混在しても構わない。
前記シリカ一次微粒子の粒子径は、均一でもよく、それぞれ互いに異なっていてもよい。ここでシリカ一次微粒子の形状については、透過型電子顕微鏡写真(倍率:20万倍)から確認することができる。
The shape of the silica primary fine particles in the "particle-connected silica fine particles having a structure in which the silica primary fine particles are connected" is preferably spherical or substantially spherical. It should be noted that a small amount of particles having other shapes (for example, oval-shaped, cubic-shaped or rod-shaped particles) may be mixed together with the spherical particles and the like.
The particle size of the silica primary fine particles may be uniform or different from each other. Here, the shape of the primary silica fine particles can be confirmed from a transmission electron micrograph (magnification: 200,000 times).

前記連結粒子におけるシリカ一次微粒子の平均粒子径(透過型電子顕微鏡写真、倍率20万倍)は5nm以上600nm以下が好ましく、20nm以上400nm以下がより好ましく、60nm以上300nm以下がさらに好ましい。なお、係る平均粒子径を本願では、平均粒子径[F]で表す。平均粒子径[F]の測定方法を後記「[3]立体状連結粒子の平均連結個数の測定方法 2.立体状連結粒子におけるシリカ一次微粒子の平均粒子径[F]の測定方法」に記した。
連結粒子におけるシリカ一次微粒子の平均粒子径が5nm未満の場合は、シリカ一次微粒子が凝集して得られる連結粒子が塊状になる傾向がある。また、研磨用途においては、研磨基板への応力集中が得られないためか、十分な研磨速度が得られず好ましくない。シリカ一次微粒子の平均粒子径が600nmを超える場合は、例えば、研磨用途において、研磨基板と連結粒子との間の接触面積の低下が著しくなり、研磨速度の低下を招くときがある。また、研磨面にスクラッチ(線状痕)が発生しやすくなる場合がある。
立体状連結粒子におけるシリカ一次微粒子と、平面状連結粒子におけるシリカ一次微粒子の平均粒子径と、前記連結粒子におけるシリカ一次微粒子には有意な差は見られない。
The average particle size (transmission electron micrograph, magnification 200,000 times) of the silica primary fine particles in the linked particles is preferably 5 nm or more and 600 nm or less, more preferably 20 nm or more and 400 nm or less, and further preferably 60 nm or more and 300 nm or less. In the present application, the average particle size is represented by the average particle size [F]. The method for measuring the average particle size [F] is described later in "[3] Method for measuring the average number of connected three-dimensionally linked particles 2. Measuring method for the average particle size [F] of silica primary fine particles in the three-dimensionally connected particles". ..
When the average particle size of the silica primary fine particles in the linked particles is less than 5 nm, the linked particles obtained by aggregating the silica primary fine particles tend to be agglomerated. Further, in polishing applications, it is not preferable because sufficient polishing speed cannot be obtained, probably because stress concentration on the polishing substrate cannot be obtained. When the average particle size of the silica primary fine particles exceeds 600 nm, for example, in a polishing application, the contact area between the polishing substrate and the connecting particles is significantly reduced, which may lead to a decrease in the polishing rate. In addition, scratches (linear marks) may easily occur on the polished surface.
There is no significant difference between the average particle size of the silica primary fine particles in the three-dimensional connecting particles and the silica primary fine particles in the planar connecting particles, and the silica primary fine particles in the connecting particles.

[立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)]
本発明における立体状分岐構造を有する粒子連結型シリカ微粒子は、鎖状で、かつ少なくとも1つの分岐(a)を有する構造と、この構造に対する立体構造を有することを特徴とする。より具体的には、粒子連結型シリカ微粒子は、図1に示すように、白丸で示すシリカ一次微粒子が鎖状に連結した鎖状構造(Ch)を有する。さらに、この鎖状構造(Ch)に、シリカ一次微粒子が連結して、分岐(a)を有する。ここで、分岐(a)の数は、1つ以上であればよく、特に制限はない。鎖状構造(Ch)と、分岐(a)とは、ほぼ同一平面上に存在する。そして、この平面に交差し、角度をなすような方向(以下、「立体方向」ともいう)に、黒丸で示されたシリカ一次微粒子が結合して、立体構造を有するように、分岐(b)または末端(c)を形成している。
[Particle-connected silica fine particles having a three-dimensional branched structure (three-dimensionally connected particles)]
The particle-connected silica fine particles having a three-dimensional branched structure in the present invention are characterized by having a chain-like structure having at least one branch (a) and a three-dimensional structure for this structure. More specifically, as shown in FIG. 1, the particle-linked silica fine particles have a chain structure (Ch) in which the silica primary fine particles indicated by white circles are linked in a chain. Further, silica primary fine particles are connected to this chain structure (Ch) to have a branch (a). Here, the number of branches (a) may be one or more, and is not particularly limited. The chain structure (Ch) and the branch (a) exist on substantially the same plane. Then, the silica primary fine particles indicated by black circles are bonded in a direction that intersects this plane and forms an angle (hereinafter, also referred to as "three-dimensional direction"), and branches (b) so as to have a three-dimensional structure. Or it forms the end (c).

少なくとも1つの分岐(a)を有する構造と、この構造に対する立体構造を有するとは、具体的には次の(1)または(2)の構造のうちの少なくとも1つであることを意味する。
(1)前記分岐(a)に対し、立体方向に伸長してなる分岐(b)
(2)前記分岐(a)に対し、立体方向に伸長してなる末端(c)
Having a structure having at least one branch (a) and having a three-dimensional structure with respect to this structure specifically means that it is at least one of the following structures (1) or (2).
(1) A branch (b) extending in a three-dimensional direction with respect to the branch (a).
(2) The end (c) extending in the three-dimensional direction with respect to the branch (a).

前記鎖状とは、シリカ微粒子が連結してなる細長い構造を指し、屈曲状ないし直鎖状と呼ぶこともできる。なお、この様な鎖状粒子が両端で結合し、環状を構成してなる粒子連結構造、網目構造、シリカ一次微粒子が凝集してテトラポッド様となった構造およびシリカ一次微粒子の不規則な凝集体(例えば、複数のシリカ一次微粒子を含む塊状の凝集体)は、前記鎖状の範囲には含まれない。 The chain shape refers to an elongated structure formed by connecting silica fine particles, and may also be referred to as a bent shape or a linear shape. It should be noted that such a chain-like particle is bonded at both ends to form an annular particle-connected structure, a network structure, a structure in which silica primary fine particles are aggregated to form a tetrapod-like structure, and irregular coagulation of silica primary fine particles. Aggregates (eg, agglomerates containing a plurality of primary silica fine particles) are not included in the chain range.

前記分岐(a)とは、立体状連結粒子の両末端のシリカ一次微粒子を除いた粒子において、直鎖方向以外にシリカ一次微粒子またはシリカ一次微粒子の連結体の末端が結合してなる枝分かれ構造を指す。(立体状連結粒子において分岐(a)が結合してなるシリカ一次微粒子を含む鎖状部分を「主鎖」と称する。)
前記分岐(b)とは、立体状連結粒子の両末端のシリカ一次微粒子を除いた粒子において、直鎖方向以外にシリカ一次微粒子またはシリカ一次微粒子の連結体の末端が結合してなる枝分かれ構造であって、前記分岐(a)の伸長方向に対し、立体方向に伸長してなる分岐を指す。立体方向については、後記のとおり、透過型電子顕微鏡写真から判定することができる。
前記末端(c)とは、立体状連結粒子の両末端のシリカ一次微粒子を除いた粒子において、直鎖方向以外にシリカ一次微粒子またはシリカ一次微粒子の連結体の末端が結合してなる屈曲構造であって、前記分岐(a)の伸長方向に対し、立体方向に伸長してなる屈曲構造を指す。ここで、立体方向については、後記のとおり、透過型電子顕微鏡写真から判定することができる。
前記立体状分岐構造を有する粒子連結型シリカ微粒子におけるシリカ一次微粒子の平均連結個数は、5個以上20個以下の範囲にあることが好ましい。
The branch (a) is a branched structure in which the ends of the silica primary fine particles or the silica primary fine particles are bonded in addition to the linear direction in the particles excluding the silica primary fine particles at both ends of the three-dimensional connecting particles. Point to. (A chain portion containing silica primary fine particles in which branches (a) are bonded in a three-dimensional connecting particle is referred to as a "main chain".)
The branch (b) is a branched structure in which the ends of the silica primary fine particles or the silica primary fine particles are bonded in addition to the linear direction in the particles excluding the silica primary fine particles at both ends of the three-dimensional connecting particles. Therefore, it refers to a branch that extends in the three-dimensional direction with respect to the extension direction of the branch (a). The stereoscopic direction can be determined from the transmission electron micrograph as described later.
The end (c) is a bent structure in which the ends of the silica primary fine particles or the silica primary fine particles are bonded to each other in addition to the linear direction in the particles excluding the silica primary fine particles at both ends of the three-dimensional connecting particles. It refers to a bent structure that extends in a three-dimensional direction with respect to the extension direction of the branch (a). Here, the three-dimensional direction can be determined from the transmission electron micrograph as described later.
The average number of connected silica primary particles in the particle-connected silica fine particles having a three-dimensional branched structure is preferably in the range of 5 or more and 20 or less.

本発明における立体状分岐構造を有する粒子連結型シリカ微粒子は、要件[2]で規定する鎖状で、かつ少なくとも1つの分岐(a)を有する構造と、この構造に対する立体構造を有するものである。係る立体構造については、粒子連結型シリカ微粒子分散液の電子顕微鏡写真(透過型電子顕微鏡写真、TEM写真)を用いて確認できる。 The particle-connected silica fine particles having a three-dimensional branched structure in the present invention have a chain-like structure defined in the requirement [2] and a structure having at least one branch (a), and a three-dimensional structure for this structure. .. The three-dimensional structure can be confirmed by using an electron micrograph (transmission electron micrograph, TEM photograph) of the particle-linked silica fine particle dispersion.

本発明の立体状連結粒子は、前記のとおり分岐(a)と分岐(b)あるいは分岐(a)と末端(c)を有するものであり、分岐(a)の伸長方向と分岐(b)の伸長方向は、立体状構造の関係にあり、同様に分岐(a)の伸長方向と末端(c)の伸長方向も立体状構造の関係にあるので、該立体状連結粒子を砥粒として研磨基板上に適用した場合、研磨時に本発明の立体状連結粒子は、研磨機基板と複数の接触点において応力集中を受取りやすいので、研磨速度の増進に寄与することができる。
更に立体状連結粒子からなる砥粒は、その回転運動により、研磨基板と動的な接触面積を増大するので、これも研磨速度の増大に寄与することができる。
As described above, the three-dimensionally connected particles of the present invention have a branch (a) and a branch (b) or a branch (a) and a terminal (c), and have an extension direction of the branch (a) and a branch (b). Since the elongation direction has a three-dimensional structure relationship, and similarly, the extension direction of the branch (a) and the extension direction of the terminal (c) also have a three-dimensional structure relationship, the polishing substrate uses the three-dimensional connecting particles as abrasive grains. When applied above, the three-dimensional connecting particles of the present invention can easily receive stress concentration at a plurality of contact points with the polishing machine substrate during polishing, and thus can contribute to an increase in polishing speed.
Further, since the abrasive grains made of the three-dimensionally connected particles increase the dynamic contact area with the polishing substrate due to the rotational movement, this can also contribute to the increase in the polishing rate.

本発明では立体状分岐構造を有する粒子連結型シリカ微粒子の確認を次のように行う。
シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液(SiO濃度1質量%、動的光散乱法で測定された平均粒子径が50nm〜600nmの範囲)の透過型電子顕微鏡写真(倍率:20万倍)を用意し、少なくとも粒子が連結した形状の任意の200個の粒子のうち、立体状連結粒子に相当する粒子の個数を測定し、立体状連結粒子の個数割合を算定する。
立体状連結粒子の判定基準は次のとおりである。すなわち、特定の粒子連結型シリカ微粒子に関し、下記の(1)〜(3)の要件を満たすかを確認する。
(1)シリカ一次微粒子の連結個数が5個以上で鎖状構造
(2)主鎖構成粒子のうち、末端の粒子以外の粒子に結合した分岐(分岐(a))が少なくとも1箇存在する
(3)当該特定の粒子連結型シリカ微粒子上に重複して、他の一次粒子に比して、濃淡が濃い部分が確認できること。
以上の要件を満たす粒子連結型シリカ微粒子は、分岐(a)に対し、立体方向に伸長してなる分岐(b)あるいは立体方向に伸長してなる末端(c)を有すると判定し、分岐(a)に対する立体構造を有する立体状連結粒子とする。
In the present invention, the particle-connected silica fine particles having a three-dimensional branched structure are confirmed as follows.
Particle-linked silica fine particle dispersion containing particle-linked silica fine particles having a structure in which primary silica fine particles are linked (SiO 2 concentration 1% by mass, average particle diameter measured by the dynamic light scattering method in the range of 50 nm to 600 nm) Prepare a transmissive electron micrograph (magnification: 200,000 times) of Calculate the number ratio of particles.
The criteria for determining the three-dimensional connected particles are as follows. That is, it is confirmed whether or not the following requirements (1) to (3) are satisfied with respect to the specific particle-connected silica fine particles.
(1) Chain structure with 5 or more connected silica primary fine particles (2) Among the main chain constituent particles, there is at least one branch (branch (a)) bonded to particles other than the terminal particles (branch (a)). 3) It is possible to confirm a portion that overlaps with the specific particle-connected silica fine particles and has a darker shade than the other primary particles.
It is determined that the particle-connected silica fine particles satisfying the above requirements have a branch (b) extending in the three-dimensional direction or a terminal (c) extending in the three-dimensional direction with respect to the branch (a), and the branch (a) is determined to have a branch (c). It is a three-dimensional connecting particle having a three-dimensional structure with respect to a).

[立体状分岐構造を有する粒子連結型シリカ微粒子における長さ方向の平均最長径(DLa)]
本発明における立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)は、下記の要件[3]を備えることが好ましい。
要件[3]50nm≦DLa≦1,000nm
ここで、立体状分岐構造を有する粒子連結型シリカ微粒子の長さ方向における平均最長径(DLa)は、立体状分岐構造を有する粒子連結型シリカ微粒子50個の最長径(DL)をそれぞれ測定し、平均した値である。
具体的には、立体状分岐構造を有する粒子連結型シリカ微粒子における長さ方向の最長径(DL)は、シリカ微粒子分散液(SiO濃度0.05質量%)の走査型電子顕微鏡(20万倍)を用い、立体状連結粒子に該当する粒子50個について、それぞれの最長径(DL)をそれぞれ測定し、その平均値を算定する。
[Average longest diameter (DLa) in the length direction of particle-connected silica fine particles having a three-dimensional branched structure]
The particle-connected silica fine particles (three-dimensionally connected particles) having a three-dimensional branched structure in the present invention preferably satisfy the following requirement [3].
Requirement [3] 50 nm ≤ DLa ≤ 1,000 nm
Here, the average longest diameter (DLa) of the particle-connected silica fine particles having a three-dimensional branched structure in the length direction is measured by measuring the longest diameter (DL) of 50 particle-connected silica fine particles having a three-dimensional branched structure. , The average value.
Specifically, the longest diameter (DL) in the length direction of the particle-connected silica fine particles having a three-dimensional branched structure is a scanning electron microscope (200,000) of a silica fine particle dispersion (SiO 2 concentration 0.05% by mass). The longest diameter (DL) of each of the 50 particles corresponding to the three-dimensionally connected particles is measured using (times), and the average value is calculated.

立体状連結粒子の長さ方向の平均最長径(DLa)が、50nm以上1,000nm以下であると、優れた研磨速度が得られるので、好ましい。
立体状連結粒子の長さ方向の平均最長径(DLa)が、50nm未満であると、十分な研磨速度を得られない場合があり、好ましくない。また、立体状連結粒子の長さ方向の平均最長径(DLa)が、1,000nmを超えると、研磨基板上で傷が生じやすくなるため、好ましくない。
立体状連結粒子の長さ方向の最長径(DLa)は、80nm以上600nm以下がより好ましく、100nm以上600nm以下が最も好ましい。
When the average longest diameter (DLa) of the three-dimensionally connected particles in the length direction is 50 nm or more and 1,000 nm or less, an excellent polishing rate can be obtained, which is preferable.
If the average longest diameter (DLa) of the three-dimensionally connected particles in the length direction is less than 50 nm, a sufficient polishing rate may not be obtained, which is not preferable. Further, if the average longest diameter (DLa) of the three-dimensionally connected particles in the length direction exceeds 1,000 nm, scratches are likely to occur on the polished substrate, which is not preferable.
The longest diameter (DLa) of the three-dimensionally connected particles in the length direction is more preferably 80 nm or more and 600 nm or less, and most preferably 100 nm or more and 600 nm or less.

[立体状分岐構造を有する粒子連結型シリカ微粒子における太さ方向の平均直径(DTa)]
本発明における立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)は、下記の要件[4]を備えることが好ましい。
要件[4] 10nm≦DTa≦800nm
ここで、立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)の太さ方向における平均直径DTaは、50個の立体状連結粒子について、各粒子における極大値(DTmax)の平均値を、さらに平均した値([50個の立体状連結粒子についてDTmaxを合計した値]/50)をいう。
立体状連結粒子は、外形的に太さ方向の距離が極小値(DTmin)と極大値(DTmax)をそれぞれ2箇所以上有する。
立体状分岐構造を有する粒子連結型シリカ微粒子における太さ方向とは、長さ方向の最長径(DL)と直交する方向をいう。
立体状分岐構造を有する粒子連結型シリカ微粒子における外形的な太さ方向の直径DTは、粒子の外縁部と太さ方向の線分とが交わる2交点間の距離をいう。
「粒子連結型シリカ微粒子の外縁部」とは、走査型顕微鏡写真等(SEM写真等)を用いて、粒子連結型シリカ微粒子を平面視(写真投影図)した場合における粒子連結型シリカ微粒子の輪郭をいう。
立体状分岐構造を有する粒子連結型シリカ微粒子における外形的な太さ方向の直径DTは、走査型電子顕微鏡(20万倍)を用いて測定する。
[Average diameter (DTa) in the thickness direction of particle-connected silica fine particles having a three-dimensional branched structure]
The particle-connected silica fine particles (three-dimensionally connected particles) having a three-dimensional branched structure in the present invention preferably satisfy the following requirement [4].
Requirement [4] 10 nm ≤ DTa ≤ 800 nm
Here, the average diameter DTa in the thickness direction of the particle-connected silica fine particles (three-dimensionally connected particles) having a three-dimensional branched structure is the average value (DTmax) of the maximum values (DTmax) of each of the 50 three-dimensionally connected particles. Is further averaged ([total value of DTmax for 50 three-dimensional connected particles] / 50).
The three-dimensionally connected particles have two or more externally minimum (DTmin) and maximum (DTmax) distances in the thickness direction.
The thickness direction of the particle-connected silica fine particles having a three-dimensional branched structure means a direction orthogonal to the longest diameter (DL) in the length direction.
The external diameter DT in the thickness direction of the particle-connected silica fine particles having a three-dimensional branched structure refers to the distance between two intersections where the outer edge of the particles and the line segment in the thickness direction intersect.
The "outer edge of the particle-connected silica fine particles" is the outline of the particle-connected silica fine particles when the particle-connected silica fine particles are viewed in a plan view (photo projection drawing) using a scanning micrograph or the like (SEM photograph or the like). To say.
The external diameter DT in the thickness direction of the particle-connected silica fine particles having a three-dimensional branched structure is measured using a scanning electron microscope (200,000 times).

立体状連結粒子の太さ方向における平均直径(DTa)が、10nm以上800nm以下であると、実用上の不都合を生じず好ましい。立体状連結粒子の太さ方向における平均直径(DTa)が、10nm未満であると、分散液の著しい増粘を伴い、取り扱い上の不都合を生じるため、好ましくない。また、立体状連結粒子の太さ方向における平均直径(DTa)が、800nmを超えると、粒子の沈降性が大きくなり、取り扱い上の不都合を生じるため、好ましくない。
立体状連結粒子の太さ方向における平均最長直径(DTa)は、20nm以上600nm以下がより好ましい。40nm以上600nm以下がさらに好ましく、60nm以上600nm以下が最も好ましい。
It is preferable that the average diameter (DTa) of the three-dimensionally connected particles in the thickness direction is 10 nm or more and 800 nm or less without causing practical inconvenience. If the average diameter (DTa) of the three-dimensionally connected particles in the thickness direction is less than 10 nm, the dispersion liquid is significantly thickened, which causes inconvenience in handling, which is not preferable. Further, if the average diameter (DTa) of the three-dimensionally connected particles in the thickness direction exceeds 800 nm, the sedimentation property of the particles becomes large, which causes inconvenience in handling, which is not preferable.
The average longest diameter (DTa) of the three-dimensionally connected particles in the thickness direction is more preferably 20 nm or more and 600 nm or less. It is more preferably 40 nm or more and 600 nm or less, and most preferably 60 nm or more and 600 nm or less.

本発明における立体状分岐構造を有する粒子連結型シリカ微粒子の長さ方向の平均最長径(DLa)が50nm以上1000nm以下の範囲であり、かつその太さ方向の平均直径(DTa)が、10nm以上800nm以下の範囲であることが好ましい。 In the present invention, the average longest diameter (DLa) of the particle-connected silica fine particles having a three-dimensional branched structure in the length direction is in the range of 50 nm or more and 1000 nm or less, and the average diameter (DTa) in the thickness direction thereof is 10 nm or more. The range is preferably 800 nm or less.

[立体状分岐構造を有する粒子連結型シリカ微粒子の太さ方向の直径(DT)における平均変動係数(C.V.)]
本発明における立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)は、下記の要件[5]を備えることが好ましい。
要件[5]10%≦C.V.≦40%
立体状分岐構造を有する粒子連結型シリカ微粒子の太さ方向の直径(DT)の変動係数および平均変動係数(C.V.)は、次のように求める。
(1)立体状分岐構造を有する粒子連結型シリカ微粒子における最長径DLを求めるときに用いた走査型電子顕微鏡写真を使用する。
(2)最長径DLを2等分し、直交する線分が粒子外縁と交わる2交点を求め、該2交点を結ぶ線分をDTとする。
(3)任意に選択した50個の立体状連結粒子について上記(2)の測定を行い、それらの平均値(DT50個の合計/50)を太さ方向の平均直径DTaとした。
(4)任意に選択した50個の立体状連結粒子について上記(2)の測定を行い、50個の立体状連結粒子のそれぞれのDTの値について変動係数を求め、それらを平均した値を平均変動係数(C.V.)とした。
平均変動係数(C.V.)が10%以上40%以下の範囲にあると、良好な研磨速度が得られるので好ましい。
平均変動係数(C.V.)が10%未満であると、分岐の形成が不十分であり、所望の研磨特性が得られないため好ましくない。また、平均変動係数(C.V.)が40%を超えると、粒子と基板の接触が不均一になるためか所望の研磨特性が得られず、研磨基板に傷が生じる傾向が強まり、好ましくない。
平均変動係数(C.V.)は、15%以上35%以下の範囲であることがより好ましい。
[Average coefficient of variation (CV) in diameter (DT) in the thickness direction of particle-connected silica fine particles having a three-dimensional branched structure]
The particle-connected silica fine particles (three-dimensionally connected particles) having a three-dimensional branched structure in the present invention preferably satisfy the following requirement [5].
Requirement [5] 10% ≤ C. V. ≤40%
The coefficient of variation and the average coefficient of variation (CV) of the diameter (DT) in the thickness direction of the particle-connected silica fine particles having a three-dimensional branched structure are obtained as follows.
(1) The scanning electron micrograph used when determining the longest diameter DL of the particle-connected silica fine particles having a three-dimensional branched structure is used.
(2) The longest diameter DL is divided into two equal parts, two intersections where orthogonal line segments intersect the outer edge of the particle are obtained, and the line segment connecting the two intersections is defined as DT.
(3) The measurement of (2) above was performed on 50 arbitrarily selected three-dimensionally connected particles, and the average value (total of 50 DTs / 50) was taken as the average diameter DTa in the thickness direction.
(4) The measurement of (2) above was performed on 50 arbitrarily selected three-dimensionally connected particles, the coefficient of variation was obtained for each DT value of the 50 three-dimensionally connected particles, and the averaged values were averaged. The coefficient of variation (CV) was used.
When the average coefficient of variation (CV) is in the range of 10% or more and 40% or less, a good polishing rate can be obtained, which is preferable.
If the average coefficient of variation (CV) is less than 10%, branch formation is insufficient and desired polishing characteristics cannot be obtained, which is not preferable. Further, if the average coefficient of variation (CV) exceeds 40%, the desired polishing characteristics cannot be obtained probably because the contact between the particles and the substrate becomes non-uniform, and the polishing substrate tends to be scratched, which is preferable. No.
The average coefficient of variation (CV) is more preferably in the range of 15% or more and 35% or less.

[立体状分岐構造を有する粒子連結型シリカ微粒子のネック部]
本発明の立体状連結粒子においては、立体状連結粒子生成後の珪酸液等のシリカ補強処理の程度により、隣接するシリカ一次微粒子間に形成されるネック部に違いが生じる。ネック部の深さを、隣接するシリカ一次微粒子(p1)とシリカ一次微粒子(p2)の両方に外接する直線Cを引き、シリカ一次微粒子(p1)と(p2)の接合部から該直線Cに直交する線分を求め、その線分をネック部深さ(L)[nm]とし、Ls、LmおよびFを下記のとおり定める。
F:立体状連結粒子におけるシリカ一次微粒子の平均粒子径(透過型電子顕微鏡)
L:ネック部深さ
Ls:同一の立体状連結粒子におけるネック部深さの平均値
Lm:50個の立体状連結粒子におけるネック部深さの平均値
このとき、Lmは、下記数式(2−1)で表される範囲を満たすことが好ましい。
0≦Lm≦F/3・・・(2−1)
Lmが上記範囲にある場合、一次粒子間のネックは十分にシリカで補強されており、研磨時の荷重を受けても、粒子連結構造及び立体状構造は保持されるので、粒子と研磨基板との高接触面積が得られ、所望の研磨性能を得ることができる。
他方、Lmの値がF/3の値より大きい場合、即ち、ネック部の深さの平均値(Lm)が、前記シリカ一次微粒子の平均粒子径(F)の3分の1より大きい場合は、一次粒子間のネック部深さが十分にシリカで十分に補強されていない状態であり、研磨時の荷重により立体状連結粒子の構造が崩壊し、研磨速度が低下する場合がある。
Lmが、F/2を超えると粒子連結状とは見做せない。
Lmは、下記数式(2−2)で表される範囲を満たすことがより好ましく、下記数式(2−3)で表される範囲を満たすことがさらに好ましい。
0<Lm<F/6・・・(2−2)
0<Lm<F/9・・・(2−3)
[Neck of particle-connected silica fine particles with a three-dimensional branched structure]
In the three-dimensionally connected particles of the present invention, the neck portion formed between the adjacent silica primary fine particles differs depending on the degree of silica reinforcement treatment such as a silicic acid solution after the three-dimensionally connected particles are generated. The depth of the neck portion is drawn by drawing a straight line C circumscribing both the adjacent silica primary fine particles (p1) and the silica primary fine particles (p2), and from the junction between the silica primary fine particles (p1) and (p2) to the straight line C. Find the line segments that are orthogonal to each other, set the line segment to the neck depth (L) [nm], and define Ls, Lm, and F as follows.
F: Average particle size of silica primary fine particles in three-dimensionally connected particles (transmission electron microscope)
L: Neck depth Ls: Average neck depth of the same three-dimensional connecting particles Lm: Average neck depth of 50 three-dimensional connecting particles At this time, Lm is calculated by the following formula (2-). It is preferable to satisfy the range represented by 1).
0 ≤ Lm ≤ F / 3 ... (2-1)
When Lm is in the above range, the neck between the primary particles is sufficiently reinforced with silica, and the particle connection structure and the three-dimensional structure are maintained even when a load is applied during polishing. High contact area can be obtained, and desired polishing performance can be obtained.
On the other hand, when the value of Lm is larger than the value of F / 3, that is, when the average value (Lm) of the depth of the neck portion is larger than one-third of the average particle size (F) of the silica primary fine particles. In a state where the neck depth between the primary particles is not sufficiently reinforced with silica, the structure of the three-dimensionally connected particles may collapse due to the load during polishing, and the polishing speed may decrease.
If Lm exceeds F / 2, it cannot be regarded as a particle-connected form.
Lm more preferably satisfies the range represented by the following mathematical formula (2-2), and further preferably satisfies the range represented by the following mathematical formula (2-3).
0 <Lm <F / 6 ... (2-2)
0 <Lm <F / 9 ... (2-3)

[立体状分岐構造を有する粒子連結型シリカ微粒子のネック部深さの平均変動係数(C.V.(Lm))]
本発明における立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)は、下記の要件を備えることが好ましい。
0%≦C.V.(Lm)≦40%
ここで、C.V.(Lm)は、上述のとおりに求めた各粒子のLsを50個の立体連結粒子に対して求め、求めた50個間での変動係数である。C.V.(Lm)は、0%以上35%以下の範囲であることがより好ましく、0%以上30%以下の範囲であることがさらに好ましい。
C.V.(Lm)が上記範囲にある場合、ネック補強が均一になされており、研磨中の粒子崩壊が抑制でき、研磨速度が安定する。
C.V.(Lm)が40%を超える場合、すなわち粒子間のネック部深さのばらつきが大きい場合は、各粒子と基板との接触面積にもばらつきが生じるためか、研磨速度の低下やスクラッチ等の欠陥が発生しやすい場合がある。
[Average coefficient of variation of neck depth of particle-connected silica fine particles having a three-dimensional branched structure (CV (Lm))]
The particle-connected silica fine particles (three-dimensionally connected particles) having a three-dimensional branched structure in the present invention preferably satisfy the following requirements.
0% ≤ C. V. (Lm) ≤40%
Here, C.I. V. (Lm) is the coefficient of variation between the obtained 50 particles obtained by obtaining the Ls of each particle obtained as described above for 50 three-dimensionally connected particles. C. V. (Lm) is more preferably in the range of 0% or more and 35% or less, and further preferably in the range of 0% or more and 30% or less.
C. V. When (Lm) is in the above range, the neck reinforcement is made uniform, particle decay during polishing can be suppressed, and the polishing rate is stable.
C. V. If (Lm) exceeds 40%, that is, if there is a large variation in the neck depth between the particles, the contact area between each particle and the substrate may also vary, resulting in a decrease in polishing speed or defects such as scratches. May easily occur.

[ネック部深さの測定方法]
立体状連結粒子の任意の箇所において、隣接するシリカ一次微粒子(p1)とシリカ一次微粒子(p2)の両方に外接する直線Cを引き、シリカ一次微粒子(p1)と(p2)の接合部から該直線Cに直交する線分を求め、その線分をネック部分深さ(L)[nm]とする。
同一の立体状連結粒子の任意の3箇所で、上記ネック部分深さ(L)[nm]を求め、それらの平均値(Ls)[nm]を算定する。この測定と算定を50個の立体状連結粒子について行い、その平均値(Lm)[nm]を求める。
[Measurement method of neck depth]
A straight line C circumscribing both the adjacent silica primary fine particles (p1) and the silica primary fine particles (p2) is drawn at an arbitrary position of the three-dimensional connecting particles, and the straight line C is drawn from the junction of the silica primary fine particles (p1) and (p2). A line segment orthogonal to the straight line C is obtained, and the line segment is defined as the neck portion depth (L) [nm].
The neck portion depth (L) [nm] is obtained at any three points of the same three-dimensionally connected particles, and the average value (Ls) [nm] thereof is calculated. This measurement and calculation are performed on 50 three-dimensionally connected particles, and the average value (Lm) [nm] is obtained.

[立体状分岐構造を有する粒子連結型シリカ微粒子におけるシリカ一次微粒子の平均連結個数]
本発明の立体状連結粒子におけるシリカ一次微粒子の平均連結個数は、5個以上20個以下の範囲にあることが好ましい。
平均連結個数が5個未満であると、動的な接触面積が十分に得られないためか所望の研磨速度が得られないことから好ましくない。また、平均連結個数が20個を超えると、連結型というよりも凝集塊の形態となり、ディフェクト等の原因となるため好ましくない。
本発明の立体状連結粒子におけるシリカ一次微粒子の平均連結個数は、5個以上15個以下の範囲がより好ましい。
[Average number of connected silica primary particles in particle-connected silica fine particles having a three-dimensional branched structure]
The average number of silica primary fine particles linked in the three-dimensionally linked particles of the present invention is preferably in the range of 5 or more and 20 or less.
If the average number of connected pieces is less than 5, it is not preferable because a sufficient dynamic contact area cannot be obtained or a desired polishing rate cannot be obtained. Further, if the average number of connected pieces exceeds 20, it becomes a form of agglutinated agglomerates rather than a connected type, which causes defects and the like, which is not preferable.
The average number of silica primary fine particles linked in the three-dimensionally linked particles of the present invention is more preferably in the range of 5 or more and 15 or less.

本発明の立体状連結粒子におけるシリカ一次微粒子の平均連結個数は、立体状連結粒子分散液の走査型電子顕微鏡写真(20万倍)を用いて測定する。
走査型電子顕微鏡写真を用いて、各立体状連結粒子について、シリカ一次微粒子の連結個数を目視によって、数える。そして、立体状連結粒子50個の連結個数の平均値を平均連結個数とする。
The average number of silica primary fine particles linked in the three-dimensionally linked particles of the present invention is measured using a scanning electron micrograph (200,000 times) of the three-dimensionally linked particle dispersion.
Using a scanning electron micrograph, the number of silica primary fine particles linked is visually counted for each three-dimensional linked particle. Then, the average value of the number of connected 50 three-dimensionally connected particles is taken as the average number of connected particles.

[立体状分岐構造を有する粒子連結型シリカ微粒子におけるシリカ一次微粒子]
立体状連結粒子におけるシリカ一次微粒子の平均粒子径範囲は、前記連結粒子におけるシリカ一次微粒子の平均粒子径と同様である。即ち、前記立体状連結粒子におけるシリカ一次微粒子の平均粒子径は5nm以上600nm以下が好ましく、20nm以上400nm以下がより好ましく、60nm以上300nm以下がさらに好ましい。平均粒子径が5nm未満の場合は、一次粒子が凝集して得られる連結粒子が塊状になる傾向がある。また、研磨用途においては、応力集中が得られないためか、十分な研磨速度が得られず好ましくない。平均粒子径が600nmを超える場合は、例えば、研磨用途において、接触面積の低下が著しくなり、研磨速度の低下を招くときがある。また、平均粒子径が600nmを超える場合は、例えば、研磨面にスクラッチ(線状痕)が発生するときがある。
[Silica primary fine particles in particle-connected silica fine particles having a three-dimensional branched structure]
The average particle size range of the silica primary fine particles in the three-dimensionally connected particles is the same as the average particle size of the silica primary fine particles in the connected particles. That is, the average particle size of the silica primary fine particles in the three-dimensionally connected particles is preferably 5 nm or more and 600 nm or less, more preferably 20 nm or more and 400 nm or less, and further preferably 60 nm or more and 300 nm or less. When the average particle size is less than 5 nm, the connected particles obtained by aggregating the primary particles tend to be agglomerated. Further, in the polishing application, it is not preferable because a sufficient polishing rate cannot be obtained probably because stress concentration cannot be obtained. When the average particle size exceeds 600 nm, for example, in polishing applications, the contact area may be significantly reduced, which may lead to a decrease in polishing speed. When the average particle size exceeds 600 nm, scratches (linear marks) may occur on the polished surface, for example.

[立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)以外の粒子連結型シリカ微粒子(平面状連結粒子)]
本発明の平面状連結粒子は、立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)以外の粒子連結型シリカ微粒子(連結粒子)である。
このため、シリカ一次微粒子が2個以上、連結した粒子であって、立体状連結粒子以外であれば、平面状連結粒子に含まれる。例えば、シリカ一次微粒子が2個連結したものは、分岐構造が想定し得ないため、全て、平面状連結粒子に含まれる。
また、平面状連結粒子は、立体状連結粒子のように鎖状に連結したものに限定されない。例えば、平面状連結粒子には、シリカ一次微粒子が連結粒子の構造における一部または全部が環状に連結したものを含む。
[Particle-connected silica fine particles (planar connecting particles) other than particle-connected silica fine particles (three-dimensional connecting particles) having a three-dimensional branched structure]
The planar connecting particles of the present invention are particle connecting type silica fine particles (connecting particles) other than particle connecting type silica fine particles (three-dimensional connecting particles) having a three-dimensional branched structure.
Therefore, if two or more silica primary fine particles are linked to each other and are other than the three-dimensional linked particles, they are included in the planar linked particles. For example, those in which two primary silica fine particles are connected are all included in the planar connected particles because a branched structure cannot be assumed.
Further, the planar connecting particles are not limited to those connected in a chain like the three-dimensional connecting particles. For example, the planar connecting particles include those in which the silica primary fine particles are partially or wholly connected in a ring shape in the structure of the connecting particles.

[粒子連結型シリカ微粒子(連結粒子)以外のシリカ微粒子(単粒子)]
本発明の粒子連結型シリカ微粒子(連結粒子)以外のシリカ微粒子(単粒子)は、シリカ一次微粒子が2個以上連結したもの以外を含む。シリカ微粒子(単粒子)は、連結粒子を生成するために、反応物として用いたシリカ一次微粒子における未反応のシリカ一次微粒子が主な成分である。
[Silica fine particles (single particles) other than particle-linked silica fine particles (connected particles)]
The silica fine particles (single particles) other than the particle-linked silica fine particles (connected particles) of the present invention include those other than those in which two or more silica primary fine particles are linked. The main component of the silica fine particles (single particles) is unreacted silica primary fine particles in the silica primary fine particles used as a reactant in order to generate linked particles.

[粒子連結型シリカ微粒子分散液のシリカ微粒子が含有するCa、MgおよびAlの割合]
本発明の粒子連結型シリカ微粒子分散液におけるシリカ微粒子が含有するCa、MgおよびAlの割合は、それぞれ、25ppm以下、25ppm以下および150ppm以下が好ましい。各元素の含有割合は、シリカ微粒子の単位質量あたりに含まれる各元素の質量の割合として表す。
本発明の粒子連結型シリカ微粒子分散液のシリカ微粒子は、シリカ一次微粒子またはこれがシリカによって結合したものである。このため、例えば、CaO、MgOおよびAl等の結合剤成分を含有しない。したがって、本発明のシリカ微粒子を含んでなる粒子連結型シリカ微粒子分散液を半導体基板あるいは配線基板等の半導体デバイスの研磨用途に適用した場合、これらの結合剤成分に起因する金属汚染の問題を生じるおそれが低い。
前記粒子連結型シリカ微粒子分散液におけるシリカ微粒子におけるCa含有量は10ppm以下、Mg含有量は10ppm以下およびAl含有量は60ppm以下がより好ましい。
[Ratio of Ca, Mg and Al contained in silica fine particles of particle-linked silica fine particle dispersion]
The proportions of Ca, Mg and Al contained in the silica fine particles in the particle-linked silica fine particle dispersion liquid of the present invention are preferably 25 ppm or less, 25 ppm or less and 150 ppm or less, respectively. The content ratio of each element is expressed as the ratio of the mass of each element contained in the unit mass of the silica fine particles.
The silica fine particles of the particle-linked silica fine particle dispersion liquid of the present invention are silica primary fine particles or those bonded by silica. Therefore, for example, it does not contain a binder component such as CaO, MgO and Al 2 O 3. Therefore, when the particle-connected silica fine particle dispersion liquid containing the silica fine particles of the present invention is applied to a polishing application for a semiconductor device such as a semiconductor substrate or a wiring substrate, a problem of metal contamination due to these binder components arises. Low risk.
It is more preferable that the Ca content in the silica fine particles in the particle-linked silica fine particle dispersion is 10 ppm or less, the Mg content is 10 ppm or less, and the Al content is 60 ppm or less.

本発明の連結粒子分散液は、その分散質として、立体状連結粒子を5個数%以上50個数%以下含む。
立体状連結粒子の個数割合は5個数%以上50個数%以下の範囲が好ましい。より好ましくは5個数%以上30個数%以下の範囲が好ましく、さらに好ましくは5個数%以上25個数%以下の範囲が好ましい。また、平面状連結粒子の割合は50個数%以上95個数%が好ましい。
The linked particle dispersion liquid of the present invention contains 5% or more and 50% or less of three-dimensional linked particles as the dispersoid.
The number ratio of the three-dimensionally connected particles is preferably in the range of 5% by number or more and 50% by number or less. More preferably, the range of 5% by number or more and 30% by number or less is preferable, and further preferably the range of 5% by number or more and 25% by number or less is preferable. Further, the ratio of the planar connecting particles is preferably 50% or more and 95% or more.

立体状連結粒子の個数割合が5個数%以上50個数%以下の範囲の場合、本発明の粒子連結型シリカ微粒子分散液を研磨用途に適用した場合、前記の研磨速度の増大に効果的に寄与することができる。
立体状連結粒子の個数割合が5個数%未満の場合、砥粒のうち、前記立体状構造を有した立体状連結粒子の割合が低いため、研磨後の基板の表面粗さは低くなるものの、研磨速度も低下する。
立体状連結粒子の個数割合が50個数%を超える場合、砥粒のうち、前記立体状構造を有した立体状連結粒子の割合が過剰で、研磨速度は増大するものの、研磨基板上でのスクラッチ発生や表面粗さが悪化するといった問題が生じやすくなる。立体状連結粒子個数割合が50個数%以下の場合、50%超存在する単粒子や連結度の高くない粒子及び平面状連結粒子が、研磨基板の粗さを良化させ、50%以下の立体状連結粒子が高い研磨速度を示す。そのため、研磨速度と表面粗さを両立する事ができる。
When the number ratio of the three-dimensionally connected particles is in the range of 5% or more and 50% or less, when the particle-linked silica fine particle dispersion of the present invention is applied to a polishing application, it effectively contributes to the increase in the polishing rate. can do.
When the number ratio of the three-dimensionally connected particles is less than 5%, the ratio of the three-dimensionally connected particles having the three-dimensional structure is low among the abrasive grains, so that the surface roughness of the substrate after polishing is low, but The polishing speed is also reduced.
When the number ratio of the three-dimensionally connected particles exceeds 50%, the ratio of the three-dimensionally connected particles having the three-dimensional structure is excessive among the abrasive grains, and the polishing speed is increased, but scratches on the polishing substrate are made. Problems such as generation and deterioration of surface roughness are likely to occur. When the number ratio of the three-dimensionally connected particles is 50% or less, the single particles existing in excess of 50%, the particles having a low degree of connection, and the planar connected particles improve the roughness of the polishing substrate, and the three-dimensionally connected particles are 50% or less. The shape-connected particles show a high polishing rate. Therefore, both the polishing speed and the surface roughness can be achieved at the same time.

立体状連結粒子の個数%は、次のように求める。連結粒子分散液(固形分濃度0.05質量%)の透過型顕微鏡写真(20万倍)により、少なくとも粒子が連結した形状の粒子を200個任意に選択する。選択した200個における個々の粒子を立体状連結粒子または平面状連結粒子のいずれかに選別する。そして、立体状連結粒子の個数を200で除した値を立体状連結粒子の個数%とする。 The number% of the three-dimensional connected particles is calculated as follows. A transmission electron micrograph (200,000 times) of a linked particle dispersion (solid content concentration: 0.05% by mass) is used to arbitrarily select at least 200 particles having a shape in which the particles are linked. The individual particles in the selected 200 are sorted into either three-dimensional connecting particles or planar connecting particles. Then, the value obtained by dividing the number of three-dimensionally connected particles by 200 is defined as the number% of the number of three-dimensionally connected particles.

本発明の粒子連結型シリカ微粒子分散液における、立体状連結粒子の体積%は、40体積%以上95体積%の範囲が好ましい。
立体状連結粒子の体積割合が40体積%以上95体積%以下の範囲の場合、本発明の粒子連結型シリカ微粒子分散液を研磨用途に適用したとき、前記の研磨速度の増大に効果的に寄与することができる。
立体状連結粒子の体積割合が40体積%未満の場合、砥粒のうち、前記立体構造を有した立体状連結粒子の割合が低く、研磨速度の増大に対する寄与も少ない。
立体状連結粒子の体積割合が95体積%を超える場合、砥粒のうち、前記立体構造を有した立体状連結粒子の割合が過剰で、研磨速度は増大するものの、研磨基板上でのスクラッチ発生といった問題が生じやすくなる。
立体状連結粒子の体積割合は好ましくは45体積%以上90体積%以下、更に好ましくは50体積%以上86体積%以下である。
In the particle-linked silica fine particle dispersion liquid of the present invention, the volume% of the three-dimensionally linked particles is preferably in the range of 40% by volume or more and 95% by volume.
When the volume ratio of the three-dimensionally connected particles is in the range of 40% by volume or more and 95% by volume or less, when the particle-connected silica fine particle dispersion liquid of the present invention is applied to a polishing application, it effectively contributes to the increase in the polishing rate. can do.
When the volume ratio of the three-dimensionally connected particles is less than 40% by volume, the ratio of the three-dimensionally connected particles having the three-dimensional structure is low among the abrasive grains, and the contribution to the increase in the polishing rate is small.
When the volume ratio of the three-dimensionally connected particles exceeds 95% by volume, the ratio of the three-dimensionally connected particles having the three-dimensional structure is excessive in the abrasive grains, and the polishing speed increases, but scratches occur on the polishing substrate. Such problems are likely to occur.
The volume ratio of the three-dimensionally connected particles is preferably 45% by volume or more and 90% by volume or less, and more preferably 50% by volume or more and 86% by volume or less.

立体状連結粒子の体積%(W)の求め方は、後記のとおりである。 The method of obtaining the volume% (W) of the three-dimensionally connected particles is as described later.

本発明の粒子連結型シリカ微粒子分散液は、立体状連結粒子および平面状連結粒子以外に、発明の効果に大きな影響を与えない範囲で、粒子連結していない単粒子を含んでいてもよい。例えば、砥粒として用いる場合には、粒子連結型シリカ微粒子の体積に対する単粒子の体積の比は、前者100(体積部)に対し、後者55(体積部)以下であることが望ましい。(ここで、粒子連結型シリカ微粒子の体積とは、立体状連結粒子の体積と平面状連結粒子の体積の総和を意味する。)粒子連結型シリカ微粒子の体積に対する単粒子の体積の比が上記範囲内であれば、本発明の効果を損なうことがない。なお、単粒子の前記体積比が55(体積部)を超える場合、砥粒のうち前記立体構造を有した立体状連結粒子の割合が相対的に低く、例えば、研磨速度の増大に対する効果も生じ難くなる。
また、粒子連結型シリカ微粒子の個数に対する単粒子の個数の比は、前者100(個数部)に対し、後者210(個数部)以下であることが望ましい。(ここで、粒子連結型シリカ微粒子の個数とは、立体状連結粒子の個数と平面状連結粒子の個数の総和を意味する。)粒子連結型シリカ微粒子の個数に対する単粒子の個数の比が上記範囲内であれば、本発明の効果を損なうことがない。なお、単粒子の前記個数比が210(個数部)を超える場合、砥粒のうち前記立体構造を有した立体状連結粒子の割合が相対的に低く、例えば、研磨速度の増大に対する効果も生じ難くなる。
In addition to the three-dimensionally connected particles and the planarly connected particles, the particle-linked silica fine particle dispersion liquid of the present invention may contain single particles that are not particle-connected as long as the effects of the present invention are not significantly affected. For example, when used as abrasive grains, the ratio of the volume of a single particle to the volume of the particle-connected silica fine particles is preferably 100 (volume part) of the former and 55 (volume part) or less of the latter. (Here, the volume of the particle-connected silica fine particles means the sum of the volumes of the three-dimensionally connected particles and the volume of the planar connected particles.) The ratio of the volume of the single particles to the volume of the particle-connected silica fine particles is described above. If it is within the range, the effect of the present invention is not impaired. When the volume ratio of the single particles exceeds 55 (volume part), the proportion of the three-dimensionally connected particles having the three-dimensional structure in the abrasive grains is relatively low, and for example, an effect on increasing the polishing speed also occurs. It becomes difficult.
Further, the ratio of the number of single particles to the number of particle-connected silica fine particles is preferably 210 (number of parts) or less of the latter 100 (number of parts). (Here, the number of particle-linked silica fine particles means the sum of the number of three-dimensional linked particles and the number of planar linked particles.) The ratio of the number of single particles to the number of particle-linked silica fine particles is the above. If it is within the range, the effect of the present invention is not impaired. When the number ratio of the single particles exceeds 210 (number of parts), the proportion of the three-dimensionally connected particles having the three-dimensional structure in the abrasive grains is relatively low, and for example, an effect on increasing the polishing rate also occurs. It becomes difficult.

[粒子連結型シリカ微粒子分散液のシラノール基密度]
粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子のシラノール基密度は、0.1個/nm以上5.0個/nm以下の範囲にあることが好ましい。
シラノール基密度は、0.5個/nm以上4.5個/nm以下であることがより好ましく、1.0個/nm以上4.0個/nm以下であることがさらに好ましい。
シラノール基密度が0.1個/nm以上5.0個/nm以下の範囲にあると、そのような粒子連結型シリカ微粒子分散液を研磨用途に適用した場合、研磨性能が向上する。これは粒子連結型シリカ微粒子どうしで、シリカ表面のシラノール基に起因する静電的な反発作用により、粒子連結型シリカ微粒子どうしの凝集が抑制され、効率的な研磨が行われるものと推察される。
粒子連結型シリカ微粒子分散液の表面シラノール基密度が5.0個/nmを超える場合は、研磨基材の材質によっては、粒子表面のシラノール基と基板との凝着作用のためか、基板への粒子残りが多く発生する、研磨時に添加する界面活性剤が過剰に必要になる等が生じ好ましくない。また、粒子連結型シリカ微粒子分散液の表面シラノール基密度が0.1個/nm未満の場合は、粒子連結型シリカ微粒子のシリカ表面の負電荷が小さくなるので、粒子連結型シリカ微粒子の分散性が低下することがあり、好ましくない。
[Silanol group density of particle-linked silica fine particle dispersion]
The silanol group density of the silica fine particles contained in the particle-linked silica fine particle dispersion is preferably in the range of 0.1 / nm 2 or more and 5.0 / nm 2 or less.
The silanol group density is more preferably 0.5 pieces / nm 2 or more and 4.5 pieces / nm 2 or less, and further preferably 1.0 piece / nm 2 or more and 4.0 pieces / nm 2 or less. ..
When the silanol group density is in the range of 0.1 element / nm 2 or more and 5.0 element / nm 2 or less, the polishing performance is improved when such a particle-linked silica fine particle dispersion is applied to a polishing application. It is presumed that these are particle-linked silica fine particles, and that the electrostatic repulsion caused by the silanol groups on the silica surface suppresses the agglutination of the particle-linked silica fine particles, resulting in efficient polishing. ..
If the surface silanol group density of the particle-linked silica fine particle dispersion exceeds 5.0 elements / nm 2 , it may be due to the adhesion between the silanol groups on the particle surface and the substrate, depending on the material of the polishing substrate. It is not preferable because a large amount of particles remain on the surface and an excessive amount of surfactant to be added at the time of polishing is required. Further, when the surface silanol group density of the particle-linked silica fine particle dispersion is less than 0.1 / nm 2 , the negative charge on the silica surface of the particle-linked silica fine particles becomes small, so that the particle-linked silica fine particles are dispersed. It is not preferable because it may reduce the sex.

[粒子連結型シリカ微粒子分散液のカチオンコロイド滴定]
粒子連結型シリカ微粒子分散液は、流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が、−350以上−10以下であることが好ましい。
ΔPCD/Vが、−350以上−10以下である場合、そのような粒子連結型シリカ微粒子分散液を研磨用途に適用した場合、良好な研磨速度を得ることができる。
ΔPCD/Vが、−350未満であると、研磨基板の材質によっては電荷による相互作用が大きくなりすぎるためか基板への粒子残りが多く発生し、好ましくない。また、ΔPCD/Vが、−10を超えると、粒子連結型シリカ微粒子の分散性が低下することがあり、好ましくない。
ΔPCD/Vは、−300以上−20以下がさらに好ましい。ΔPCD/Vは、カチオンコロイド滴定によって求められる。
[Cation colloid titration of particle-linked silica fine particle dispersion]
In the particle-linked silica fine particle dispersion, the ratio (ΔPCD / V) of the amount of change in flow potential (ΔPCD) to the amount of cation colloid titration solution added (V) in the knick is −350 or more and −10 or less. preferable.
When ΔPCD / V is −350 or more and −10 or less, a good polishing rate can be obtained when such a particle-linked silica fine particle dispersion is applied to a polishing application.
If ΔPCD / V is less than −350, a large amount of particles remain on the substrate, which is not preferable, probably because the interaction due to electric charge becomes too large depending on the material of the polishing substrate. Further, when ΔPCD / V exceeds −10, the dispersibility of the particle-linked silica fine particles may decrease, which is not preferable.
ΔPCD / V is more preferably −300 or more and −20 or less. ΔPCD / V is determined by cationic colloid titration.

カチオンコロイド滴定は下記のように行い、ΔPCD/Vを求める。
本発明におけるカチオンコロイド滴定は、カチオンコロイド滴定液(0.001Nポリ塩化ジアリルジメチルアンモニウム溶液)を、固形分濃度を1質量%に調整した連結粒子分散液80gに滴下して行う。
カチオンコロイド滴定液の滴下量(mL)をx軸および前記分散液の流動電位(mV)をy軸とし、前記滴下量と前記流動電位との関係をグラフにした電位流動曲線を得る。
前記電位流動曲線において、滴下量に対する流動電位の変化量が大きく変化する点(変曲点)をクニックとする。クニックにおけるカチオンコロイド滴定液の滴下量(V、mL)と、流動電位(C、mV)を求める。
また、カチオンコロイド滴定液の滴下前における固形分濃度を1質量%に調整した連結粒子分散液80gの流動電位を流動電位曲線の開始点における流動電位(I、mV)とする。
これらの結果から、下記数式(F1)より、ΔPCD/Vを求める。
ΔPCD/V=(I−C)/V・・・(F1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(mL)
Cationic colloid titration is performed as follows to determine ΔPCD / V.
The cationic colloid titration in the present invention is carried out by dropping a cationic colloid titration solution (0.001N polydiallyldimethylammonium chloride solution) into 80 g of a linked particle dispersion having a solid content concentration adjusted to 1% by mass.
A potential flow curve is obtained by graphing the relationship between the dropping amount and the flow potential, with the dropping amount (mL) of the cationic colloid titration solution being the x-axis and the flow potential (mV) of the dispersion liquid being the y-axis.
In the potential flow curve, a point (inflection point) at which the amount of change in the flow potential with respect to the dropping amount changes significantly is defined as a knick. The dropping amount (V, mL) and the flow potential (C, mV) of the cationic colloid titration solution in the knick are determined.
Further, the flow potential of 80 g of the linked particle dispersion liquid in which the solid content concentration before dropping of the cationic colloid titration solution is adjusted to 1% by mass is defined as the flow potential (I, mV) at the start point of the flow potential curve.
From these results, ΔPCD / V is obtained from the following mathematical formula (F1).
ΔPCD / V = (IC) / V ... (F1)
C: Flow potential (mV) in the knick
I: Flow potential (mV) at the start point of the flow potential curve
V: Addition amount (mL) of the cationic colloid titration solution in the knick

連結粒子分散液の固形分濃度は2質量%以上50質量%以下が好ましい。この範囲であれば、経時での粒子の沈降も生じ難く、貯蔵ないし運送にも適用できる。50質量%を超えると、粒子の凝集およびそれに伴う沈降が生じやすくなる。特に連結粒子分散液を研磨用途に適用した場合、その様な粒子の凝集あるいは沈降は、研磨砥粒分散液の安定性を損ない、研磨速度や研磨効率を低下させる場合がある。また、研磨処理のために研磨砥粒分散液を保管する容器内あるいは供給する工程で、容器あるいは供給装置内の内壁に付着した研磨砥粒分散液は、容易に乾燥して凝集物となり、再度研磨砥粒分散液に混入して、研磨処理により傷(スクラッチ)発生の原因となることがある。2質量%未満では、連結粒子分散液を各種用途に適用するにあたり濃縮が必要となり、実用的ではない。
前記固形分濃度は5質量%以上30質量%以下がより好ましい。
ここで固形分濃度は、連結粒子分散液の分散質の濃度を意味し、具体的には、シリカ微粒子の質量(連結粒子(立体状連結粒子および平面状連結粒子))および単粒子を合計した質量)に基づく濃度である。
The solid content concentration of the linked particle dispersion is preferably 2% by mass or more and 50% by mass or less. Within this range, it is difficult for particles to settle over time, and it can be applied to storage or transportation. If it exceeds 50% by mass, agglutination of particles and accompanying sedimentation are likely to occur. In particular, when the linked particle dispersion is applied to a polishing application, such aggregation or sedimentation of particles may impair the stability of the abrasive grain dispersion and reduce the polishing speed and polishing efficiency. Further, in the process of supplying the polishing abrasive grain dispersion liquid in the container for storing the polishing abrasive grain dispersion liquid for the polishing treatment, the polishing abrasive grain dispersion liquid adhering to the inner wall in the container or the supply device is easily dried and becomes agglomerates, and again. It may be mixed with the abrasive grain dispersion liquid and cause scratches due to the polishing process. If it is less than 2% by mass, concentration is required for applying the linked particle dispersion to various uses, which is not practical.
The solid content concentration is more preferably 5% by mass or more and 30% by mass or less.
Here, the solid content concentration means the concentration of the dispersoid of the linked particle dispersion liquid, and specifically, the mass of the silica fine particles (connecting particles (three-dimensional connecting particles and planar connecting particles)) and single particles are totaled. It is a concentration based on mass).

前記連結粒子分散液の溶媒または分散媒については、水、有機溶媒、またはこれらの混合溶媒のいずれであっても良い。有機溶媒としては、アルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール等)、エーテル類、エステル類およびケトン類等の水溶性の有機溶媒が挙げられる。 The solvent or dispersion medium of the linked particle dispersion may be water, an organic solvent, or a mixed solvent thereof. Examples of the organic solvent include water-soluble organic solvents such as alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, etc.), ethers, esters, and ketones.

[粒子連結型シリカ微粒子分散液の製造方法]
<工程1>
工程1は、シリカ微粒子分散液(SiO濃度1.5質量%以上30質量%以下)にpH緩衝剤またはpH調整剤を、下記の割合(WB/WLP)の範囲内で添加し、続いて、40℃以上98℃以下に加熱し、1時間以上保持し、粒子連結型シリカ微粒子分散液を得る工程である。
0.01≦WB/WLP≦0.1
(ここで、WLPは、シリカ微粒子分散液中のシリカ質量(g)であり、WBは、pH緩衝剤の質量(g)またはpH調整剤の質量(g)である。)
[Manufacturing method of particle-linked silica fine particle dispersion]
<Step 1>
In step 1, a pH buffer or pH adjuster is added to the silica fine particle dispersion (SiO 2 concentration of 1.5% by mass or more and 30% by mass or less) within the following ratio (WB / WLP 1 ), followed by This is a step of heating to 40 ° C. or higher and 98 ° C. or lower and holding the mixture for 1 hour or longer to obtain a particle-linked silica fine particle dispersion.
0.01 ≤ WB / WLP 1 ≤ 0.1
(Here, WLP 1 is the mass (g) of silica in the silica fine particle dispersion, and WB is the mass (g) of the pH buffer or the mass (g) of the pH adjuster.)

工程1で使用するシリカ微粒子分散液は、分散媒にシリカ微粒子が分散したものである。
分散媒としては、連結粒子分散液の溶媒または分散媒が挙げられる。
シリカ微粒子としては、連結粒子におけるシリカ一次微粒子と同様の形状および同様の平均粒子径を有することが好ましい。
また、シリカ微粒子が含有するCa、MgおよびAl濃度は、シリカ微粒子の単位質量あたり、Ca、MgおよびAlの質量として、下記のとおりであることが好ましい。
Ca:25ppm以下
Mg:25ppm以下
Al:150ppm以下
The silica fine particle dispersion liquid used in step 1 is one in which silica fine particles are dispersed in a dispersion medium.
Examples of the dispersion medium include a solvent of a linked particle dispersion liquid or a dispersion medium.
The silica fine particles preferably have the same shape and the same average particle size as the silica primary fine particles in the connecting particles.
The Ca, Mg and Al concentrations contained in the silica fine particles are preferably as follows as the mass of Ca, Mg and Al per unit mass of the silica fine particles.
Ca: 25ppm or less Mg: 25ppm or less Al: 150ppm or less

工程1で使用するシリカ微粒子分散液のSiO濃度は、1.5質量%以上30質量%が好ましい。シリカ微粒子分散液のSiO濃度が1.5質量%未満の場合は、SiO濃度が薄いことが影響してシリカ粒子の連結構造が生じ難くなる。また、SiO濃度が30質量%を超える場合は、シリカ粒子の連結が無秩序に生じるため、粒子の構造が制御できなくなる傾向がある。工程1で使用するシリカ微粒子分散液のSiO濃度は、4質量%以上18質量%以下の範囲がより好ましい。 The SiO 2 concentration of the silica fine particle dispersion used in step 1 is preferably 1.5% by mass or more and 30% by mass. When the SiO 2 concentration of the silica fine particle dispersion is less than 1.5% by mass, the low SiO 2 concentration makes it difficult to form a connected structure of silica particles. Further, when the SiO 2 concentration exceeds 30% by mass, the silica particles are connected in a disorderly manner, so that the structure of the particles tends to be uncontrollable. The SiO 2 concentration of the silica fine particle dispersion used in step 1 is more preferably in the range of 4% by mass or more and 18% by mass or less.

工程1で使用するシリカ微粒子分散液において、SiO/NaO(モル比)は制限されるものではなく、Naを全く含まないものを使用してもよい。 In the silica fine particle dispersion used in step 1, the SiO 2 / Na 2 O (molar ratio) is not limited, and one that does not contain Na at all may be used.

工程1において脱塩する方法としては、陽イオン交換樹脂で、NaイオンをHイオンに交換する方法が挙げられる。
陽イオン交換樹脂としては、強酸性陽イオン交換樹脂または弱酸性陽イオン交換樹脂等が挙げられ、−SOHまたは−COOH等に置換した構造を有する樹脂が挙げられる。
工程1で使用するシリカ微粒子分散液のpHは、シリカ微粒子分散液が安定であればよく、特に制限されない。工程1で使用するシリカ微粒子分散液のpHは、2以上12以下で構わない。pH調整は、例えば、Naのイオン交換より行うことができる。
Examples of the method of desalting in step 1 include a method of exchanging Na + ions with H + ions with a cation exchange resin.
The cation exchange resin, such as strong acidic cation exchange resin or weakly acidic cation exchange resins. Resin having a structure obtained by replacing the -SO 3 H or -COOH, and the like.
The pH of the silica fine particle dispersion used in step 1 is not particularly limited as long as the silica fine particle dispersion is stable. The pH of the silica fine particle dispersion used in step 1 may be 2 or more and 12 or less. The pH adjustment can be performed, for example, by ion exchange of Na +.

工程1で使用するpH緩衝剤またはpH調整剤は、シリカ微粒子分散液に、WB/WLPが0.01以上0.1以下の割合で添加する(ここで、WLPは、シリカ微粒子分散液中のシリカ質量(g)であり、WBは、pH緩衝剤の質量(g)またはpH調整剤(g)の質量である)。
WB/WLPが上記範囲でpH緩衝液またはpH調整剤を使用すると、緩衝剤またはpH調整剤の作用により、立体状連結粒子および平面状連結粒子が生成しやすくなる。
WB/WLPが0.01未満では、平面状連結粒子および立体状連結粒子が生成し難い。また、WB/WLPが0.1を超えると、pH緩衝剤が過剰となり、粒子の凝集が生じやすくなり、塊状の粒子が生成しやすくなる。WB/WLPは、0.015以上0.07以下がより好ましい。
pH緩衝剤又はpH調整剤は、通常、それぞれ水に溶解させて水溶液として使用される(これらをそれぞれ、pH緩衝液又はpH調整液と称する場合がある。)。
The pH buffer or pH adjuster used in step 1 is added to the silica fine particle dispersion at a ratio of WB / WLP 1 of 0.01 or more and 0.1 or less (where WLP 1 is a silica fine particle dispersion). The mass of silica in (g), where WB is the mass of the pH buffer (g) or the mass of the pH regulator (g)).
When the WB / WLP 1 uses a pH buffer solution or a pH adjuster in the above range, the action of the buffer solution or the pH adjuster facilitates the formation of three-dimensional connecting particles and planar connecting particles.
When WB / WLP 1 is less than 0.01, it is difficult to generate planar connecting particles and three-dimensional connecting particles. Further, when WB / WLP 1 exceeds 0.1, the pH buffering agent becomes excessive, particles tend to agglomerate, and agglomerated particles tend to be generated. WB / WLP 1 is more preferably 0.015 or more and 0.07 or less.
The pH buffer or pH adjuster is usually dissolved in water and used as an aqueous solution (these may be referred to as a pH buffer solution or a pH adjuster, respectively).

pH緩衝剤としては、公知の無機系又は有機系のpH緩衝剤を使用することが望ましい。
pH緩衝剤の例としては、酢酸アンモニウム、酢酸ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、重炭酸ナトリウム、重炭酸カリウム、リン酸三ナトリウム、リン酸三カリウム、リン酸二ナトリウム、リン酸二カリウム、ホウ酸ナトリウム、ホウ酸カリウム、四ホウ酸ナトリウム(ホウ砂)、四ホウ酸カリウムおよび水酸化アンモニウム等が挙げられる。これらのうち、酢酸アンモニウム又は酢酸ナトリウムが特に好ましい。
また、pH調整剤としては、公知の無機系又は有機系のpH調整剤を使用することが望ましい。
pH調整剤の例としては、酸としては、酢酸、ギ酸、炭酸、塩酸、硝酸、リン酸、次亜リン酸、亜リン酸、ホスホン酸、硫酸、ホウ酸、フッ化水素酸、オルトリン酸、ピロリン酸、ポリリン酸、メタリン酸およびヘキサメタリン酸等が挙げられる。
塩基の例としては、水酸化カリウム等のアルカリ金属の水酸化物、アルカリ土類金属の水酸化物およびアンモニア等が挙げられる。これらの中でも、入手容易性から水酸化カリウムまたはアンモニアが好ましい。
As the pH buffer, it is desirable to use a known inorganic or organic pH buffer.
Examples of pH buffers include ammonium acetate, sodium acetate, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, trisodium phosphate, tripotassium phosphate, Examples thereof include disodium phosphate, dipotassium phosphate, sodium borate, potassium borate, sodium tetraborate (both sand), potassium tetraborate, ammonium hydroxide and the like. Of these, ammonium acetate or sodium acetate is particularly preferred.
Further, as the pH adjusting agent, it is desirable to use a known inorganic or organic pH adjusting agent.
Examples of pH adjusters include acetic acid, formic acid, carbonic acid, hydrochloric acid, nitrate, phosphoric acid, hypophosphite, phosphite, phosphonic acid, sulfuric acid, boric acid, hydrofluoric acid, orthophosphoric acid, as acids. Examples thereof include pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid and hexametaphosphoric acid.
Examples of bases include alkali metal hydroxides such as potassium hydroxide, alkaline earth metal hydroxides and ammonia. Among these, potassium hydroxide or ammonia is preferable because of its availability.

pH緩衝液またはpH調整剤を用いて調整したシリカ微粒子分散液のpHは、2.0以上6.0以下の範囲にあることが好ましい。 The pH of the silica fine particle dispersion adjusted with a pH buffer or a pH adjuster is preferably in the range of 2.0 or more and 6.0 or less.

[加熱等の処理(立体状連結粒子の生成)]
pHをpH緩衝材またはpH調整剤でシリカ微粒子分散液を、40℃以上98℃以下に加熱し、例えば、1時間以上64時間以下に保持することが好ましい。
加熱することにより、隣接するシリカ一次微粒子の間にSiOによる結合が形成され、連結粒子が生成する。
加熱温度が、40℃未満であると、連結反応が促進されにくく所望の粒子連結型シリカ粒子が得られないため、好ましくない。加熱温度が98℃を超えると凝集塊を生じ易く所望の粒子連結型シリカ微粒子を得られないため、好ましくない。
また、保持時間が、1時間未満であると、連結反応が十分に進行しないため、好ましくない、また、保持時間が、64時間を超えると、工程にかかる費用が高コストとなるために、経済的に好ましくない。
本発明では、工程1のみを経て得られた粒子連結型シリカ微粒子分散液を便宜上、粒子連結型シリカ微粒子分散液(I)とし、工程1および工程2を経て得られた粒子連結型シリカ微粒子分散液を粒子連結型シリカ微粒子分散液(II)と称する場合がある。
[Treatment such as heating (generation of three-dimensional connected particles)]
The pH of the silica fine particle dispersion is preferably heated to 40 ° C. or higher and 98 ° C. or lower with a pH buffer or a pH adjuster, and maintained at, for example, 1 hour or longer and 64 hours or lower.
By heating, a bond by SiO 2 is formed between the adjacent silica primary fine particles, and connecting particles are formed.
If the heating temperature is less than 40 ° C., the linking reaction is not easily promoted and the desired particle-linked silica particles cannot be obtained, which is not preferable. If the heating temperature exceeds 98 ° C., agglomerates are likely to occur and desired particle-linked silica fine particles cannot be obtained, which is not preferable.
Further, if the holding time is less than 1 hour, the ligation reaction does not proceed sufficiently, which is not preferable, and if the holding time exceeds 64 hours, the cost required for the process becomes high, which is economical. It is not preferable.
In the present invention, the particle-linked silica fine particle dispersion obtained through only step 1 is designated as the particle-linked silica fine particle dispersion (I) for convenience, and the particle-linked silica fine particle dispersion obtained through steps 1 and 2 is used. The liquid may be referred to as a particle-linked silica fine particle dispersion liquid (II).

<工程2>
工程1で得られた連結粒子は、隣接するシリカ一次微粒子の間にSiOによる結合が形成されているが、結合した部分(以下、「ネック」ともいう)が小さく、脆い。このため、結合した部分を成長させ、隣接するシリカ一次微粒子の間の結合を強くすることが好ましい。
そこで、ネック部の成長を目的として、加熱による熟成やシリカによる補強等、特に粒子を成長させる工程である工程2を行うことが好ましい。
<Process 2>
The linked particles obtained in step 1 have a bond formed by SiO 2 between adjacent silica primary fine particles, but the bonded portion (hereinafter, also referred to as “neck”) is small and brittle. For this reason, it is preferable to grow the bonded portion and strengthen the bond between the adjacent silica primary fine particles.
Therefore, for the purpose of growing the neck portion, it is preferable to perform step 2 which is a step of growing particles, such as aging by heating and reinforcement with silica.

工程2では、工程1で得た粒子連結型シリカ微粒子分散液に対し、下記(i)および(ii)の処理のうちの少なくとも1つにより、pH10以上にpH調整処理し、続いて酸性珪酸液を、下記の割合(WS/WLP)となるように連続的または断続的に添加し、粒子成長させる処理を施す。
0.01≦WS/WLP≦10
(ここで、WLPは、粒子連結型シリカ微粒子分散液中のシリカ質量(g)であり、WSは、酸性珪酸液中のシリカ質量(g)である。)
(i)陰イオン交換処理
(ii)アルカリ添加
In step 2, the particle-linked silica fine particle dispersion obtained in step 1 is subjected to pH adjustment treatment to pH 10 or higher by at least one of the following treatments (i) and (ii), followed by an acidic silicic acid liquid. Is continuously or intermittently added so as to have the following ratio (WS / WLP 2 ), and a treatment for growing particles is performed.
0.01 ≤ WS / WLP 2 ≤ 10
(Here, WLP 2 is the mass of silica (g) in the particle-linked silica fine particle dispersion, and WS is the mass of silica (g) in the acidic silicic acid solution.)
(I) Anion exchange treatment (ii) Add alkali

工程2では、工程1で得られた粒子連結型シリカ微粒子分散液(I)に陰イオン交換処理およびアルカリ性成分を添加する少なくとも一方の方法を用いて、pHを10以上にする。
陰イオン交換処理としては、陰イオン交換樹脂を使用した方法が挙げられる。陰イオン交換樹脂としては、強塩基陰イオン交換樹脂または弱塩基性陰イオン交換樹脂等が挙げられ、一級ないし三級アミノ基または四級アンモニウム等に置換した構造を有する樹脂が挙げられる。
また、アルカリ性成分としては、アンモニアおよび水ガラス等を使用できる。アルカリ性成分は、溶液にして用いることもできる。アルカリ性成分を溶解する溶媒は、連結粒子分散液の溶媒または分散媒が挙げられる。溶媒は、工程1で使用した分散媒が好ましく、水がより好ましい。
pH10以上に調整した粒子連結型シリカ微粒子分散液のSiO濃度は、1質量%以上30質量%以下が好ましい。
In step 2, the pH is adjusted to 10 or more by using at least one method of anion exchange treatment and addition of an alkaline component to the particle-linked silica fine particle dispersion (I) obtained in step 1.
Examples of the anion exchange treatment include a method using an anion exchange resin. Examples of the anion exchange resin include a strong base anion exchange resin and a weakly basic anion exchange resin, and examples thereof include a resin having a structure substituted with a primary to tertiary amino group or a quaternary ammonium.
Further, as the alkaline component, ammonia, water glass and the like can be used. The alkaline component can also be used as a solution. Examples of the solvent for dissolving the alkaline component include the solvent of the linked particle dispersion and the dispersion medium. As the solvent, the dispersion medium used in step 1 is preferable, and water is more preferable.
The SiO 2 concentration of the particle-linked silica fine particle dispersion adjusted to pH 10 or higher is preferably 1% by mass or more and 30% by mass or less.

工程2では、pH10以上に調整した粒子連結型シリカ微粒子分散液に酸性珪酸液を連続的または断続的に、WS/WLPが0.01以上10以下の範囲で添加する(ここで、WLPは、粒子連結型シリカ微粒子分散液中のシリカ質量であり、WSは、酸性珪酸液中のシリカ質量である。)。
WS/WLPが0.01未満であると、粒子連結型シリカ微粒子の連結部分の成長が不十分であるためか、所望の研磨特性が得られないため、好ましくない。また、WS/WLPが10を超えると、得られた粒子連結型シリカ微粒子の形状が球状に近づき連結形状を保てない場合があるため、好ましくない。WS/WLPは、0.02以上9.0以下がより好ましい。
工程2おける温度は、シリカが生成する反応なので、反応物の濃度に依存するが、70℃以上98℃以下が好ましい。
工程2における酸性珪酸液の添加は、連続的または断続的に行うことができる。酸性珪酸液を添加することによって、濃度を変化させて、シリカを生成させることが好ましい。
In step 2, the acidic silicic acid solution is continuously or intermittently added to the particle-connected silica fine particle dispersion adjusted to pH 10 or more in the range of 0.01 or more and 10 or less for WS / WLP 2 (here, WLP 2). Is the mass of silica in the particle-linked silica fine particle dispersion, and WS is the mass of silica in the acidic silicic acid solution.)
If WS / WLP 2 is less than 0.01, it is not preferable because the growth of the connecting portion of the particle-linked silica fine particles is insufficient or the desired polishing characteristics cannot be obtained. Further, when WS / WLP 2 exceeds 10, the shape of the obtained particle-connected silica fine particles may approach a spherical shape and the connected shape may not be maintained, which is not preferable. WS / WLP 2 is more preferably 0.02 or more and 9.0 or less.
Since the temperature in step 2 is a reaction in which silica is formed, it depends on the concentration of the reactants, but is preferably 70 ° C. or higher and 98 ° C. or lower.
The addition of the acidic silicic acid solution in step 2 can be carried out continuously or intermittently. It is preferable to change the concentration by adding an acidic silicic acid solution to produce silica.

酸性珪酸液は、珪酸アルカリ金属(珪酸ナトリウム等)を水に溶解させ、アルカリ金属イオンを水素イオンに交換したものである。アルカリ金属イオンを水素イオンに交換する方法としては、陽イオン交換樹脂を使用する方法が挙げられる。酸性珪酸液は、pHが6以下であれば使用することができる。酸性珪酸液のSiO濃度としては、1質量%以上6質量%以下のものを使用することができる。
SiO濃度が1質量%未満であると、添加する酸性珪酸液が多量に必要となるため、経済上好ましくない。また、6質量%以上であると、酸性珪酸液自体が不安定であるため、好ましくない。SiO濃度は、1質量%以上5質量%以下がより好ましい。
The acidic silicate solution is obtained by dissolving an alkali metal silicate (sodium silicate or the like) in water and exchanging alkali metal ions with hydrogen ions. Examples of the method for exchanging alkali metal ions with hydrogen ions include a method using a cation exchange resin. The acidic silicic acid solution can be used as long as the pH is 6 or less. As the SiO 2 concentration of the acidic silicic acid liquid, one having a concentration of 1% by mass or more and 6% by mass or less can be used.
If the SiO 2 concentration is less than 1% by mass, a large amount of acidic silicic acid solution to be added is required, which is economically unfavorable. Further, if it is 6% by mass or more, the acidic silicic acid solution itself is unstable, which is not preferable. The SiO 2 concentration is more preferably 1% by mass or more and 5% by mass or less.

<工程3>
粒子(特に粒子におけるネック部)をさらに成長させるという観点から、さらに工程3を行ってもよい。
工程3は、工程2を施している粒子連結型シリカ微粒子分散液に対し、pH10.0以上にpH調整処理し、続いて、酸性珪酸液を下記の割合(WS/WLP)となるように連続的または断続的に添加し、粒子成長させる処理を施す工程である。
0.5≦WS/WLP≦10
(ここで、WLPは、本工程に用いる原料である粒子連結型シリカ微粒子分散液中のシリカ質量であり、WSは、酸性珪酸液中のシリカ質量である。)
WS/WLPが0.5未満であると、粒子連結型シリカ微粒子の連結部分の成長が不十分であるためか、所望の研磨特性が得られないため、好ましくない。また、WS/WLPが10を超えると、得られた粒子連結型シリカ微粒子の形状が球状に近づき連結形状を保てない場合があるため、好ましくない。WS/WLPは、0.5以上9.0以下がより好ましい。
工程3の操作は、工程2の操作とほぼ同様である。例えば、工程2で得られた粒子連結型シリカ微粒子分散液(II)に対して、さらに、工程3を施すことによって、連結粒子をさらに成長(特にネック部を成長)させることができる。
なお、工程3は、上記の観点から、複数回を繰り返して行ってもよい。
<Step 3>
Step 3 may be further performed from the viewpoint of further growing the particles (particularly the neck portion of the particles).
In step 3, the particle-connected silica fine particle dispersion liquid subjected to step 2 is subjected to pH adjustment treatment to pH 10.0 or higher, and then the acidic silicic acid liquid is adjusted to the following ratio (WS / WLP 2 ). It is a step of continuously or intermittently adding the particles to grow particles.
0.5 ≤ WS / WLP 2 ≤ 10
(Here, WLP 2 is the mass of silica in the particle-linked silica fine particle dispersion liquid which is the raw material used in this step, and WS is the mass of silica in the acidic silicic acid liquid.)
If WS / WLP 2 is less than 0.5, it is not preferable because the growth of the connecting portion of the particle-linked silica fine particles is insufficient or the desired polishing characteristics cannot be obtained. Further, when WS / WLP 2 exceeds 10, the shape of the obtained particle-connected silica fine particles may approach a spherical shape and the connected shape may not be maintained, which is not preferable. WS / WLP 2 is more preferably 0.5 or more and 9.0 or less.
The operation of step 3 is almost the same as the operation of step 2. For example, by further performing step 3 on the particle-linked silica fine particle dispersion liquid (II) obtained in step 2, the linked particles can be further grown (particularly the neck portion is grown).
From the above viewpoint, the step 3 may be repeated a plurality of times.

[粒子連結型シリカ微粒子分散液を含む砥粒分散液]
本発明の連結粒子分散液を含む砥粒分散液(「研磨用組成物」ともいう。)は、さらに他の成分を含むことができる。
他の成分として、研磨促進剤、界面活性剤、親水性化合物、複素環化合物、pH調整剤およびpH緩衝剤から選ばれる1以上の成分を使用することができる。
[Abrasive grain dispersion liquid containing particle-linked silica fine particle dispersion liquid]
The abrasive grain dispersion liquid (also referred to as “polishing composition”) containing the linked particle dispersion liquid of the present invention may further contain other components.
As other components, one or more components selected from polishing accelerators, surfactants, hydrophilic compounds, heterocyclic compounds, pH adjusters and pH buffers can be used.

研磨促進剤の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩およびこれらの混合物等が挙げられる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。 Examples of the polishing accelerator include acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid, and hydrofluoric acid, or sodium salts, potassium salts, ammonium salts, and mixtures thereof. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished composed of composite components, by accelerating the polishing rate for a specific component of the material to be polished, finally flat polishing is performed. You can get a face.

本発明に係る研磨用組成物が研磨促進剤を含有する場合、その含有量としては、0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上5質量%以下であることがより好ましい。界面活性剤および/または親水性化合物研磨用組成物の分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤または親水性化合物を添加することができる。 When the polishing composition according to the present invention contains a polishing accelerator, the content thereof is preferably 0.1% by mass or more and 10% by mass or less, and 0.5% by mass or more and 5% by mass or less. More preferably. Surfactants and / or Hydrophilic Compounds Cationic, anionic, nonionic, amphoteric surfactants or hydrophilic compounds can be added to improve the dispersibility and stability of the polishing composition.

界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤および/または親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。 Both the surfactant and the hydrophilic compound have an action of lowering the contact angle with the surface to be polished and an action of promoting uniform polishing. As the surfactant and / or hydrophilic compound, for example, those selected from the following groups can be used.

陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、およびリン酸エステル塩等が挙げられる。カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルエーテルカルボン酸塩、およびアシル化ペプチド等が挙げられる。スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼンおよびアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、およびN−アシルスルホン酸塩等が挙げられる。硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルアリルエーテル硫酸塩、およびアルキルアミド硫酸塩等が挙げられる。リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルアリルエーテルリン酸塩等が挙げられる。 Examples of anionic surfactants include carboxylic acid salts, sulfonates, sulfate ester salts, and phosphate ester salts. Carboxylates include soaps, N-acylamino acid salts, polyoxyethylene or polyoxypropylene alkyl ether carboxylates, acylated peptides and the like. Examples of the sulfonate include alkyl sulfonate, alkylbenzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate and the like. Examples of the sulfate ester include sulfated oil, alkyl sulfate, alkyl ether sulfate, polyoxyethylene or polyoxypropylene alkylallyl ether sulfate, alkylamide sulfate and the like. Examples of the phosphoric acid ester salt include alkyl phosphate, polyoxyethylene, polyoxypropylene alkyl allyl ether phosphate and the like.

陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、およびイミダゾリニウム塩等が挙げられる。両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、およびアルキルアミンオキサイド等が挙げられる。 Examples of the cationic surfactant include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, and imidazolinium salts. Examples of amphoteric surfactants include carboxybetaine type, sulfobetaine type, aminocarboxylate, imidazolinium betaine, lecithin, alkylamine oxide and the like.

非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキルおよびアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤等が挙げられる。 Examples of nonionic surfactants include ether type, ether ester type, ester type, and nitrogen-containing type, and ether types include polyoxyethylene alkyl and alkylphenyl ether, alkylallyl formaldehyde condensed polyoxyethylene ether, and polyoxyethylene poly. Examples thereof include oxypropylene block polymer and polyoxyethylene polyoxypropylene alkyl ether. Examples of the ether ester type include polyoxyethylene ether of glycerin ester, polyoxyethylene ether of sorbitan ester, polyoxyethylene ether of sorbitol ester, and ester type. Examples of polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester, sucrose ester, and nitrogen-containing type include fatty acid alkanolamide, polyoxyethylene fatty acid amide, and polyoxyethylene alkylamide. In addition, a fluorine-based surfactant and the like can be mentioned.

界面活性剤としては、陰イオン界面活性剤もしくは非イオン系界面活性剤が好ましい。また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩およびカリウム塩が好ましい。 As the surfactant, an anionic surfactant or a nonionic surfactant is preferable. Examples of the salt include ammonium salt, potassium salt, sodium salt and the like, and ammonium salt and potassium salt are particularly preferable.

さらに、その他の界面活性剤、親水性化合物等としては、エステル(グリセリンエステル、ソルビタンエステルおよびアラニンエチルエステル等)、エーテル(ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、およびアルケニルポリプロピレングリコール等)、多糖類(アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードランおよびプルラン等)、アミノ酸塩(グリシンアンモニウム塩およびグリシンナトリウム塩等)、ポリカルボン酸およびその塩(ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩およびポリグリオキシル酸等)、ビニル系ポリマ(ポリビニルアルコール、ポリビニルピロリドンおよびポリアクロレイン等)、スルホン酸およびその塩(メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等)、およびアミド等(プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミドおよびスルファニルアミド等)が挙げられる。 Further, as other surfactants, hydrophilic compounds and the like, esters (glycerin ester, sorbitan ester, alanine ethyl ester, etc.), ethers (polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl, etc.) Ether, alkyl polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene glycol, alkyl polypropylene Glycolalkyl ethers, alkylpolypropylene glycolalkenyl ethers, alkenylpolypropylene glycols, etc.), polysaccharides (arginic acid, pectinic acid, carboxymethylcellulose, curdran, purulan, etc.), amino acid salts (glycineammonium salt, glycine sodium salt, etc.), polycarboxylic acids Acids and their salts (polyaspartic acid, polyglutamic acid, polylysine, polyappleic acid, polymethacrylic acid, polyammonium methacrylate, polysodium methacrylate, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrene) Sulfonic acid), polyacrylic acid, polyacrylamide, aminopolyacrylamide, ammonium polyacrylic acid salt, sodium polyacrylic acid salt, polyamic acid, ammonium polyamic acid salt, sodium polyamic acid salt and polyglioxylic acid, etc.), vinyl-based polyma ( Polyvinyl alcohol, polyvinylpyrrolidone, polyacrolein, etc.), sulfonic acid and its salts (ammonium methyltaurate, sodium methyltaurate, methylsodium sulfate, ethylammonium sulfate, butylammonium sulfate, sodium vinylsulfonic acid, etc. 1-allyl sulfonic acid sodium salt, 2-allyl sulfonic acid sodium salt, methoxymethyl sulfonic acid sodium salt, ethoxymethyl sulfonic acid ammonium salt, 3-ethoxypropyl sulfonic acid sodium salt, etc.), and amides (propion amide, acrylamide, etc.) Me (Chilurea, nicotinamide, succinate amide, sulfanilamide, etc.) can be mentioned.

なお、適用する被研磨基材がガラス基板等である場合は何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板等の場合であって、アルカリ金属、アルカリ土類金属またはハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。 When the substrate to be polished is a glass substrate or the like, any surfactant can be preferably used, but in the case of a silicon substrate for a semiconductor integrated circuit or the like, alkali metals and alkaline earths are used. When the influence of contamination by metals or halides is disliked, it is desirable to use an acid or an ammonium salt-based surfactant thereof.

本発明に係る研磨用組成物が界面活性剤および/または親水性化合物を含有する場合、その含有量は、総量として、研磨用組成物の1L中、0.001g以上10g以下とすることが好ましく、0.01g以上5g以下とすることがより好ましく0.1g以上3g以下とすることが特に好ましい。 When the polishing composition according to the present invention contains a surfactant and / or a hydrophilic compound, the total content thereof is preferably 0.001 g or more and 10 g or less in 1 L of the polishing composition. , 0.01 g or more and 5 g or less is more preferable, and 0.1 g or more and 3 g or less is particularly preferable.

界面活性剤および/または親水性化合物の含有量は、充分な効果を得る上で、研磨用組成物の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。 The content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 L of the polishing composition, and preferably 10 g or less from the viewpoint of preventing a decrease in the polishing rate, in order to obtain a sufficient effect.

界面活性剤または親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。 Only one type of surfactant or hydrophilic compound may be used, two or more types may be used, or different types may be used in combination.

本発明の研磨用組成物については、被研磨基材に金属が含まれる場合に、金属に不動態層または溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、または水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、およびホウ素原子等が挙げられるが、これらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾール等を用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾール等が挙げられるが、これらに限定されるものではない。 In the polishing composition of the present invention, when the base material to be polished contains a metal, a heterocycle is formed for the purpose of forming a passivation layer or a dissolution suppressing layer on the metal to suppress erosion of the base material to be polished. A compound may be contained. Here, the "heterocyclic compound" is a compound having a heterocycle containing one or more heteroatoms. Heteroatom means an atom other than a carbon atom or a hydrogen atom. A heterocycle means a cyclic compound having at least one heteroatom. Heteroatoms refer only to the atoms that form the constituents of the heterocyclic ring system, and may be located outside the ring system, separated from the ring system by at least one unconjugated single bond, or the ring system. It does not mean an atom that is part of a further substituent of. Preferable examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. As an example of the heterocyclic compound, imidazole, benzotriazole, benzothiazole, tetrazole and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, 3, Examples thereof include, but are not limited to, 5-diamino-1,2,4-triazole.

本発明に係る研磨用組成物に複素環化合物を配合する場合の含有量については、0.001質量%以上1.0質量%以下であることが好ましく、0.001質量%以上0.7質量%以下であることがより好ましく、0.002質量%以上0.4質量%以下であることがさらに好ましい。 When the heterocyclic compound is blended in the polishing composition according to the present invention, the content is preferably 0.001% by mass or more and 1.0% by mass or less, and 0.001% by mass or more and 0.7% by mass. It is more preferably 0.002% by mass or more and 0.4% by mass or less.

上記各添加剤の効果を高めるため等に必要に応じて酸または塩基を添加して研磨用組成物のpHを調節することができる。 The pH of the polishing composition can be adjusted by adding an acid or a base as necessary to enhance the effect of each of the above additives.

本発明に係る研磨用組成物をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミン等のアミンが使用される。 When the polishing composition according to the present invention is adjusted to pH 7 or higher, an alkaline pH adjusting agent is used. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, tetramethylamine and the like are used.

研磨用組成物をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸等のヒドロキシ酸類が使用される。 When the polishing composition is adjusted to a pH of less than 7, an acidic one is used as the pH adjuster. For example, hydroxy acids such as lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.

研磨用組成物のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水等のリン酸塩およびホウ酸塩または有機酸等を使用することができる。 A pH buffer may be used to keep the pH value of the polishing composition constant. As the pH buffer, for example, phosphates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammo tetrahydrate tetrahydrate, and borates or organic acids can be used.

本発明に係る研磨用組成物については、必要に応じて溶媒を用いることができる。溶媒としては通常、水を用いるが、必要に応じてメチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類を用いることができ、他にエーテル類、エステル類、ケトン類等水溶性の有機溶媒を用いることができる。また、水と有機溶媒からなる混合溶媒であってもよい。 A solvent can be used for the polishing composition according to the present invention, if necessary. Water is usually used as the solvent, but alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol can be used if necessary, and other water-soluble organic solvents such as ethers, esters, and ketones are used. be able to. Further, it may be a mixed solvent composed of water and an organic solvent.

本発明に係る研磨用組成物中の研磨用粒子の濃度は、0.5質量%以上50質量%以下、さらには5量%以上30質量%以下の範囲にあることが好ましい。濃度が0.5質量%未満の場合は、基材や絶縁膜の種類によっては濃度が低すぎて研磨速度が遅く生産性が問題となることがある。研磨用粒子の濃度が50質量%を超えると研磨材の安定性が不充分となり、研磨速度や研磨効率がさらに向上することもなく、また研磨処理のために分散液を供給する工程で乾燥物が生成して付着することがあり傷(スクラッチ)発生の原因となることがある。 The concentration of the polishing particles in the polishing composition according to the present invention is preferably in the range of 0.5% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 30% by mass or less. If the concentration is less than 0.5% by mass, the concentration may be too low depending on the type of the base material or the insulating film, the polishing speed may be slow, and productivity may become a problem. If the concentration of polishing particles exceeds 50% by mass, the stability of the abrasive material becomes insufficient, the polishing speed and polishing efficiency do not further improve, and the dried product is supplied in the process of supplying the dispersion liquid for the polishing process. May be generated and adhered, which may cause scratches.

[実施例および比較例で用いた分析方法]
以下に本発明の好適な実施例を述べる。実施例および比較例における各種特性の測定方法については、特に断りの無い限り、以下に記す方法にて実施した。
[Analytical method used in Examples and Comparative Examples]
Suitable examples of the present invention will be described below. Unless otherwise specified, the methods for measuring various characteristics in Examples and Comparative Examples were as described below.

[1]動的光散乱法による平均粒子径測定方法
動的光散乱法による粒子連結型シリカ微粒子の平均粒子径(D1)の測定方法は次のとおりである。
試料(粒子連結型シリカ微粒子を含む分散液)を0.58%アンモニア水にて希釈して、シリカ濃度1質量%に調整し、レーザーパーティクルアナライザー(例えば粒径測定装置(1))を用いて測定する。
[粒径測定装置(1)の概要]
大塚電子株式会社製、型番「ゼータ電位・粒径測定システム ELSZ−1000」(測定原理:動的光散乱法、光源波長:665.70nm、温度調整範囲:10〜90℃、セル:10mm角のプラスチックセル)
[1] Method for measuring average particle size by dynamic light scattering method The method for measuring the average particle size (D1) of particle-connected silica fine particles by the dynamic light scattering method is as follows.
A sample (dispersion liquid containing particle-linked silica fine particles) is diluted with 0.58% aqueous ammonia to adjust the silica concentration to 1% by mass, and a laser particle analyzer (for example, a particle size measuring device (1)) is used. taking measurement.
[Overview of particle size measuring device (1)]
Model number "Zeta potential / particle size measurement system ELSZ-1000" manufactured by Otsuka Electronics Co., Ltd. (Measurement principle: dynamic light scattering method, light source wavelength: 665.70 nm, temperature adjustment range: 10 to 90 ° C, cell: 10 mm square Plastic cell)

[2]粒子連結型シリカ微粒子分散液(連結粒子分散液)における立体構造を有する粒子連結型シリカ微粒子(立体状連結粒子)の個数の測定方法および個数割合の算出方法
1.測定試料の調製
(1)粒子連結型シリカ微粒子分散液を濃縮またはイオン交換水を用いて希釈し、固形分濃度0.05質量%とした。
(2)上記(1)で固形分濃度0.05質量%とした分散液に超音波をかけてから、その0.1gを撮影試料とした。
2.連結粒子および立体状連結粒子の個数割合の測定方法
(1)上記1.で調製した試料を、透過型電子顕微鏡(株式会社日立製作所製、超高分解能走査電子顕微鏡・型番S−5500)を用い、20万倍で撮影した。
(2)得られた写真において、少なくとも粒子が連結した形状を有する粒子を、任意に200個選択した。
(3)これらの粒子について、立体状連結粒子を特定し、その粒子数を数えた。
立体状連結粒子の判定基準は次のとおりである。すなわち、特定の粒子連結型シリカ微粒子に関し、下記の1)〜3)の要件を満たすかを確認する。
1)シリカ一次微粒子の連結個数が5個以上で鎖状構造
2)主鎖構成粒子のうち、末端の粒子以外の粒子に結合した分岐(分岐(a))が少なくとも1箇存在する
3)当該粒子上に重複して、他の一次粒子に比して、濃淡が濃い部分が確認できること。
以上の1)〜3)の要件を満たす粒子連結型シリカ微粒子は、分岐(a)に対し、立体方向に伸長してなる分岐(b)あるいは立体方向に伸長してなる末端(c)を有し、立体構造を有すると見做し、立体状連結粒子とする。
(4)立体状連結粒子の個数%は、連結粒子200個あたりの立体状連結粒子の数を百分率で表したものである。
(5)立体状連結粒子の体積%は、次の様にして求めた。
DLaおよびDTaを用いて画像解析法による平均粒子径DLTを求める。DLTは以下の式で表される。
DLT=(DLa+DTa)/2
ここで、立体状連結粒子のDLT(平均粒子径)をDLTt、平面状連結粒子のDLT(平均粒子径)をDLTpとし、立体状連結粒子の体積をVLTt、平面状連結粒子の体積をVLTpとしたとき、VLTtと、VLTpは、それぞれ次の様に求められる。
VLTt=Σ(DLTt/Dp)×(立体状連結粒子の個数%)、
VLTp=Σ(DLTp/Dp)×(平面状連結粒子の個数%)、
そして、求めたVLTtおよびVLTpから立体状連結粒子の体積%(W)を以下の式で求めることができる。
W=VLTt/(VLTp+VLTt)×100
ここで、Dpは、単粒子の平均粒子径[nm]である。
[2] Method for measuring the number of particle-linked silica fine particles (three-dimensionally linked particles) having a three-dimensional structure in the particle-linked silica fine particle dispersion (linked particle dispersion) and method for calculating the number ratio. Preparation of measurement sample (1) The particle-linked silica fine particle dispersion was concentrated or diluted with ion-exchanged water to a solid content concentration of 0.05% by mass.
(2) After ultrasonic waves were applied to the dispersion having a solid content concentration of 0.05% by mass in (1) above, 0.1 g thereof was used as a photographing sample.
2. Method for measuring the number ratio of linked particles and three-dimensional linked particles (1) 1. The sample prepared in the above was photographed at 200,000 times using a transmission electron microscope (manufactured by Hitachi, Ltd., ultra-high resolution scanning electron microscope, model number S-5500).
(2) In the obtained photograph, at least 200 particles having a shape in which the particles were connected were arbitrarily selected.
(3) For these particles, three-dimensional connected particles were identified and the number of the particles was counted.
The criteria for determining the three-dimensional connected particles are as follows. That is, it is confirmed whether or not the following requirements 1) to 3) are satisfied with respect to the specific particle-connected silica fine particles.
1) Chain structure with 5 or more connected silica primary fine particles 2) At least one branch (branch (a)) bonded to particles other than the terminal particles among the main chain constituent particles 3) Overlapping on the particles, it is possible to confirm the parts with darker shades than other primary particles.
The particle-connected silica fine particles satisfying the above requirements 1) to 3) have a branch (b) extending in the three-dimensional direction or a terminal (c) extending in the three-dimensional direction with respect to the branch (a). However, it is considered to have a three-dimensional structure, and is regarded as a three-dimensional connecting particle.
(4) The number% of the three-dimensionally connected particles is the number of three-dimensionally connected particles per 200 connected particles expressed as a percentage.
(5) The volume% of the three-dimensional connected particles was determined as follows.
The average particle size DLT is determined by an image analysis method using DLa and DTa. DLT is expressed by the following formula.
DLT = (DLa + DTa) / 2
Here, the DLT (average particle size) of the three-dimensional connecting particles is DLTt, the DLT (average particle size) of the planar connecting particles is DLTp, the volume of the three-dimensional connecting particles is VLTt, and the volume of the planar connecting particles is VLTp. Then, VLTt and VLTp are obtained as follows.
VLTt = Σ (DLTt / Dp) 3 × (number% of three-dimensional connected particles),
VLTp = Σ (DLTp / Dp) 3 × (number% of planar connecting particles),
Then, the volume% (W) of the three-dimensionally connected particles can be obtained from the obtained VLTt and VLTp by the following formula.
W = VLTt / (VLTp + VLTt) x 100
Here, Dp is the average particle size [nm] of a single particle.

[3]立体状連結粒子の平均連結個数の測定方法
1.立体状連結粒子の平均連結個数の測定方法
(1)前記[2]と同様に測定した電子顕微鏡写真を用意する。
(2)同写真における立体状連結粒子におけるシリカ一次微粒子の連結個数を目視によって数えた。
(3)任意に選択した50個の立体状連結粒子について上記(2)を行い、シリカ一次微粒子の連結個数を平均した。この平均値を立体状連結粒子の平均連結個数とした。
2.立体状連結粒子におけるシリカ一次微粒子の平均粒子径[F]の測定方法
(1)前記[2]と同様に測定した電子顕微鏡写真を用意する。
(2)同写真における立体状連結粒子におけるシリカ一次微粒子の粒子径をそれぞれ測定し、その平均値を求める。
(3)任意に選択した50個の立体状連結粒子について上記(2)を行い、50個の平均値を求め、その値を前記平均粒子径[F]とする。
なお、平面状連結粒子の測定を行う場合も上記と同様である。
[3] Method for measuring the average number of three-dimensionally connected particles 1. Method for measuring the average number of three-dimensionally linked particles (1) Prepare an electron micrograph measured in the same manner as in [2] above.
(2) The number of linked silica primary fine particles in the three-dimensional linked particles in the same photograph was visually counted.
(3) The above (2) was performed on 50 arbitrarily selected three-dimensional linked particles, and the number of linked silica primary fine particles was averaged. This average value was taken as the average number of connected three-dimensionally connected particles.
2. Method for Measuring Average Particle Diameter [F] of Silica Primary Fine Particles in Three-dimensional Connected Particles (1) Prepare an electron micrograph measured in the same manner as in [2] above.
(2) The particle size of the silica primary fine particles in the three-dimensionally connected particles in the same photograph is measured, and the average value is obtained.
(3) The above (2) is performed on 50 arbitrarily selected three-dimensional connected particles, an average value of 50 particles is obtained, and the value is defined as the average particle diameter [F].
The same applies to the measurement of planar connected particles.

[4]立体状分岐構造を有する粒子連結型シリカ微粒子(立体状連結粒子)における長さ方向の平均最長径(DLa)および太さ方向の平均直径(DTa)の測定方法
1.測定試料の調製および走査型顕微鏡(SEM)を用いた撮影
測定試料の調製およびSEMを用いた撮影は、上記[2]立体状連結粒子の平均連結個数の測定方法における1.に準じて行った。
2.立体状連結粒子における長さ方向の平均最長径(DLa)の測定方法
(1)上記[2]において、使用した電子顕微鏡写真を用い、立体状連結粒子において、粒子外縁間の2点間を結ぶ線分のうち、その長さが最長となる線分の長さを最長径(DL)とする。
(2)任意に選択した50個の立体状連結粒子について上記(1)を行い、それらの平均値([50個の立体状連結粒子について、それぞれのDLを合計した値]/50)を長さ方向の平均最長径DLaとした。
3.立体状連結粒子における太さ方向の平均直径(DTa)の測定方法
(1)上記[2]において、使用した電子顕微鏡写真を用い、立体状連結粒子において、粒子外縁間の2点間を結ぶ線分のうち、その長さが最長となる線分の方向を長さ方向と定め、それに対し、直交する方向を太さ方向とする。
(2)前記DLと直交する線分が粒子外縁と交わる2交点を求め、該2交点間の距離が、最長となる線分をDTとする。
(3)任意に選択した50個の立体状連結粒子について上記(2)の測定を行い、それらの平均値(DT50個の合計/50)を太さ方向の平均直径DTaとした。
4.任意に選択した50個の立体状連結粒子について上記(2)の測定を行い、50個の立体状連結粒子のそれぞれのDTの値について変動係数を求め、それらを平均した値を平均変動係数(C.V.)とした。
[4] Method for measuring average longest diameter (DLa) in the length direction and average diameter (DTa) in the thickness direction of particle-connected silica fine particles (three-dimensionally connected particles) having a three-dimensional branched structure. Preparation of measurement sample and imaging using a scanning electron microscope (SEM) Preparation of a measurement sample and imaging using an SEM are described in the above [2] Method for measuring the average number of concatenated particles. It was done according to.
2. Method for measuring average longest diameter (DLa) in the length direction of three-dimensionally connected particles (1) Using the electron micrograph used in [2] above, in three-dimensionally connected particles, connect two points between the outer edges of the particles. Of the line segments, the length of the line segment having the longest length is defined as the longest diameter (DL).
(2) Perform the above (1) for 50 arbitrarily selected three-dimensionally connected particles, and lengthen their average value ([total DL of 50 three-dimensionally connected particles] / 50). The average longest diameter DLa in the longitudinal direction was used.
3. 3. Method for measuring average diameter (DTa) in the thickness direction of a three-dimensionally connected particle (1) Using the electron micrograph used in the above [2], a line connecting two points between the outer edges of the three-dimensionally connected particles. Of the minutes, the direction of the line segment having the longest length is defined as the length direction, and the direction orthogonal to the direction is defined as the thickness direction.
(2) Two intersections where the line segment orthogonal to the DL intersects the outer edge of the particle is obtained, and the line segment having the longest distance between the two intersections is defined as DT.
(3) The measurement of (2) above was performed on 50 arbitrarily selected three-dimensionally connected particles, and the average value (total of 50 DTs / 50) was taken as the average diameter DTa in the thickness direction.
4. The measurement of (2) above is performed on 50 arbitrarily selected three-dimensionally connected particles, the coefficient of variation is obtained for each DT value of the 50 three-dimensionally connected particles, and the average value is the average coefficient of variation ( C.V.).

[5]シラノール基密度の測定方法
Naタイトレーション法による比表面積測定および平均粒子径測定
1)SiOとして1.5gに相当する試料をビーカーに採取してから、恒温反応槽(25℃)に移し、純水を加えて液量を90mLにする。(以下の操作は、25℃に保持した恒温反応槽中にて行った。)
2)0.1モル/L塩酸を加え、pHを3.6にする。
3)塩化ナトリウムを30g加え、純水で150mLに希釈し、10分間攪拌する。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム水溶液を滴下して、pH4.0に調整する。
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム水溶液で滴定し、pH8.7〜9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム水溶液の滴定量をX、その時のpH値をYとして、検量線を作る。
6)次の式(2)からSiO1.5g当たりのpH4.0から9.0までに要する0.1モル/L水酸化ナトリウム水溶液の消費量V(mL)を求め、後記式(3)に従って比表面積SA[m/g]を求める。
V=(A×f×100×1.5)/(W×C)・・・(2)
上記式中、
A:SiO1.5g当たりpH4.0から9.0までに要する0.1モル/L水酸化ナトリウム水溶液の滴定量(mL)
f:0.1モル/L水酸化ナトリウム水溶液の力価
W:試料採取量(g)
C:試料のSiO濃度(質量%)
をそれぞれ表す。
SA=29.0V−28・・・(3)
また、比表面積換算粒子径D2(nm)は、式(4)から求める。
比表面積換算粒子径D2(nm)=6000/(ρSiO2×SA)・・・(4)
(ここで、ρSiO2はシリカ粒子の密度2.2[g/cm]を表す。)
ここで本発明の連結型微粒子の表面シラノール基密度は、次のように測定するものとする。
初めに、前述の比表面積を測定するシアーズ法の手順1)〜6)によって、NaOH滴定量を求める。次に、下記式に基づきシラノール基密度ρを算出することができる。
ρ=(a×b×NA)÷(c×d1)
上記式中、ρ:シラノール基密度(個/nm)、a:滴定に用いたNaOH溶液の濃度(mol/L)、b:pH4〜9のNaOH溶液の滴下量(mL)、NA:アボガドロ数、c:シリカ質量(g)、d1:窒素吸着法で求めた比表面積換算粒子径(nm)
前記d1は以下のように求める。
BET法(窒素吸着法)による比表面積測定および平均粒子径測定
粒子連結型シリカゾル50mLをHNOでpH3.5に調整し、1−プロパノール40mLを加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いて窒素吸着法(BET法)を用いて、窒素の吸着量から、BET1点法により比表面積を算出した。
具体的には、試料0.5gを測定セルに取り、窒素30v%とヘリウム70v%との混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、粒子連結型シリカゾルの比表面積を算出した。また、得られた比表面積(SA)を前記式(4)に代入して比表面積換算粒子径d1を求めた。
[5] Measurement method of silanol group density Specific surface area measurement and average particle size measurement by Na titration method 1) A sample corresponding to 1.5 g of SiO 2 is collected in a beaker and then placed in a constant temperature reaction vessel (25 ° C.). Transfer and add pure water to make the liquid volume 90 mL. (The following operation was performed in a constant temperature reaction vessel kept at 25 ° C.)
2) Add 0.1 mol / L hydrochloric acid to bring the pH to 3.6.
3) Add 30 g of sodium chloride, dilute to 150 mL with pure water, and stir for 10 minutes.
4) Set the pH electrode and add 0.1 mol / L sodium hydroxide aqueous solution while stirring to adjust the pH to 4.0.
5) The sample adjusted to pH 4.0 was titrated with a 0.1 mol / L sodium hydroxide aqueous solution, and the titration amount in the range of pH 8.7 to 9.3 and the pH value were recorded at 4 points or more, and 0. A titration line is prepared by setting the titration amount of 1 mol / L sodium hydroxide aqueous solution to X and the pH value at that time to Y.
6) From the following formula (2), the consumption V (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 was determined, and the following formula (3) ) To determine the specific surface area SA [m 2 / g].
V = (A × f × 100 × 1.5) / (W × C) ・ ・ ・ (2)
In the above formula,
A: Titration (mL) of 0.1 mol / L sodium hydroxide aqueous solution required from pH 4.0 to 9.0 per 1.5 g of SiO 2
f: Titer of 0.1 mol / L sodium hydroxide aqueous solution W: Sampling amount (g)
C: SiO 2 concentration (mass%) of the sample
Represent each.
SA = 29.0V-28 ... (3)
The specific surface area-equivalent particle size D2 (nm) is calculated from the formula (4).
Specific surface area equivalent particle size D2 (nm) = 6000 / (ρ SiO2 x SA) ... (4)
(Here, ρ SiO2 represents the density of silica particles 2.2 [g / cm 3 ].)
Here, the surface silanol group density of the articulated fine particles of the present invention shall be measured as follows.
First, the NaOH titration amount is determined by the above-mentioned steps 1) to 6) of the Sears method for measuring the specific surface area. Next, the silanol group density ρ can be calculated based on the following formula.
ρ = (a × b × NA) ÷ (c × d1)
In the above formula, ρ: silanol group density (pieces / nm 2 ), a: concentration of NaOH solution used for titration (mol / L), b: dropping amount of NaOH solution of pH 4-9 (mL), NA: Avogadro Number, c: Silica mass (g), d1: Specific surface area equivalent particle diameter (nm) determined by nitrogen adsorption method
The d1 is obtained as follows.
Specific surface area measurement and average particle size measurement by BET method (nitrogen adsorption method) 50 mL of particle-connected silica sol was adjusted to pH 3.5 with HNO 3 , 40 mL of 1-propanol was added, and the sample was dried at 110 ° C. for 16 hours. After crushing with a muffle furnace, the sample was calcined at 500 ° C. for 1 hour to prepare a sample for measurement. Then, the specific surface area was calculated from the amount of nitrogen adsorbed by the BET 1-point method using the nitrogen adsorption method (BET method) using a specific surface area measuring device (manufactured by Yuasa Ionics, model number Multisorb 12).
Specifically, 0.5 g of a sample is taken in a measurement cell, degassed at 300 ° C. for 20 minutes in a mixed gas stream of 30 v% nitrogen and 70 v% helium, and then the sample is placed in the mixed gas stream. Keep the temperature at liquid nitrogen and allow nitrogen to equilibrate and adsorb to the sample. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that period was detected, and the specific surface area of the particle-connected silica sol was calculated from a calibration curve prepared in advance. Further, the obtained specific surface area (SA) was substituted into the above formula (4) to obtain the specific surface area equivalent particle diameter d1.

[6]カチオンコロイド滴定方法
(1)固形分濃度1質量%に調整した粒子連結型シリカ微粒子分散液80gを試料とする。
(2)試料を攪拌する。
(3)カチオンコロイド滴定液の滴下前における試料の流動電位(mV)を測定する。
この流動電位(mV)を流動電位曲線の開始における流動電位I(mV)とする。
(4)試料を攪拌し、流動電位を測定しながら、カチオンコロイド滴定液(0.001Nポリ塩化ジアリルジメチルアンモニウム溶液)を滴下する。
(5)カチオンコロイド滴定液の滴下量(mL)をx軸および試料の流動電位(mV)をy軸とし、前記滴下量と前記流動電位との間の関係を描画し、流動電位曲線を得る。
(6)流動電位曲線において、カチオンコロイド滴定液の滴下量に比し、流動電位が大きく変化する点(変曲点)を、クニックとする。このクニックにおけるカチオンコロイド滴定液の添加量V(mL)と流動電位C(mV)を求める。
(7)クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)を、流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)を下記数式(F1)より求める。
ΔPCD/V=(I−C)/V・・・(F1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(mL)
をそれぞれ表す。
[6] Cationic colloid titration method (1) 80 g of a particle-linked silica fine particle dispersion adjusted to a solid content concentration of 1% by mass is used as a sample.
(2) Stir the sample.
(3) The flow potential (mV) of the sample before dropping the cationic colloid titration solution is measured.
This flow potential (mV) is defined as the flow potential I (mV) at the start of the flow potential curve.
(4) The sample is stirred, and the cationic colloid titration solution (0.001N polydialyldimethylammonium chloride solution) is added dropwise while measuring the flow potential.
(5) With the dropping amount (mL) of the cationic colloid titration solution on the x-axis and the flow potential (mV) of the sample on the y-axis, the relationship between the dropping amount and the flow potential is drawn to obtain a flow potential curve. ..
(6) In the flow potential curve, a point (inflection point) at which the flow potential changes significantly with respect to the dropping amount of the cationic colloid titration solution is defined as a knick. The addition amount V (mL) and the flow potential C (mV) of the cationic colloid titration solution in this knick are determined.
(7) The ratio (ΔPCD / V) to the amount (V) of the cationic colloid titrator added in the knick, and the ratio (ΔPCD / V) to the amount of change in flow potential (ΔPCD) to the amount (V) of the cationic colloid titrator added in the knick. ΔPCD / V) is calculated from the following formula (F1).
ΔPCD / V = (IC) / V ... (F1)
C: Flow potential (mV) in the knick
I: Flow potential (mV) at the start point of the flow potential curve
V: Addition amount (mL) of the cationic colloid titration solution in the knick
Represent each.

[7]Ca、MgおよびAlの含有割合の測定方法
1.試料の調製
固形分濃度20質量%に調整した粒子連結型シリカ微粒子分散液80gを試料とする。
2.Ca、MgおよびAlの含有割合の測定方法
(1)約1gの粒子連結型シリカ微粒子分散液を白金皿に精秤する。
(2)上記(1)に、リン酸3mL、硝酸5mLおよび弗化水素酸10mLを加えて、サンドバス上で加熱する。
(3)乾固したら、少量の水と硝酸50mLを加え溶解させて、100mLのメスフラスコにおさめ、水を加えて、100mLにする。
(4)次に、100mLにおさめた溶液から分液10mLを20mLのメスフラスコに採取する操作を5回繰り返し、分液10mLを5個得る。
(5)これを用いて、ICPプラズマ発光分析装置(SII製、品番SPS5520)にて、標準添加法で測定を行う。
(6)同様の方法でブランクを測定し、ブランク分を差し引いて調整し、各元素における測定値とする。
(7)上記測定値から、粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子の単位質量あたりに含まれる各元素(Ca、MgおよびAl)の質量の割合を求めた。
[7] Method for measuring the content ratio of Ca, Mg and Al 1. Preparation of sample 80 g of a particle-linked silica fine particle dispersion adjusted to a solid content concentration of 20% by mass is used as a sample.
2. Method for measuring the content ratio of Ca, Mg and Al (1) Approximately 1 g of a particle-linked silica fine particle dispersion is precisely weighed in a platinum dish.
(2) To (1) above, 3 mL of phosphoric acid, 5 mL of nitric acid and 10 mL of hydrofluoric acid are added and heated on a sand bath.
(3) After drying, add a small amount of water and 50 mL of nitric acid to dissolve, put in a 100 mL volumetric flask, and add water to make 100 mL.
(4) Next, the operation of collecting 10 mL of the separated solution from the solution contained in 100 mL into a 20 mL volumetric flask is repeated 5 times to obtain 5 10 mL of the separated solution.
(5) Using this, measurement is performed by a standard addition method with an ICP plasma emission spectrometer (manufactured by SII, product number SPS5520).
(6) The blank is measured by the same method, and the blank is subtracted and adjusted to obtain the measured value for each element.
(7) From the above measured values, the ratio of the mass of each element (Ca, Mg and Al) contained in the unit mass of the silica fine particles contained in the particle-linked silica fine particle dispersion was determined.

[8]SiO絶縁膜(厚み1μm)基板に対する研磨特性の評価方法と研磨用砥粒分散液の調製方法
[研磨用砥粒分散液の調製]
実施例および比較例の各々において得られた粒子連結型シリカ微粒子分散液あるいはシリカ微粒子分散液について、それぞれイオン交換水を加えて希釈し、いずれも固形分濃度1.0質量%に調整し、それぞれ硝酸水溶液(濃度5%)を添加してpH6.0に調整し、研磨用砥粒分散液とした。
[研磨試験方法]
被研磨基板として、熱酸化法により作製したSiO絶縁膜(厚み1μm)基板を準備し、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「IC−1000/SUBA400同心円タイプ」)を使用し、基板荷重0.04MPa、テーブル回転速度90rpmで研磨用砥粒分散液を200mL/分の速度で1分間供給して研磨を行った。
そして、研磨前後の被研磨基板の重量変化を求めて研磨速度(nm/min)を算定した。また、研磨基材の表面の平滑性(表面粗さ[Ra])を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。平滑性と表面粗さは概ね比例関係にあるため、表には表面粗さを記載した。
[8] Method for evaluating polishing characteristics of a SiO 2 insulating film (thickness 1 μm) substrate and method for preparing a polishing abrasive grain dispersion [Preparation of polishing abrasive grain dispersion]
The particle-linked silica fine particle dispersions or silica fine particle dispersions obtained in each of the Examples and Comparative Examples were diluted by adding ion-exchanged water, respectively, and the solid content concentration was adjusted to 1.0% by mass, respectively. An aqueous nitric acid solution (concentration 5%) was added to adjust the pH to 6.0 to prepare an abrasive grain dispersion for polishing.
[Polishing test method]
As a substrate to be polished, a SiO 2 insulating film (thickness 1 μm) substrate manufactured by a thermal oxidation method is prepared, and this substrate to be polished is set in a polishing device (Nanofactor Co., Ltd., NF300) and a polishing pad (manufactured by Nitta Hearth Co., Ltd.). Using "IC-1000 / SUBA400 concentric circle type"), polishing was performed by supplying an abrasive grain dispersion for polishing at a substrate load of 0.04 MPa and a table rotation speed of 90 rpm for 1 minute at a rate of 200 mL / min.
Then, the polishing rate (nm / min) was calculated by obtaining the weight change of the substrate to be polished before and after polishing. Further, the surface smoothness (surface roughness [Ra]) of the polished substrate was measured using an atomic force microscope (AFM, manufactured by Hitachi High-Tech Science Corporation). Since smoothness and surface roughness are generally proportional to each other, the surface roughness is shown in the table.

[原料としたシリカ微粒子の平均粒子径]
本発明の粒子連結型シリカ微粒子分散液を製造するための原料としたシリカ微粒子分散液におけるシリカ微粒子の平均粒子径の測定方法は次のとおりである。
[測定方法]シリカ微粒子分散液(固形分濃度:0.05質量%)を用いて作成した試料の透過型電子顕微鏡(倍率:20万倍)で撮影した。その写真を用い、50個の一次粒子を任意に選択した。任意に選択された各一次粒子を写真投影図(平面視)した場合に、円形のものは、直径を粒子径とした。また、円形以外の一次粒子は、写真投影図(平面視)した場合に粒子の外縁と外縁との間の距離について、最長のものと最短のものを平均した値を粒子径とした。50個の粒子について、粒子径を合計し、粒子の個数で除した平均値をシリカの平均粒子径とした。
[Average particle size of silica fine particles used as raw material]
The method for measuring the average particle size of silica fine particles in the silica fine particle dispersion used as a raw material for producing the particle-linked silica fine particle dispersion of the present invention is as follows.
[Measurement method] A sample prepared using a silica fine particle dispersion (solid content concentration: 0.05% by mass) was photographed with a transmission electron microscope (magnification: 200,000 times). Using the photograph, 50 primary particles were arbitrarily selected. When each of the arbitrarily selected primary particles was photographicly projected (planar view), the circular one had a diameter as the particle diameter. For primary particles other than a circle, the particle size was defined as the average value of the longest and shortest distances between the outer edges of the particles in a photographic projection drawing (plan view). For 50 particles, the particle size was totaled and the average value divided by the number of particles was taken as the average particle size of silica.

[酸性珪酸液]
珪酸ナトリウム水溶液(SiO濃度5質量%)を陽イオン交換樹脂塔に通すことにより調製し、酸性珪酸液(SiO濃度4.6質量%、pH2.3、SiO/NaO[モル比]=1200)を調製した。
以下、実施例および比較例では、この酸性珪酸液を使用した。
[Acid silicic acid solution]
Prepared by passing an aqueous sodium silicate solution (SiO 2 concentration 5% by mass) through a cation exchange resin tower, and an acidic silicic acid solution (SiO 2 concentration 4.6% by mass, pH 2.3, SiO 2 / Na 2 O [molar ratio). ] = 1200) was prepared.
Hereinafter, in Examples and Comparative Examples, this acidic silicic acid solution was used.

[実施例1]
<粒子連結型シリカ微粒子分散液の調製>
シリカ微粒子分散液「カタロイドSI−50」(平均粒子径30nm(SEMによる画像解析法)、固形分濃度48質量%、日揮触媒化成(株)製)3,100gを、純水で固形分濃度15質量%に希釈した。
この希釈したシリカ微粒子分散液に、pH調整剤として酢酸水溶液(濃度3.0質量%)1,060gを添加し(WB/WLP=0.021)、pHを4.6に調整した。
次に、このpHを調整したシリカ微粒子分散液を70℃で2時間保持し、粒子連結型シリカ微粒子分散液を得た。
[Example 1]
<Preparation of particle-connected silica fine particle dispersion>
Silica fine particle dispersion "Cataloid SI-50" (average particle size 30 nm (image analysis method by SEM), solid content concentration 48% by mass, manufactured by JGC Catalysts and Chemicals Co., Ltd.), solid content concentration 15 with pure water Diluted to mass%.
To this diluted silica fine particle dispersion, 1,060 g of an acetic acid aqueous solution (concentration: 3.0% by mass) was added as a pH adjuster (WB / WLP 1 = 0.021) to adjust the pH to 4.6.
Next, the pH-adjusted silica fine particle dispersion was held at 70 ° C. for 2 hours to obtain a particle-linked silica fine particle dispersion.

得られた粒子連結型シリカ微粒子分散液(固形分濃度13質量%)10,655gを、陰イオン交換によって、脱酢酸した。脱酢酸後のpHは10.4であった。
この脱酢酸した粒子連結型シリカ微粒子分散液5,067gに、純水4,128gを加え希釈した。これに、JIS3号水ガラス(SiO濃度24質量%、SiO/NaO(モル比)=3)281gを添加した。水ガラス添加後のpHは、10.9であった。
続いて、酸性珪酸液(SiO濃度4.6質量%)35,839g(WS/WLP=2.5に相当)を、14時間かけて、添加した。この操作により、粒子成長させ、併せて一次粒子間のネック部をも成長させた。粒子連結型シリカ微粒子分散液(固形分濃度5.2質量%)を得た。
得られた粒子連結型シリカ微粒子分散液は、前記測定方法によって、立体状分岐構造を有する粒子連結型シリカ微粒子を含むことを確認した。立体状分岐構造(三次元分岐構造)を有する粒子連結型シリカ微粒子の個数割合は、14%であった。
10,655 g of the obtained particle-linked silica fine particle dispersion (solid content concentration: 13% by mass) was deacetic acidized by anion exchange. The pH after deacetic acid was 10.4.
To 5,067 g of the deacetic acid-linked particle-linked silica fine particle dispersion, 4,128 g of pure water was added and diluted. To this, 281 g of JIS No. 3 water glass (SiO 2 concentration 24% by mass, SiO 2 / Na 2 O (molar ratio) = 3) was added. The pH after adding water glass was 10.9.
Subsequently, 35,839 g (corresponding to WS / WLP 2 = 2.5) of an acidic silicic acid solution (SiO 2 concentration 4.6% by mass) was added over 14 hours. By this operation, the particles were grown, and at the same time, the neck portion between the primary particles was also grown. A particle-linked silica fine particle dispersion (solid content concentration: 5.2% by mass) was obtained.
It was confirmed by the above-mentioned measuring method that the obtained particle-linked silica fine particle dispersion liquid contained particle-linked silica fine particles having a three-dimensional branched structure. The number ratio of the particle-connected silica fine particles having the three-dimensional branched structure (three-dimensional branched structure) was 14%.

限外濾過装置にて、この粒子連結型シリカ微粒子分散液を濃縮し、SiO濃度を12%に調整した。さらに、ロータリーエバポレータにて、この粒子連結型シリカ微粒子分散液を濃縮し、SiO濃度を40質量%に調整し、各種測定を行った。 The particle-linked silica fine particle dispersion was concentrated with an ultrafiltration device to adjust the SiO 2 concentration to 12%. Further, the particle-connected silica fine particle dispersion was concentrated by a rotary evaporator, the SiO 2 concentration was adjusted to 40% by mass, and various measurements were performed.

[実施例2]
<粒子連結型シリカ微粒子分散液の調製>
シリカ微粒子分散液「カタロイドSI−45P」(平均粒子径50nm(SEMによる画像解析法)、固形分濃度41質量%、日揮触媒化成(株)製)976gを、純水で固形分濃度5.1質量%に希釈した。
この希釈したシリカ微粒子分散液を、陽イオン交換樹脂(SK1BH、三菱ケミカル(株)製)によって、脱塩した。脱塩後のpHは3.6であった。
これに、pH緩衝剤として酢酸アンモニウム水溶液(酢酸濃度7.0質量%、アンモニア濃度6500ppm)146gを添加し(WB/WLP=0.026)、pHを4.5に調整した。
次に、このpHを調整したシリカ微粒子分散液を80℃で33時間保持し、粒子連結型シリカ微粒子分散液を得た。
[Example 2]
<Preparation of particle-connected silica fine particle dispersion>
Silica fine particle dispersion "Cataloid SI-45P" (average particle diameter 50 nm (image analysis method by SEM), solid content concentration 41% by mass, manufactured by JGC Catalysts and Chemicals Co., Ltd.) 976 g, solid content concentration 5.1 with pure water Diluted to mass%.
This diluted silica fine particle dispersion was desalted with a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation). The pH after desalting was 3.6.
To this, 146 g of an aqueous ammonium acetate solution (acetic acid concentration 7.0% by mass, ammonia concentration 6500 ppm) was added as a pH buffer (WB / WLP 1 = 0.026), and the pH was adjusted to 4.5.
Next, the pH-adjusted silica fine particle dispersion was held at 80 ° C. for 33 hours to obtain a particle-linked silica fine particle dispersion.

得られた粒子連結型シリカ微粒子分散液(固形分濃度5.0質量%)2,500gを、陰イオン交換によって、脱酢酸した。脱酢酸後のpHは9.0であった。
この脱酢酸した粒子連結型シリカ微粒子分散液2,134gに、純水102gを加え希釈した。これにアンモニア水溶液(濃度3質量%)を加え、pHを10.8に調整した。
続いて、酸性珪酸液(SiO濃度4.6質量%)6,386g(WS/WLP=2.8に相当)を、18時間かけて、添加した。この操作により、粒子成長させ、併せて一次粒子間のネック部をも成長させた。粒子連結型シリカ微粒子分散液(固形分濃度4.4質量%)を得た。
得られた粒子連結型シリカ微粒子分散液は、前記測定方法によって、立体状分岐構造を有する粒子連結型シリカ微粒子を含むことを確認した。立体状分岐構造(三次元分岐構造)を有する粒子連結型シリカ微粒子の個数割合は、25%であった。
得られた粒子連結型シリカ微粒子分散液の濃縮および各種測定は、実施例1と、同様に行った。
2,500 g of the obtained particle-linked silica fine particle dispersion (solid content concentration: 5.0% by mass) was deacetic acidized by anion exchange. The pH after deacetic acid was 9.0.
To 2,134 g of the deacetic acid-linked particle-linked silica fine particle dispersion, 102 g of pure water was added and diluted. An aqueous ammonia solution (concentration: 3% by mass) was added thereto to adjust the pH to 10.8.
Subsequently, 6,386 g of an acidic silicic acid solution (SiO 2 concentration 4.6% by mass) (corresponding to WS / WLP 2 = 2.8) was added over 18 hours. By this operation, the particles were grown, and at the same time, the neck portion between the primary particles was also grown. A particle-linked silica fine particle dispersion (solid content concentration 4.4% by mass) was obtained.
It was confirmed by the above-mentioned measuring method that the obtained particle-linked silica fine particle dispersion liquid contained particle-linked silica fine particles having a three-dimensional branched structure. The number ratio of the particle-connected silica fine particles having the three-dimensional branched structure (three-dimensional branched structure) was 25%.
Concentration and various measurements of the obtained particle-linked silica fine particle dispersion were carried out in the same manner as in Example 1.

[実施例3]
<粒子連結型シリカ微粒子分散液の調製>
シリカ微粒子分散液「カタロイドSI−80P」(平均粒子径100nm(SEMによる画像解析法)、固形分濃度41質量%、日揮触媒化成(株)製)634gを、純水で固形分濃度10.5質量%に希釈した。
この希釈したシリカ微粒子分散液を、陽イオン交換樹脂(SK1BH、三菱ケミカル(株)製)によって、脱塩した。脱塩後のpHは3.2であった。
これに、pH緩衝剤として酢酸アンモニウム水溶液(酢酸濃度7.0質量%、アンモニア濃度6500ppm)61gを添加し(WB/WLP=0.016)、pHを4.5に調整した。
次に、このpHを調整したシリカ微粒子分散液を90℃で20時間保持し、粒子連結型シリカ微粒子分散液を得た。
[Example 3]
<Preparation of particle-connected silica fine particle dispersion>
Silica fine particle dispersion "Cataloid SI-80P" (average particle size 100 nm (image analysis method by SEM), solid content concentration 41% by mass, manufactured by JGC Catalysts and Chemicals Co., Ltd.) 634 g, solid content concentration 10.5 with pure water Diluted to mass%.
This diluted silica fine particle dispersion was desalted with a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation). The pH after desalting was 3.2.
To this, 61 g of an aqueous ammonium acetate solution (acetic acid concentration 7.0% by mass, ammonia concentration 6500 ppm) was added as a pH buffer (WB / WLP 1 = 0.016), and the pH was adjusted to 4.5.
Next, the pH-adjusted silica fine particle dispersion was held at 90 ° C. for 20 hours to obtain a particle-linked silica fine particle dispersion.

得られた粒子連結型シリカ微粒子分散液(固形分濃度9.5質量%)800gを、陰イオン交換によって、脱酢酸した。脱酢酸後のpHは10.1であった。
この脱酢酸した粒子連結型シリカ微粒子分散液700gに、純水1,633gを加え希釈した。これにアンモニア水溶液(濃度3質量%)を加え、pHを11.0に調整した。
続いて、酸性珪酸液(SiO濃度4.6質量%)を純水で希釈した希釈酸性珪酸液(SiO濃度2.3質量%)4,468gを、24時間かけて、添加した(WS/WLP=1.5に相当)。この操作により、粒子成長させ、併せて一次粒子間のネック部をも成長させた。粒子連結型シリカ微粒子分散液(固形分濃度2.5質量%)を得た。
得られた粒子連結型シリカ微粒子分散液は、前記測定方法によって、立体状分岐構造を有する粒子連結型シリカ微粒子を含むことを確認した。立体状分岐構造(三次元分岐構造)を有する粒子連結型シリカ微粒子の個数割合は、14%であった。
得られた粒子連結型シリカ微粒子分散液の濃縮および各種測定は、実施例1と、同様に行った。
800 g of the obtained particle-linked silica fine particle dispersion (solid content concentration: 9.5% by mass) was deacetic acidized by anion exchange. The pH after deacetic acid was 10.1.
To 700 g of this deacetic acid-linked particle-linked silica fine particle dispersion, 1,633 g of pure water was added and diluted. An aqueous ammonia solution (concentration: 3% by mass) was added thereto to adjust the pH to 11.0.
Subsequently, 4,468 g of a diluted acidic silicate solution (SiO 2 concentration 2.3% by mass) obtained by diluting the acidic silicate solution (SiO 2 concentration 4.6% by mass) with pure water was added over 24 hours (WS). / WLP 2 = 1.5). By this operation, the particles were grown, and at the same time, the neck portion between the primary particles was also grown. A particle-linked silica fine particle dispersion (solid content concentration 2.5% by mass) was obtained.
It was confirmed by the above-mentioned measuring method that the obtained particle-linked silica fine particle dispersion liquid contained particle-linked silica fine particles having a three-dimensional branched structure. The number ratio of the particle-connected silica fine particles having the three-dimensional branched structure (three-dimensional branched structure) was 14%.
Concentration and various measurements of the obtained particle-linked silica fine particle dispersion were carried out in the same manner as in Example 1.

[実施例4]
<粒子連結型シリカ微粒子分散液の調製>
シリカ微粒子分散液「カタロイドSS−160」(平均粒子径160nm(SEMによる画像解析法)、固形分濃度14質量%、日揮触媒化成(株)製)927gを、純水で固形分濃度11質量%に希釈した。
この希釈したシリカ微粒子分散液を、陽イオン交換樹脂(SK1BH、三菱ケミカル(株)製)によって、脱塩した。脱塩後のpHは2.7であった。
これに、pH緩衝剤として酢酸アンモニウム水溶液(酢酸濃度7.0質量%、アンモニア濃度6500ppm)122gを添加し(WB/WLP=0.066)、pHを4.4に調整した。
次に、このpHを調整したシリカ微粒子分散液を90℃で54時間保持し、粒子連結型シリカ微粒子分散液を得た。
[Example 4]
<Preparation of particle-connected silica fine particle dispersion>
Silica fine particle dispersion "Cataloid SS-160" (average particle size 160 nm (image analysis method by SEM), solid content concentration 14% by mass, manufactured by JGC Catalysts and Chemicals Co., Ltd.) 927 g, solid content concentration 11% by mass with pure water Diluted to.
This diluted silica fine particle dispersion was desalted with a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation). The pH after desalting was 2.7.
To this, 122 g of an aqueous ammonium acetate solution (acetic acid concentration 7.0% by mass, ammonia concentration 6500 ppm) was added as a pH buffer (WB / WLP 1 = 0.066), and the pH was adjusted to 4.4.
Next, the pH-adjusted silica fine particle dispersion was held at 90 ° C. for 54 hours to obtain a particle-linked silica fine particle dispersion.

得られた粒子連結型シリカ微粒子分散液(固形分濃度9.5質量%)915gを、陰イオン交換によって、脱酢酸した。脱酢酸後のpHは10.5であった。
この脱酢酸した粒子連結型シリカ微粒子分散液740gに、純水1,593gを加え希釈した。
続いて、酸性珪酸液(SiO濃度4.6質量%)を純水で希釈した希釈酸性珪酸液(SiO濃度1.2質量%)2,472gを、48時間かけて、添加した(WS/WLP=0.4に相当)。この操作により、粒子成長させ、併せて一次粒子間のネック部をも成長させた。粒子連結型シリカ微粒子分散液(固形分濃度2質量%)を得た。
915 g of the obtained particle-linked silica fine particle dispersion (solid content concentration: 9.5% by mass) was deacetic acidized by anion exchange. The pH after deacetic acid was 10.5.
To 740 g of this deacetic acid-linked particle-linked silica fine particle dispersion, 1,593 g of pure water was added and diluted.
Subsequently, 2,472 g of a diluted acidic silicic acid solution (SiO 2 concentration 1.2% by mass) obtained by diluting the acidic silicic acid solution (SiO 2 concentration 4.6% by mass) with pure water was added over 48 hours (WS). / WLP 2 = 0.4). By this operation, the particles were grown, and at the same time, the neck portion between the primary particles was also grown. A particle-linked silica fine particle dispersion (solid content concentration: 2% by mass) was obtained.

更に、得られた粒子連結型シリカ微粒子分散液3,000gにアンモニア水(濃度5質量%)と珪酸液を同時添加してビルトアップし、立体状連結粒子を得た。
得られた粒子連結型シリカ微粒子分散液に、アンモニア水溶液(濃度3質量%)の99gと、前記希釈酸性珪酸液(SiO濃度1.2質量%)6,194gとを48時間かけて同時に添加した(WS/WLP=1.2)。粒子連結型シリカ微粒子分散液(固形分濃度1.8質量%)を得た。
得られた粒子連結型シリカ微粒子分散液は、前記測定方法によって、立体状分岐構造を有する粒子連結型シリカ微粒子を含むことを確認した。立体状分岐構造(三次元分岐構造)を有する粒子連結型シリカ微粒子の個数割合は、7%であった。
得られた粒子連結型シリカ微粒子分散液の濃縮および各種測定は、実施例1と、同様に行った。
Further, aqueous ammonia (concentration: 5% by mass) and a silicic acid solution were simultaneously added to 3,000 g of the obtained particle-linked silica fine particle dispersion to build up the particles to obtain three-dimensional linked particles.
To the obtained particle-linked silica fine particle dispersion, 99 g of an aqueous ammonia solution (concentration: 3% by mass) and 6,194 g of the diluted acidic silicic acid solution (SiO 2 concentration: 1.2% by mass) were simultaneously added over 48 hours. (WS / WLP 2 = 1.2). A particle-linked silica fine particle dispersion (solid content concentration 1.8% by mass) was obtained.
It was confirmed by the above-mentioned measuring method that the obtained particle-linked silica fine particle dispersion liquid contained particle-linked silica fine particles having a three-dimensional branched structure. The number ratio of the particle-connected silica fine particles having the three-dimensional branched structure (three-dimensional branched structure) was 7%.
Concentration and various measurements of the obtained particle-linked silica fine particle dispersion were carried out in the same manner as in Example 1.

[実施例5]
シリカ微粒子分散液「カタロイドSI−50」(平均粒子径30nm(SEMによる画像解析法)、固形分濃度48質量%、日揮触媒化成(株)製)3,100gを、純水で固形分濃度15質量%に希釈した。
これに、pH調整剤として酢酸水溶液(濃度3.0質量%)1,060gを添加し(WB/WLP=0.021)、pHを4.6に調整した。
次に、このpHを調整したシリカ微粒子分散液を70℃で2時間保持し、粒子連結型シリカ微粒子分散液を得た。
[Example 5]
Silica fine particle dispersion "Cataloid SI-50" (average particle size 30 nm (image analysis method by SEM), solid content concentration 48% by mass, manufactured by JGC Catalysts and Chemicals Co., Ltd.), solid content concentration 15 with pure water Diluted to mass%.
To this, 1,060 g of an aqueous acetic acid solution (concentration: 3.0% by mass) was added as a pH adjuster (WB / WLP 1 = 0.021), and the pH was adjusted to 4.6.
Next, the pH-adjusted silica fine particle dispersion was held at 70 ° C. for 2 hours to obtain a particle-linked silica fine particle dispersion.

得られた粒子連結型シリカ微粒子分散液(固形分濃度13.0質量%)10,655gから、5,067gを小分けした。この小分けした粒子連結型シリカ微粒子分散液に脱酢酸処理をすることなく、純水4,128gを加えて希釈した。
この希釈した粒子連結型シリカ微粒子分散液の全量に、JIS3号水ガラス(SiO濃度24質量%、SiO/NaO(モル比)=3)459gを添加した。水ガラス添加後のpHは、10.9であった。
続いて、酸性珪酸液(SiO濃度4.6質量%)35,839g(WS/WLP=2.5に相当)を、14時間かけて、添加した。粒子成長させ、併せて一次粒子間のネック部をも成長させた。粒子連結型シリカ微粒子分散液(固形分濃度5.2質量%)を調製した。
得られた粒子連結型シリカ微粒子分散液は、前記測定方法によって、立体状分岐構造を有する粒子連結型シリカ微粒子を含むことを確認した。立体状分岐構造(三次元分岐構造)を有する粒子連結型シリカ微粒子の個数割合は、14%であった。
得られた粒子連結型シリカ微粒子分散液の濃縮および各種測定は、実施例1と、同様に行った。
From 10,655 g of the obtained particle-linked silica fine particle dispersion (solid content concentration 13.0% by mass), 5,067 g was subdivided. This subdivided particle-linked silica fine particle dispersion was diluted by adding 4,128 g of pure water without deacetic acid treatment.
459 g of JIS No. 3 water glass (SiO 2 concentration 24% by mass, SiO 2 / Na 2 O (molar ratio) = 3) was added to the total amount of the diluted particle-linked silica fine particle dispersion. The pH after adding water glass was 10.9.
Subsequently, 35,839 g (corresponding to WS / WLP 2 = 2.5) of an acidic silicic acid solution (SiO 2 concentration 4.6% by mass) was added over 14 hours. The particles were grown, and the neck between the primary particles was also grown. A particle-linked silica fine particle dispersion (solid content concentration: 5.2% by mass) was prepared.
It was confirmed by the above-mentioned measuring method that the obtained particle-linked silica fine particle dispersion liquid contained particle-linked silica fine particles having a three-dimensional branched structure. The number ratio of the particle-connected silica fine particles having the three-dimensional branched structure (three-dimensional branched structure) was 14%.
Concentration and various measurements of the obtained particle-linked silica fine particle dispersion were carried out in the same manner as in Example 1.

[実施例6]
シリカ微粒子分散液「カタロイドSI−50」(平均粒子径30nm(SEMによる画像解析法)、固形分濃度48質量%、日揮触媒化成(株)製)3,100gを、純水で固形分濃度15質量%に希釈した。
これに、pH調整剤として酢酸水溶液(濃度3.0質量%)1,060gを添加し(WB/WLP=0.021)、pHを4.6に調整した。
次に、このpHを調整したシリカ微粒子分散液を70℃で2時間保持し、粒子連結型シリカ微粒子分散液を得た。
得られた粒子連結型シリカ微粒子分散液は、SiO濃度13質量%であった。前記測定方法によって、立体状分岐構造を有する粒子連結型シリカ微粒子を含むことを確認した。立体状分岐構造(三次元分岐構造)を有する粒子連結型シリカ微粒子の個数割合は、15%であった。
得られた粒子連結型シリカ微粒子分散液の濃縮および各種測定は、実施例1と、同様に行った。
[Example 6]
Silica fine particle dispersion "Cataloid SI-50" (average particle size 30 nm (image analysis method by SEM), solid content concentration 48% by mass, manufactured by JGC Catalysts and Chemicals Co., Ltd.), solid content concentration 15 with pure water Diluted to mass%.
To this, 1,060 g of an aqueous acetic acid solution (concentration: 3.0% by mass) was added as a pH adjuster (WB / WLP 1 = 0.021), and the pH was adjusted to 4.6.
Next, the pH-adjusted silica fine particle dispersion was held at 70 ° C. for 2 hours to obtain a particle-linked silica fine particle dispersion.
The obtained particle-linked silica fine particle dispersion had a SiO 2 concentration of 13% by mass. By the above measurement method, it was confirmed that the particle-connected silica fine particles having a three-dimensional branched structure were contained. The number ratio of the particle-connected silica fine particles having the three-dimensional branched structure (three-dimensional branched structure) was 15%.
Concentration and various measurements of the obtained particle-linked silica fine particle dispersion were carried out in the same manner as in Example 1.

[比較例1]
<シリカ微粒子分散液(シリカ微粒子の平均粒子径60nm)の調製>
エタノール12,090gと正珪酸エチル6,363.9gとを混合し、混合液aとした。次に、超純水6,120gとアンモニア水溶液(濃度29質量%)444.9gとを混合し、混合液bとした。
続いて、超純水192.9gとエタノール444.9gとを混合して敷き水とし、敷き水を撹拌しながら75℃に調整した。そこに、混合液aおよび混合液bを、各々10時間で添加が終了するように、同時に添加した。
添加終了後、液温を75℃のまま3時間保持することにより熟成させ、シリカ微粒子分散液9,646.3g得た。このシリカ微粒子分散液のSiO固形分濃度を19質量%に調整し、動的光散乱法(大塚電子社製PAR−III)により平均粒子径を測定した。平均粒子径60nmであった。
[Comparative Example 1]
<Preparation of silica fine particle dispersion (average particle size of silica fine particles 60 nm)>
12,090 g of ethanol and 6,363.9 g of ethyl orthosilicate were mixed to prepare a mixed solution a. Next, 6,120 g of ultrapure water and 444.9 g of an aqueous ammonia solution (concentration 29% by mass) were mixed to prepare a mixed solution b.
Subsequently, 192.9 g of ultrapure water and 444.9 g of ethanol were mixed to prepare bedding water, and the bedding water was adjusted to 75 ° C. with stirring. The mixed liquid a and the mixed liquid b were simultaneously added thereto so that the addition was completed in 10 hours each.
After completion of the addition, the liquid temperature was kept at 75 ° C. for 3 hours for aging to obtain 9,646.3 g of a silica fine particle dispersion liquid. The SiO 2 solid content concentration of this silica fine particle dispersion was adjusted to 19% by mass, and the average particle size was measured by a dynamic light scattering method (PAR-III manufactured by Otsuka Denshi Co., Ltd.). The average particle size was 60 nm.

[比較例2]
ヒュームドシリカ(日本アエロジル社製、AEROSIL50)300gにイオン交換水3,986gを加え、φ0.25mmの高純度シリカビーズ(大研化学工業株式会社製、アシザワファインテック社製ビーズミルLMZ06)を用い、湿式解砕、粉砕をした。固形分濃度7質量%のシリカ微粒子分散液4,286gを得た。このシリカ微粒子分散液2,571gに超純水3387.7gとアンモニア29.7g(3質量%)を加えて混合した。SiO固形分濃度3質量%の分散液6000gを得た。
このシリカ微粒子分散液に含まれるシリカ微粒子の平均粒子径は32nm(SEMによる画像解析法)であり、前述の画像解析法により短径/長径比を算出すると、0.44であった。
[Comparative Example 2]
Add 3,986 g of ion-exchanged water to 300 g of fumed silica (AEROSIL50, manufactured by Aerosil Japan), and use high-purity silica beads with a diameter of 0.25 mm (bead mill LMZ06, manufactured by Ashizawa Finetech, manufactured by Daiken Kagaku Kogyo Co., Ltd.). Wet crushing and crushing. 4,286 g of a silica fine particle dispersion having a solid content concentration of 7% by mass was obtained. To 2,571 g of this silica fine particle dispersion, 3387.7 g of ultrapure water and 29.7 g (3% by mass) of ammonia were added and mixed. 6000 g of a dispersion liquid having a SiO 2 solid content concentration of 3% by mass was obtained.
The average particle size of the silica fine particles contained in the silica fine particle dispersion was 32 nm (image analysis method by SEM), and the minor axis / major axis ratio was 0.44 when the minor axis / major axis ratio was calculated by the above-mentioned image analysis method.

[比較例3]
シリカ微粒子分散液「カタロイドSI−50」(平均粒子径30nm(SEMによる画像解析法)、固形分濃度48質量%、日揮触媒化成(株)製)3,100gを、純水で固形分濃度15質量%に希釈した。これに、pH調整剤として酢酸水溶液(濃度20.0質量%)1,060gを添加し(WB/WLP=0.142)、pHを4.4に調整した。
次に、このpHを調整したシリカ微粒子分散液を70℃で24時間保持したところ、係る保持中にシリカ微粒子の過剰で不定形な凝集が発生し、更に沈降する凝集体も発生し、本発明に係る粒子連結型シリカ微粒子分散液を得ることができなかった。
[Comparative Example 3]
Silica fine particle dispersion "Cataloid SI-50" (average particle size 30 nm (image analysis method by SEM), solid content concentration 48% by mass, manufactured by JGC Catalysts and Chemicals Co., Ltd.), solid content concentration 15 with pure water Diluted to mass%. To this, 1,060 g of an aqueous acetic acid solution (concentration 20.0% by mass) was added as a pH adjuster (WB / WLP 1 = 0.142) to adjust the pH to 4.4.
Next, when the silica fine particle dispersion liquid having adjusted pH was held at 70 ° C. for 24 hours, excessive and irregular agglomeration of silica fine particles was generated during the holding, and further settling agglomerates were also generated. It was not possible to obtain the particle-linked silica fine particle dispersion liquid according to the above.

[比較例4]
シリカ微粒子分散液「カタロイドSI−45P」(平均粒子径50nm(SEMによる画像解析法)、固形分濃度41質量%、日揮触媒化成(株)製)976gを用いた。
[Comparative Example 4]
976 g of silica fine particle dispersion "Cataloid SI-45P" (average particle size 50 nm (image analysis method by SEM), solid content concentration 41% by mass, manufactured by JGC Catalysts and Chemicals Co., Ltd.) was used.

各種測定の結果を表1〜表3に示す。表1には、連結粒子分散液におけるシリカ微粒子の特徴と連結粒子分散液のΔPCD/Vを示す。表2には、連結粒子中の立体状連結粒子の割合を示す。表3には、立体状連結粒子の特徴を示す。なお、表2において、連結粒子個数[c]は、立体状連結粒子の個数[a]と平面状連結粒子の個数[b]との合計を表し、連結粒子体積[C]は、立体状連結粒子の体積[A]と平面状連結粒子の体積[B]との合計を表す。
表4および表5には、ネック部分深さの平均値(Lm)の測定結果と、研磨速度および面精度の試験結果を示す。
The results of various measurements are shown in Tables 1 to 3. Table 1 shows the characteristics of the silica fine particles in the linked particle dispersion and the ΔPCD / V of the linked particle dispersion. Table 2 shows the ratio of the three-dimensional connected particles in the connected particles. Table 3 shows the characteristics of the three-dimensional connecting particles. In Table 2, the number of connected particles [c] represents the total of the number of three-dimensionally connected particles [a] and the number of planarly connected particles [b], and the volume of connected particles [C] is three-dimensionally connected. It represents the sum of the volume of particles [A] and the volume of planar connected particles [B].
Tables 4 and 5 show the measurement results of the average value (Lm) of the neck portion depth and the test results of the polishing speed and the surface accuracy.

Figure 2021143110
Figure 2021143110

Figure 2021143110
Figure 2021143110

Figure 2021143110
Figure 2021143110

Figure 2021143110
Figure 2021143110

Figure 2021143110
Figure 2021143110

表1〜表3に示す結果からも明らかなように、実施例1〜6によれば、立体状分岐構造を有する本発明の粒子連結型シリカ微粒子分散液が得られたことが確認された。また、表4および表5に示す結果からも明らかなように、実施例1〜6で得られた粒子連結型シリカ微粒子分散液によれば、研磨性等の優れた特性を有することが確認された。 As is clear from the results shown in Tables 1 to 3, it was confirmed that according to Examples 1 to 6, the particle-linked silica fine particle dispersion liquid of the present invention having a three-dimensional branched structure was obtained. Further, as is clear from the results shown in Tables 4 and 5, it was confirmed that the particle-linked silica fine particle dispersions obtained in Examples 1 to 6 have excellent properties such as abrasiveness. rice field.

本発明の粒子連結型シリカ微粒子分散液は、研磨材および研磨用組成物として有用である。例えば、アルミニウムディスク(アルミニウムまたはその基材上のメッキ層)や半導体多層配線基板のアルミニウム配線、光ディスクや磁気ディスク用ガラス基板、液晶ディスプレイ用ガラス基板、フォトマスク用ガラス基板およびガラス質材料の鏡面加工等の研磨剤または研磨用組成物に利用が可能である。また、樹脂成型物やコーテイング被膜の充填剤、化粧料の成分、吸着剤、凝集促進剤、滓下げ剤、増粘剤および土壌硬化剤等としても利用可能である。 The particle-linked silica fine particle dispersion of the present invention is useful as an abrasive and a composition for polishing. For example, aluminum wiring of aluminum discs (plating layer on aluminum or its base material) and semiconductor multilayer wiring boards, glass substrates for optical disks and magnetic disks, glass substrates for liquid crystal displays, glass substrates for photomasks, and mirror processing of glassy materials. It can be used as an abrasive or a composition for polishing. It can also be used as a filler for resin molded products and coating films, cosmetic components, adsorbents, aggregation promoters, slag-lowering agents, thickeners, soil hardeners and the like.

Claims (14)

シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液であって、
前記シリカ一次微粒子が連結した構造からなる粒子連結型シリカ微粒子を含む粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子は、下記[1]の要件を備え、かつ前記シリカ微粒子に包含される立体状分岐構造を有する粒子連結型シリカ微粒子が、下記[2]の要件を備えることを特徴とする粒子連結型シリカ微粒子分散液。
[1]前記シリカ微粒子の動的光散乱法により測定した平均粒子径(D1)が、50nm以上600nm以下の範囲にあること。
[2]前記立体状分岐構造を有する粒子連結型シリカ微粒子が、鎖状で、かつ少なくとも1つの分岐(a)を有する構造と、この構造に対する立体構造を有すること。
A particle-linked silica fine particle dispersion containing particle-linked silica fine particles having a structure in which silica primary fine particles are linked.
The silica fine particles contained in the particle-linked silica fine particle dispersion liquid containing the particle-linked silica fine particles having a structure in which the silica primary fine particles are linked have the following requirements [1] and are contained in the silica fine particles in a three-dimensional shape. A particle-linked silica fine particle dispersion liquid, wherein the particle-linked silica fine particles having a branched structure satisfy the following requirements [2].
[1] The average particle size (D1) measured by the dynamic light scattering method of the silica fine particles is in the range of 50 nm or more and 600 nm or less.
[2] The particle-connected silica fine particles having the three-dimensional branched structure have a chain-like structure having at least one branch (a) and a three-dimensional structure for this structure.
前記立体構造が、下記(1)および(2)の構造のうちの少なくとも1つであることを特徴とする請求項1記載の粒子連結型シリカ微粒子分散液。
(1)前記分岐(a)に対し、立体方向に伸長してなる分岐(b)
(2)前記分岐(a)に対し、立体方向に伸長してなる末端(c)
The particle-linked silica fine particle dispersion liquid according to claim 1, wherein the three-dimensional structure is at least one of the following structures (1) and (2).
(1) A branch (b) extending in a three-dimensional direction with respect to the branch (a).
(2) The end (c) extending in the three-dimensional direction with respect to the branch (a).
前記立体状分岐構造を有する粒子連結型シリカ微粒子は、下記[3]および[4]の要件を備えることを特徴とする請求項1または2に記載の粒子連結型シリカ微粒子分散液。
[3]50nm≦DLa≦1,000nm
DLa:前記立体状分岐構造を有する粒子連結型シリカ微粒子の長さ方向における最長径(DL)の平均値
[4]10nm≦DTa≦800nm
DTa:前記立体状分岐構造を有する粒子連結型シリカ微粒子の太さ方向における直径(DT)の平均値
The particle-linked silica fine particle dispersion according to claim 1 or 2, wherein the particle-linked silica fine particles having a three-dimensional branched structure have the following requirements [3] and [4].
[3] 50 nm ≤ DLa ≤ 1,000 nm
DLa: Average value of the longest diameter (DL) in the length direction of the particle-connected silica fine particles having the three-dimensional branched structure [4] 10 nm ≤ DTa ≤ 800 nm
DT: The average value of the diameter (DT) in the thickness direction of the particle-connected silica fine particles having the three-dimensional branched structure.
前記立体状分岐構造を有する粒子連結型シリカ微粒子は、下記[5]の要件を備えることを特徴とする請求項1から3のいずれか一項に記載の粒子連結型シリカ微粒子分散液。
[5]10%≦C.V.≦40%
C.V.:前記立体状分岐構造を有する粒子連結型シリカ微粒子の太さ方向における直径(DT)の平均変動係数
The particle-linked silica fine particle dispersion according to any one of claims 1 to 3, wherein the particle-linked silica fine particles having a three-dimensional branched structure satisfy the requirements of the following [5].
[5] 10% ≤ C.I. V. ≤40%
C. V. : Average coefficient of variation of diameter (DT) in the thickness direction of the particle-connected silica fine particles having the three-dimensional branched structure
前記立体状分岐構造を有する粒子連結型シリカ微粒子は、前記シリカ一次微粒子の平均連結個数が、5個以上20個以下の範囲にあることを特徴とする請求項1から4のいずれか一項に記載の粒子連結型シリカ微粒子分散液。 The particle-connected silica fine particles having a three-dimensional branched structure are according to any one of claims 1 to 4, wherein the average number of connected silica primary fine particles is in the range of 5 or more and 20 or less. The particle-linked silica fine particle dispersion liquid described. 前記シリカ微粒子に含まれるCa、MgおよびAlの割合が、下記のとおりであることを特徴とする請求項1から5のいずれか一項に記載の粒子連結型シリカ微粒子分散液。
Ca:25ppm以下
Mg:25ppm以下
Al:150ppm以下
The particle-linked silica fine particle dispersion according to any one of claims 1 to 5, wherein the ratio of Ca, Mg and Al contained in the silica fine particles is as follows.
Ca: 25ppm or less Mg: 25ppm or less Al: 150ppm or less
前記立体状分岐構造を有する粒子連結型シリカ微粒子を5個数%以上50個数%以下含むことを特徴とする請求項1から6のいずれか一項に記載の粒子連結型シリカ微粒子分散液。 The particle-linked silica fine particle dispersion according to any one of claims 1 to 6, wherein the particle-linked silica fine particles having a three-dimensional branched structure are contained in an amount of 5% by number or more and 50% by number or less. 前記粒子連結型シリカ微粒子分散液に含まれるシリカ微粒子のシラノール基密度が、0.1個/nm以上5.0個/nm以下の範囲にあることを特徴とする請求項1から7のいずれか一項に記載の粒子連結型シリカ微粒子分散液。 Silanol group density of the silica fine particles contained in the particle-linked silica fine dispersion, of 0.1 or / nm 2 to 5.0 pieces / nm 2 claims 1 to 7, characterized in that in the following ranges The particle-linked silica fine particle dispersion according to any one of the following items. カチオンコロイド滴定を行った場合に、下記数式(F1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−350以上−10以下となる流動電位曲線が得られることを特徴とする請求項1から8のいずれか一項に記載の粒子連結型シリカ微粒子分散液。
ΔPCD/V=(I−C)/V・・・(F1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(mL)
When cationic colloid titration is performed, the ratio (ΔPCD / V) of the flow potential change amount (ΔPCD) represented by the following formula (F1) to the addition amount (V) of the cationic colloid titration solution in the knick is -350. The particle-linked silica fine particle dispersion liquid according to any one of claims 1 to 8, wherein a flow potential curve of -10 or less can be obtained.
ΔPCD / V = (IC) / V ... (F1)
C: Flow potential (mV) in the knick
I: Flow potential (mV) at the start point of the flow potential curve
V: Addition amount (mL) of the cationic colloid titration solution in the knick
請求項1から9のいずれ一項に記載の粒子連結型シリカ微粒子分散液を含むことを特徴とする砥粒分散液。 An abrasive grain dispersion liquid comprising the particle-linked silica fine particle dispersion liquid according to any one of claims 1 to 9. 下記工程1を含むことを特徴とする請求項1に記載の粒子連結型シリカ微粒子分散液の製造方法。
工程1:SiO濃度1.5質量%以上30質量%以下のシリカ微粒子分散液に、pH緩衝剤またはpH調整剤を、下記の割合(WB/WLP)の範囲内で添加し、続いて、40℃以上98℃以下に加熱し、1時間以上保持し、粒子連結型シリカ微粒子分散液を得る工程
0.01≦WB/WLP≦0.1
(ここで、WLPは、シリカ微粒子分散液中のシリカ質量であり、WBは、pH緩衝剤またはpH調整剤の質量である。)
The method for producing a particle-linked silica fine particle dispersion liquid according to claim 1, which comprises the following step 1.
Step 1: A pH buffer or a pH adjuster is added to the silica fine particle dispersion having a SiO 2 concentration of 1.5% by mass or more and 30% by mass or less within the following ratio (WB / WLP 1 ), followed by , 40 ° C. or higher and 98 ° C. or lower, and held for 1 hour or longer to obtain a particle-linked silica fine particle dispersion 0.01 ≤ WB / WLP 1 ≤ 0.1
(Here, WLP 1 is the mass of silica in the silica fine particle dispersion, and WB is the mass of the pH buffer or pH adjuster.)
前記工程1でpH緩衝剤またはpH調整剤の全量添加後のpHが2.0以上6.0以下の範囲にあることを特徴とする請求項11に記載の粒子連結型シリカ微粒子分散液の製造方法。 The production of the particle-linked silica fine particle dispersion according to claim 11, wherein the pH after the addition of the entire amount of the pH buffer or pH adjuster in step 1 is in the range of 2.0 or more and 6.0 or less. Method. 前記工程1に続いて、下記工程2を含むことを特徴とする請求項11または12に記載の粒子連結型シリカ微粒子分散液の製造方法。
工程2:前記工程1で得た粒子連結型シリカ微粒子分散液に対し、下記(i)および(ii)の処理のうちの少なくとも1つにより、pH10.0以上にpH調整処理し、続いて酸性珪酸液を、下記の割合(WS/WLP)となるように連続的または断続的に添加し、粒子成長させる処理を施す工程
0.01≦WS/WLP≦10
(ここで、WLPは、粒子連結型シリカ微粒子分散液中のシリカ質量であり、WSは、酸性珪酸液中のシリカ質量である。)
(i)陰イオン交換処理
(ii)アルカリ添加
The method for producing a particle-linked silica fine particle dispersion liquid according to claim 11 or 12, which comprises the following step 2 following the step 1.
Step 2: The particle-linked silica fine particle dispersion obtained in Step 1 is pH-adjusted to pH 10.0 or higher by at least one of the following treatments (i) and (ii), followed by acidity. Step of continuously or intermittently adding the silicic acid solution in the following ratio (WS / WLP 2 ) to grow particles 0.01 ≤ WS / WLP 2 ≤ 10
(Here, WLP 2 is the mass of silica in the particle-linked silica fine particle dispersion, and WS is the mass of silica in the acidic silicic acid solution.)
(I) Anion exchange treatment (ii) Add alkali
前記工程2に続いて、下記工程3を含むことを特徴とする請求項13に記載の粒子連結型シリカ微粒子分散液の製造方法。
工程3:前記工程2を施している粒子連結型シリカ微粒子分散液に対し、下記(i)および(ii)の処理のうちの少なくとも1つにより、pH10.0以上にpH調整処理し、続いて、酸性珪酸液を下記の割合(WS/WLP)となるように連続的または断続的に添加し、粒子成長させる処理を施す工程を含むことを特徴とする粒子連結型シリカ微粒子分散液の製造方法。
0.5≦WS/WLP≦10
(ここで、WLPは、粒子連結型シリカ微粒子分散液中のシリカ質量であり、WSは、酸性珪酸液中のシリカ質量である。)
(i)陰イオン交換処理
(ii)アルカリ添加
The method for producing a particle-linked silica fine particle dispersion liquid according to claim 13, which comprises the following step 3 following the step 2.
Step 3: The particle-linked silica fine particle dispersion liquid subjected to the step 2 is subjected to pH adjustment treatment to pH 10.0 or higher by at least one of the following treatments (i) and (ii), followed by a pH adjustment treatment. , Production of a particle-linked silica fine particle dispersion, which comprises a step of continuously or intermittently adding an acidic silicic acid solution at the following ratio (WS / WLP 2) to grow particles. Method.
0.5 ≤ WS / WLP 2 ≤ 10
(Here, WLP 2 is the mass of silica in the particle-linked silica fine particle dispersion, and WS is the mass of silica in the acidic silicic acid solution.)
(I) Anion exchange treatment (ii) Add alkali
JP2020044287A 2020-03-13 2020-03-13 Particle-linked silica fine particle dispersion and its manufacturing method, and polishing abrasive dispersion Active JP7455623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020044287A JP7455623B2 (en) 2020-03-13 2020-03-13 Particle-linked silica fine particle dispersion and its manufacturing method, and polishing abrasive dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044287A JP7455623B2 (en) 2020-03-13 2020-03-13 Particle-linked silica fine particle dispersion and its manufacturing method, and polishing abrasive dispersion

Publications (2)

Publication Number Publication Date
JP2021143110A true JP2021143110A (en) 2021-09-24
JP7455623B2 JP7455623B2 (en) 2024-03-26

Family

ID=77767021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044287A Active JP7455623B2 (en) 2020-03-13 2020-03-13 Particle-linked silica fine particle dispersion and its manufacturing method, and polishing abrasive dispersion

Country Status (1)

Country Link
JP (1) JP7455623B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119911A (en) * 2003-10-17 2005-05-12 Speedfam Co Ltd Method for refining colloidal silica
US20080038995A1 (en) * 2003-08-14 2008-02-14 Small Robert J Periodic Acid Compositions For Polishing Ruthenium/Low K Substrates
JP2009188058A (en) * 2008-02-04 2009-08-20 Nippon Chem Ind Co Ltd Polishing colloidal silica for semiconductor wafer, and method for producing same
WO2010021400A1 (en) * 2008-08-22 2010-02-25 国立大学法人東京大学 Silica nanoparticle structure and process for production of same
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2010143784A (en) * 2008-12-18 2010-07-01 Adeka Corp Silica sol comprising branched chain silica particles and method for producing the same
JP2018168031A (en) * 2017-03-30 2018-11-01 株式会社フジミインコーポレーテッド Manufacturing method for silica sol
WO2019163992A1 (en) * 2018-02-26 2019-08-29 日産化学株式会社 Method for producing silica sol having elongated particle shape

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038995A1 (en) * 2003-08-14 2008-02-14 Small Robert J Periodic Acid Compositions For Polishing Ruthenium/Low K Substrates
JP2005119911A (en) * 2003-10-17 2005-05-12 Speedfam Co Ltd Method for refining colloidal silica
JP2009188058A (en) * 2008-02-04 2009-08-20 Nippon Chem Ind Co Ltd Polishing colloidal silica for semiconductor wafer, and method for producing same
WO2010021400A1 (en) * 2008-08-22 2010-02-25 国立大学法人東京大学 Silica nanoparticle structure and process for production of same
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2010143784A (en) * 2008-12-18 2010-07-01 Adeka Corp Silica sol comprising branched chain silica particles and method for producing the same
JP2018168031A (en) * 2017-03-30 2018-11-01 株式会社フジミインコーポレーテッド Manufacturing method for silica sol
WO2019163992A1 (en) * 2018-02-26 2019-08-29 日産化学株式会社 Method for producing silica sol having elongated particle shape

Also Published As

Publication number Publication date
JP7455623B2 (en) 2024-03-26

Similar Documents

Publication Publication Date Title
JP5587957B2 (en) Konpira sugar-like sol
JP5602358B2 (en) Non-spherical silica sol, method for producing the same, and polishing composition
JP5084670B2 (en) Silica sol and method for producing the same
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
JP5615529B2 (en) Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition
JP6207345B2 (en) Method for producing silica particles
JP2017190363A (en) Polishing liquid composition for sapphire plate
JP4949209B2 (en) Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition
JP7037918B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP5940754B1 (en) Polishing liquid composition for sapphire plate
JP2021127359A (en) Ceria-based composite fine particle dispersion, method for producing the same, and ceria-based composite fine particle dispersion-containing polishing abrasive grain dispersion
JP5464834B2 (en) Polishing silica sol, polishing composition, and method for producing polishing silica sol
JP2021143110A (en) Particle-linked silica microparticle dispersion and method for producing the same, and abrasive particle dispersion for polishing
JP5421006B2 (en) Particle-linked silica sol and method for producing the same
JP2011136402A (en) Polishing particle dispersion liquid comprising aggregate of organic particle and silica particle, and method for manufacturing the same
JP2010024119A (en) Method for producing confetti-like silica sol
JP2013227168A (en) Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
JP2023021586A (en) Particle-linked silica fine particle liquid dispersion, method of producing the same, and abrasive particle liquid dispersion
JP2023040878A (en) Organic/inorganic composite fine particle dispersion and method for producing the same, and abrasive grain dispersion
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP2023108405A (en) Organic-inorganic composite fine particle dispersion and manufacturing method of the same, and abrasive particle dispersion
JP2013177617A (en) Silica sol for polishing, and composition for polishing
JP2020180012A (en) Silica particle, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer and method for manufacturing semiconductor device
JP7482699B2 (en) Method for producing irregular silica particle dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240313

R150 Certificate of patent or registration of utility model

Ref document number: 7455623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150