JP2021132167A - Boiling cooler - Google Patents

Boiling cooler Download PDF

Info

Publication number
JP2021132167A
JP2021132167A JP2020027631A JP2020027631A JP2021132167A JP 2021132167 A JP2021132167 A JP 2021132167A JP 2020027631 A JP2020027631 A JP 2020027631A JP 2020027631 A JP2020027631 A JP 2020027631A JP 2021132167 A JP2021132167 A JP 2021132167A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
chamber
boiling cooler
heat receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020027631A
Other languages
Japanese (ja)
Other versions
JP7439559B2 (en
Inventor
修平 柴田
Shuhei Shibata
修平 柴田
正道 岩崎
Masamichi Iwasaki
正道 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2020027631A priority Critical patent/JP7439559B2/en
Publication of JP2021132167A publication Critical patent/JP2021132167A/en
Application granted granted Critical
Publication of JP7439559B2 publication Critical patent/JP7439559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a boiling cooler capable of obtaining excellent cooling performance even when the size is reduced.SOLUTION: A boiling cooler includes a heat receiving unit that includes a first storage chamber and a second storage chamber that store a refrigerant, and receives heat from a heating element, a heat radiating unit that dissipates heat from the heat receiving unit, and a heat transfer unit that includes a pipeline that connects the first and second storage chambers and transports heat from the heat receiving unit to the heat radiating unit using the self-excited vibration of the refrigerant.SELECTED DRAWING: Figure 3

Description

本発明は、沸騰冷却器に関する。 The present invention relates to a boiling cooler.

冷媒の沸騰に伴う潜熱による熱輸送を利用して発熱体を冷却する沸騰冷却器が知られている。 A boiling cooler is known that cools a heating element by utilizing heat transport by latent heat accompanying boiling of a refrigerant.

例えば、特許文献1に記載の冷却器は、受熱部と、放熱部と、これらを連結する第1連結部および第2連結部と、を有する。ここで、受熱部は、冷媒を貯蔵し、冷却対象物からの熱を受け、当該熱により冷媒を気化させる。第1連結部は、受熱部で気化した冷媒を放熱部に輸送する。放熱部は、冷媒から放熱することで冷媒を凝縮液化させる。第2連結部は、放熱部で凝縮液化した冷媒を受熱部に輸送する。 For example, the cooler described in Patent Document 1 has a heat receiving portion, a heat radiating portion, and a first connecting portion and a second connecting portion connecting them. Here, the heat receiving unit stores the refrigerant, receives the heat from the object to be cooled, and vaporizes the refrigerant by the heat. The first connecting portion transports the refrigerant vaporized in the heat receiving portion to the heat radiating portion. The heat radiating unit radiates heat from the refrigerant to condense and liquefy the refrigerant. The second connecting portion transports the refrigerant condensed and liquefied by the heat radiating portion to the heat receiving portion.

国際公開第2015/146110号International Publication No. 2015/146110

特許文献1に記載の冷却器は、前述のように、冷媒の液相と気相との間の密度差を利用するサーモンサイフォン方式により受熱部と放熱部との間で冷媒を循環または移動させる。このため、特許文献1に記載の冷却器では、小型化を図ろうとすると、冷媒の循環流路における抵抗が増大したり、受熱部と放熱部との間における位置ヘッドが減少したりするとともに、気化した冷媒が第2連結部へ混入しやすくなることにより、冷媒の循環または移動を円滑に行うことができない。この結果、冷却能力が低下してしまうという課題がある。 As described above, the cooler described in Patent Document 1 circulates or moves the refrigerant between the heat receiving portion and the heat radiating portion by the salmon siphon method utilizing the density difference between the liquid phase and the gas phase of the refrigerant. .. Therefore, in the cooler described in Patent Document 1, in order to reduce the size, the resistance in the circulation flow path of the refrigerant increases, the position head between the heat receiving portion and the heat radiating portion decreases, and the position head decreases. Since the vaporized refrigerant is likely to be mixed into the second connecting portion, the refrigerant cannot be smoothly circulated or moved. As a result, there is a problem that the cooling capacity is lowered.

以上の課題を解決するために、本発明の一態様に係る沸騰冷却器は、冷媒を収容する第1収容室および第2収容室を有し、発熱体からの熱を受ける受熱部と、前記受熱部からの熱を放熱する放熱部と、前記第1収容室と前記第2収容室とを連通させる管路を有し、前記冷媒の自励振動を用いて前記受熱部から前記放熱部に熱を輸送する伝熱部と、を有する。 In order to solve the above problems, the boiling cooler according to one aspect of the present invention has a first accommodating chamber and a second accommodating chamber for accommodating a refrigerant, and has a heat receiving unit that receives heat from a heating element, and the above. It has a heat radiating section that dissipates heat from the heat receiving section and a conduit that connects the first storage chamber and the second accommodating chamber, and uses the self-excited vibration of the refrigerant from the heat receiving section to the heat radiating section. It has a heat transfer unit that transports heat.

実施形態に係る沸騰冷却器の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the boiling cooler which concerns on embodiment. 実施形態に係る沸騰冷却器の平面図である。It is a top view of the boiling cooler which concerns on embodiment. 図2中のA−A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3中のB−B線断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 変形例における受熱部の平面図である。It is a top view of the heat receiving part in the modification.

以下、添付図面を参照しながら本発明に係る好適な実施形態を説明する。なお、図面において各部の寸法または縮尺は実際と適宜に異なり、理解を容易にするために模式的に示している部分もある。また、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られない。 Hereinafter, preferred embodiments according to the present invention will be described with reference to the accompanying drawings. In the drawings, the dimensions or scale of each part are appropriately different from the actual ones, and some parts are schematically shown for easy understanding. Further, the scope of the present invention is not limited to these forms unless it is stated in the following description that the present invention is particularly limited.

1.沸騰冷却器の概略
図1は、実施形態に係る沸騰冷却器1の概略構成を示す斜視図である。沸騰冷却器1は、例えば、鉄道車両、自動車または家庭用電気機械等に搭載されるインバーターまたは整流器等のパワーエレクトロニクス製品における冷却に用いられる。パワーエレクトロニクス製品は、例えば、ダイオードまたはIGBT(Insulated Gate Bipolar Transistor)等のパワー半導体素子を有する。当該パワー半導体素子は、沸騰冷却器1における冷却の対象物である発熱体の一例である。
1. 1. Schematic FIG. 1 of the boiling cooler is a perspective view showing a schematic configuration of the boiling cooler 1 according to the embodiment. The boiling cooler 1 is used for cooling in a power electronics product such as an inverter or a rectifier mounted on a railroad vehicle, an automobile, a household electric machine, or the like. Power electronics products include, for example, power semiconductor devices such as diodes or IGBTs (Insulated Gate Bipolar Transistors). The power semiconductor element is an example of a heating element that is an object of cooling in the boiling cooler 1.

なお、以下では、説明の便宜上、互いに直交する「X軸」、「Y軸」および「Z軸」を適宜に用いて説明する。また、X軸に沿う一方向を「X1方向」といい、X1方向とは反対の方向を「X2方向」という。同様に、Y軸に沿う一方向を「Y1方向」といい、Y1方向とは反対の方向を「Y2方向」という。Z軸に沿う一方向を「Z1方向」といい、Z1方向とは反対の方向を「Z2方向」という。ここで、Z軸は、後述の受熱部10の第1面F1または第2面F2の法線に平行な軸である。また、Z1方向またはZ2方向でみることを「平面視」という。 In the following, for convenience of explanation, the "X-axis", "Y-axis", and "Z-axis" that are orthogonal to each other will be described as appropriate. Further, one direction along the X axis is referred to as "X1 direction", and the direction opposite to the X1 direction is referred to as "X2 direction". Similarly, one direction along the Y axis is referred to as "Y1 direction", and the direction opposite to the Y1 direction is referred to as "Y2 direction". One direction along the Z axis is referred to as "Z1 direction", and the direction opposite to the Z1 direction is referred to as "Z2 direction". Here, the Z axis is an axis parallel to the normal line of the first surface F1 or the second surface F2 of the heat receiving portion 10 described later. Further, viewing in the Z1 direction or the Z2 direction is referred to as "plan view".

沸騰冷却器1は、冷媒REの沸騰に伴う潜熱による熱輸送を利用して、図示しない発熱体を冷却する冷却器である。特に、沸騰冷却器1は、冷媒REの気相と液相との間の相変化に伴う圧力差に起因する振動流により冷媒REを流路S内で移動させる自励振動型の冷却器である。すなわち、沸騰冷却器1は、冷媒REの相変化による潜熱輸送だけでなく、冷媒REの液体の移動に伴う温度変化による顕熱輸送により冷却を行う。本実施形態では、流路Sが閉ループ状をなしており、当該圧力差により当該振動流に加えて冷媒REを流路S内で循環させる循環流が生じる。 The boiling cooler 1 is a cooler that cools a heating element (not shown) by utilizing heat transport by latent heat accompanying boiling of the refrigerant RE. In particular, the boiling cooler 1 is a self-excited oscillating type cooler that moves the refrigerant RE in the flow path S by a vibration flow caused by a pressure difference due to a phase change between the gas phase and the liquid phase of the refrigerant RE. be. That is, the boiling cooler 1 cools not only by the latent heat transport due to the phase change of the refrigerant RE but also by the sensible heat transport due to the temperature change accompanying the movement of the liquid of the refrigerant RE. In the present embodiment, the flow path S has a closed loop shape, and the pressure difference causes a circulation flow in which the refrigerant RE is circulated in the flow path S in addition to the vibration flow.

沸騰冷却器1は、図1に示すように、受熱部10と放熱部20と伝熱部30とを有する。まず、沸騰冷却器1の各部を簡単に説明すると、受熱部10は、図示しない発熱体からの熱を受ける構造体である。受熱部10には、冷媒REを収容する空間として複数の収容室S1が設けられる。放熱部20は、受熱部10からの熱を放熱する構造体である。図1に示す例では、放熱部20は、複数の放熱フィン21を有する。伝熱部30は、受熱部10から放熱部20へ熱を伝達する構造体である。伝熱部30には、複数の収容室S1とともに閉ループ状の流路Sを形成する空間として複数の管路S2が形成される。図1に示す例では、伝熱部30は、管路S2を形成する複数の管体31を有する。 As shown in FIG. 1, the boiling cooler 1 has a heat receiving unit 10, a heat radiating unit 20, and a heat transmitting unit 30. First, to briefly explain each part of the boiling cooler 1, the heat receiving part 10 is a structure that receives heat from a heating element (not shown). The heat receiving unit 10 is provided with a plurality of accommodating chambers S1 as spaces for accommodating the refrigerant RE. The heat radiating unit 20 is a structure that dissipates heat from the heat receiving unit 10. In the example shown in FIG. 1, the heat radiating unit 20 has a plurality of heat radiating fins 21. The heat transfer unit 30 is a structure that transfers heat from the heat receiving unit 10 to the heat radiating unit 20. In the heat transfer unit 30, a plurality of pipelines S2 are formed as a space for forming a closed loop-shaped flow path S together with the plurality of accommodating chambers S1. In the example shown in FIG. 1, the heat transfer unit 30 has a plurality of pipe bodies 31 forming the pipe line S2.

図1に示す例では、受熱部10が有する収容室S1の数が8個である。同様に、伝熱部30が有する管体31の数が8個である。以下では、受熱部10が有する8個の収容室S1を収容室S1_1〜S1_8という場合がある。同様に、伝熱部30が有する8個の管体31を管体31_1〜31_8という場合がある。また、管体31が形成する管路S2についても、管体31_1〜31_8に対応して、管路S2_1〜S2_8という場合がある。以下、沸騰冷却器1の各部を順次説明する。 In the example shown in FIG. 1, the number of storage chambers S1 included in the heat receiving unit 10 is eight. Similarly, the number of pipes 31 included in the heat transfer unit 30 is eight. In the following, the eight storage chambers S1 included in the heat receiving unit 10 may be referred to as storage chambers S1-1 to S1_8. Similarly, the eight pipe bodies 31 included in the heat transfer unit 30 may be referred to as pipe bodies 31_1 to 31_8. Further, the pipe line S2 formed by the pipe body 31 may also be referred to as a pipe line S2-1 to S2_8 corresponding to the pipe body 31_1 to 31_8. Hereinafter, each part of the boiling cooler 1 will be described in sequence.

2.沸騰冷却器1の各部の詳細
図2は、実施形態に係る沸騰冷却器1の平面図である。図3は、図2中のA−A線断面図である。図4は、図3中のB−B線断面図である。図2では、収容室S1_1〜S1_8および管路S2_1〜S2_8で構成される閉ループ状の流路Sが二点鎖線で示される。流路Sは、冷媒REを循環可能な経路である。
2. Detailed FIG. 2 of each part of the boiling cooler 1 is a plan view of the boiling cooler 1 according to the embodiment. FIG. 3 is a cross-sectional view taken along the line AA in FIG. FIG. 4 is a cross-sectional view taken along the line BB in FIG. In FIG. 2, the closed loop-shaped flow path S composed of the accommodation chambers S1-1 to S1_8 and the pipelines S2-1 to S2_8 is shown by a chain double-dashed line. The flow path S is a path capable of circulating the refrigerant RE.

受熱部10は、冷媒REを収容する複数の収容室S1を有し、図示しない発熱体からの熱を受ける部材である。受熱部10は、熱伝導性に優れる材料で構成される。受熱部10の具体的な構成材料としては、例えば、銅、アルミニウムまたはこれらのいずれかの合金等の金属材料が挙げられる。 The heat receiving unit 10 has a plurality of accommodating chambers S1 for accommodating the refrigerant RE, and is a member that receives heat from a heating element (not shown). The heat receiving unit 10 is made of a material having excellent thermal conductivity. Specific constituent materials of the heat receiving unit 10 include metal materials such as copper, aluminum, and alloys of any of these.

冷媒REとしては、特に限定されないが、例えば、水等の水系冷媒、メタノール等のアルコール系冷媒、アセトン等のケトン系冷媒、エチレングリコール等のグリコール系冷媒、フロリナート等のフッ化炭素系冷媒、HFC134a等のフロン系冷媒、およびブタン等の炭化水素系冷媒等が挙げられる。なお、冷媒REには、必要に応じて、フッ素系界面活性剤、シリコーン系界面活性剤または炭化水素系界面活性剤等の界面活性剤等が添加されてもよい。また、冷媒REは、前述の冷媒の2種以上を組み合わせてもよい。 The refrigerant RE is not particularly limited, but for example, an aqueous refrigerant such as water, an alcohol-based refrigerant such as methanol, a ketone-based refrigerant such as acetone, a glycol-based refrigerant such as ethylene glycol, a fluorocarbon-based refrigerant such as fluorocarbon, and HFC134a. Freon-based refrigerants such as, and hydrocarbon-based refrigerants such as butane can be mentioned. If necessary, a surfactant such as a fluorine-based surfactant, a silicone-based surfactant, or a hydrocarbon-based surfactant may be added to the refrigerant RE. Further, the refrigerant RE may be a combination of two or more of the above-mentioned refrigerants.

図3に示すように、受熱部10の外形は、第1面F1と第1面F1とは反対側の第2面F2とを有する略板状をなす。なお、図1および図2に示す受熱部10には、冷却の対象物に対してネジ止めにより固定するための複数の孔HMが設けられる。当該複数の孔HMは、図1に示す形態に限定されず任意であり、必要に応じて設ければよく省略してもよい。 As shown in FIG. 3, the outer shape of the heat receiving portion 10 has a substantially plate shape having a first surface F1 and a second surface F2 on the opposite side of the first surface F1. The heat receiving portion 10 shown in FIGS. 1 and 2 is provided with a plurality of holes HM for fixing to the object to be cooled by screwing. The plurality of holes HM are not limited to the form shown in FIG. 1, and may be arbitrarily provided, and may be omitted if necessary.

第1面F1は、図示しない発熱体に熱的に接続される面である。第2面F2は、伝熱部30が接続される面である。なお、「熱的に接続」とは、次の条件a、bまたはcのいずれかを満たすことをいう。条件a:2つの部材が物理的に直接に接する。条件b:2つの部材が50μm以下の間隙を介して配置される。条件c:2つの部材が10W・m−1・K−1以上の熱伝導率の他の部材を介して物理的に接続される。なお、各条件における2つの部材間には、伝熱グリース、接着剤等が存在してもよい。この場合、接着剤は、熱伝導性を高める観点から、熱伝導性のフィラー等を含むことが好ましい。 The first surface F1 is a surface that is thermally connected to a heating element (not shown). The second surface F2 is a surface to which the heat transfer unit 30 is connected. The term "thermally connected" means that any of the following conditions a, b, or c is satisfied. Condition a: The two members are in direct physical contact. Condition b: Two members are arranged with a gap of 50 μm or less. Condition c: Two members are physically connected via another member having a thermal conductivity of 10 W · m -1 · K -1 or higher. A heat transfer grease, an adhesive, or the like may be present between the two members under each condition. In this case, the adhesive preferably contains a thermally conductive filler or the like from the viewpoint of enhancing the thermal conductivity.

図3に示す例では、第1面F1および第2面F2のそれぞれは、Z軸に直交する平面である。なお、第1面F1および第2面F2のそれぞれの形状は、図3に示す形状に限定されず、冷却対象の形状等に応じて決められ、例えば、湾曲した部分を有してもよい。 In the example shown in FIG. 3, each of the first surface F1 and the second surface F2 is a plane orthogonal to the Z axis. The shapes of the first surface F1 and the second surface F2 are not limited to the shapes shown in FIG. 3, but are determined according to the shape of the object to be cooled and the like, and may have a curved portion, for example.

図3に示すように、受熱部10は、底板11と天板12と側壁13と隔壁14とを有する。底板11および天板12のそれぞれは、Z軸に直交する方向に拡がる平板である。ただし、天板12には、収容室S1ごとに、2つの管体31のそれぞれの一端を接続するための2つの貫通孔15が設けられる。底板11および天板12は、互いに平行に配置される。側壁13は、底板11および天板12の外周同士を全周にわたって連結する。隔壁14は、底板11、天板12および側壁13で囲まれる空間を仕切って、複数の収容室S1を形成する。ここで、底板11におけるZ2方向の面が第1面F1である。天板12のZ1方向の面が第2面F2である。 As shown in FIG. 3, the heat receiving portion 10 has a bottom plate 11, a top plate 12, a side wall 13, and a partition wall 14. Each of the bottom plate 11 and the top plate 12 is a flat plate extending in a direction orthogonal to the Z axis. However, the top plate 12 is provided with two through holes 15 for connecting one ends of the two pipe bodies 31 for each accommodation chamber S1. The bottom plate 11 and the top plate 12 are arranged parallel to each other. The side wall 13 connects the outer circumferences of the bottom plate 11 and the top plate 12 over the entire circumference. The partition wall 14 partitions a space surrounded by the bottom plate 11, the top plate 12, and the side wall 13, and forms a plurality of storage chambers S1. Here, the surface of the bottom plate 11 in the Z2 direction is the first surface F1. The surface of the top plate 12 in the Z1 direction is the second surface F2.

なお、底板11、天板12、側壁13および隔壁14のそれぞれが別部材で構成されてもよいし、底板11、天板12、側壁13および隔壁14のうちの2以上が一体で構成されてもよい。また、底板11、天板12、側壁13および隔壁14の構成材料は、互いに同じであっても異なってもよい。 The bottom plate 11, the top plate 12, the side wall 13 and the partition wall 14 may each be composed of separate members, or two or more of the bottom plate 11, the top plate 12, the side wall 13 and the partition wall 14 are integrally formed. May be good. Further, the constituent materials of the bottom plate 11, the top plate 12, the side wall 13 and the partition wall 14 may be the same or different from each other.

本実施形態では、各収容室S1は、図4に示すように、平面視で長方形をなす。また、複数の収容室S1の平面視形状は、互いに同じ形状である。ただし、収容室S1_1〜S1_8のうち、収容室S1_7およびS1_8の平面視での向きが収容室S1_1〜S1_6とは異なる。 In the present embodiment, each storage chamber S1 has a rectangular shape in a plan view as shown in FIG. Further, the plan-view shapes of the plurality of storage chambers S1 are the same as each other. However, among the accommodation chambers S1-1 to S1_8, the orientations of the accommodation chambers S1_7 and S1_8 in a plan view are different from those of the accommodation chambers S1_1 to S1_6.

具体的に説明すると、図4に示すように、収容室S1_1〜S1_6のそれぞれは、X軸に沿って延びる長手形状をなす。これに対し、収容室S1_7およびS1_8のそれぞれは、Y軸に沿って延びる長手形状をなす。ここで、収容室S1_2〜S1_5は、この順でY2方向に並ぶ。収容室S1_1は、収容室S1_2に対してX1方向に並ぶ。収容室S1_6は、収容室S1_5に対してX1方向に並ぶ。収容室S1_7は、収容室S1_3およびS1_4に対してX1方向に並ぶ。収容室S1_8は、収容室S1_7に対してX1方向に並ぶ。 Specifically, as shown in FIG. 4, each of the accommodation chambers S1-1 to S1_6 has a longitudinal shape extending along the X axis. On the other hand, each of the accommodation chambers S1_7 and S1_8 has a longitudinal shape extending along the Y axis. Here, the accommodation chambers S1-2 to S1_5 are arranged in the Y2 direction in this order. The containment chamber S1_1 is arranged in the X1 direction with respect to the containment chamber S1-2. The containment chamber S1_6 is arranged in the X1 direction with respect to the containment chamber S1_5. The containment chambers S1_7 are arranged in the X1 direction with respect to the containment chambers S1_3 and S1_4. The containment chamber S1_8 is arranged in the X1 direction with respect to the containment chamber S1_7.

図4に示す例では、受熱部10に設けられる複数の収容室S1の形状および容積は、互いに等しい。したがって、当該複数の収容室S1に収容される冷媒REの量が互いに等しい場合、当該複数の収容室S1の熱容量が互いに等しい。このため、受熱部10が受ける熱のXY平面内での温度分布が不均一である場合、その温度分布の影響により、収容室S1間の圧力差が生じやすい。この結果、沸騰冷却器1における冷媒REの循環流が生じやすいという利点がある。 In the example shown in FIG. 4, the shapes and volumes of the plurality of storage chambers S1 provided in the heat receiving unit 10 are equal to each other. Therefore, when the amounts of the refrigerants RE contained in the plurality of storage chambers S1 are equal to each other, the heat capacities of the plurality of storage chambers S1 are equal to each other. Therefore, when the temperature distribution of the heat received by the heat receiving unit 10 in the XY plane is non-uniform, a pressure difference between the accommodating chambers S1 is likely to occur due to the influence of the temperature distribution. As a result, there is an advantage that the circulating flow of the refrigerant RE in the boiling cooler 1 is likely to occur.

また、受熱部10が受ける熱のXY平面内での温度分布が均一であっても、複数の収容室S1のうち、受熱部10の中心からの距離の異なる2つの収容室S1は、温度差が生じやすい傾向を示す。具体的には、当該2つの収容室S1のうち、受熱部10の中心からの距離の遠い方の収容室S1は、受熱部10の中心からの距離の近い方の収容室S1に比べて温度低下しやすい。言い換えると、当該2つの収容室S1のうち、受熱部10の中心からの距離の近い方の収容室S1は、受熱部10の中心からの距離の遠い方の収容室S1に比べて昇温しやすい。このため、当該温度差により当該2つの収容室S1間の圧力差を生じさせることもできる。 Further, even if the temperature distribution of the heat received by the heat receiving unit 10 in the XY plane is uniform, the temperature difference between the two storage chambers S1 having different distances from the center of the heat receiving unit 10 among the plurality of storage chambers S1. Shows a tendency to occur easily. Specifically, of the two storage chambers S1, the storage chamber S1 farther from the center of the heat receiving unit 10 has a higher temperature than the storage chamber S1 closer to the center of the heat receiving unit 10. Easy to drop. In other words, of the two accommodating chambers S1, the accommodating chamber S1 closer to the center of the heat receiving unit 10 has a higher temperature than the accommodating chamber S1 farther from the center of the heat receiving unit 10. Cheap. Therefore, the temperature difference can cause a pressure difference between the two storage chambers S1.

なお、前述の配置の収容室S1_1〜S1_8のうち、受熱部10の中心に最も近い収容室S1は、収容室S1_7である。また、収容室S1_1〜S1_8のうち、受熱部10の中心に最も遠い収容室S1は、収容室S1_1、S1_2、S1_5およびS1_6である。 Of the accommodation chambers S1-1 to S1_8 arranged above, the accommodation chamber S1 closest to the center of the heat receiving unit 10 is the accommodation chamber S1_7. Further, among the accommodation chambers S1-1 to S1_8, the accommodation chamber S1 farthest from the center of the heat receiving unit 10 is the accommodation chambers S1_1, S1_2, S1_5 and S1_6.

図3に示す放熱部20は、外部の流体との熱交換により伝熱部30内の冷媒REを凝縮液化することにより受熱部10からの熱を外部へ放熱する構造体である。当該外部の流体は、特に限定されず、液体でも気体でもよいが、典型的には、例えば、空気である。 The heat radiating unit 20 shown in FIG. 3 is a structure that dissipates heat from the heat receiving unit 10 to the outside by condensing the refrigerant RE in the heat transfer unit 30 by heat exchange with an external fluid. The external fluid is not particularly limited and may be a liquid or a gas, but is typically, for example, air.

本実施形態の放熱部20は、複数の放熱フィン21を有する。各放熱フィン21は、熱伝導性に優れる材料で構成される。放熱フィン21の具体的な構成材料としては、例えば、銅、アルミニウムまたはこれらのいずれかの合金等の金属材料が挙げられる。 The heat radiating unit 20 of the present embodiment has a plurality of heat radiating fins 21. Each heat radiation fin 21 is made of a material having excellent thermal conductivity. Specific constituent materials of the heat radiating fin 21 include, for example, a metal material such as copper, aluminum, or an alloy thereof.

図3に示す例では、各放熱フィン21は、平板状をなす。また、複数の放熱フィン21は、互いに厚さ方向に間隔を隔てて配置される。本実施形態の各放熱フィン21は、平面視で受熱部10の全範囲にわたり重なるように配置される。ここで、各放熱フィン21には、各管体31を挿入するための孔が設けられる。また、放熱フィン21は、管体31に対して熱的に接続されるように管体31に接着剤、ネジ止めまたは溶接等により固定される。 In the example shown in FIG. 3, each heat radiation fin 21 has a flat plate shape. Further, the plurality of heat radiation fins 21 are arranged so as to be spaced apart from each other in the thickness direction. The heat radiation fins 21 of the present embodiment are arranged so as to overlap over the entire range of the heat receiving portion 10 in a plan view. Here, each heat radiation fin 21 is provided with a hole for inserting each tube body 31. Further, the heat radiation fins 21 are fixed to the pipe body 31 by adhesive, screwing, welding or the like so as to be thermally connected to the pipe body 31.

なお、放熱フィン21の形状および数等は、図3に示す例に限定されず、任意である。また、各放熱フィン21は、後述の管体31ごとまたは収容室S1ごとに個別に設けられてもよい。この場合、管体31ごとまたは収容室S1ごとの複数の放熱フィン21の構成は、互いに同一でも異なってもよい。さらに、放熱フィン21は、必要に応じて設ければよく、省略してもよい。この場合、伝熱部30の一部が放熱部20を兼ねる。 The shape, number, and the like of the heat radiation fins 21 are not limited to the example shown in FIG. 3, and are arbitrary. Further, each heat radiation fin 21 may be individually provided for each of the pipe bodies 31 or the accommodation chamber S1 which will be described later. In this case, the configurations of the plurality of heat radiation fins 21 for each of the pipes 31 or each of the accommodation chambers S1 may be the same or different from each other. Further, the heat radiation fins 21 may be provided as needed or may be omitted. In this case, a part of the heat transfer unit 30 also serves as the heat dissipation unit 20.

伝熱部30は、複数の管路S2を有し、受熱部10から放熱部20へ熱を伝達する構造体である。本実施形態の伝熱部30は、管路S2を形成する管体31を複数有する。各管体31は、熱伝導性に優れる材料で構成される。管体31の具体的な構成材料としては、例えば、銅、アルミニウムまたはこれらのいずれかの合金等の金属材料が挙げられる。なお、複数の管体31のうちの2以上の管体31の形状または構成材料等は、互いに同じでも異なってもよい。 The heat transfer unit 30 is a structure having a plurality of pipelines S2 and transferring heat from the heat receiving unit 10 to the heat radiating unit 20. The heat transfer unit 30 of the present embodiment has a plurality of pipe bodies 31 forming the pipe line S2. Each tube 31 is made of a material having excellent thermal conductivity. Specific constituent materials of the tubular body 31 include, for example, metal materials such as copper, aluminum, and alloys of any of these. The shapes or constituent materials of two or more of the plurality of pipes 31 may be the same or different from each other.

本実施形態では、各管体31は、図3に示すように、略コの字状をなす。管体31の一端は、前述の収容室S1に開口する貫通孔15に挿入される。一方、管体31の他端は、管体31の一端とは異なる収容室S1に開口する貫通孔15に挿入される。 In the present embodiment, each tube 31 has a substantially U-shape as shown in FIG. One end of the tubular body 31 is inserted into the through hole 15 that opens into the storage chamber S1 described above. On the other hand, the other end of the tubular body 31 is inserted into a through hole 15 that opens in the accommodation chamber S1 different from one end of the tubular body 31.

図3に示すように、各管体31は、第1部分31aと第2部分31bと第3部分31cとを有する。第1部分31aおよび第2部分31bは、Z軸に沿って互いに平行に延びる。第1部分31aの一端は、受熱部10が有する複数の収容室S1のうちの1つの収容室S1に接続される。第2部分31bの一端は、受熱部10が有する複数の収容室S1のうち当該1つの収容室S1とは異なる他の1つの収容室S1に接続される。本実施形態では、互いに隣り合う2つの収容室S1のうち、一方の収容室S1には、第1部分31aの一端が接続され、他方の収容室S1には、第2部分31bの一端が接続される。第3部分31cは、第1部分31aおよび第2部分31bの他端同士を接続する。 As shown in FIG. 3, each tubular body 31 has a first portion 31a, a second portion 31b, and a third portion 31c. The first portion 31a and the second portion 31b extend parallel to each other along the Z axis. One end of the first portion 31a is connected to a storage chamber S1 of a plurality of storage chambers S1 included in the heat receiving unit 10. One end of the second portion 31b is connected to another storage chamber S1 different from the one storage chamber S1 among the plurality of storage chambers S1 included in the heat receiving unit 10. In the present embodiment, one of the two storage chambers S1 adjacent to each other is connected to one end of the first portion 31a, and the other storage chamber S1 is connected to one end of the second portion 31b. Will be done. The third portion 31c connects the other ends of the first portion 31a and the second portion 31b.

複数の管体31の形状は、互いに同じ形状である。ただし、図2に示すように、管体31_1〜31_8の設置位置が互いに異なるとともに、管体31_1〜31_8のうち管体31_1、31_3、31_4および31_6のそれぞれの平面視での向きが管体31_2、31_5、31_7および31_8のそれぞれとは異なる。 The shapes of the plurality of pipe bodies 31 are the same as each other. However, as shown in FIG. 2, the installation positions of the pipe bodies 31_1 to 31_8 are different from each other, and the orientations of the pipe bodies 31_1, 31_3, 31_4 and 31_6 among the pipe bodies 31_1 to 31_8 in the plan view are the pipe bodies 31_2. , 31_5, 31_7 and 31_8, respectively.

具体的に説明すると、管体31_1、31_3、31_4および31_6のそれぞれは、平面視でX軸に沿って延びる。これに対し、管体31_2、31_5、31_7および31_8のそれぞれは、平面視でY軸に沿って延びる。 Specifically, each of the tubular bodies 31_1, 31_3, 31_4 and 31_6 extends along the X axis in plan view. On the other hand, each of the tubular bodies 31_2, 31_5, 31_7 and 31_8 extends along the Y axis in a plan view.

各管体31の管路S2は、互いに異なる組み合わせの2つの収容室S1を連通させる。具体的には、図4に示すように、管路S2_1は、収容室S1_1と収容室S1_2とを連通させる。管路S2_2は、収容室S1_2と収容室S1_3とを連通させる。管路S2_3は、収容室S1_3と収容室S1_7とを連通させる。管路S2_4は、収容室S1_7と収容室S1_4とを連通させる。管路S2_5は、収容室S1_4と収容室S1_5とを連通させる。管路S2_6は、収容室S1_5と収容室S1_6とを連通させる。管路S2_7は、収容室S1_6と収容室S1_8とを連通させる。管路S2_8は、収容室S1_8と収容室S1_1とを連通させる。 The conduit S2 of each tube 31 communicates with two containment chambers S1 in different combinations. Specifically, as shown in FIG. 4, the pipeline S2_1 communicates the accommodation chamber S1-1 and the accommodation chamber S1-2. The pipeline S2_2 communicates the containment chamber S1-2 and the containment chamber S1_3. The pipeline S2_3 communicates the containment chamber S1_3 and the containment chamber S1_7. The pipeline S2_4 communicates the containment chamber S1_7 with the containment chamber S1_4. The pipeline S2_5 communicates the containment chamber S1_4 with the containment chamber S1_5. The pipeline S2_6 communicates the containment chamber S1_5 and the containment chamber S1_6. The pipeline S2_7 communicates the containment chamber S1_6 with the containment chamber S1_8. The pipeline S2_8 communicates the containment chamber S1_8 with the containment chamber S1-1.

以上のように、複数の収容室S1と複数の管路S2とで閉ループ状の流路Sが形成される。流路Sでは、冷媒REが受熱部10と放熱部20とを交互に流通可能である。ここで、管路S2では、収容室S1から供給された冷媒REの気体が放熱部20により凝縮液化される。図示しないが、管路S2で液化した冷媒REは、液柱を形成する。すなわち、管路S2では、冷媒REの液体で構成される液柱と、冷媒REの気体で構成される気柱とが形成される。このように、管路S2に冷媒REの液柱および気柱が形成されることにより、収容室S1における冷媒REの気化に伴う収容室S1の圧力上昇に起因する流路S内の圧力差を駆動力として、冷媒REの自励振動を生じさせることができる。 As described above, the closed loop-shaped flow path S is formed by the plurality of accommodating chambers S1 and the plurality of pipelines S2. In the flow path S, the refrigerant RE can alternately flow through the heat receiving unit 10 and the heat radiating unit 20. Here, in the pipeline S2, the gas of the refrigerant RE supplied from the accommodation chamber S1 is condensed and liquefied by the heat radiating unit 20. Although not shown, the refrigerant RE liquefied in the pipeline S2 forms a liquid column. That is, in the pipeline S2, a liquid column composed of the liquid of the refrigerant RE and an air column composed of the gas of the refrigerant RE are formed. By forming the liquid column and the air column of the refrigerant RE in the conduit S2 in this way, the pressure difference in the flow path S caused by the pressure increase in the accommodating chamber S1 due to the vaporization of the refrigerant RE in the accommodating chamber S1 is reduced. As a driving force, self-excited vibration of the refrigerant RE can be generated.

ここで、管路S2の幅W(管体31の内径)は、冷媒REの液柱および気柱を効率的に形成させるように、冷媒REのラプラス長さ程度であることが好ましく、具体的には、冷媒REのラプラス長さに対して、0.5倍〜2倍であることが好ましく、0.8倍〜1.2倍であることがより好ましい。幅Wがこのような範囲内であると、管体31の製造精度や管体31の内周面における表面粗さにバラツキがあっても、冷媒REの液柱および気柱を効率的に形成させることが可能な管路S2を有する管体31を歩留まりよく製造することができる。このラプラス長さは、以下の式(1)により求められる。
D=[σ/(g・(ρL−ρv))]^0.5 (1)
なお、この式(1)中、Dは、ラプラス長さである。σは、冷媒REの表面張力である。gは、重力加速度である。ρLは、冷媒REが液体である状態の密度である。ρvは、冷媒REが気体である場合の密度である。
Here, the width W (inner diameter of the pipe body 31) of the conduit S2 is preferably about the Laplace length of the refrigerant RE so as to efficiently form the liquid column and the air column of the refrigerant RE, and is specific. Is preferably 0.5 to 2 times, more preferably 0.8 to 1.2 times, the Laplace length of the refrigerant RE. When the width W is within such a range, the liquid column and the air column of the refrigerant RE are efficiently formed even if the manufacturing accuracy of the tube 31 and the surface roughness on the inner peripheral surface of the tube 31 vary. The pipe body 31 having the pipe line S2 capable of being made can be manufactured with good yield. This Laplace length is calculated by the following formula (1).
D = [σ / (g · (ρL-ρv))] ^ 0.5 (1)
In this equation (1), D is the Laplace length. σ is the surface tension of the refrigerant RE. g is the gravitational acceleration. ρL is the density of the refrigerant RE in a liquid state. ρv is the density when the refrigerant RE is a gas.

以上の沸騰冷却器1は、前述のように、図示しない発熱体からの熱を受ける受熱部10と、受熱部10からの熱を放熱する放熱部20と、冷媒REの自励振動を用いて受熱部10から放熱部20に熱を輸送する伝熱部30とを有する。ここで、受熱部10は、第1収容室の一例である収容室S1_1と、第2収容室の一例である収容室S1_2と、を有する。収容室S1_1およびS1_2のそれぞれは、冷媒REを収容する。また、伝熱部30は、収容室S1_1と収容室S1_2とを連通させる管路S2_1を有する。 As described above, the boiling cooler 1 uses a heat receiving unit 10 that receives heat from a heating element (not shown), a heat radiating unit 20 that dissipates heat from the heat receiving unit 10, and self-excited vibration of the refrigerant RE. It has a heat transfer unit 30 that transports heat from the heat receiving unit 10 to the heat radiating unit 20. Here, the heat receiving unit 10 has a storage chamber S1-1_ which is an example of the first storage chamber and a storage chamber S1-2 which is an example of the second storage chamber. Each of the storage chambers S1_1 and S1_2 contains the refrigerant RE. Further, the heat transfer unit 30 has a conduit S2_1 that communicates the accommodation chamber S1_1 and the accommodation chamber S1-2.

以上の沸騰冷却器1では、伝熱部30が冷媒REの自励振動を用いて受熱部10から放熱部20に熱を輸送するので、沸騰冷却器1の小型化を図っても、冷媒REの循環または移動を円滑に行うことができる。このため、特許文献1に記載のようなサーモンサイフォン方式を採用する構成に比べて、小型化しても、優れた冷却能力が得られる。また、自励振動型の沸騰冷却器1は、重力方向に関係なく、冷媒REの循環または移動を行うことができる。このため、沸騰冷却器1が設置姿勢の変化を伴う自動車等に設置される場合においても、優れた冷却性能が得られる。 In the above boiling cooler 1, the heat transfer unit 30 uses the self-excited vibration of the refrigerant RE to transfer heat from the heat receiving unit 10 to the heat radiating unit 20, so that even if the boiling cooler 1 is miniaturized, the refrigerant RE Can be smoothly circulated or moved. Therefore, as compared with the configuration adopting the salmon siphon method as described in Patent Document 1, excellent cooling capacity can be obtained even if the size is reduced. Further, the self-excited vibration type boiling cooler 1 can circulate or move the refrigerant RE regardless of the direction of gravity. Therefore, even when the boiling cooler 1 is installed in an automobile or the like with a change in the installation posture, excellent cooling performance can be obtained.

そのうえ、収容室S1_1および収容室S1_2が互いに別室であるので、収容室S1_1と収容室S1_2との間の温度差および圧力差を生じさせやすい。このため、管路S2_1における冷媒REの自励振動による移動を容易に生じさせることができる。この結果、沸騰冷却器1の冷却能力の安定化を図ることができる。 Moreover, since the containment chamber S1-1 and the containment chamber S1-2 are separate chambers, a temperature difference and a pressure difference between the containment chamber S1-1 and the containment chamber S1-2 are likely to occur. Therefore, the refrigerant RE in the pipeline S2_1 can be easily moved by the self-excited vibration. As a result, the cooling capacity of the boiling cooler 1 can be stabilized.

ここで、管路S2_1の幅W(内径)は、冷媒REのラプラス長さの0.8倍〜1.2倍であることが好ましい。この場合、管路S2_1に冷媒REの気柱および液柱を形成することができる。この結果、管路S2_1における冷媒REの移動または循環を効率的に行うことができる。 Here, the width W (inner diameter) of the pipeline S2_1 is preferably 0.8 to 1.2 times the Laplace length of the refrigerant RE. In this case, an air column and a liquid column of the refrigerant RE can be formed in the pipeline S2-1. As a result, the refrigerant RE can be efficiently moved or circulated in the pipeline S2-1.

本実施形態の受熱部10は、複数の収容室S1_1〜S1_8を有する。伝熱部30は、複数の収容室S1_1〜S1_8とともに閉ループ状の流路Sを形成する複数の管路S2_1〜S2_8を有する。閉ループ状の流路Sでは、冷媒REの自励振動による循環流を生じさせることができる。また、流路Sで冷媒REを循環させることで、各収容室S1に必要な量の冷媒REを常に存在させることができる。このため、長期にわたり安定した冷却性能が得られる。 The heat receiving unit 10 of the present embodiment has a plurality of storage chambers S1-1 to S1_8. The heat transfer unit 30 has a plurality of pipelines S2-1 to S2_8 forming a closed loop-shaped flow path S together with the plurality of storage chambers S1-1 to S1_8. In the closed loop-shaped flow path S, a circulating flow can be generated by the self-excited vibration of the refrigerant RE. Further, by circulating the refrigerant RE in the flow path S, the required amount of the refrigerant RE can always be present in each accommodation chamber S1. Therefore, stable cooling performance can be obtained for a long period of time.

なお、受熱部10が有する複数の収容室S1_1〜S1_8のうち、任意の1つの収容室S1を第1収容室として捉えてもよい。この場合、当該任意の1つの収容室S1に管路S2を介して接続される収容室S1が第2収容室である。すなわち、複数の収容室S1_1〜S1_8のうち、1つの収容室S1が第1収容室であり、他の1つの収容室S1が第2収容室である。また、複数の管路S2_1〜S2_8のうちの1つが、第1収容室と第2収容室とを連通させる管路である。 Of the plurality of storage chambers S1-1 to S1_8 included in the heat receiving unit 10, any one storage chamber S1 may be regarded as the first storage chamber. In this case, the accommodation chamber S1 connected to the arbitrary one accommodation chamber S1 via the pipeline S2 is the second accommodation chamber. That is, of the plurality of storage chambers S1-1 to S1_8, one storage room S1 is the first storage room, and the other one storage room S1 is the second storage room. Further, one of the plurality of pipelines S2-1 to S2_8 is a conduit that connects the first accommodation chamber and the second accommodation chamber.

本実施形態の伝熱部30は、複数の管体31_1〜31_8を有しており、複数の管路S2_1〜S2_8は、複数の管体31_1〜31_8により形成される。このため、板状またはブロック状等の部材に複数の管路S2_1〜S2_8を形成する場合に比べて、伝熱部30の熱容量を小さくすることが容易である。この結果、伝熱部30の伝熱効率を高めやすい。また、既存の管体を折り曲げ加工等することにより、複数の管体31_1〜31_8のそれぞれを製造することができる。このため、沸騰冷却器1の低コスト化を図ることもできる。 The heat transfer unit 30 of the present embodiment has a plurality of pipe bodies 31_1 to 31_8, and the plurality of pipes S2-1 to S2_8 are formed by the plurality of pipe bodies 31_1 to 31_8. Therefore, it is easy to reduce the heat capacity of the heat transfer unit 30 as compared with the case where a plurality of pipelines S2-1 to S2_8 are formed in a plate-shaped or block-shaped member. As a result, it is easy to increase the heat transfer efficiency of the heat transfer unit 30. Further, each of the plurality of pipe bodies 31_1 to 31_8 can be manufactured by bending the existing pipe body or the like. Therefore, the cost of the boiling cooler 1 can be reduced.

本実施形態では、複数の管体31_1〜31_8の形状は、互いに同じ形状である。このため、複数の管体31_1〜31_8の形状が互いに異なる場合に比べて、管体31_1〜31_8の製造が簡単かつ低コストで済むという利点がある。また、複数の管体31_1〜31_8の形状が互いに同じ形状であると、複数の管体31_1〜31_8の形状が互いに異なる場合に比べて、受熱部10または放熱部20に対する管体31_1〜31_8の取り付けも簡単である。 In the present embodiment, the shapes of the plurality of pipe bodies 31_1 to 31_8 are the same as each other. Therefore, there is an advantage that the production of the pipes 31_1 to 31_8 is simple and low cost as compared with the case where the shapes of the plurality of pipes 31_1 to 31_8 are different from each other. Further, when the shapes of the plurality of pipe bodies 31_1 to 31_8 are the same as each other, the pipe bodies 31_1 to 31_8 with respect to the heat receiving portion 10 or the heat radiating portion 20 are compared with the case where the shapes of the plurality of pipe bodies 31_1 to 31_8 are different from each other. Easy to install.

また、複数の管体31_1〜31_8のそれぞれは、第1部分31aと第2部分31bと第3部分31cとを有する。第1部分31aおよび第2部分31bは、受熱部10から放熱部20に向けて互いに平行に延びる。第3部分31cは、受熱部10から離れた位置で第1部分31aと第2部分31bとを接続する。複数の管体31_1〜31_8のそれぞれをこのような第1部分31aと第2部分31bと第3部分31cとを有する形状とすることにより、既存の管体を曲げ加工することで、簡単かつ安価に伝熱部30を製造することができる。 Further, each of the plurality of tubular bodies 31_1 to 31_8 has a first portion 31a, a second portion 31b, and a third portion 31c. The first portion 31a and the second portion 31b extend parallel to each other from the heat receiving portion 10 toward the heat radiating portion 20. The third portion 31c connects the first portion 31a and the second portion 31b at a position away from the heat receiving portion 10. By forming each of the plurality of pipe bodies 31_1 to 31_8 into a shape having such a first portion 31a, a second portion 31b, and a third portion 31c, the existing pipe body can be bent, which is easy and inexpensive. The heat transfer unit 30 can be manufactured.

本実施形態では、収容室S1_1の容積と収容室S1_2の容積とが互いに等しい。このため、受熱部10における温度分布が不均一である場合、その温度分布の影響を受けて収容室S1_1と収容室S1_2との温度差を生じさせやすいという利点がある。 In the present embodiment, the volume of the accommodation chamber S1_1 and the volume of the accommodation chamber S1-2 are equal to each other. Therefore, when the temperature distribution in the heat receiving unit 10 is non-uniform, there is an advantage that a temperature difference between the accommodating chamber S1-1 and the accommodating chamber S1-2 is likely to occur due to the influence of the temperature distribution.

また、放熱部20は、複数の放熱フィン21を有する。このため、管路S2における冷媒REの気体を効率的に凝縮液化させることができる。 Further, the heat radiating unit 20 has a plurality of heat radiating fins 21. Therefore, the gas of the refrigerant RE in the pipeline S2 can be efficiently condensed and liquefied.

3.変形例
以上に例示した各形態は多様に変形され得る。前述の各形態に適用され得る具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は、相互に矛盾しない範囲で適宜に併合され得る。
3. 3. Modification Examples Each of the above-exemplified forms can be variously transformed. Specific modifications that can be applied to each of the above-described forms are illustrated below. Two or more embodiments arbitrarily selected from the following examples can be appropriately merged to the extent that they do not contradict each other.

前述の形態では、受熱部10が有する複数の収容室S1の形状および容積が互いに等しい構成が例示されるが、この例示に限定されない。受熱部10が有する複数の収容室S1のうち、2以上の収容室S1の形状および容積の少なくとも一方が互いに異なってもよい。 In the above-described embodiment, a configuration in which the shapes and volumes of the plurality of storage chambers S1 included in the heat receiving unit 10 are equal to each other is exemplified, but the present invention is not limited to this example. Of the plurality of storage chambers S1 included in the heat receiving unit 10, at least one of the shapes and volumes of the two or more storage chambers S1 may be different from each other.

図5は、変形例における受熱部10Aの平面図である。受熱部10Aは、収容室S1_7およびS1_8の平面視での面積が互いに異なる以外は、前述の受熱部10と同様である。図5に示す例では、X軸に沿う収容室S1_7の長さがX軸に沿う収容室S1_8の長さよりも短い。したがって、収容室S1_7の容積は、収容室S1_8の容積よりも小さい。また、収容室S1_7の容積は、収容室S1_1〜S1_6のそれぞれの容積よりも小さい。このため、収容室S1_7は、収容室S1_1〜S1_6に比べて温度上昇しやすい。 FIG. 5 is a plan view of the heat receiving portion 10A in the modified example. The heat receiving unit 10A is the same as the heat receiving unit 10 described above, except that the areas of the accommodation chambers S1_7 and S1_8 in a plan view are different from each other. In the example shown in FIG. 5, the length of the accommodation chamber S1_7 along the X axis is shorter than the length of the accommodation chamber S1_8 along the X axis. Therefore, the volume of the containment chamber S1_7 is smaller than the volume of the containment chamber S1_8. Further, the volume of the accommodation chamber S1_7 is smaller than the volume of each of the accommodation chambers S1-1 to S1_6. Therefore, the temperature of the accommodation chamber S1_7 is more likely to rise than that of the accommodation chambers S1-1 to S1_6.

以上の受熱部10Aでは、第1収容室の一例である収容室S1_3またはS1_4の容積と、第2収容室の一例である収容室S1_7の容積とが互いに異なる。このため、受熱部10Aにおける温度分布が均一である場合であっても、収容室S1_3またはS1_4と収容室S1_7との熱容量差に起因してこれらの収容室の温度差を生じさせやすいという利点がある。 In the above heat receiving unit 10A, the volume of the storage chamber S1_3 or S1_4, which is an example of the first storage chamber, and the volume of the storage chamber S1_7, which is an example of the second storage chamber, are different from each other. Therefore, even when the temperature distribution in the heat receiving unit 10A is uniform, there is an advantage that a temperature difference between the accommodation chambers S1_3 or S1_4 and the accommodation chamber S1_7 is likely to cause a temperature difference between the accommodation chambers S1_7. be.

また、前述の形態では、受熱部10が有する収容室S1の数が8個である構成が例示されるが、当該数は、8個に限定されず、2個以上7個以下または9個以上でもよい。 Further, in the above-described embodiment, the configuration in which the number of the storage chambers S1 included in the heat receiving unit 10 is eight is exemplified, but the number is not limited to eight, and the number is not limited to eight and is two or more and seven or less or nine or more. But it may be.

また、前述の形態では、収容室S1の平面視形状が長方形である構成が例示されるが、この例示に限定されない。例えば、収容室S1の平面視形状は、三角形、五角形または六角形等の他の多角形でもよいし、円形または楕円形等でもよい。 Further, in the above-described embodiment, a configuration in which the accommodation chamber S1 has a rectangular shape in a plan view is exemplified, but the present invention is not limited to this example. For example, the plan view shape of the accommodation chamber S1 may be another polygon such as a triangle, a pentagon or a hexagon, or may be a circle or an ellipse.

また、前述の形態では、受熱部10が有する複数の収容室S1の厚さ(Z軸に沿う長さ)が互いに等しい構成が例示されるが、この例示に限定されず、受熱部10が有する複数の収容室S1の厚さが互いに異なってもよい。 Further, in the above-described embodiment, a configuration in which the thickness (length along the Z axis) of the plurality of storage chambers S1 included in the heat receiving unit 10 is equal to each other is exemplified, but the present invention is not limited to this example, and the heat receiving unit 10 has. The thicknesses of the plurality of containment chambers S1 may be different from each other.

また、前述の形態では、伝熱部30が有する複数の管路S2または複数の管体31の形状が互いに同じである構成が例示されるが、この例示に限定されない。伝熱部30が有する複数の管路S2または複数の管体31のうちの2以上の形状は、互いに異なってもよい。また、伝熱部30が有する複数の管路S2または複数の管体31のうちの2以上の長さまたは幅が互いに異なってもよい。 Further, in the above-described embodiment, a configuration in which the shapes of the plurality of conduits S2 or the plurality of tubular bodies 31 of the heat transfer unit 30 are the same as each other is exemplified, but the embodiment is not limited to this example. The shapes of two or more of the plurality of conduits S2 or the plurality of tubular bodies 31 included in the heat transfer unit 30 may be different from each other. Further, the lengths or widths of two or more of the plurality of conduits S2 or the plurality of tubular bodies 31 included in the heat transfer unit 30 may be different from each other.

また、前述の形態では、各管路S2が互いに隣り合う2つの収容室S1に接続される構成が例示されるが、この例示に限定されない。伝熱部30が有する複数の管路S2のうち1以上の管路S2は、互いに隣り合わない2つの収容室S1に接続されてもよい。 Further, in the above-described embodiment, a configuration in which each pipeline S2 is connected to two storage chambers S1 adjacent to each other is exemplified, but the embodiment is not limited to this example. One or more of the plurality of pipelines S2 included in the heat transfer unit 30 may be connected to two storage chambers S1 that are not adjacent to each other.

前述の形態では、管路S2が管体31に設けられる構成が例示されるが、この例示に限定されない。例えば、管路S2が板状またはブロック状の部材の設けられてもよい。 In the above-described embodiment, a configuration in which the pipeline S2 is provided in the pipe body 31 is exemplified, but the present invention is not limited to this example. For example, the pipeline S2 may be provided with a plate-shaped or block-shaped member.

1…沸騰冷却器、10…受熱部、10A…受熱部、20…放熱部、21…放熱フィン、30…伝熱部、31…管体、31_1…管体、31_2…管体、31_3…管体、31_4…管体、31_5…管体、31_7…管体、31a…第1部分、31b…第2部分、31c…第3部分、RE…冷媒、S…流路、S1…収容室、S1_1…収容室、S1_2…収容室、S1_3…収容室、S1_4…収容室、S1_5…収容室、S1_6…収容室、S1_7…収容室、S1_8…収容室、S2…管路、S2_1…管路、S2_2…管路、S2_3…管路、S2_4…管路、S2_5…管路、S2_6…管路、S2_7…管路、S2_8…管路。 1 ... boiling cooler, 10 ... heat receiving part, 10A ... heat receiving part, 20 ... heat dissipation part, 21 ... heat dissipation fin, 30 ... heat transfer part, 31 ... tube body, 31_1 ... tube body, 31_2 ... tube body, 31_3 ... tube Body, 31_4 ... Tube, 31_5 ... Tube, 31_7 ... Tube, 31a ... 1st part, 31b ... 2nd part, 31c ... 3rd part, RE ... Refrigerator, S ... Flow path, S1 ... Containment chamber, S1-1 ... Containment Room, S1-2 ... Containment Room, S1_3 ... Containment Room, S1_4 ... Containment Room, S1_5 ... Containment Room, S1_6 ... Containment Room, S1_7 ... Containment Room, S1_8 ... Containment Room, S2 ... Pipeline, S2_1 ... Pipeline, S2_2 ... Pipeline, S2_3 ... Pipeline, S2_4 ... Pipeline, S2_5 ... Pipeline, S2_6 ... Pipeline, S2_7 ... Pipeline, S2_8 ... Pipeline.

Claims (9)

冷媒を収容する第1収容室および第2収容室を有し、発熱体からの熱を受ける受熱部と、
前記受熱部からの熱を放熱する放熱部と、
前記第1収容室と前記第2収容室とを連通させる管路を有し、前記冷媒の自励振動を用いて前記受熱部から前記放熱部に熱を輸送する伝熱部と、を有する、
沸騰冷却器。
It has a first storage chamber and a second storage chamber for storing the refrigerant, and has a heat receiving unit that receives heat from the heating element.
A heat radiating part that dissipates heat from the heat receiving part and
It has a conduit for communicating the first accommodation chamber and the second accommodation chamber, and has a heat transfer portion for transporting heat from the heat receiving portion to the heat radiating portion by using the self-excited vibration of the refrigerant.
Boiling cooler.
前記管路の内径は、前記冷媒のラプラス長さの0.8倍〜1.2倍である、
請求項1に記載の沸騰冷却器。
The inner diameter of the conduit is 0.8 to 1.2 times the Laplace length of the refrigerant.
The boiling cooler according to claim 1.
前記受熱部は、複数の収容室を有し、
前記伝熱部は、前記複数の収容室とともに閉ループ状の流路を形成する複数の管路を有し、
前記複数の収容室のうち、1つの収容室が前記第1収容室であり、他の1つの収容室が前記第2収容室であり、
前記複数の管路のうちの1つが前記管路である、
請求項1または2に記載の沸騰冷却器。
The heat receiving unit has a plurality of storage chambers and has a plurality of storage chambers.
The heat transfer unit has a plurality of pipelines forming a closed loop-shaped flow path together with the plurality of storage chambers.
Of the plurality of containment chambers, one containment chamber is the first containment chamber, and the other one is the second containment chamber.
One of the plurality of pipelines is the pipeline.
The boiling cooler according to claim 1 or 2.
前記伝熱部は、複数の管体を有し、
前記複数の管路は、前記複数の管体により形成される、
請求項3に記載の沸騰冷却器。
The heat transfer unit has a plurality of tubes and has a plurality of tubes.
The plurality of conduits are formed by the plurality of tubular bodies.
The boiling cooler according to claim 3.
前記複数の管体の形状は、互いに同じ形状である、
請求項4に記載の沸騰冷却器。
The shapes of the plurality of tubes are the same as each other.
The boiling cooler according to claim 4.
前記複数の管体のそれぞれは、
前記受熱部から前記放熱部に向けて互いに平行に延びる第1部分および第2部分と、
前記受熱部から離れた位置で前記第1部分と前記第2部分とを接続する第3部分と、を有する、
請求項5に記載の沸騰冷却器。
Each of the plurality of tubes
A first portion and a second portion extending parallel to each other from the heat receiving portion toward the heat radiating portion,
It has a third portion that connects the first portion and the second portion at a position away from the heat receiving portion.
The boiling cooler according to claim 5.
前記第1収容室の容積と前記第2収容室の容積とが互いに等しい、
請求項1から6のいずれか1項に記載の沸騰冷却器。
The volume of the first containment chamber and the volume of the second containment chamber are equal to each other.
The boiling cooler according to any one of claims 1 to 6.
前記第1収容室の容積と前記第2収容室の容積とが互いに異なる、
請求項1から6のいずれか1項に記載の沸騰冷却器。
The volume of the first containment chamber and the volume of the second containment chamber are different from each other.
The boiling cooler according to any one of claims 1 to 6.
前記放熱部は、複数の放熱フィンを有する、
請求項1から8のいずれか1項に記載の沸騰冷却器。
The heat radiating portion has a plurality of heat radiating fins.
The boiling cooler according to any one of claims 1 to 8.
JP2020027631A 2020-02-21 2020-02-21 boiling cooler Active JP7439559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020027631A JP7439559B2 (en) 2020-02-21 2020-02-21 boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020027631A JP7439559B2 (en) 2020-02-21 2020-02-21 boiling cooler

Publications (2)

Publication Number Publication Date
JP2021132167A true JP2021132167A (en) 2021-09-09
JP7439559B2 JP7439559B2 (en) 2024-02-28

Family

ID=77551226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020027631A Active JP7439559B2 (en) 2020-02-21 2020-02-21 boiling cooler

Country Status (1)

Country Link
JP (1) JP7439559B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102815B2 (en) 2014-03-31 2017-03-29 株式会社デンソー Cooler
JP6191660B2 (en) 2014-08-05 2017-09-06 株式会社豊田中央研究所 Thermal conductor, semiconductor device provided with thermal conductor
JPWO2018179314A1 (en) 2017-03-31 2019-11-07 三菱電機株式会社 COOLING DEVICE AND VEHICLE POWER CONVERSION DEVICE

Also Published As

Publication number Publication date
JP7439559B2 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
US20140165638A1 (en) Cooling device and electronic device made therewith
JP7189903B2 (en) Chillers and cooling systems using chillers
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
JP4718350B2 (en) Evaporator and loop heat pipe using this evaporator
US10247485B2 (en) Pipe member, heat pipe, and cooling device
JP2012013373A (en) Heat pipe type cooling system and vehicle control equipment using the same
US20100326627A1 (en) Microelectronics cooling system
JP6640401B1 (en) heatsink
WO2017170153A1 (en) Phase change cooler and electronic equipment
JP2010133686A (en) Heat pipe and cooler
JP6932276B2 (en) Cooling system
CN104303293A (en) Structure for connecting cooling apparatus, cooling apparatus, and method for connecting cooling apparatus
JP2021132167A (en) Boiling cooler
JP2011142298A (en) Boiling cooler
JP7452080B2 (en) boiling cooler
JP6825615B2 (en) Cooling system and cooler and cooling method
JP2022143797A (en) Evaporative cooling device
JP6197651B2 (en) Cooling system
JP2021132169A (en) Boiling cooler
EP3361847B1 (en) A heat exchanger
JP2006234267A (en) Ebullient cooling device
JP2005077018A (en) Loop type thermo siphon, stirling refrigerator, and assembling structure of loop type thermo siphon
JP7444703B2 (en) Heat transfer member and cooling device having heat transfer member
JP2022143799A (en) Evaporative cooling device
JP2022143796A (en) Evaporative cooling device and cooling method of electric heating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7439559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150