JP2021130656A - Peptide synthesis - Google Patents

Peptide synthesis Download PDF

Info

Publication number
JP2021130656A
JP2021130656A JP2021024252A JP2021024252A JP2021130656A JP 2021130656 A JP2021130656 A JP 2021130656A JP 2021024252 A JP2021024252 A JP 2021024252A JP 2021024252 A JP2021024252 A JP 2021024252A JP 2021130656 A JP2021130656 A JP 2021130656A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
alkyl group
substituted
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021024252A
Other languages
Japanese (ja)
Inventor
求 金井
Motomu Kanai
求 金井
幸之助 生長
Konosuke Oisaki
幸之助 生長
晃生 笹本
Akio Sasamoto
晃生 笹本
遼 平野
Ryo Hirano
遼 平野
拓也 松本
Takuya Matsumoto
拓也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Publication of JP2021130656A publication Critical patent/JP2021130656A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

To provide novel peptide synthesis which can avoid the use of a main chain-protecting group and a condensation agent in a peptide supply process, can inhibit epimerization, and can enhance solubility of an unprotected amino acid element to accelerate the reaction.SOLUTION: A method comprises reacting a compound represented by the specified formula (I) with an amino acid represented by the specified formula (II) in the presence of a compound represented by the specified formula (III) and a compound represented by the specified formula (IV) thereby preparing a compound of the formula (V).SELECTED DRAWING: None

Description

本発明は新規のペプチド合成法に関わる。より具体的には、チオカルボン酸中間体を経由するN末端からC末端へとペプチド鎖を伸長させる方法に関わる。 The present invention relates to a novel peptide synthesis method. More specifically, it relates to a method of extending a peptide chain from the N-terminal to the C-terminal via a thiocarboxylic acid intermediate.

中分子ペプチド化合物は次世代の医薬候補として注目を集めている。探索段階では固相合成によって供給されるが、大規模試験や市販を見据えた場合に供給量が不足するため、液相合成による量的供給が必要になる。 Medium-molecular-weight peptide compounds are attracting attention as next-generation pharmaceutical candidates. In the exploration stage, it is supplied by solid-phase synthesis, but when considering large-scale tests and commercialization, the supply amount is insufficient, so quantitative supply by liquid-phase synthesis is required.

非天然アミノ酸を含む様々なアミノ酸を自在に組み込める化学合成法は、C末端からN末端へと伸長させる手法(C→N末端伸長法)が従来からの主流であるが、当量以上の縮合剤や、高価で原子効率の良くない保護アミノ酸素子を利用することが必須であった。このため、主鎖アミノ基の保護基と縮合剤由来の廃棄物が大量に産生するという問題があり、ペプチド供給プロセスのコストや環境負荷の上昇につながっていた(図1参照)。 As a chemical synthesis method that can freely incorporate various amino acids including unnatural amino acids, the method of extending from the C-terminal to the N-terminal (C → N-terminal extension method) has been the mainstream from the past, but a condensing agent of an equivalent amount or more and It was essential to use a protected amino acid element, which is expensive and has poor atomic efficiency. For this reason, there is a problem that a large amount of waste derived from the protecting group of the main chain amino group and the condensing agent is produced, which leads to an increase in the cost of the peptide supply process and the environmental load (see FIG. 1).

一方、逆方向のN末端からC末端へと伸長させる手法(N→C末端伸長法)は、この問題を解決できる可能性を持つが、エピメリ化が併発してしまうため、生成物の純度に優れる合成法の実現はこれまで困難であった。 On the other hand, the method of extending from the N-terminal to the C-terminal in the opposite direction (N-> C-terminal extension method) has the potential to solve this problem, but since epimerization also occurs, the purity of the product is increased. It has been difficult to realize an excellent synthesis method.

Holanders, K.; Mars, B. U. W.; Ballet, S. Synthesis 2019, 51, 2261.Holanders, K .; Mars, B.U.W .; Ballet, S. Synthesis 2019, 51, 2261. de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev.de Figueiredo, R.M .; Suppo, J.-S .; Campagne, J.-M. Chem. Rev. Crich, D.; Sana, K.; Guo, S. Org. Lett. 2007, 9, 4423.Crich, D .; Sana, K .; Guo, S. Org. Lett. 2007, 9, 4423. Crich, D.; Sharma, I. Angew. Chem. Int. Ed. 2009, 48, 7591.Crich, D .; Sharma, I. Angew. Chem. Int. Ed. 2009, 48, 7591. Wu, W.; Zhang, Z.; Liebeskind, L. S. J. Am. Chem. Soc 2011, 133, 14256-14259.Wu, W .; Zhang, Z .; Liebeskind, L.S. J. Am. Chem. Soc 2011, 133, 14256-14259. Mali, S. M.; Jadhav, S. V.; Gopi, H. N. Chem. Commun. 2012, 48, 7085.Mali, S. M .; Jadhav, S. V .; Gopi, H. N. Chem. Commun. 2012, 48, 7085. Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2015, 137, 13167.Wang, P .; Danishefsky, S. J. J. Am. Chem. Soc. 2015, 137, 13167. Review: Narenda N, Thimmalapura VM, Hosamani B, Prabhu G, Kumar LR, Sureshbabu VV. Org. Biomol. Chem. 2018, 16, 3524.Review: Narenda N, Thimmalapura VM, Hosamani B, Prabhu G, Kumar LR, Sureshbabu VV. Org. Biomol. Chem. 2018, 16, 3524.

本発明は、ペプチド供給プロセスにおける縮合剤及び主鎖保護基の使用を回避することができ、エピメリ化を抑制することができ、更に、無保護のアミノ酸素子の溶解度を向上し、反応を加速することができる、新規なペプチド合成法を提供することを目的とする。 The present invention can avoid the use of condensing agents and main chain protecting groups in the peptide feeding process, suppress epimerization, improve the solubility of unprotected amino acid devices, and accelerate the reaction. It is an object of the present invention to provide a novel peptide synthesis method capable of this.

本発明者らは、鋭意検討した結果、以下の3要素からなる新規ペプチド合成法により、上記課題を解決できることを見出し、本発明を完成した。
(1)ペプチドチオカルボン酸を経由するN→C末端方向へのペプチド鎖伸長法。
(2)新たに見出したエピメリ化抑制剤。
(3)主鎖無保護アミノ酸素子の可溶化剤。
As a result of diligent studies, the present inventors have found that the above problems can be solved by a novel peptide synthesis method consisting of the following three elements, and have completed the present invention.
(1) Peptide chain extension method from N to C terminal via peptide thiocarboxylic acid.
(2) A newly discovered epimerization inhibitor.
(3) Solubilizer for main chain unprotected amino acid device.

即ち、本発明は、
[1]以下の式(I)で表される化合物と、以下の式(II)で表されるアミノ酸を、以下の式(III)で表される化合物及び以下の式(IV)で表される化合物の存在下で反応させることにより、式(V)の化合物を調製する方法。

Figure 2021130656
(式中、
Figure 2021130656
は、
保護基を表すか、N末端が保護基で保護されたアミノ酸又はペプチドを表し、
は、α−アミノ酸の側鎖であり、当該側鎖は保護基で保護されていてもよい。)
Figure 2021130656
(式中、Rは、α−アミノ酸の側鎖であり、当該側鎖は保護基で保護されていてもよい。)
Figure 2021130656
(式中、
Lは、エステル基(−COR;Rは炭素数1〜30のアルキル基)、置換又は無置換のアリ−ル基、置換又は無置換のベンゾイル基、及びアミノ基で置換されていてもよいアミド基(−CONR’R’’;R’、R’’は、各々独立に、水素原子又は炭素数1〜4の置換又は無置換のアルキル基であり、R’及びR’’の少なくとも一方はアミノ基で置換されているアルキル基である)、及びアシル基(−COR’; R’は炭素数1〜4のアルキル基)からなる群から選択され、但し、R及びRの少なくとも1つがエステル基(−CO;Rは炭素数1〜4のアルキル基)である場合は、Lは水素(H)であってもよく、
及びRは、各々独立に、水素、炭素数1〜4のアルキル基、ハロゲン又はエステル基(−CO;Rは炭素数1〜4のアルキル基)を表す。)
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。)
Figure 2021130656
(式中、
Figure 2021130656
、R及びRは、上記で定義した通りである。)
[2]反応溶媒として、DMSOとトルエンの混合溶媒を用いる、[1]に記載の方法。
[3]前記カップリング反応の前に、以下の式(VI)で表される化合物を、以下の式(1)の化合物と反応させることにより、式(I)で表される化合物を調製する工程を含む、[1]又は[2]に記載の方法。
Figure 2021130656
(式中、Rは、式(I)で定義した通りである。)
Figure 2021130656
(式中、Rは、炭素数1〜4のアルキル基又は置換又は無置換のアリ-ル基である。)
[4]PG−(AA)−SH:
(PGは、N末端の保護基を表し、
AAは、任意のアミノ酸残基を表し、各出現において同一又は異なっていてもよく、アミノ酸残基の一部又は全ての側鎖は保護基で保護されていてもよく、
nは、1〜4の整数である。)
で表される化合物と、
H−(AA’)−OH:
(AAは、任意のアミノ酸残基を表し、各出現において同一又は異なっていてもよく、アミノ酸残基の一部又は全ての側鎖は保護基で保護されていてもよく、
mは、1〜4の整数である。)
で表されるアミノ酸又はペプチドを、
以下の式(III)で表される化合物及び以下の式(IV)で表される化合物の存在下で反応させることにより、PG−(AA)(AA’)−OHで表される化合物を調製する方法。
Figure 2021130656
(式中、
Lは、エステル基(−COR;Rは炭素数1〜30のアルキル基)、置換又は無置換のアリ−ル基、置換又は無置換のベンゾイル基、及びアミノ基で置換されていてもよいアミド基(−CONR’R’’;R’、R’’は、各々独立に、水素原子又は炭素数1〜4の置換又は無置換のアルキル基であり、R’及びR’’の少なくとも一方はアミノ基で置換されているアルキル基である)、及びアシル基(−COR’; R’は炭素数1〜4のアルキル基)からなる群から選択され、但し、R及びRの少なくとも1つがエステル基(−CO;Rは炭素数1〜4のアルキル基)である場合は、Lは水素(H)であってもよく、
及びRは、各々独立に、炭素数1〜4のアルキル基、ハロゲン又はエステル基(−CO;Rは炭素数1〜4のアルキル基)を表す。)
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。)
[5][1]〜[3]のいずれか1項に記載の方法に続けて、
(i)以下の式(V)で表される化合物を、以下の式(1)の化合物と反応させることにより、式(VII)で表される化合物を調製する工程:
Figure 2021130656
(式中、
Figure 2021130656
、R、Rは、式(I)及び(II)で定義した通りである。)
Figure 2021130656
(式中、Rは、炭素数1〜4のアルキル基又は置換又は無置換のアリ-ル基である。)
Figure 2021130656
(ii)式(VII)で表される化合物と、以下の式(VIII)で表されるアミノ酸を、以下の式(III)で表される化合物及び以下の式(IV)で表される化合物の存在下で反応させる工程:
を含む、式(VIIII)の化合物を調製する方法。
Figure 2021130656
(式中、R3aは、α-アミノ酸の側鎖であり、当該側鎖は保護基で保護されていてもよい。)
Figure 2021130656
(式中、
Lは、エステル基(−COR;Rは炭素数1〜30のアルキル基)、置換又は無置換のアリ−ル基、置換又は無置換のベンゾイル基、及びアミノ基で置換されていてもよいアミド基(−CONR’R’’;R’、R’’は、各々独立に、水素原子又は炭素数1〜4の置換又は無置換のアルキル基であり、R’及びR’’の少なくとも一方はアミノ基で置換されているアルキル基である)、及びアシル基(−COR’; R’は炭素数1〜4のアルキル基)からなる群から選択され、但し、R及びRの少なくとも1つがエステル基(−CO;Rは炭素数1〜4のアルキル基)である場合は、Lは水素(H)であってもよく、
及びRは、各々独立に、炭素数1〜4のアルキル基、ハロゲン又はエステル基(−CO;Rは炭素数1〜4のアルキル基)を表す。)
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。)
Figure 2021130656
(式中、
Figure 2021130656
、R〜R、R3aは、上記で定義した通りである。)
[6]以下の式(IV)で表される化合物をペプチド合成において可溶化剤として使用する方法。
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。)
を提供するものである。 That is, the present invention
[1] The compound represented by the following formula (I) and the amino acid represented by the following formula (II) are represented by the compound represented by the following formula (III) and the following formula (IV). A method for preparing a compound of formula (V) by reacting in the presence of a compound.
Figure 2021130656
(During the ceremony,
Figure 2021130656
teeth,
Represents a protecting group or represents an amino acid or peptide with the N-terminus protected by a protecting group.
R 1 is a side chain of α-amino acid, and the side chain may be protected by a protecting group. )
Figure 2021130656
(In the formula, R 2 is a side chain of α-amino acid, and the side chain may be protected by a protecting group.)
Figure 2021130656
(During the ceremony,
L may be substituted with an ester group (-CO 2 R; R is an alkyl group having 1 to 30 carbon atoms), a substituted or unsubstituted allyl group, a substituted or unsubstituted benzoyl group, and an amino group. A good amide group (-CONR'R'';R',R', respectively, is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and at least of R'and R''. One is selected from the group consisting of an alkyl group substituted with an amino group) and an acyl group (-COR a '; Ra ' is an alkyl group having 1 to 4 carbon atoms), except that R 3 and R When at least one of 4 is an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms), L may be hydrogen (H).
R 3 and R 4 independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen or an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms). )
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )
Figure 2021130656
(During the ceremony,
Figure 2021130656
, R 1 and R 2 are as defined above. )
[2] The method according to [1], wherein a mixed solvent of DMSO and toluene is used as the reaction solvent.
[3] Prior to the coupling reaction, the compound represented by the following formula (VI) is reacted with the compound represented by the following formula (1) to prepare the compound represented by the formula (I). The method according to [1] or [2], which comprises a step.
Figure 2021130656
(In the equation, R 1 is as defined in equation (I).)
Figure 2021130656
(In the formula, R 7 is an alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group.)
[4] PG- (AA) n- SH:
(PG represents an N-terminal protecting group,
AA represents any amino acid residue, which may be the same or different at each appearance, and some or all side chains of the amino acid residue may be protected by a protecting group.
n is an integer of 1 to 4. )
And the compound represented by
H- (AA') m- OH:
(AA represents any amino acid residue, which may be the same or different at each appearance, and some or all side chains of the amino acid residue may be protected by a protecting group.
m is an integer of 1 to 4. )
Amino acids or peptides represented by
A compound represented by PG- (AA) n (AA') m- OH by reacting in the presence of a compound represented by the following formula (III) and a compound represented by the following formula (IV). How to prepare.
Figure 2021130656
(During the ceremony,
L may be substituted with an ester group (-CO 2 R; R is an alkyl group having 1 to 30 carbon atoms), a substituted or unsubstituted allyl group, a substituted or unsubstituted benzoyl group, and an amino group. A good amide group (-CONR'R'';R',R', respectively, is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and at least of R'and R''. One is selected from the group consisting of an alkyl group substituted with an amino group) and an acyl group (-COR a '; Ra ' is an alkyl group having 1 to 4 carbon atoms), except that R 3 and R When at least one of 4 is an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms), L may be hydrogen (H).
R 3 and R 4 independently represent an alkyl group having 1 to 4 carbon atoms, a halogen or an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms). )
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )
[5] Following the method according to any one of [1] to [3],
(I) A step of preparing a compound represented by the formula (VII) by reacting the compound represented by the following formula (V) with the compound represented by the following formula (1):
Figure 2021130656
(During the ceremony,
Figure 2021130656
, R 1 and R 2 are as defined by equations (I) and (II). )
Figure 2021130656
(In the formula, R 7 is an alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group.)
Figure 2021130656
(Ii) The compound represented by the formula (VII) and the amino acid represented by the following formula (VIII) are represented by the compound represented by the following formula (III) and the compound represented by the following formula (IV). Process of reacting in the presence of
A method for preparing a compound of formula (VIIII), comprising:
Figure 2021130656
(In the formula, R 3a is a side chain of α-amino acid, and the side chain may be protected by a protecting group.)
Figure 2021130656
(During the ceremony,
L may be substituted with an ester group (-CO 2 R; R is an alkyl group having 1 to 30 carbon atoms), a substituted or unsubstituted allyl group, a substituted or unsubstituted benzoyl group, and an amino group. A good amide group (-CONR'R'';R',R', respectively, is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and at least of R'and R''. One is selected from the group consisting of an alkyl group substituted with an amino group) and an acyl group (-COR a '; Ra ' is an alkyl group having 1 to 4 carbon atoms), except that R 3 and R When at least one of 4 is an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms), L may be hydrogen (H).
R 3 and R 4 independently represent an alkyl group having 1 to 4 carbon atoms, a halogen or an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms). )
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )
Figure 2021130656
(During the ceremony,
Figure 2021130656
, R 1 to R 2 and R 3a are as defined above. )
[6] A method of using a compound represented by the following formula (IV) as a solubilizer in peptide synthesis.
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )
Is to provide.

本発明により、ペプチド供給プロセスにおける縮合剤及び主鎖保護基の使用を回避することができ、エピメリ化を抑制することができ、更に、無保護のアミノ酸素子の溶解度を向上し、反応を加速することができる、新規ペプチド合成法を提供することができる。 According to the present invention, the use of a condensing agent and a main chain protecting group in the peptide feeding process can be avoided, epimerization can be suppressed, the solubility of the unprotected amino acid element can be improved, and the reaction can be accelerated. It is possible to provide a novel peptide synthesis method which can be used.

カップリング剤を使用する従来のC→N末端伸長法の概略図。The schematic diagram of the conventional C-to-N-terminal extension method using a coupling agent. 本発明のペプチド合成法の基本的な反応スキ-ム。The basic reaction skim of the peptide synthesis method of the present invention. 式(I)で表される化合物を得る非限定的な方法の反応スキ-ムの概要。Outline of the reaction skim of the non-limiting method for obtaining the compound represented by the formula (I).

1.ペプチド合成法
本発明の1つの実施態様は、式(I)で表される化合物と、式(II)で表されるアミノ酸を、式(III)で表される化合物及び式(IV)で表される化合物の存在下でカップリング反応させることにより、式(V)の化合物を調製する方法である(以下「本発明のペプチド合成法」ともいう)。
1. 1. Peptide Synthesis Method In one embodiment of the present invention, the compound represented by the formula (I) and the amino acid represented by the formula (II) are represented by the compound represented by the formula (III) and the formula (IV). This is a method for preparing a compound of formula (V) by subjecting it to a coupling reaction in the presence of the compound (hereinafter, also referred to as “the peptide synthesis method of the present invention”).

本発明のペプチド合成法の基本的な反応スキ-ムを図2に示す。本発明においては、(1)ペプチドチオカルボン酸を経由するN→C末端方向へのペプチド鎖伸長法、(2)新たに見出したエピメリ化抑制剤、(3)主鎖無保護アミノ酸素子の可溶化剤の3つの要素を備えることが重要である。以下、これら3つの要素の詳細を含めて本発明のペプチド合成法について説明する。 The basic reaction skim of the peptide synthesis method of the present invention is shown in FIG. In the present invention, (1) a peptide chain extension method from N to C terminal via peptide thiocarboxylic acid, (2) a newly found epimerization inhibitor, and (3) solubilization of a main chain unprotected amino acid element. It is important to have three components of the agent. Hereinafter, the peptide synthesis method of the present invention will be described including the details of these three elements.

(1)チオカルボン酸化合物を経由するN→C末端方向へのペプチド鎖伸長法
本発明のペプチド合成法は、式(I)で表される化合物であるペプチドチオカルボン酸を経由するN→C末端方向へのペプチド鎖伸長法を用いる。

Figure 2021130656
(1) Peptide chain extension method in the N → C terminal direction via a thiocarboxylic acid compound The peptide synthesis method of the present invention is in the N → C terminal direction via a peptide thiocarboxylic acid, which is a compound represented by the formula (I). The peptide chain extension method is used.
Figure 2021130656

式(I)において、

Figure 2021130656
は、
保護基を表すか、N末端が保護基で保護されたアミノ酸又はペプチドを表す。 In equation (I)
Figure 2021130656
teeth,
It represents a protecting group or represents an amino acid or peptide whose N-terminus is protected by a protecting group.

保護基としては、アミノ酸のN末端の保護基として慣用されている保護基、例えば、tert−ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、9−フルオレニルメトキシカルボニル基(Fmoc)、アセチル基(Ac)、ベンゾイル基(Bz)等が挙げられる。 As the protecting group, a protecting group commonly used as an N-terminal protecting group of an amino acid, for example, a tert-butoxycarbonyl group (Boc), a benzyloxycarbonyl group (Cbz), a 9-fluorenylmethoxycarbonyl group (Fmoc) , Acetyl group (Ac), benzoyl group (Bz) and the like.

N末端が保護基で保護されたアミノ酸とは、上記の保護基でN末端が保護されたアミノ酸を意味する。
アミノ酸としては、特に限定なく使用することができる。例としては、α-アミノ酸、β−アミノ酸があげられる。α−アミノ酸として、例えば、ロイシン、イソロイシン、バリン、リジン、トレオニン、アルギニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、セリン、ヒスチジン、フェニルアラニン、アラニン、グリシン、トリプトファン、チロシン、システイン、メチオニン、プロリン、ヒドロキシプロリン、オルニチン、シトルリン、N-メチルグリシン(サルコシン)、N-メチルロイシン、2,3−ジアミノプロパン酸、2,4−ジアミノ酪酸、α−ヒドロキシロイシン、ホモセリン、ホモシステイン、tert−ロイシン、α−アミノイソ酪酸などが挙げられるが、これらに限定されない。また、β−アミノ酸として、β−アラニンなどが挙げられるがこれに限定されない。
上記のアミノ酸は、L型及びD型のいずれの光学異性体であってもよい。
これらアミノ酸の側鎖が官能基を有する場合は、Rについて後述する保護基で保護してもよい。
An amino acid whose N-terminal is protected by a protecting group means an amino acid whose N-terminal is protected by the above-mentioned protecting group.
The amino acid can be used without particular limitation. Examples include α-amino acids and β-amino acids. As α-amino acids, for example, leucine, isoleucine, valine, lysine, threonine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, serine, histidine, phenylalanine, alanine, glycine, tryptophan, tyrosine, cysteine, methionine, proline, hydroxyproline. , Ornitine, citrulin, N-methylglycine (sarcosin), N-methylleucine, 2,3-diaminopropanoic acid, 2,4-diaminobutyric acid, α-hydroxyleucine, homoserine, homocysteine, tert-leucine, α-aminoiso Examples include, but are not limited to, butyric acid. Further, examples of the β-amino acid include, but are not limited to, β-alanine.
The above amino acids may be either L-type or D-type optical isomers.
When the side chains of these amino acids have functional groups, R 1 may be protected with a protecting group described later.

N末端が保護基で保護されたペプチドとは、上記の保護基でN末端が保護されたペプチドを意味する。ここで、ペプチドは、上記のアミノ酸の残基が2〜9、好ましくは、2〜6、更に好ましくは2〜4個結合した構造を有する。 A peptide having an N-terminal protected by a protecting group means a peptide having an N-terminal protected by the above-mentioned protecting group. Here, the peptide has a structure in which 2 to 9, preferably 2 to 6, and more preferably 2 to 4 amino acid residues are linked.

は、α−アミノ酸の側鎖である。Rは、SHに結合しているα−アミノ酸残基の種類によって決まる。例えば、当該アミノ酸残基がグリシンの場合、Rは水素であり、アラニンの場合はメチル基である。
即ち、式(I)におけるSHに結合しているα−アミノ酸残基;NH−CH(R)−C(=O)は、フェニルグリシン以外の任意のα−アミノ酸の残基でよい。ここで、α−アミノ酸として、例えば、ロイシン、イソロイシン、バリン、リジン、トレオニン、アルギニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、セリン、ヒスチジン、フェニルアラニン、アラニン、グリシン、トリプトファン、チロシン、システイン、メチオニン、プロリン、ヒドロキシプロリン、オルニチン、シトルリン、N−メチルグリシン(サルコシン)、N−メチルロイシン、2,3−ジアミノプロパン酸、2,4−ジアミノ酪酸、α−ヒドロキシロイシン、ホモセリン、ホモシステイン、tert−ロイシン、α−アミノイソ酪酸などが挙げられるが、これらに限定されない。Rは、これらから選択されるアミノ酸の側鎖である。
上記のα−アミノ酸は、L型及びD型のいずれの光学異性体であってもよい。
R 1 is a side chain of α-amino acid. R 1 is determined by the type of α-amino acid residue bound to SH. For example, if the amino acid residue is glycine, R 1 is hydrogen, and if it is alanine, it is a methyl group.
That is, the α-amino acid residue bound to SH in the formula (I); NH-CH (R 1 ) -C (= O) may be a residue of any α-amino acid other than phenylglycine. Here, as α-amino acids, for example, leucine, isoleucine, valine, lysine, threonine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, serine, histidine, phenylalanine, alanine, glycine, tryptophan, tyrosine, cysteine, methionine, proline. , Hydroxyproline, ornithine, citrulin, N-methylglycine (sarcosin), N-methylleucine, 2,3-diaminopropanoic acid, 2,4-diaminobutyric acid, α-hydroxyleucine, homoserine, homocysteine, tert-leucine, Examples include, but are not limited to, α-aminoisobutyric acid. R 1 is a side chain of amino acids selected from these.
The α-amino acid may be either an L-type or D-type optical isomer.

で表される上記α−アミノ酸残基の側鎖は、保護基で保護されていてもよい。
例えば、Rがリジン側鎖(アミノ基を有する)である場合は、保護基として、tert−ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、9−フルオレニルメトキシカルボニル基(Fmoc)を用いることができる。
がグルタミン酸側鎖やアスパラギン酸側鎖でありカルボキシ基を有する場合は、保護基として、ベンジルエステル(Bzl)、tert−ブチルエステル(t−Bu)を用いることができる。
また、Rがセリンやトレオニン側鎖(ヒドロキシ基を有する)である場合は、保護基として、ベンジル基やtert−ブチル基を用いることができる。
がチロシン側鎖(フェノ−ル性ヒドロキシ基を有する)である場合は、保護基として、2−ブロモベンジルオキシカルボニル(Z(2Br))やtert−ブチル基を用いることができる。
がシステイン側鎖(スルフヒドリル基を有する)である場合は、保護基として、4−メチルベンジル基(Bzl(4Me))、トリチル基 (Trt)、tert−ブチル基、N−(アセチル)アミノメチル基(Acm)を用いることができる。
がアルギニン側鎖(グアニジノ基を有する)である場合は、保護基として、p−トルエンスルホニル基(p−Ts)などを用いることができる。
また、Rがヒスチジン側鎖(イミダゾ−ル環を有する)である場合は、π−窒素をベンジルオキシメチル基(Bom)やtert−ブトキシメチル基(Bum)で保護することができ、τ−窒素を2,4−ジニトロフェニル基(Dnp)、トリチル基などで保護することができる。
The side chain of the α-amino acid residue represented by R 1 may be protected by a protecting group.
For example, when R 1 is a lysine side chain (having an amino group), the protecting group includes a tert-butoxycarbonyl group (Boc), a benzyloxycarbonyl group (Cbz), and a 9-fluorenylmethoxycarbonyl group (Fmoc). ) Can be used.
When R 1 is a glutamic acid side chain or an aspartic acid side chain and has a carboxy group, a benzyl ester (Bzl) or a tert-butyl ester (t-Bu) can be used as a protecting group.
When R 1 is a serine or threonine side chain (having a hydroxy group), a benzyl group or a tert-butyl group can be used as a protecting group.
When R 1 is a tyrosine side chain (having a phenolic hydroxy group), 2-bromobenzyloxycarbonyl (Z (2Br)) or a tert-butyl group can be used as the protecting group.
When R 1 is a cysteine side chain (having a sulfhydryl group), the protecting group is 4-methylbenzyl group (Bzl (4Me)), trityl group (Trt), tert-butyl group, N- (acetyl) amino. A methyl group (Acm) can be used.
When R 1 is an arginine side chain (having a guanidine group), a p-toluenesulfonyl group (p-Ts) or the like can be used as a protecting group.
When R 1 is a histidine side chain (having an imidazole ring), π-nitrogen can be protected with a benzyloxymethyl group (Bom) or a tert-butoxymethyl group (Bum), and τ- Nitrogen can be protected with a 2,4-dinitrophenyl group (Dnp), a trityl group, or the like.

式(I)で表されるチオカルボン酸化合物は、本発明者らのグル-プが報告した1工程変換条件(Chem. Commun. 2018, 54, 1222)、または、既存のいかなる手法を用いて得ることができる。 The thiocarboxylic acid compound represented by the formula (I) can be obtained by using the one-step conversion conditions (Chem. Commun. 2018, 54, 1222) reported by the group of the present inventors, or any existing method. be able to.

本発明の1つの好ましい側面においては、式(I)で表される化合物は、以下の式(VI)で表される化合物を、以下の式(1)の化合物と反応させて得ることができる。

Figure 2021130656
式(1)中、Rは、炭素数1〜4のアルキル基又は置換又は無置換のアリ-ル基であり、好ましくはメチル基又はエチル基であり、更に好ましくはメチル基である。 In one preferred aspect of the present invention, the compound represented by the formula (I) can be obtained by reacting the compound represented by the following formula (VI) with the compound represented by the following formula (1). ..
Figure 2021130656
In the formula (1), R 7 is an alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted allyl group, preferably a methyl group or an ethyl group, and more preferably a methyl group.

式(VI)において、

Figure 2021130656
は、
保護基を表すか、N末端が保護基で保護されたアミノ酸又はペプチドを表し、Rは、α−アミノ酸の側鎖であり、これらの詳細については式(I)において説明したのと同様である。 In equation (VI)
Figure 2021130656
teeth,
Representing a protecting group or representing an amino acid or peptide with the N-terminus protected by a protecting group, R 1 is the side chain of the α-amino acid, the details of which are the same as described in formula (I). be.

上記の式(I)で表される化合物を得る方法の反応スキ-ムの概要を図3に示す。この反応では、触媒としてアセチルスルフィドを用いる。
この反応は、溶媒としてDMFを用い、反応温度は、通常0℃〜室温で行う。
FIG. 3 shows an outline of the reaction skim of the method for obtaining the compound represented by the above formula (I). In this reaction, acetyl sulfide is used as a catalyst.
This reaction uses DMF as a solvent and the reaction temperature is usually 0 ° C. to room temperature.

本発明のペプチド合成法では、式(I)で表されるチオカルボン酸化合物と、以下の式(II)表される化合物とを反応させる。

Figure 2021130656
In the peptide synthesis method of the present invention, the thiocarboxylic acid compound represented by the formula (I) is reacted with the compound represented by the following formula (II).
Figure 2021130656

式(II)表される化合物は、無保護のα−アミノ酸であり、α−アミノ酸として、天然アミノ酸に加えて、任意のα−アミノ酸を用いることができる。例えば、ロイシン、イソロイシン、バリン、リジン、トレオニン、アルギニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、セリン、ヒスチジン、フェニルアラニン、アラニン、グリシン、トリプトファン、チロシン、システイン、メチオニン、オルニチン、2,3−ジアミノプロパン酸、2,4−ジアミノ酪酸、α−ヒドロキシロイシン、tert−ロイシン、フェニルグリシン、α−アミノイソ酪酸などが挙げられるが、これらに限定されない。
上記のα−アミノ酸は、L型及びD型のいずれの光学異性体であってもよい。
The compound represented by the formula (II) is an unprotected α-amino acid, and any α-amino acid can be used as the α-amino acid in addition to the natural amino acid. For example, leucine, isoleucine, valine, lysine, threonine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, serine, histidine, phenylalanine, alanine, glycine, tryptophan, tyrosine, cysteine, methionine, ornithine, 2,3-diaminopropanoic acid. , 2,4-Diaminobutyric acid, α-hydroxyleucine, tert-leucine, phenylglycine, α-aminoisobutyric acid and the like, but are not limited thereto.
The α-amino acid may be either an L-type or D-type optical isomer.

式(II)におけるRは、α−アミノ酸の側鎖であり、α−アミノ酸の種類によって決まる。例えば、当該アミノ酸がグリシンの場合、Rは水素であり、アラニンの場合はメチル基である。 R 2 in formula (II) is a side chain of α-amino acid and is determined by the type of α-amino acid. For example, if the amino acid is glycine, R 2 is hydrogen, and if it is alanine, it is a methyl group.

で表される上記α−アミノ酸の側鎖は、保護基で保護されていてもよい。保護基については、式(I)のRについて説明したのと同様のものを用いることができる。 The side chain of the α-amino acid represented by R 2 may be protected by a protecting group. As the protecting group, the same protecting group as described for R 1 of the formula (I) can be used.

本発明のペプチド合成法では、伸長させるペプチド又はアミノ酸を式(I)で表されるようにチオカルボン酸へと変換しておくことで、原料である式(I)の化合物のC末端と式(II)の無保護アミノ酸素子のC末端を必要最小限に区別可能になるとともに、原料化合物のC末端の選択的な活性化によって一アミノ酸ずつペプチド伸長させることができる。
また、チオカルボン酸を経由するN→C末端方向へのペプチド鎖伸長法を用いることで、等量以上の縮合剤を必要とせず、伸長過程で生じる廃棄物は溶媒と硫黄単体だけに原理上低減可能であり、安価な無保護アミノ酸を合成素子として用いることができるため、従来型ペプチド伸長法に比べて、大幅な廃棄物の低減およびコストの低減が期待できる。
また、生成物としては、C末端無保護のペプチド鎖が得られるため、チオカルボン酸変換→ペプチド鎖連結の繰り返しによって、速やかにペプチド鎖を伸長することが可能である。
In the peptide synthesis method of the present invention, the peptide or amino acid to be extended is converted into a thiocarboxylic acid as represented by the formula (I), whereby the C-terminal of the compound of the formula (I) as a raw material and the formula ( The C-terminal of the unprotected amino acid element of II) can be distinguished to the minimum necessary, and the peptide can be extended one amino acid at a time by selective activation of the C-terminal of the raw material compound.
In addition, by using the peptide chain extension method in the N → C terminal direction via thiocarboxylic acid, an equal amount or more of condensing agent is not required, and the waste generated in the extension process is reduced in principle to only the solvent and sulfur alone. Since a possible and inexpensive unprotected amino acid can be used as a synthetic element, a significant reduction in waste and cost can be expected as compared with the conventional peptide extension method.
Further, since a C-terminal unprotected peptide chain is obtained as a product, the peptide chain can be rapidly extended by repeating thiocarboxylic acid conversion → peptide chain linkage.

(2)エピメリ化抑制剤
本発明のペプチド合成法においては、以下の式(III)で表される化合物である新規なエピメリ化抑制剤を用いる。
(2) Epimerization inhibitor In the peptide synthesis method of the present invention, a novel epimerization inhibitor which is a compound represented by the following formula (III) is used.

従来通りの考え方でN→C末端伸長を行うと、環化中間体を経るエピメリ化(立体化学の消失)が引き起こされ、純度に優れる生成物の供給が不可能であった。本発明者らは、エピメリ化抑制能期待される様々な添加剤を合成・スクリ-ニングした結果、N−ヒドロキシピリドン型添加剤が本発明のペプチド合成法でのエピメリ化の問題を解決することを見出した。 When the N-→ C-terminal extension is carried out in the conventional way of thinking, epimerization (disappearance of stereochemistry) via the cyclization intermediate is caused, and it is impossible to supply a product having excellent purity. As a result of synthesizing and screening various additives expected to have an ability to suppress epimerization, the present inventors have solved the problem of epimerization in the peptide synthesis method of the present invention with the N-hydroxypyridone-type additive. I found.

Figure 2021130656
Figure 2021130656

式(III)において、Lは、エステル基(−COR;Rは炭素数1〜30のアルキル基)、置換又は無置換のアリ−ル基、置換又は無置換のベンゾイル基、アミノ基で置換されていてもよいアミド基(−CONR’R’’;R’、R’’は、各々独立に、水素原子又は炭素数1〜4の置換又は無置換のアルキル基であり、R’及びR’’の少なくとも一方はアミノ基で置換されているアルキル基である)、及びアシル基(−COR’; R’は炭素数1〜4のアルキル基)からなる群から選択される。 In formula (III), L is an ester group (-CO 2 R; R is an alkyl group having 1 to 30 carbon atoms), a substituted or unsubstituted allyl group, a substituted or unsubstituted benzoyl group, or an amino group. The optionally substituted amide group (-CONR'R'';R',R'' is an independently substituted or unsubstituted alkyl group having a hydrogen atom or 1 to 4 carbon atoms, and R'and 'at least one of an alkyl group substituted with an amino group), and an acyl group (-COR a' R '; R a' is selected from the group consisting of alkyl group) having 1 to 4 carbon atoms.

エステル基は、−CORで表され、Rは炭素数1〜30のアルキル基である。アルキル基は、無置換であってもよく、置換基を有していてもよい。
アルキル基は、直鎖アルキル基、分岐アルキル基のいずれでもよい。分岐アルキル基の場合、炭素総数が30程度に大きくなっても、再結晶により生成物からの添加剤の回収がし易くなるという利点がある。
分岐アルキル基としては、−(CHCHCH(CH)CH−H(sは、1〜4)の分岐アルキル基が、再結晶による生成物からの添加剤の回収率が高くなる点から好ましい。 直鎖アルキル基の場合は、炭素数が大きくなっても収率、エピメリ化度は良好であるが、結晶化度が上がり、生成物からの回収がしにくくなる場合がある。直鎖アルキルでは、炭素数1〜4のアルキルが、収率、エピメリ化度、生成物からの添加剤の回収のしやすさの点から好ましく、特に好ましくは、メチル基(即ち、エステル基としてはメチルエステル基(−COCH))である。
The ester group is represented by −CO 2 R, where R is an alkyl group having 1 to 30 carbon atoms. The alkyl group may be unsubstituted or may have a substituent.
The alkyl group may be either a linear alkyl group or a branched alkyl group. In the case of a branched alkyl group, even if the total number of carbons is as large as about 30, there is an advantage that the additive can be easily recovered from the product by recrystallization.
As the branched alkyl group, the branched alkyl group of − (CH 2 CH 2 CH (CH 3 ) CH 2 ) s −H (s is 1 to 4) has a recovery rate of the additive from the product by recrystallization. It is preferable because it becomes expensive. In the case of a linear alkyl group, the yield and the degree of epimerization are good even if the number of carbon atoms is large, but the degree of crystallinity is increased and it may be difficult to recover from the product. In the linear alkyl, an alkyl having 1 to 4 carbon atoms is preferable from the viewpoint of yield, degree of epimerization, and ease of recovery of the additive from the product, and particularly preferably as a methyl group (that is, an ester group). Is a methyl ester group (-CO 2 CH 3 )).

アミノ基で置換されていてもよいアミド基としては好ましくは、ジメチルアミノエチルアミド基(-CONHCN(CH)である。 The amide group which may be substituted with an amino group is preferably a dimethylaminoethylamide group (-CONHC 2 H 4 N (CH 3 ) 2 ).

アリ−ル基としては、フェニル基が挙げられ、置換されていても無置換でもよい。アリ−ル基の置換基としては、アルキル基、エステル基等が挙げられるが、好ましくはエステル基(例えば、メチルエステル基(-COCH))である。 Examples of the aryl group include a phenyl group, which may be substituted or unsubstituted. Examples of the substituent of the allyl group include an alkyl group and an ester group, but an ester group (for example, a methyl ester group (-CO 2 CH 3 )) is preferable.

ベンゾイル基の置換基としては、アルキル基、アミノ基等が挙げられるが、好ましくはアミノ基(例えば、ジメチルアミノ基)である。 Examples of the substituent of the benzoyl group include an alkyl group and an amino group, and an amino group (for example, a dimethylamino group) is preferable.

アシル基は、−COR’(R’は炭素数1〜4のアルキル基)で表され、好ましくは、アセチル基である。 Acyl group, -COR a '(R a' is an alkyl group having 1 to 4 carbon atoms) represented by, preferably, acetyl.

Lとして、上記した基から選択されることが好ましいが、R及びRの少なくとも1つがエステル基(−CO;Rは炭素数1〜4のアルキル基)である場合は、Lは水素(H)であってもよい。この場合には、Lとしてエステル基などの基がある場合に比べて、エピメリ度が若干高くなる傾向があるものの、高い収率で生成物を得ることが可能である。 L is preferably selected from the groups described above, but when at least one of R 3 and R 4 is an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms), it is preferable. L may be hydrogen (H). In this case, the product can be obtained in a high yield, although the degree of epimery tends to be slightly higher than that in the case where L has a group such as an ester group.

式(III)において、R及びRは、各々独立に、水素原子、炭素数1〜4のアルキル基、ハロゲン又はエステル基(−CO;Rは炭素数1〜4のアルキル基)を表す。ハロゲンとしては、塩素が好ましい。エステル基としてはメチルエステル基(−COCH)が好ましい。 In formula (III), R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen or an ester group (-CO 2 Ra ; Ra is an alkyl having 1 to 4 carbon atoms. Group). Chlorine is preferable as the halogen. As the ester group, a methyl ester group (-CO 2 CH 3 ) is preferable.

本発明の1つの好ましい側面において、R及びRの何れもが水素原子である。
また、本発明の別の好ましい側面において、R及びRの一方が塩素であり、他方が水素原子である。
また、本発明の別の好ましい側面において、R及びRの一方がメチルエステル基であり、他方が水素原子である。
In one preferred aspect of the invention, both R 3 and R 4 are hydrogen atoms.
Further, in another preferable aspect of the present invention, one of R 3 and R 4 is chlorine and the other is a hydrogen atom.
Further, in another preferable aspect of the present invention, one of R 3 and R 4 is a methyl ester group and the other is a hydrogen atom.

(3)主鎖無保護アミノ酸の可溶化剤
本発明のペプチド合成法においては、式(IV)で表される化合物である可溶化剤を用いる。
(3) Solubilizer for main chain unprotected amino acid In the peptide synthesis method of the present invention, a solubilizer which is a compound represented by the formula (IV) is used.

主鎖が無保護のアミノ酸素子(原料)は、一般に有機溶媒で不要であるため、これを用いるペプチド伸長法は反応効率が悪く、一工程完結までに長時間を要していた。本発明者らは、無保護アミノ酸素子を可溶化する添加剤の探索を行ったところ、ホスファイト系添加剤が無保護アミノ酸素子の溶解度向上に寄与し、液相での反応効率を向上させることで反応時間短縮を実現することが可能となる。 Since an amino acid element (raw material) having an unprotected main chain is generally unnecessary in an organic solvent, the peptide extension method using this has poor reaction efficiency, and it takes a long time to complete one step. The present inventors searched for an additive that solubilizes the unprotected amino acid element, and found that the phosphite-based additive contributes to the improvement of the solubility of the unprotected amino acid element and improves the reaction efficiency in the liquid phase. It is possible to shorten the reaction time.

Figure 2021130656
Figure 2021130656

式(IV)において、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表す。但し、R及びRの両方がヒドロキシ基になることはない。
アルキル基としては、n−ブチル基が好ましい。アルコキシ基としては、メトキシ基、エトキシ基、i−プロポキシ基、n−ブトキシ基が好ましい。
In formula (IV), R 5 and R 6 independently have an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. Represents. However, both R 5 and R 6 do not become hydroxy groups.
As the alkyl group, an n-butyl group is preferable. As the alkoxy group, a methoxy group, an ethoxy group, an i-propoxy group and an n-butoxy group are preferable.

本発明の1つの好ましい側面においては、式(IV)の化合物は、以下の式(IVa)で表される。

Figure 2021130656
In one preferred aspect of the invention, the compound of formula (IV) is represented by the following formula (IVa).
Figure 2021130656

式(IVa)において、R’及びR’は、各々独立に、炭素数1〜4のアルキル基、置換基を有していてもよいベンジル基又は水素を表す。但し、R’及びR’の両方が水素になることはない。 In formula (IVa), R 5 'and R 6' each independently represent an alkyl group having 1 to 4 carbon atoms, an optionally benzyl group or hydrogen may have a substituent. However, R 5 'and R 6' both are not a hydrogen.

本発明の1つの好ましい側面においては、R’及びR’の両方がメチル基である。
また、本発明の1つの好ましい側面においては、R’及びR’の両方がエチル基である。
また、本発明の1つの好ましい側面においては、R’及びR’の両方がi−プロピル基である。
また、本発明の1つの好ましい側面においては、R’及びR’の両方がn−ブチル基である。
また、本発明の1つの好ましい側面においては、R’及びR’の両方がベンジル基である。
In one preferred aspect of the present invention, both R 5 'and R 6' is a methyl group.
Further, in one preferred aspect of the present invention, both R 5 'and R 6' is an ethyl group.
Further, in one preferred aspect of the present invention, both R 5 'and R 6' is i- propyl.
Further, in one preferred aspect of the present invention, both R 5 'and R 6' is an n- butyl group.
Further, in one preferred aspect of the present invention, both R 5 'and R 6' is a benzyl group.

式(IV)において、R及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。
このようなヘテロシクリルとしては、5員環又は6員環の構造が好ましく、6員環の構造がより好ましい。
置換基としては、1〜4のアルキル基が挙げられ、置換基は1つでも2以上であってもよい。アルキル基としては、好ましくはメチル基、エチル基である。
In formula (IV), R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached.
As such a heterocyclyl, a 5-membered ring or a 6-membered ring structure is preferable, and a 6-membered ring structure is more preferable.
Examples of the substituent include 1 to 4 alkyl groups, and the number of substituents may be one or two or more. The alkyl group is preferably a methyl group or an ethyl group.

本発明の方法で用いられる式(IV)の非限定的例を以下に示すが、これらに限定されるものではない。 Non-limiting examples of formula (IV) used in the method of the present invention are shown below, but are not limited thereto.

Figure 2021130656
Figure 2021130656

本発明のペプチド合成法により、以下の式(V)で表される化合物を得ることができる。

Figure 2021130656
By the peptide synthesis method of the present invention, a compound represented by the following formula (V) can be obtained.
Figure 2021130656

式(V)において、

Figure 2021130656
、R及びRは、式(I)、(II)について説明した通りである。 In equation (V)
Figure 2021130656
, R 1 and R 2 are as described in equations (I) and (II).

本発明のペプチド合成法においては、通常、式(I)の化合物のモル量に対して、式(II)の化合物を1〜2等量、式(III)の化合物を1等量、式(IV)の化合物を1等量で反応させる。 In the peptide synthesis method of the present invention, the compound of the formula (II) is usually equal to 1 to 2 equal to the molar amount of the compound of the formula (I), and the compound of the formula (III) is usually equal to the molar amount of the compound of the formula (III). The compound of IV) is reacted in an equal amount.

本発明のペプチド合成法は、ペプチドの液相合成に通常用いられる溶媒を使用することができるが、DMSO系の溶媒を用いるとチオ酸の活性化を効率化できて好ましい。更に、DMSOとトルエン等の混合溶媒を用いると、極性を下げることができ、エピメリ化を有効に抑制することができる点から好ましい。
本発明の方法の1つの好ましい側面において、DMSO:トルエン=1:1(体積比)の混合溶媒が用いられる。
In the peptide synthesis method of the present invention, a solvent usually used for liquid phase synthesis of peptides can be used, but it is preferable to use a DMSO-based solvent because activation of thioic acid can be made more efficient. Further, it is preferable to use a mixed solvent such as DMSO and toluene because the polarity can be lowered and epimerization can be effectively suppressed.
In one preferred aspect of the method of the invention, a mixed solvent of DMSO: toluene = 1: 1 (volume ratio) is used.

本発明のペプチド合成法は、通常、室温程度で、3〜6時間反応させることにより行われる。 The peptide synthesis method of the present invention is usually carried out by reacting at about room temperature for 3 to 6 hours.

本発明のペプチド合成法は、上記で説明したように、ペプチド又はアミノ酸のチオカルボン酸化合物を経由するN→C末端方向へのペプチド鎖伸長法に基づくが、本発明の方法を、ペプチドのフラグメントカップリング、反復カップリングに適用することができる。 As described above, the peptide synthesis method of the present invention is based on the method of extending the peptide chain in the N → C terminal direction via the thiocarboxylic acid compound of the peptide or amino acid, but the method of the present invention is based on the peptide fragment cup. It can be applied to rings and repetitive couplings.

2.フラグメントカップリング
本発明のもう1つの実施態様は、
PG-(AA)-SH:
(PGは、N末端の保護基を表し、
AAは、任意のアミノ酸残基を表し、各出現において同一又は異なっていてもよく、アミノ酸残基の一部又は全ての側鎖は保護基で保護されていてもよく、
nは、1〜4の整数である。)
で表される化合物と、
H-(AA’)-OH:
(AA’は、任意のアミノ酸残基を表し、各出現において同一又は異なっていてもよく、アミノ酸残基の一部又は全ての側鎖は保護基で保護されていてもよく、
mは、1〜4の整数である。)
で表されるペプチドを、
以下の式(III)で表される化合物及び以下の式(IV)で表される化合物の存在下で反応させることにより、PG-(AA)(AA’)-OHで表される化合物を調製する方法である(以下「本発明のフラグメントカップリング」ともいう)。

Figure 2021130656
(式中、
Lは、エステル基(−COR;Rは炭素数1〜30のアルキル基)、置換又は無置換のアリ-ル基、置換又は無置換のベンゾイル基、アミノ基で置換されていてもよいアミド基(−CONR’R’’;R’、R’’は、各々独立に、水素原子又は炭素数1〜4の置換又は無置換のアルキル基であり、R’及びR’’の少なくとも一方はアミノ基で置換されているアルキル基である)、アシル基(−COR’; R’は炭素数1〜4のアルキル基)からなる群から選択され、但し、R及びRの少なくとも1つがエステル基(−CO;Rは炭素数1〜4のアルキル基)である場合は、Lは水素(H)であってもよく、
及びRは、各々独立に、炭素数1〜4のアルキル基、ハロゲン又はエステル基(-CO;Rは炭素数1〜4のアルキル基)を表す。)
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい 2. Fragment Coupling Another embodiment of the present invention is
PG- (AA) n -SH:
(PG represents an N-terminal protecting group,
AA represents any amino acid residue, which may be the same or different at each appearance, and some or all side chains of the amino acid residue may be protected by a protecting group.
n is an integer of 1 to 4. )
And the compound represented by
H- (AA') m -OH:
(AA'represents any amino acid residue, which may be the same or different at each appearance, and some or all side chains of the amino acid residue may be protected by a protecting group.
m is an integer of 1 to 4. )
The peptide represented by
A compound represented by PG- (AA) n (AA') m- OH by reacting in the presence of a compound represented by the following formula (III) and a compound represented by the following formula (IV). (Hereinafter, also referred to as "fragment coupling of the present invention").
Figure 2021130656
(During the ceremony,
L may be substituted with an ester group (-CO 2 R; R is an alkyl group having 1 to 30 carbon atoms), a substituted or unsubstituted allyl group, a substituted or unsubstituted benzoyl group, or an amino group. The amide group (-CONR'R ";R',R" is an independently substituted or unsubstituted alkyl group having a hydrogen atom or 1 to 4 carbon atoms, and at least one of R'and R ". Is an alkyl group substituted with an amino group), selected from the group consisting of an acyl group (-COR a '; Ra ' is an alkyl group having 1 to 4 carbon atoms), except that R 3 and R 4 When at least one is an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms), L may be hydrogen (H).
R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms, a halogen or an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms). )
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached.

PGのN末端の保護基は、本発明のペプチド合成法で説明したのと同様のN末端の保護基を用いることができる。
AA及びAA’の任意のアミノ酸残基としては、α−アミノ酸、β−アミノ酸の残基があげられ、α−アミノ酸の残基として、ロイシン、イソロイシン、バリン、リジン、トレオニン、アルギニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、セリン、ヒスチジン、フェニルアラニン、アラニン、グリシン、トリプトファン、チロシン、システイン、メチオニン、プロリン、オルニチン、N−メチルロイシン、2,3−ジアミノプロパン酸、2,4−ジアミノ酪酸、α−ヒドロキシロイシンなどのアミノ酸残基が挙げられる。また、β−アミノ酸として、β−アラニンなどのアミノ酸残基である。但し、AAのアミノ酸残基のうちSHに結合しているアミノ酸残基は、フェニルグリシン以外の任意のアミノ酸残基であり、AA’のアミノ酸残基のうちN末端のアミノ酸残基はプロリン、N−メチルアミノ酸以外のアミノ酸残基である。
これらアミノ酸残基の側鎖が保護されている場合は、本発明のペプチド合成法で説明したのと同様の保護基を用いることができる。
AA及びAA’の任意のアミノ酸残基は、L型及びD型のいずれの光学異性体であってもよい。
As the N-terminal protecting group of PG, the same N-terminal protecting group as described in the peptide synthesis method of the present invention can be used.
Arbitrary amino acid residues of AA and AA'include α-amino acid and β-amino acid residues, and α-amino acid residues include leucine, isoleucine, valine, lysine, threonine, arginine, aspartic acid, and aspartic acid. Acid, glutamine, glutamine, serine, histidine, phenylalanine, alanine, glycine, tryptophan, tyrosine, cysteine, methionine, proline, ornithine, N-methylleucine, 2,3-diaminopropanoic acid, 2,4-diaminobutyric acid, α- Amino acid residues such as hydroxyleucine can be mentioned. Further, as β-amino acid, it is an amino acid residue such as β-alanine. However, among the amino acid residues of AA, the amino acid residue bound to SH is an arbitrary amino acid residue other than phenylglycine, and among the amino acid residues of AA', the N-terminal amino acid residue is proline or N. -Amino acid residues other than methyl amino acids.
When the side chains of these amino acid residues are protected, protecting groups similar to those described in the peptide synthesis method of the present invention can be used.
Any amino acid residue of AA and AA'may be either an L-type or D-type optical isomer.

本発明のフラグメントカップリングにおいては、好ましくはnとmは同じである。n及びmは、好ましくは、2又は3である。 In the fragment coupling of the present invention, n and m are preferably the same. n and m are preferably 2 or 3.

本発明のフラグメントカップリングにおいては、本発明のペプチド合成法で説明した溶媒、温度及び時間などの反応条件を同様に用いることができる。 In the fragment coupling of the present invention, the reaction conditions such as the solvent, temperature and time described in the peptide synthesis method of the present invention can be similarly used.

3.反復カップリング
本発明のもう1つの実施態様は、上記で説明した本発明のペプチド合成法を実施し、これに続けて、
(i)以下の式(V)で表される化合物を、以下の式(1)の化合物と反応させることにより、式(VII)で表される化合物を調製する工程:

Figure 2021130656
(式中、
Figure 2021130656
、R、Rは、式(I)及び(II)で定義した通りである。)
Figure 2021130656
(ii)式(VII)で表される化合物と、以下の式(VIII)で表されるアミノ酸を、以下の式(III)で表される化合物及び以下の式(IV)で表される化合物の存在下で反応させる工程:
を含む、式(VIIII)の化合物を調製する方法である(以下「本発明の反復カップリング」ともいう)。
Figure 2021130656
(式中、R3aは、α−アミノ酸の側鎖であり、当該側鎖は保護基で保護されていてもよい。)
Figure 2021130656
(式中、L、R〜Rは、上記で定義した通りである。)
Figure 2021130656
(式中、R〜Rは、上記で定義した通りである。)
Figure 2021130656
(式中、
Figure 2021130656
、R〜R、R3aは、上記で定義した通りである。) 3. 3. Repeated Coupling Another embodiment of the present invention carries out the peptide synthesis method of the present invention described above, followed by
(I) A step of preparing a compound represented by the formula (VII) by reacting the compound represented by the following formula (V) with the compound represented by the following formula (1):
Figure 2021130656
(During the ceremony,
Figure 2021130656
, R 1 and R 2 are as defined by equations (I) and (II). )
Figure 2021130656
(Ii) The compound represented by the formula (VII) and the amino acid represented by the following formula (VIII) are represented by the compound represented by the following formula (III) and the compound represented by the following formula (IV). Process of reacting in the presence of
This is a method for preparing a compound of the formula (VIIII), which comprises (hereinafter, also referred to as “repeated coupling of the present invention”).
Figure 2021130656
(In the formula, R 3a is a side chain of α-amino acid, and the side chain may be protected by a protecting group.)
Figure 2021130656
(In the formula, L, R 3 to R 4 are as defined above.)
Figure 2021130656
(Wherein, R 5 to R 6 are as defined above.)
Figure 2021130656
(During the ceremony,
Figure 2021130656
, R 1 to R 2 and R 3a are as defined above. )

式(VIII)におけるR3aはα−アミノ酸の側鎖であるが、当該α−アミノ酸については、式(II)のアミノ酸について説明したのと同様である。また、当該側鎖は保護基で保護されていてもよく、保護基についても式(II)について説明したのと同様である。 R 3a in the formula (VIII) is a side chain of the α-amino acid, and the α-amino acid is the same as that described for the amino acid in the formula (II). Further, the side chain may be protected by a protecting group, and the protecting group is the same as described in the formula (II).

本発明の反復カップリングは、上記で記載した方法を繰り返し用いて、ペプチド鎖を伸長させることができる。ペプチド鎖の伸長は、通常2〜5個のアミノ酸残基を有するペプチドを得るまで行うことが可能である。 The repeated coupling of the present invention can extend the peptide chain by repeatedly using the method described above. Elongation of the peptide chain can usually be carried out until a peptide having 2 to 5 amino acid residues is obtained.

本発明の反復カップリングにおいては、本発明のペプチド合成法で説明した溶媒、温度及び時間などの反応条件を同様に用いることができる。 In the repeated coupling of the present invention, the reaction conditions such as the solvent, temperature and time described in the peptide synthesis method of the present invention can be similarly used.

上記した本発明のペプチド合成法、本発明のフラグメントカップリング、本発明の反復カップリングは、ペプチドの液相合成に適用することが可能である。 The peptide synthesis method of the present invention, the fragment coupling of the present invention, and the repeated coupling of the present invention described above can be applied to the liquid phase synthesis of peptides.

また、本発明のもう1つの態様は、以下の式(IV)で表される化合物をペプチド合成において可溶化剤として使用する方法である。

Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。) Another aspect of the present invention is a method of using a compound represented by the following formula (IV) as a solubilizer in peptide synthesis.
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )

以下本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

1.一般的方法
(1)一般論
エレクトロスプレイイオン化(ESI)質量スペクトルをShimadzu LCMS-2020スペクトロメ-タ(LRMSの場合)で測定した。分析HPLCチャ-トは、UV-2075分光計、PU-2080ポンプ、DG-2080-54脱ガス装置、及びMX-2080-32ミキサ-を備えたJASCO HPLCシステムを用いて得られた。
1. 1. General method (1) General theory Electrospray ionization (ESI) mass spectrum was measured by Shimadzu LCMS-2020 spectrometer (in the case of LRMS). Analytical HPLC charts were obtained using a JASCO HPLC system equipped with a UV-2075 spectrometer, a PU-2080 pump, a DG-2080-54 degassing device, and an MX-2080-32 mixer.

(2)分析用HPLC
ペプチド組成を、アセトニトリル対0.1%トリフルオロ酢酸(TFA)の水溶液の勾配を用いる分析逆相HPLCによって評価した。
逆相分析HPLCは以下のようにして行った:YMC-Triart-C18(内径4.6mmI.D.×150mm)カラムを用い、0.1%TFA水溶液中0〜100%アセトニトリルの直線勾配を用い、室温で40分間以上、流速1mL/分-1で行った。溶離液を230nmの吸光度でモニタ-した。
(2) HPLC for analysis
Peptide composition was evaluated by analytical reverse phase HPLC using an aqueous gradient of acetonitrile vs. 0.1% trifluoroacetic acid (TFA).
Reversed phase analysis HPLC was performed as follows: Using a YMC-Triart-C 18 (inner diameter 4.6 mm ID x 150 mm) column, a linear gradient of 0-100% acetonitrile in 0.1% TFA aqueous solution. It was used at room temperature for 40 minutes or more at a flow rate of 1 mL / min- 1 . The eluate was monitored with an absorbance of 230 nm.

(3)分取HPLC
アセトニトリル対0.1%TFA水溶液の勾配を用いた分取逆相HPLCにより、より長いペプチドを精製した。分取HPLCは以下のように行った:40℃で流速10.0mLmin-1でのYMC-Triart C18(内径20nm×250mm)カラム。勾配条件は各ペプチドで修正した。溶離液を230nmでの吸光度によりモニタ-した。
(3) Preparative HPLC
Longer peptides were purified by preparative reverse phase HPLC using a gradient of acetonitrile vs. 0.1% TFA aqueous solution. Preparative HPLC was performed as follows: YMC-Triart C18 (inner diameter 20 nm x 250 mm) column at 40 ° C. and a flow rate of 10.0 mL min- 1. Gradient conditions were modified for each peptide. The eluate was monitored by absorbance at 230 nm.

(4)ペプチドについての検量線の作成
真正ペプチド(5μmol)をDMSO(250μL)に溶解して、20mMのペプチド溶液を作製した。この溶液を15mM,10mM,8mM,5mM,2mMに希釈した。Trt又はPbfを含むペプチドについては、真正ペプチド(1μmol)をDMSO(500μL)に溶解して2mMのペプチド溶液とし、この溶液を1mM、0.5mM、0.25mM、0.125mMに希釈した後、これらの溶液を230nmでの吸光度による分析HPLCで分析した。各溶液について、ペプチドに対応するピ-ク面積を測定し、これらの値から検量線を作成した。
(4) Preparation of Calibration Curve for Peptide A 20 mM peptide solution was prepared by dissolving a genuine peptide (5 μmol) in DMSO (250 μL). This solution was diluted to 15 mM, 10 mM, 8 mM, 5 mM, 2 mM. For peptides containing Trt or Pbf, a genuine peptide (1 μmol) is dissolved in DMSO (500 μL) to make a 2 mM peptide solution, and this solution is diluted to 1 mM, 0.5 mM, 0.25 mM, 0.125 mM, and then. These solutions were analyzed by analysis HPLC by absorbance at 230 nm. For each solution, the peak area corresponding to the peptide was measured and a calibration curve was prepared from these values.

(5)チオ酸のエピマ-化レベルの計算方法
ペプチドチオ酸をp-メトキシベンジルクロリドによりp-メトキシベンジルチオエステルに変換した。そして、チオエステルを含む反応混合物を、順相キラルHPLCにより分析し、チオエステルの異性体に対応するピ-ク面積を測定し、次式によりエピマ-化速度を算出した。

Figure 2021130656
(5) Calculation method of epimerization level of thioic acid Peptide thioic acid was converted to p-methoxybenzyl thioester by p-methoxybenzyl chloride. Then, the reaction mixture containing thioester was analyzed by normal phase chiral HPLC, the peak area corresponding to the isomer of thioester was measured, and the epimerization rate was calculated by the following formula.
Figure 2021130656

(6)カップリング反応後のペプチドのエピマ-化レベルの算出方法
ペプチドカップリング反応後、反応混合物を逆相HPLCで分析した。LLL異性体及びLDL異性体に対応するピ-ク面積を測定し、見かけのエピマ-化レベル(AEL)を次式に基づいて算出した。

Figure 2021130656
このAELは基質として用いたペプチドチオ酸のエピマ-化レベルを含む。したがって、チオ酸(TEL)のエピマ-化レベルを用いて以下の式に基づいて計算したカップリング反応においてエピマ−化レベルが生じた。
Figure 2021130656
(6) Method for calculating epimerization level of peptide after coupling reaction After the peptide coupling reaction, the reaction mixture was analyzed by reverse phase HPLC. The peak area corresponding to the LLL isomer and the LDL isomer was measured, and the apparent epimerization level (AEL) was calculated based on the following equation.
Figure 2021130656
This AEL contains the epimerization level of the peptide thioic acid used as a substrate. Therefore, the epimerization level occurred in the coupling reaction calculated based on the following formula using the epimerization level of thioic acid (TEL).
Figure 2021130656

<合成実施例>
1.ペプチドチオ酸の調製
ペプチドチオ酸はChem. Commun., 2018,54, 12222に記載の方法により得た。以下に各ペプチドチオ酸の調製方法について記載する。
<Synthesis Example>
1. 1. Preparation of Peptide Thioic Acid Peptide thioic acid was obtained by the method described in Chem. Commun., 2018, 54, 12222. The method for preparing each peptide thioic acid is described below.

(1)Cbz-Phe-Val-SHの合成
フレ-ム乾燥フラスコに、Cbz−Phe−Val−OH(1.19g、3.0ミリモル)及びDMF(20mM)をアルゴン大気下で添加した。次いで,AcSK(3.43g、30ミリモル)とAcS(161μL、1.5ミリモル)を溶液に添加した。得られた混合物を0℃で3時間攪拌した後、反応混合物を酢酸エチルで抽出し、合わせた有機層を減圧下で濃縮した。残渣をアセトニトリルに溶解し、自動RP-カラムクロマトグラフィ-により精製して、黄色固体としてCbz−Phe−Val−SH(870mg、70%)を得た。MS(ESI):m/z 415.53(calcd [M+H]=415.10)。保存時間:29.75分。
(1) Synthesis of Cbz-Phe-Val-SH Cbz-Phe-Val-OH (1.19 g, 3.0 mmol) and DMF (20 mM) were added to a frame drying flask under an argon atmosphere. It was then added AcSK (3.43 g, 30 mmol) and Ac 2 S (161μL, 1.5 mmol) to the solution. The resulting mixture was stirred at 0 ° C. for 3 hours, the reaction mixture was extracted with ethyl acetate, and the combined organic layers were concentrated under reduced pressure. The residue was dissolved in acetonitrile and purified by automatic RP-column chromatography-to give Cbz-Phe-Val-SH (870 mg, 70%) as a yellow solid. MS (ESI): m / z 415.53 (calcd [M + H] + = 415.10). Storage time: 29.75 minutes.

(2)Cbz-Phe-Phe-SHの合成
フレ-ム乾燥フラスコに、Cbz−Phe−Phe−OH(446mg、1.0mmol)及びDMF(10mM)をアルゴン大気下で添加した。次いで、AcSK(342mg、3.0mmol)とAcS(21μL、0.2ミリモル)を溶液に添加した。得られた混合物を0℃で3時間攪拌した後、反応混合物を酢酸エチルで抽出し、合わせた有機層を減圧下で濃縮した。残渣をアセトニトリルに溶解し、自動RP-カラムクロマトグラフィ-により精製して、白色固体としてCbz−Phe−Phe−SH(254mg、55%)を得た。MS(ESI):m/z 485.15(calcd [M+Na]=485.55)。保存時間:31.67分。
(2) Synthesis of Cbz-Phe-Phe-SH Cbz-Phe-Phe-OH (446 mg, 1.0 mmol) and DMF (10 mM) were added to a frame drying flask under an argon atmosphere. It was then added AcSK (342 mg, 3.0 mmol) and Ac 2 S (21μL, 0.2 mmol) to the solution. The resulting mixture was stirred at 0 ° C. for 3 hours, the reaction mixture was extracted with ethyl acetate, and the combined organic layers were concentrated under reduced pressure. The residue was dissolved in acetonitrile and purified by automatic RP-column chromatography-to give Cbz-Phe-Phe-SH (254 mg, 55%) as a white solid. MS (ESI): m / z 485.15 (calcd [M + Na] + = 485.55). Storage time: 31.67 minutes.

(3)Boc-Phe-Val-SHの合成
フレ-ム乾燥フラスコに、Boc−Phe−Val−OH(109mg、0.3mmol)及びDMF(3mM)をアルゴン大気下で添加した。次いで、AcSK(171mg、1.5mmol)とAcS(18μL、0.15ミリモル)を溶液に添加した。得られた混合物を0℃で3時間攪拌した後、反応混合物を酢酸エチルで抽出し、合わせた有機層を減圧下で濃縮した。残渣をアセトニトリルに溶解し、分取HPLCにより精製して、Boc-Phe-Val-SH(57mg、50%)を白色固体として得た。MS(ESI):m/z 403.15(calcd [M+Na]=403.49)。保存時間:30.16分。
(3) Synthesis of Boc-Phe-Val-SH Boc-Phe-Val-OH (109 mg, 0.3 mmol) and DMF (3 mM) were added to a frame drying flask under an argon atmosphere. It was then added AcSK (171 mg, 1.5 mmol) and Ac 2 S (18μL, 0.15 mmol) to the solution. The resulting mixture was stirred at 0 ° C. for 3 hours, the reaction mixture was extracted with ethyl acetate, and the combined organic layers were concentrated under reduced pressure. The residue was dissolved in acetonitrile and purified by preparative HPLC to give Boc-Phe-Val-SH (57 mg, 50%) as a white solid. MS (ESI): m / z 403.15 (calcd [M + Na] + = 403.49). Storage time: 30.16 minutes.

(4)Cbz-Phe-Cys(Trt)-SHの合成
フレ-ム乾燥試験管に、Cbz−Phe−Cys(Trt)−OH(129mg、0.2mmol)とDMF(2mM)をアルゴン大気下で添加した。次いで、AcSK(114mg、1mmol)とAcS(10μL、0.1ミリモル)を溶液に添加した。得られた混合物を0℃で3時間攪拌した後、反応混合物を酢酸エチルで抽出し、合わせた有機層を減圧下で濃縮した。残渣をアセトニトリルに溶解し、自動RP-カラムクロマトグラフィ-により精製して、黄色固体としてCbz−Phe−Cys(Trt)−SH(25mg、19%)を得た。MS(ESI):m/z 683.15(calcd [M+Na]=683.84)。保存時間:37.89分。
(4) Synthesis of Cbz-Phe-Cys (Trt) -SH Cbz-Phe-Cys (Trt) -OH (129 mg, 0.2 mmol) and DMF (2 mM) were placed in a frame drying test tube under an argon atmosphere. Added. It was then added AcSK (114 mg, 1 mmol) and Ac 2 S (10μL, 0.1 mmol) to the solution. The resulting mixture was stirred at 0 ° C. for 3 hours, the reaction mixture was extracted with ethyl acetate, and the combined organic layers were concentrated under reduced pressure. The residue was dissolved in acetonitrile and purified by automatic RP-column chromatography-to give Cbz-Phe-Cys (Trt) -SH (25 mg, 19%) as a yellow solid. MS (ESI): m / z 683.15 (calcd [M + Na] + = 683.84). Storage time: 37.89 minutes.

(5)Cbz-Phe-Lys(Boc)-SHの合成
フレ-ム乾燥試験管に、Cbz−Phe−Lys(Boc)−OH(105mg、0.2mmol)とDMF(2mM)をアルゴン大気下で添加した。次いで、AcSK(68mg、0.6mmol)とAcS(5μL、40μmol)を溶液に添加した。得られた混合物を0℃で3時間攪拌した後、反応混合物を酢酸エチルで抽出し、合わせた有機層を還元圧力下で濃縮した。残渣をアセトニトリルに溶解し、自動RP-カラムクロマトグラフィ-により精製して、黄色固体としてCbz−Phe−Lys(Boc)−SH(30mg,28%)を得た。MS(ESI):m/z 566.10(calcd [M+Na]=566.67)。保存時間:31.80分。
(5) Synthesis of Cbz-Phe-Lys (Boc) -SH In a frame drying test tube, Cbz-Phe-Lys (Boc) -OH (105 mg, 0.2 mmol) and DMF (2 mM) were placed in an argon atmosphere. Added. Then AcSK (68 mg, 0.6 mmol) and Ac 2 S (5 μL, 40 μmol) were added to the solution. The resulting mixture was stirred at 0 ° C. for 3 hours, the reaction mixture was extracted with ethyl acetate, and the combined organic layers were concentrated under reducing pressure. The residue was dissolved in acetonitrile and purified by automatic RP-column chromatography-to give Cbz-Phe-Lys (Boc) -SH (30 mg, 28%) as a yellow solid. MS (ESI): m / z 566.10 (calcd [M + Na] + = 566.67). Storage time: 31.80 minutes.

(6)Cbz-Phe-Ala-Val-SHの合成
フレ-ム乾燥試験管に、Cbz−Phe−Ala−Val−OH(47mg、0.1 mmol)及びDMF(1mM)をアルゴン大気下で添加した。次いで,AcSK(57mg、0.5 mmol)とAcS(5μL、50μmol)を溶液に添加した。得られた混合物を0℃で3時間攪拌した後、反応混合物を酢酸エチルで抽出し、合わせた有機層を還元圧力下で濃縮した。残渣をアセトニトリルに溶解し、分取HPLCにより精製して、黄色固体としてCbz−Phe−Ala−Val−SH(11mg、25%)を得た。MS(ESI):m/z 508.15(calcd [M+Na]=508.59)。保存時間:29.34分。
(6) Synthesis of Cbz-Phe-Ala-Val-SH Cbz-Phe-Ala-Val-OH (47 mg, 0.1 mmol) and DMF (1 mM) were added to a frame drying test tube under an argon atmosphere. bottom. Then, AcSK (57mg, 0.5 mmol) was added and Ac 2 S (5μL, 50μmol) to the solution. The resulting mixture was stirred at 0 ° C. for 3 hours, the reaction mixture was extracted with ethyl acetate, and the combined organic layers were concentrated under reducing pressure. The residue was dissolved in acetonitrile and purified by preparative HPLC to give Cbz-Phe-Ala-Val-SH (11 mg, 25%) as a yellow solid. MS (ESI): m / z 508.15 (calcd [M + Na] + = 508.59). Storage time: 29.34 minutes.

2.N-ヒドロキシ-ピリドン添加剤の調製
(1)メチル1−ヒドロキシ−6−オキソ−1,6−ジヒドロピリジン−3−カルボキシレ−ト(化合物1)
以下の合成スキ-ムに則り、化合物1を合成した。

Figure 2021130656
2. Preparation of N-Hydroxy-Pyridone Additive (1) Methyl 1-Hydroxy-6-oxo-1,6-dihydropyridine-3-carboxylate (Compound 1)
Compound 1 was synthesized according to the following synthetic framework.
Figure 2021130656

この化合物を文献(Ando, M.; Sato, N.; Nagase, T.; Nagai, K.; Ishikawa, S.; Takahashi, H.; Ohtake, N.; Ito, J.; Hirayama, M.; Mitobe, Y.; et al. Bioorganic Med. Chem. 2009, 17, 6106-6122.)に記載の方法で合成した。S1(10.2g、60ミリモル)とDCM(80mL)の攪拌溶液に、尿素過酸化水素(12.0g、122ミリモル)とTFAA(17.1mL、120mmol)を0℃で連続的に滴下し、反応混合物を室温に温め、3時間攪拌した。0℃に冷却した後、反応混合物にNa水溶液を添加し、濃縮した。混合物をDCMで抽出し、NaHCO水溶液及び食塩水で洗浄し、NaSO上で乾燥した。有機層を濃縮して粗S2を得た。粗混合物をフラッシュカラムクロマトグラフィ-(酢酸エチル/ヘキサン=3:1)で精製して、黄色固体としてS2を得た(7.8g、70%)。 This compound is described in the literature (Ando, M .; Sato, N .; Nagase, T .; Nagai, K .; Ishikawa, S .; Takahashi, H .; Ohtake, N .; Ito, J .; Hirayama, M .; It was synthesized by the method described in Mitobe, Y .; et al. Bioorganic Med. Chem. 2009, 17, 6106-6122.). Urea hydrogen peroxide (12.0 g, 122 mmol) and TFAA (17.1 mL, 120 mmol) were continuously added dropwise at 0 ° C. to a stirred solution of S1 (10.2 g, 60 mmol) and DCM (80 mL). The reaction mixture was warmed to room temperature and stirred for 3 hours. After cooling to 0 ° C., an aqueous Na 2 S 2 O 3 solution was added to the reaction mixture and concentrated. The mixture was extracted with DCM, washed with aqueous NaHCO 3 solution and brine, and dried over Na 2 SO 4 . The organic layer was concentrated to give crude S2. The crude mixture was purified by flash column chromatography (ethyl acetate / hexane = 3: 1) to give S2 as a yellow solid (7.8 g, 70%).

S2(7.8g、41.7ミリモル)及びMeCN(3mL)の撹拌溶液に、TFAA(7ml、50mmol)を室温で添加し、混合物を3時間撹拌した。反応混合物を減圧下で濃縮した。残渣に固体NaHCO及びメタノ-ルを添加した。ろ過後、ろ液を濃縮して粗生成物1を得た。粗生成物をフラッシュカラムクロマトグラフィ-(DCM/MeOH=19:1)で精製して、淡黄色固体として1(3.0g、43%)を得た。
1H NMR (500 MHz, CD3OD): δ 3.86 (3H, s), 6.62 (1H. d, J = 9.2 Hz), 7.92 (1H, dd, J = 2.4, 9.2 Hz), 8.56 (1H, d, J = 2.4 Hz); MS (ESI): m/z 170.10 (calcd [M+H] += 170.14).
TFAA (7 ml, 50 mmol) was added to a stirred solution of S2 (7.8 g, 41.7 mmol) and MeCN (3 mL) at room temperature and the mixture was stirred for 3 hours. The reaction mixture was concentrated under reduced pressure. Solid NaHCO 3 and methanol were added to the residue. After filtration, the filtrate was concentrated to obtain crude product 1. The crude product was purified by flash column chromatography (DCM / MeOH = 19: 1) to give 1 (3.0 g, 43%) as a pale yellow solid.
1 H NMR (500 MHz, CD 3 OD): δ 3.86 (3H, s), 6.62 (1H. D, J = 9.2 Hz), 7.92 (1H, dd, J = 2.4, 9.2 Hz), 8.56 (1H, 1H, d, J = 2.4 Hz); MS (ESI): m / z 170.10 (calcd [M + H] + = 170.14).

(2)1−ヒドロキシ−5−フェニルピリジン−2(1H)−オン(化合物2)
以下の合成スキ-ムに則り、化合物2を合成した。

Figure 2021130656
(2) 1-Hydroxy-5-phenylpyridine-2 (1H) -one (Compound 2)
Compound 2 was synthesized according to the following synthetic framework.
Figure 2021130656

S3(241μL、2mmol)及びDCM(10mL)の撹拌溶液に、mCPBA(986mg、4mmol、30%HOを含む)を0℃で添加し、混合物を2時間撹拌した。1MのNa水溶液を反応混合物に添加し、混合物をDCMで抽出した。合わせた有機層を、NaHCO水溶液及び塩水で洗浄し、NaSO上で乾燥した。濾過後、有機層を濃縮して粗生成物S4を得た。粗生成物S4をフラッシュカラムクロマトグラフィ−(DCM/MeOH=19:1)で精製して、白色固体としてS4(320mg,79%)を得た。 S3 (241μL, 2mmol) was added to a stirred solution of and DCM (10 mL), was added mCPBA (986mg, 4mmol, including 30% H 2 O) at 0 ° C., the mixture was stirred for 2 hours. A 1 M aqueous Na 2 S 2 O 3 solution was added to the reaction mixture and the mixture was extracted with DCM. The combined organic layers were washed with aqueous NaHCO 3 solution and brine and dried over Na 2 SO 4 . After filtration, the organic layer was concentrated to give the crude product S4. The crude product S4 was purified by flash column chromatography (DCM / MeOH = 19: 1) to give S4 (320 mg, 79%) as a white solid.

S4(50mg、0.25 mmol)及びDMF(500μL)の撹拌溶液に、フェニルボロン酸(45mg、0.375 mmol)、Pd(PPh(14mg、2.5μmol)及びKCO(69mg、0.5 mmol)を加え、100℃で一晩撹拌し、反応混合物をDCMで抽出し、合わせた有機層を食塩水で洗浄し、NaSO上で乾燥し、濃縮して粗生成物S5を得た。粗混合物をフラッシュカラムクロマトグラフィ−(DCM/MeOH=19:1)で精製して、白色固体としてS5を得た(34mg,67%)。 S4 (50mg, 0.25 mmol) to a stirred solution of and DMF (500 [mu] L), phenylboronic acid (45mg, 0.375 mmol), Pd (PPh 3) 4 (14mg, 2.5μmol) and K 2 CO 3 ( 69 mg (0.5 mmol) was added, stirred overnight at 100 ° C., the reaction mixture was extracted with DCM, the combined organic layers were washed with brine, dried over Na 2 SO 4 , concentrated and crude. Product S5 was obtained. The crude mixture was purified by flash column chromatography (DCM / MeOH = 19: 1) to give S5 as a white solid (34 mg, 67%).

S5(20mg、0.1 mmol)及び乾燥DCM(500μL)の撹拌溶液に、BCl(1Mヘプタン溶液、150μL、0.15mmol)をアルゴン大気下で、-10℃で滴下し、反応混合物を室温に温め、一晩撹拌した。MeOH(1mL)を添加した後、反応混合物を濃縮して粗生成物2を得た。粗生成物をフラッシュカラムクロマトグラフィ-(酢酸エチル/ヘキサン=1:3)で精製して、白色固体として2(5mg,27%)を得た。
1H NMR (500 MHz, CDCl3): δ 6.84 (1H, d, J = 9.2), 7.36 (1H, m), 7.44 (4H, m), 7.67 (1H, d, J = 10.3), 8.02 (1H, s); MS (ESI): m/z 188.10 (calcd [M+H]+=188.21).
To a stirred solution of S5 (20 mg, 0.1 mmol) and dry DCM (500 μL), BCl 3 (1 M heptane solution, 150 μL, 0.15 mmol) was added dropwise at −10 ° C. under an argon atmosphere and the reaction mixture was added to room temperature. Warmed to and stirred overnight. After adding MeOH (1 mL), the reaction mixture was concentrated to give crude product 2. The crude product was purified by flash column chromatography (ethyl acetate / hexane = 1: 3) to give 2 (5 mg, 27%) as a white solid.
1 1 H NMR (500 MHz, CDCl 3 ): δ 6.84 (1H, d, J = 9.2), 7.36 (1H, m), 7.44 (4H, m), 7.67 (1H, d, J = 10.3), 8.02 ( 1H, s); MS (ESI): m / z 188.10 (calcd [M + H] + = 188.21).

(3)メチル1−ヒドロキシル−2−オキソ−5−フェニル−1,2−ジヒドロピリジン−3−カルボキシレ−ト(化合物3)
以下の合成スキ-ムに則り、化合物3を合成した。

Figure 2021130656
(3) Methyl1-hydroxyl-2-oxo-5-phenyl-1,2-dihydropyridine-3-carboxylate (Compound 3)
Compound 3 was synthesized according to the following synthetic framework.
Figure 2021130656

フレ-ム乾燥した50mLフラスコに、Na(340mg、14mmol)及びMeOH(10mL)をアルゴン大気下、0℃で添加し、溶液にS6(1.0g、4ミリモル)を添加し、混合物を3時間攪拌した。酢酸を中和するまで反応混合物に添加し、混合物を減圧下で濃縮した。酢酸エチル及びHOを残渣に加え、生成物を酢酸エチルで抽出した。有機層をHO及び食塩水で洗浄し、NaSO上で乾燥し、濃縮して粗生成物S7を得た。粗混合物をフラッシュカラムクロマトグラフィ-(酢酸エチル/ヘキサン=1:3)で精製して、無色油状物としてS7を得た(800mg,77%)。 To a frame-dried 50 mL flask, Na (340 mg, 14 mmol) and MeOH (10 mL) were added under argon atmosphere at 0 ° C., S6 (1.0 g, 4 mmol) was added to the solution, and the mixture was added for 3 hours. Stirred. The acetic acid was added to the reaction mixture until neutralized and the mixture was concentrated under reduced pressure. Was added to the residue ethyl acetate and H 2 O, the product was extracted with ethyl acetate. The organic layer was washed with H 2 O and brine, dried over Na 2 SO 4 , and concentrated to give the crude product S7. The crude mixture was purified by flash column chromatography (ethyl acetate / hexane = 1: 3) to give S7 as a colorless oil (800 mg, 77%).

30mLのフラスコに、S7(390mg、1.5 mmol)、フェニルボロン酸(272mg,2.25 mmol)、Pd(PPh(86mg、75μmol)、KCO(414mg,3mmol)、及びDMF(8mL)をアルゴン大気下で加え、混合物を100℃で一晩撹拌した。酢酸エチル及びHOを反応混合物に加え、生成物を酢酸エチルで抽出した。合わせた有機層をHOで洗浄し、食塩水でNaSO上に乾燥し、粗生成物S8に濃縮した。粗混合物をフラッシュカラムクロマトグラフィ-(酢酸エチル/ヘキサン=1:3)で精製して、白色固体としてS8を得た(280mg、77%)。 In a 30 mL flask, S7 (390 mg, 1.5 mmol), phenylboronic acid (272 mg, 2.25 mmol), Pd (PPh 3 ) 4 (86 mg, 75 μmol), K 2 CO 3 (414 mg, 3 mmol), and. DMF (8 mL) was added under argon atmosphere and the mixture was stirred at 100 ° C. overnight. Ethyl acetate and H 2 O was added to the reaction mixture and the product was extracted with ethyl acetate. The combined organic layers were washed with H 2 O, dried over Na 2 SO 4 with saline and concentrated to crude product S8. The crude mixture was purified by flash column chromatography (ethyl acetate / hexane = 1: 3) to give S8 as a white solid (280 mg, 77%).

試験管にS8(120mg、0.5mmol)、過酸化水素尿素(294mg、6.1 mmol)、及びMeCN(2mL)を添加した。TFAA(450μL、6mmol)を0℃の溶液に滴下し、反応物を室温に温め、混合物を一晩攪拌した。反応混合物にNa水溶液を添加し、混合物を濃縮した。酢酸エチル及びHOを残渣に加え、生成物を酢酸エチルで抽出した。有機層を食塩水で洗浄し、NaSO上で乾燥し、濃縮して粗生成物S9を得た。粗混合物をフラッシュカラムクロマトグラフィ-(酢酸エチル/ヘキサン=3:1)で精製して、白色固体としてS9を得た(50mg、38%)。 S8 (120 mg, 0.5 mmol), urea hydrogen peroxide (294 mg, 6.1 mmol), and MeCN (2 mL) were added to the test tubes. TFAA (450 μL, 6 mmol) was added dropwise to a solution at 0 ° C., the reaction was warmed to room temperature and the mixture was stirred overnight. An aqueous Na 2 S 2 O 3 solution was added to the reaction mixture to concentrate the mixture. Was added to the residue ethyl acetate and H 2 O, the product was extracted with ethyl acetate. The organic layer was washed with brine, dried over Na 2 SO 4 , and concentrated to give the crude product S9. The crude mixture was purified by flash column chromatography (ethyl acetate / hexane = 3: 1) to give S9 as a white solid (50 mg, 38%).

試験管にS9(25mg、0.1mmol)及びDCM(500μL)をアルゴン大気下で添加した。AcCl(72μL、1mmol)を溶液に添加し、混合物を1時間加熱還流した。反応混合物を濃縮した。メタノ-ルを加え、混合物を室温で一晩撹拌した。混合物を濃縮して粗生成物3を得た。粗混合物をフラッシュカラムクロマトグラフィ−(DCM/MeOH=19:1)で精製して、白色固体として3を得た(11mg、45%)。
1H NMR (500 MHz, CDCl3): δ3.97 (3H, s), 7.39 (2H, m), 7.46 (3H, m), 8.26 (1H, s), 8.47 (1H, s); MS (ESI): m/z 246 (calcd [M+H]+= 246.24).
S9 (25 mg, 0.1 mmol) and DCM (500 μL) were added to the test tube under an atmosphere of argon. AcCl (72 μL, 1 mmol) was added to the solution and the mixture was heated to reflux for 1 hour. The reaction mixture was concentrated. Metall was added and the mixture was stirred at room temperature overnight. The mixture was concentrated to give crude product 3. The crude mixture was purified by flash column chromatography (DCM / MeOH = 19: 1) to give 3 as a white solid (11 mg, 45%).
1 1 H NMR (500 MHz, CDCl 3 ): δ3.97 (3H, s), 7.39 (2H, m), 7.46 (3H, m), 8.26 (1H, s), 8.47 (1H, s); MS ( ESI): m / z 246 (calcd [M + H] + = 246.24).

(4)メチル2−(1−ヒドロキシ−6−オキソ−1,6−ジヒドロピリジン−3−イル)ベンゾエ−ト(化合物4)
以下の合成スキ-ムに則り、化合物4を合成した。

Figure 2021130656
(4) Methyl 2- (1-hydroxy-6-oxo-1,6-dihydropyridine-3-yl) benzoate (Compound 4)
Compound 4 was synthesized according to the following synthetic framework.
Figure 2021130656

100mLのフラスコに、S3(482mg、4mmol)、2-(メトキシカルボニル)-フェニルボロン酸(1074mg、6mmol)、Pd(PPh(231mg、0.2mmol)、KCO(1100mg、12mmol)及びDMF(20mL)をアルゴン雰囲気下で加え、混合物を100℃で一晩撹拌した。酢酸エチル及びHOを反応混合物に加え、生成物を酢酸エチルで抽出した。合わせた有機層をHO及び食塩水で洗浄し、NaSO上で乾燥し、濃縮して粗生成物S10を得た。粗混合物をフラッシュカラムクロマトグラフィ-(酢酸エチル/ヘキサン=1:3)で精製して、白色固体としてS10を得た(800mg、82%)。 In a 100 mL flask, S3 (482 mg, 4 mmol), 2- (methoxycarbonyl) -phenylboronic acid (1074 mg, 6 mmol), Pd (PPh 3 ) 4 (231 mg, 0.2 mmol), K 2 CO 3 (1100 mg, 12 mmol). ) And DMF (20 mL) were added under an argon atmosphere and the mixture was stirred at 100 ° C. overnight. Ethyl acetate and H 2 O was added to the reaction mixture and the product was extracted with ethyl acetate. The combined organic layers were washed with H 2 O and brine, dried over Na 2 SO 4 and concentrated to give the crude product S10. The crude mixture was purified by flash column chromatography (ethyl acetate / hexane = 1: 3) to give S10 as a white solid (800 mg, 82%).

50mLフラスコ中のDCM(10mL)中のS10(600mg、2.5mmol)に、mCPBA(1.85g、7.5mmol、30%HOを含む)を0℃下で添加し、混合物を室温まで温め、一晩撹拌した。1M Na水溶液を反応混合物に添加し、混合物をDCMで抽出した。合わせた有機層を、NaHCO水溶液及び食塩水で洗浄し、NaSO上で乾燥した。有機層を濃縮して粗生成物S11を得た。粗混合物をフラッシュカラムクロマトグラフィ-(DCM/MeOH=19:1)で精製して、白色固体としてS11(580mg、90%)を得た。 S10 (600mg, 2.5mmol) in DCM (10 mL) in 50mL flask, mCPBA a (1.85 g, 7.5 mmol, containing 30% H 2 O) was added under 0 ° C., the mixture to room temperature It was warmed and stirred overnight. A 1M Na 2 S 2 O 3 aqueous solution was added to the reaction mixture and the mixture was extracted with DCM. The combined organic layers were washed with aqueous NaHCO 3 solution and saline and dried over Na 2 SO 4 . The organic layer was concentrated to give the crude product S11. The crude mixture was purified by flash column chromatography (DCM / MeOH = 19: 1) to give S11 (580 mg, 90%) as a white solid.

反応混合物を濃縮し、メタノ-ルを加え、室温で一晩撹拌した。混合物を濃縮して粗生成物3を得た。粗混合物をフラッシュカラムクロマトグラフィ-(DCM/MeOH=19:1)で精製して、白色固体として4を得た(125mg、51%)。
1H NMR (500 MHz, CDCl3): δ 3.65 (3H, s), 6.79 (1H, s), 7.41 (4H, m), 7.84 (1H, d, J = 8.0), 8.10 (1H, s); MS (ESI): m/z 246 (calcd [M+H]+= 246.24).
The reaction mixture was concentrated, methanol was added, and the mixture was stirred at room temperature overnight. The mixture was concentrated to give crude product 3. The crude mixture was purified by flash column chromatography (DCM / MeOH = 19: 1) to give 4 as a white solid (125 mg, 51%).
1 H NMR (500 MHz, CDCl 3 ): δ 3.65 (3H, s), 6.79 (1H, s), 7.41 (4H, m), 7.84 (1H, d, J = 8.0), 8.10 (1H, s) MS (ESI): m / z 246 (calcd [M + H] + = 246.24).

(5)メチル1−ヒドロキシ−2−オキソ−1,2−ジヒドロピリジン−3−カルビキシレ−ト(化合物5)
以下の合成スキ-ムに則り、化合物5を合成した。

Figure 2021130656
(5) Methyl1-hydroxy-2-oxo-1,2-dihydropyridine-3-carbixylate (Compound 5)
Compound 5 was synthesized according to the following synthetic framework.
Figure 2021130656

この化合物は、化合物1について記載した手順を用いて、黄色固体として調製した(72mg、85%)。
(500 MHz, (CD3)2SO): δ 3.74 (3H, s), 6.25 (1H, dd, J = 6.7, 7.4), 7.96 (1H, d, J = 7.4), 8.23 (1H, d, J = 6.7); MS (ESI): m/z 170.10 (calcd [M+H]+= 170.14).
This compound was prepared as a yellow solid (72 mg, 85%) using the procedure described for Compound 1.
(500 MHz, (CD 3 ) 2 SO): δ 3.74 (3H, s), 6.25 (1H, dd, J = 6.7, 7.4), 7.96 (1H, d, J = 7.4), 8.23 (1H, d, J = 6.7); MS (ESI): m / z 170.10 (calcd [M + H] + = 170.14).

(6)N−(2−(ジメチルアミノ)エチル)−1−ヒドロキシ−6−オキソ−1,6−ジヒドロピリジン−3−カルボキサミド(化合物6)
以下の合成スキ-ムに則り、化合物6を合成した。

Figure 2021130656
(6) N- (2- (dimethylamino) ethyl) -1-hydroxy-6-oxo-1,6-dihydropyridine-3-carboxamide (Compound 6)
Compound 6 was synthesized according to the following synthetic framework.
Figure 2021130656

化合物1(3.0g、17.75ミリモル)、KCO(7.3g、53.25ミリモル)、DMF(40mL)の攪拌溶液に、BnBr(2.5mL、21.3mmol)を加え、80℃で3時間攪拌し、反応混合物を濃縮した。得られた混合物に酢酸エチル及びHOを加え、生成物を酢酸エチルで抽出した。有機層を食塩水で洗浄し、NaSO上で乾燥し、濾過し、濃縮して粗生成物S13を得た。粗混合物をフラッシュカラムクロマトグラフィ-(酢酸エチル/ヘキサン=1:3)で精製して、白色固体としてS13(2.0g、44%)を得た。 Add BnBr (2.5 mL, 21.3 mmol) to a stirred solution of compound 1 (3.0 g, 17.75 mmol), K 2 CO 3 (7.3 g, 53.25 mmol), DMF (40 mL). The reaction mixture was concentrated by stirring at 80 ° C. for 3 hours. The resulting mixture of ethyl acetate and H 2 O was added, the product was extracted with ethyl acetate. The organic layer was washed with brine, dried over Na 2 SO 4 , filtered and concentrated to give the crude product S13. The crude mixture was purified by flash column chromatography (ethyl acetate / hexane = 1: 3) to give S13 (2.0 g, 44%) as a white solid.

S13(2.0g、8ミリモル)及びMeOH(8mL)の撹拌溶液に、3M NaOH水溶液(8mL、24mmol)を添加し、混合物を一晩撹拌した。反応混合物に、1M HCl水溶液を中和するまで添加した。生成物を濃縮した。得られた残渣に酢酸エチル及び1M HCl水溶液を加え、生成物を酢酸エチルで抽出した。有機層を食塩水で洗浄し、NaSO上で乾燥し、濾過し、そして濃縮して白色固体としてS14(1.7g、87%)を得た。 To a stirred solution of S13 (2.0 g, 8 mmol) and MeOH (8 mL) was added 3M aqueous NaOH solution (8 mL, 24 mmol) and the mixture was stirred overnight. A 1M aqueous HCl solution was added to the reaction mixture until neutralized. The product was concentrated. Ethyl acetate and 1M HCl aqueous solution were added to the obtained residue, and the product was extracted with ethyl acetate. The organic layer was washed with brine, dried over Na 2 SO 4 , filtered and concentrated to give S14 (1.7 g, 87%) as a white solid.

S14(49mg、0.2mmol)、N,N−ジメチルエチレンジアミン(43μL、0.4ミリモル)、及びDCM(1mL)の撹拌溶液に、WSCI(76mg、0.4mmol)、及びHOBt(54mg、0.4mmol)を0℃で添加し、反応混合物を室温に温め、3時間撹拌した。得られた混合物に、DCM及びNaHCO水溶液を添加した。生成物をDCMで抽出し、有機層を食塩水で洗浄し、NaSO上で乾燥し、濾過し、濃縮して粗生成物S15を得た。この粗混合物を、さらなる精製なしで、次の反応に使用した。 In a stirred solution of S14 (49 mg, 0.2 mmol), N, N-dimethylethylenediamine (43 μL, 0.4 mmol), and DCM (1 mL), WSCI (76 mg, 0.4 mmol), and HOBt (54 mg, 0. 4 mmol) was added at 0 ° C., the reaction mixture was warmed to room temperature and stirred for 3 hours. DCM and an aqueous NaHCO 3 solution were added to the resulting mixture. The product was extracted with DCM, the organic layer was washed with brine, dried over Na 2 SO 4 , filtered and concentrated to give the crude product S15. This crude mixture was used in the next reaction without further purification.

粗生成物S15及びDCM(1mL)の撹拌溶液に、BCl(1Mヘプタン溶液240μL、0.24mmol)を添加し、混合物を一晩撹拌した。反応混合物を濃縮して粗生成物6を得た。粗混合物を分取HPLCで精製して、白色固体として6(11mg、24%,2段階)を得た。
1H NMR (500 MHz, CDCl3): δ 2.25 (6H, s), 2.44 (2H, t, J = 5.7), 3.39 (2H, t, J = 5.7), 6.67 (1H, d, J = 9.7), 7.58 (1H, d, J = 9.7), 7.88 (1H, s); MS (ESI): m/z 259 (calcd [M+H]+= 259.28).
BCl 3 (240 μL, 0.24 mmol of 1 M heptane solution) was added to the stirred solution of crude product S15 and DCM (1 mL) and the mixture was stirred overnight. The reaction mixture was concentrated to give the crude product 6. The crude mixture was purified by preparative HPLC to give 6 (11 mg, 24%, 2 steps) as a white solid.
1 1 H NMR (500 MHz, CDCl 3 ): δ 2.25 (6H, s), 2.44 (2H, t, J = 5.7), 3.39 (2H, t, J = 5.7), 6.67 (1H, d, J = 9.7) ), 7.58 (1H, d, J = 9.7), 7.88 (1H, s); MS (ESI): m / z 259 (calcd [M + H] + = 259.28).

(7)5−(3−(ジメチルアミノ)ベンジル)−1−ヒドロキシピリジン−2(1H)−オン(化合物7)
以下の合成スキ-ムに則り、化合物7を合成した。

Figure 2021130656
(7) 5- (3- (Dimethylamino) benzyl) -1-hydroxypyridine-2 (1H) -one (Compound 7)
Compound 7 was synthesized according to the following synthetic framework.
Figure 2021130656

DCM(10mL)中のS14(490mg、2.4mmol)及びp-トルエンチオ-ル(298mg、2.4mmol)の撹拌溶液に、WSCI(458mg、2.4mmol)及びHOBt(270mg、2mmol)を0℃で添加し、反応混合物を室温に温め、3時間撹拌した。得られた混合物を濃縮した。酢酸エチル及びNaHCO水溶液を加え、生成物を酢酸エチルで抽出した。有機層を食塩水で洗浄し、NaSO上に乾燥し、濾過し、そして濃縮して粗生成物S16を得た。粗混合物をフラッシュカラムクロマトグラフィ−(酢酸エチル/ヘキサン=1:3)によって精製して、白色固体としてS16(480mg、68%)を得た。 WSCI (458 mg, 2.4 mmol) and HOBt (270 mg, 2 mmol) were added to a stirred solution of S14 (490 mg, 2.4 mmol) and p-toluenethiol (298 mg, 2.4 mmol) in DCM (10 mL) at 0 ° C. The reaction mixture was warmed to room temperature and stirred for 3 hours. The resulting mixture was concentrated. Ethyl acetate and 3 aqueous NaHCO solutions were added and the product was extracted with ethyl acetate. The organic layer was washed with brine, dried over Na 2 SO 4 , filtered and concentrated to give the crude product S16. The crude mixture was purified by flash column chromatography (ethyl acetate / hexane = 1: 3) to give S16 (480 mg, 68%) as a white solid.

S16(70mg、0.2mmol)及びTHF(2mL)の撹拌溶液に、2-ジメチルアミノフェニルボロン酸(99mg、0.6mmol)、Pd(dba)・CHCl(5mg、4μmol)、トリ(2-フリル)ホスフィン(3.5mg、15μmol)、及びCuTC(115mg、0.6mmol)を添加した。反応混合物を加熱還流し、一晩撹拌した。セライトで濾過した後、濾液を濃縮してS17を得た。この粗混合物をさらに精製することなく次の反応に用いた。 In a stirred solution of S16 (70 mg, 0.2 mmol) and THF (2 mL), 2-dimethylaminophenylboronic acid (99 mg, 0.6 mmol), Pd 2 (dba) 3. CHCl 3 (5 mg, 4 μmol), tri ( 2-Frill) phosphine (3.5 mg, 15 μmol) and CuTC (115 mg, 0.6 mmol) were added. The reaction mixture was heated to reflux and stirred overnight. After filtering with Celite, the filtrate was concentrated to obtain S17. This crude mixture was used in the next reaction without further purification.

S17及びDCM(1mL)の撹拌溶液に、BCl(690μL、0.7ミリモル)を添加し、混合物を一晩撹拌した。反応溶液を濃縮して粗生成物7を得た。粗混合物を分取HPLCで精製して、無色油状物として7(6mg、12%、2段階)を得た。
1H NMR (500 MHz, CDCl3): δ 3.28 (6H, s), 6.73 (1H, s), 7.28-7.43 (4H, m), 7.75 (1H, d, J = 8.0), 7.99 (1H, d, J = 8.0); MS (ESI): m/z 259 (calcd [M+H]+= 259.28).
BCl 3 (690 μL, 0.7 mmol) was added to a stirred solution of S17 and DCM (1 mL) and the mixture was stirred overnight. The reaction solution was concentrated to give the crude product 7. The crude mixture was purified by preparative HPLC to give 7 (6 mg, 12%, 2 steps) as a colorless oil.
1 H NMR (500 MHz, CDCl 3 ): δ 3.28 (6H, s), 6.73 (1H, s), 7.28-7.43 (4H, m), 7.75 (1H, d, J = 8.0), 7.99 (1H, 1H, d, J = 8.0); MS (ESI): m / z 259 (calcd [M + H] + = 259.28).

(8)化合物8の合成
以下の合成スキ-ムに則り、化合物7を合成した。

Figure 2021130656
(8) Synthesis of Compound 8 Compound 7 was synthesized according to the following synthetic skim.
Figure 2021130656

S18(4g、25.2mmol)、WSCI(7.2g、37.8mmol)、DMAP(4.6g、37.8mmol)及びDCM(80mL)の混合溶液に、3,7,11,15―テトラメチルヘキサデカン−1−オール(10.8mL、30.2mmol)及びトリエチルアミン(7.2mL、37.8mmol)を室温で添加し、アルゴン雰囲気下、室温で25時間撹拌し、溶媒を減圧除去した。残渣に酢酸エチル及び1MHCl水溶液を添加し、混合物を酢酸エチルで抽出した。有機層を飽和重曹水で洗浄を二回行い、食塩水で洗浄し、Na2SO4上で乾燥し、濾過し、溶媒を減圧除去して粗生成物S19を得た。粗混合物をシリカゲルカラムクロマトグラフィ-(酢酸エチル/ヘキサン=20:80 → 40:60)で精製して、S19を得た(8.85g、80%)。 3,7,11,15-Tetramethyl in a mixed solution of S18 (4 g, 25.2 mmol), WSCI (7.2 g, 37.8 mmol), DMAP (4.6 g, 37.8 mmol) and DCM (80 mL). Hexadecane-1-ol (10.8 mL, 30.2 mmol) and triethylamine (7.2 mL, 37.8 mmol) were added at room temperature, and the mixture was stirred at room temperature for 25 hours under an argon atmosphere to remove the solvent under reduced pressure. Ethyl acetate and 1 MHCl aqueous solution were added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed twice with saturated aqueous sodium hydrogen carbonate, washed with brine, dried over Na2SO4, filtered, and the solvent was removed under reduced pressure to obtain crude product S19. The crude mixture was purified by silica gel column chromatography (ethyl acetate / hexane = 20:80 → 40:60) to give S19 (8.85 g, 80%).

S19(8.85g、20.2mmol)、尿素過酸化水素(3.95g、42.4mmol)及びDCM(50mL)の混合溶液にトリフルオロ酢酸無水物(5.7mL、40.4mmol)を0℃で滴下し、アルゴン雰囲気下、室温で16時間攪拌した。0℃に冷却し、反応溶液に飽和亜硫酸水素ナトリウム水溶液(5.5mL)を添加し、反応混合物を酢酸エチルで抽出した。有機層を飽和重曹水で洗浄を二回行い、食塩水で洗浄し、NaSO上で乾燥し、濾過し、溶媒を減圧除去して粗生成物S19を得た。粗混合物をシリカゲルカラムクロマトグラフィ-(酢酸エチル/ヘキサン=10:90 → 100:0)で精製して、S20を得た(7.51g、82%)。 Trifluoroacetic anhydride (5.7 mL, 40.4 mmol) at 0 ° C. in a mixed solution of S19 (8.85 g, 20.2 mmol), urea hydrogen peroxide (3.95 g, 42.4 mmol) and DCM (50 mL). And stirred at room temperature for 16 hours under an argon atmosphere. The mixture was cooled to 0 ° C., saturated aqueous sodium hydrogen sulfite solution (5.5 mL) was added to the reaction solution, and the reaction mixture was extracted with ethyl acetate. The organic layer was washed twice with saturated aqueous sodium hydrogen carbonate, washed with brine, dried over Na 2 SO 4 , filtered, and the solvent was removed under reduced pressure to obtain crude product S19. The crude mixture was purified by silica gel column chromatography (ethyl acetate / hexane = 10: 90 → 100: 0) to give S20 (7.51 g, 82%).

S20(7.51g、16.5mmol)及びアセトニトリル(15mL)の撹拌溶液に、TFAA(30ml)を室温で添加し、アルゴン雰囲気下、室温で14時間撹拌した。溶媒を減圧除去しを、残渣に固体NaHCO及びクロロホルムを添加した。ろ過後、溶媒を減圧除去して粗生成物8を得た。粗生成物を中性シリカゲルカラムクロマトグラフィ-(酢酸エチル/ヘキサン=40:60 → 100:0)で精製して黄色液体8(5.82g、81%)を得た。
1H NMR (500 MHz, CD3OD): δ 0.83-0.89 (12H, m), 0.96 (3H, d, J = 6.3 Hz), 1.02-1.44 (20H, m), 1.45-1.66 (3H, m), 1.70-1.82 (1H, m), 4.24-4.40 (2H. m), 6.63 (1H, d, J = 9.2 Hz),7.92 (1H, dd, J = 2.3, 9.7 Hz), 8.52 (1H, d, J =2.9 Hz); MS (ESI): m/z 436.30 (calcd [M+H]+= 436.34).
TFAA (30 ml) was added to a stirred solution of S20 (7.51 g, 16.5 mmol) and acetonitrile (15 mL) at room temperature, and the mixture was stirred at room temperature for 14 hours under an argon atmosphere. The solvent was removed under reduced pressure, and solid NaHCO 3 and chloroform were added to the residue. After filtration, the solvent was removed under reduced pressure to obtain a crude product 8. The crude product was purified by neutral silica gel column chromatography (ethyl acetate / hexane = 40: 60 → 100: 0) to obtain a yellow liquid 8 (5.82 g, 81%).
1 1 H NMR (500 MHz, CD 3 OD): δ 0.83-0.89 (12H, m), 0.96 (3H, d, J = 6.3 Hz), 1.02-1.44 (20H, m), 1.45-1.66 (3H, m) ), 1.70-1.82 (1H, m), 4.24-4.40 (2H. M), 6.63 (1H, d, J = 9.2 Hz), 7.92 (1H, dd, J = 2.3, 9.7 Hz), 8.52 (1H, d, J = 2.9 Hz); MS (ESI): m / z 436.30 (calcd [M + H] + = 436.34).

(9)化合物9の合成
以下の合成スキ-ムに則り、化合物9を合成した。

Figure 2021130656
(9) Synthesis of Compound 9 Compound 9 was synthesized according to the following synthetic framework.
Figure 2021130656

この化合物は、化合物8について記載した手順を用いて、黄色液体9を得た(1.53g、96%)。
1H NMR (500 MHz, CDCl3): δ0.87 (6H, d, J = 6.3 Hz), 0.94 (3H, d, J = 6.3 Hz), 1.08-1.20 (3H, m), 1.23-1.38 (3H, m), 1.44-1.64 (3H, m), 1.70-1.82 (1H, m), 4.28-4.38 (1H, m), 6.73 (1H, d, J =9.7 Hz), 7.96 (1H, dd, J =2.9, 9.7 Hz), 8.55 (1H, d, J =2.3 Hz); MS (ESI): m/z 296.20 (calcd [M+H]+= 296.19).
This compound gave a yellow liquid 9 (1.53 g, 96%) using the procedure described for compound 8.
1 1 H NMR (500 MHz, CDCl 3 ): δ0.87 (6H, d, J = 6.3 Hz), 0.94 (3H, d, J = 6.3 Hz), 1.08-1.20 (3H, m), 1.23-1.38 ( 3H, m), 1.44-1.64 (3H, m), 1.70-1.82 (1H, m), 4.28-4.38 (1H, m), 6.73 (1H, d, J = 9.7 Hz), 7.96 (1H, dd, J = 2.9, 9.7 Hz), 8.55 (1H, d, J = 2.3 Hz); MS (ESI): m / z 296.20 (calcd [M + H] + = 296.19).

(10)化合物10の合成
以下の合成スキ-ムに則り、化合物10を合成した。

Figure 2021130656
(10) Synthesis of Compound 10 Compound 10 was synthesized according to the following synthetic framework.
Figure 2021130656

この化合物は、化合物8について記載した手順を用いて、黄色固体10を得た(205mg、92%)。
1H NMR (500 MHz, CD3OD): δ0.91 (3H, t, J =7.4 Hz), 1.30-1.38 (4H, m), 1.40-1.46 (2H, m),1.70-1.76 (2H, m), 4.26 (3H, t, J =6.9 Hz), 6.61 (1H, d, J = 9.2 Hz), 7.90-7.92 (1H, m), 8.48-8.54 (1H, m); MS (ESI): m/z 240.15 (calcd [M+H]+= 240.12).
This compound gave the yellow solid 10 (205 mg, 92%) using the procedure described for compound 8.
1 1 H NMR (500 MHz, CD 3 OD): δ0.91 (3H, t, J = 7.4 Hz), 1.30-1.38 (4H, m), 1.40-1.46 (2H, m), 1.70-1.76 (2H, m), 4.26 (3H, t, J = 6.9 Hz), 6.61 (1H, d, J = 9.2 Hz), 7.90-7.92 (1H, m), 8.48-8.54 (1H, m); MS (ESI): m / z 240.15 (calcd [M + H] + = 240.12).

(11)化合物11の合成
以下の合成スキ-ムに則り、化合物11を合成した。

Figure 2021130656
(11) Synthesis of Compound 11 Compound 11 was synthesized according to the following synthetic framework.
Figure 2021130656

この化合物は、化合物8について記載した手順を用いて、黄色液体11を得た(131mg、48%)。
1H NMR (500 MHz, CD3OD): δ0.93 (6H, t, J = 7.4 Hz), 1.60-1.75 (4H, m), 4.90-4.95 (1H. m), 6.63 (1H, d, J = 9.2 Hz), 7.93 (1H, dd, J = 2.3 Hz, 9.2 Hz), 8.53 (1H, d, J = 2.3 Hz); MS (ESI): m/z 226.40 (calcd [M+H]+=226.11).
This compound gave Yellow Liquid 11 (131 mg, 48%) using the procedure described for Compound 8.
1 1 H NMR (500 MHz, CD 3 OD): δ0.93 (6H, t, J = 7.4 Hz), 1.60-1.75 (4H, m), 4.90-4.95 (1H. M), 6.63 (1H, d, J = 9.2 Hz), 7.93 (1H, dd, J = 2.3 Hz, 9.2 Hz), 8.53 (1H, d, J = 2.3 Hz); MS (ESI): m / z 226.40 (calcd [M + H] + = 226.11).

(12)化合物12の合成
以下の合成スキ-ムに則り、化合物12を合成した。

Figure 2021130656
(12) Synthesis of Compound 12 Compound 12 was synthesized according to the following synthetic framework.
Figure 2021130656

S18(632mg、4mmol)、BocO(1.31g、6mmol)、DMAP(48.9mg、0.4mmol)及びテトラヒドロフラン(10mL)の混合溶液をアルゴン雰囲気下、加熱還流しながら3時間撹拌し、溶媒を減圧除去した。残渣にジエチルエーテル及び水を添加し、混合物をジエチルエーテルで抽出した。有機層を飽和重曹水、飽和食塩水の順に洗浄し、Na2SO4上で乾燥し、濾過し、溶媒を減圧除去して粗生成物S27を得た。粗混合物をシリカゲルカラムクロマトグラフィ-(酢酸エチル/ヘキサン=5:95 → 30:70)で精製して、S27を得た(622mg、73%)。 A mixed solution of S18 (632 mg, 4 mmol), Boc 2 O (1.31 g, 6 mmol), DMAP (48.9 mg, 0.4 mmol) and tetrahydrofuran (10 mL) was stirred under an argon atmosphere for 3 hours while heating under reflux. The solvent was removed under reduced pressure. Diethyl ether and water were added to the residue, and the mixture was extracted with diethyl ether. The organic layer was washed in the order of saturated aqueous sodium hydrogen carbonate and saturated brine, dried over Na2SO4, filtered, and the solvent was removed under reduced pressure to obtain a crude product S27. The crude mixture was purified by silica gel column chromatography (ethyl acetate / hexane = 5:95 → 30:70) to give S27 (622 mg, 73%).

S27(285mg、1.33mmol)、尿素過酸化水素(263mg、2.80mmol)及びDCM(13.3mL)の混合溶液にトリフルオロ酢酸無水物(374μL、2.66mmol)を0℃で滴下し、アルゴン雰囲気下、室温で7時間攪拌した。0℃に冷却し、反応溶液に飽和亜硫酸水素ナトリウム水溶液及び水を添加し、反応混合物をクロロホルムで抽出した。有機層を飽和重曹水で洗浄を二回行い、食塩水で洗浄し、NaSO上で乾燥し、濾過し、溶媒を減圧除去して粗生成物S28を得た。粗混合物をシリカゲルカラムクロマトグラフィ-(酢酸エチル/ヘキサン=20:90 → 100:0)で精製して、S28を得た(280mg、92%)。 Trifluoroacetic anhydride (374 μL, 2.66 mmol) was added dropwise to a mixed solution of S27 (285 mg, 1.33 mmol), urea hydrogen peroxide (263 mg, 2.80 mmol) and DCM (13.3 mL) at 0 ° C. The mixture was stirred at room temperature for 7 hours under an argon atmosphere. The mixture was cooled to 0 ° C., saturated aqueous sodium hydrogen sulfite solution and water were added to the reaction solution, and the reaction mixture was extracted with chloroform. The organic layer was washed twice with saturated aqueous sodium hydrogen carbonate, washed with brine, dried over Na 2 SO 4 , filtered, and the solvent was removed under reduced pressure to give the crude product S28. The crude mixture was purified by silica gel column chromatography (ethyl acetate / hexane = 20: 90 → 100: 0) to give S28 (280 mg, 92%).

S28(280mg、1.22mmol)及びアセトニトリル(12.2mL)の撹拌溶液に、トリフルオロ酢酸無水物(344μL、2.44mmol)を室温で添加し、アルゴン雰囲気下、反応溶液を1時間20分撹拌した。反応溶液にトリフルオロ酢酸無水物(175μL、1.22mmol)を室温で添加し、室温で14時間30分攪拌した。混合物を1時間20分撹拌した。反応溶液にトリフルオロ酢酸無水物(175μL、1.22mmol)を室温で添加し、室温で2時間攪拌した。溶媒を減圧除去し、残渣に固体NaHCO及びクロロホルムを添加した。ろ過後、溶媒を減圧除去して粗生成物12を得た。粗生成物を中性シリカゲルカラムクロマトグラフィ-(酢酸エチル/メタノール=100:0 → 85:15)で精製して、白色固体12(119mg、46%)を得た
1H NMR (500 MHz, CD3OD): δ1.56 (9H,s), 6.60 (1H, d, J = 9.2 Hz), 7.84--7.90 (1H, m), 8.43 (1H, d, J =2.3 Hz); MS (ESI): m/z 240.12 (calcd [M+H]+= 240.15).
Trifluoroacetic anhydride (344 μL, 2.44 mmol) was added to a stirred solution of S28 (280 mg, 1.22 mmol) and acetonitrile (12.2 mL) at room temperature, and the reaction solution was stirred for 1 hour and 20 minutes under an argon atmosphere. bottom. Trifluoroacetic anhydride (175 μL, 1.22 mmol) was added to the reaction solution at room temperature, and the mixture was stirred at room temperature for 14 hours and 30 minutes. The mixture was stirred for 1 hour and 20 minutes. Trifluoroacetic anhydride (175 μL, 1.22 mmol) was added to the reaction solution at room temperature, and the mixture was stirred at room temperature for 2 hours. The solvent was removed under reduced pressure, and solid NaHCO 3 and chloroform were added to the residue. After filtration, the solvent was removed under reduced pressure to obtain a crude product 12. The crude product was purified by neutral silica gel column chromatography (ethyl acetate / methanol = 100: 0 → 85:15) to give a white solid 12 (119 mg, 46%).
1 H NMR (500 MHz, CD 3 OD): δ1.56 (9H, s), 6.60 (1H, d, J = 9.2 Hz), 7.84--7.90 (1H, m), 8.43 (1H, d, J) = 2.3 Hz); MS (ESI): m / z 240.12 (calcd [M + H] + = 240.15).

[合成実施例1]
ジペプチドチオ酸と種々のアミノ酸との縮合
以下の反応スキ-ムにより、ジペプチドチオ酸と種々のアミノ酸との縮合を行った。

Figure 2021130656
H-AA-OHは任意のアミノ酸を示す。 [Synthesis Example 1]
Condensation of dipeptide thioic acid with various amino acids Condensation of dipeptide thioic acid with various amino acids was carried out by the following reaction skim.
Figure 2021130656
H-AA-OH represents any amino acid.

N-ヒドロキシピリドン添加剤、二次亜リン酸及びペプチドチオ酸を原液として用いた。1.5mLのマイクロチュ-ブに、N-ヒドロキシピリドン添加物、二次亜リン酸、アミノ酸を添加した。次いで、ペプチドチオ酸の溶液を添加し、30℃で所定の反応時間撹拌した。反応混合物を1%TFAのDMSO溶液で希釈し、HPLCで分析した。収率は検量線により決定した。 N-Hydroxypyridone additive, hypophosphorous acid and peptide thioic acid were used as stock solutions. N-Hydroxypyridone additive, hypophosphorous acid, and amino acid were added to a 1.5 mL microtube. Then, a solution of peptide thioic acid was added, and the mixture was stirred at 30 ° C. for a predetermined reaction time. The reaction mixture was diluted with 1% TFA DMSO solution and analyzed by HPLC. The yield was determined by the calibration curve.

得られた結果(収率、エピメリ度)を以下の表1に示す。

Figure 2021130656
The obtained results (yield, epimery) are shown in Table 1 below.
Figure 2021130656

上記で得られたペプチドの特性を調べた結果を以下に記載する。
Cbz-Phe-Val-Gly-OH MS (ESI): m/z 478.15 (calcd [M+Na]+ = 478.50)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 25.10 min
Cbz-Phe-Val-Ala-OH MS (ESI): m/z 470.10 (calcd [M+H]+ = 470.23)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 24.69 min
Cbz-Phe-Val-Val-OH MS (ESI): m/z 520.10 (calcd [M+Na]+ = 520.24)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 26.72 min
Cbz-Phe-Val-Ile-OH MS (ESI): m/z 512.20 (calcd [M+H] + = 512.28)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 28.56 min
Cbz-Phe-Val-Phe-OH MS (ESI): m/z 568.15 (calcd [M+Na]+ = 568.24)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 28.21 min
Cbz-Phe-Val-Met-OH MS (ESI): m/z 552.10 (calcd [M+Na]+ = 552.21)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 27.59 min
Cbz-Phe-Val-Pro-OH MS (ESI): m/z 518.10 (calcd [M+Na]+ = 518.23)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 25.52 min
Cbz-Phe-Val-Trp(Boc)-OH MS (ESI): m/z 707.20 (calcd [M+Na]+ = 707.31)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 33.68 min
Cbz-Phe-Val-Lys(Boc)-OH MS (ESI): m/z 649.25 (calcd [M+Na]+ = 649.32)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 28.58 min
Cbz-Phe-Val-Tyr(OtBu)-OH MS (ESI): m/z 584.40 (calcd [M+Na]+ = 584.24)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 30.46 min
Cbz-Phe-Val-Cys(Trt)-OH MS (ESI): m/z 766.20 (calcd [M+Na]+ = 766.29)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 34.59 min
Cbz-Phe-Val-Asp(tBu)-OH MS (ESI): m/z 592.10 (calcd [M+Na]+ = 592.64)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 28.25 min
Cbz-Phe-Val-Asn(Trt)-OH MS (ESI): m/z 777.25 (calcd [M+Na]+ = 777.87)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 33.25 min
Cbz-Phe-Val-Ser(OtBu)-OH MS (ESI): m/z 564.20 (calcd [M+Na]+ = 564.27)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 29.08 min
Cbz-Phe-Val-Thr(OtBu)-OH MS (ESI): m/z 500.10 (calcd [M+Na] + = 500.24)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 29.47 min
Cbz-Phe-Val-Arg(Pbf)-OH MS (ESI): m/z 807.05 (calcd [M+H]+ = 807.37)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 29.87 min
Cbz-Phe-Val-His(Trt)-OH MS (ESI): m/z 778.20 (calcd [M+H]+ = 778.93)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 30.87 min
Cbz-Phe-Val-tertLeu-OH MS (ESI): m/z 512.10 (calcd [M+H]+ = 512.63)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 28.53 min
Cbz-Phe-Val-Aib-OH MS (ESI): m/z 484.15 (calcd [M+H]+ = 484.57)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 25.31 min
Cbz-Phe-Val-Pg-OH MS (ESI): m/z 532.15 (calcd [M+H]+ = 532.62)
The results of examining the properties of the peptides obtained above are described below.
Cbz-Phe-Val-Gly-OH MS (ESI): m / z 478.15 (calcd [M + Na] + = 478.50)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 25.10 min
Cbz-Phe-Val-Ala-OH MS (ESI): m / z 470.10 (calcd [M + H] + = 470.23)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 24.69 min
Cbz-Phe-Val-Val-OH MS (ESI): m / z 520.10 (calcd [M + Na] + = 520.24)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 26.72 min
Cbz-Phe-Val-Ile-OH MS (ESI): m / z 512.20 (calcd [M + H] + = 512.28)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 28.56 min
Cbz-Phe-Val-Phe-OH MS (ESI): m / z 568.15 (calcd [M + Na] + = 568.24)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 28.21 min
Cbz-Phe-Val-Met-OH MS (ESI): m / z 552.10 (calcd [M + Na] + = 552.21)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 27.59 min
Cbz-Phe-Val-Pro-OH MS (ESI): m / z 518.10 (calcd [M + Na] + = 518.23)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 25.52 min
Cbz-Phe-Val-Trp (Boc) -OH MS (ESI): m / z 707.20 (calcd [M + Na] + = 707.31)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 33.68 min
Cbz-Phe-Val-Lys (Boc) -OH MS (ESI): m / z 649.25 (calcd [M + Na] + = 649.32)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 28.58 min
Cbz-Phe-Val-Tyr (O t Bu) -OH MS (ESI): m / z 584.40 (calcd [M + Na] + = 584.24)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 30.46 min
Cbz-Phe-Val-Cys (Trt) -OH MS (ESI): m / z 766.20 (calcd [M + Na] + = 766.29)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 34.59 min
Cbz-Phe-Val-Asp ( t Bu) -OH MS (ESI): m / z 592.10 (calcd [M + Na] + = 592.64)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 28.25 min
Cbz-Phe-Val-Asn (Trt)-OH MS (ESI): m / z 777.25 (calcd [M + Na] + = 777.87)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 33.25 min
Cbz-Phe-Val-Ser (O t Bu) -OH MS (ESI): m / z 564.20 (calcd [M + Na] + = 564.27)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 29.08 min
Cbz-Phe-Val-Thr (O t Bu) -OH MS (ESI): m / z 500.10 (calcd [M + Na] + = 500.24)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 29.47 min
Cbz-Phe-Val-Arg (Pbf) -OH MS (ESI): m / z 807.05 (calcd [M + H] + = 807.37)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 29.87 min
Cbz-Phe-Val-His (Trt) -OH MS (ESI): m / z 778.20 (calcd [M + H] + = 778.93)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 30.87 min
Cbz-Phe-Val-tertLeu-OH MS (ESI): m / z 512.10 (calcd [M + H] + = 512.63)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 28.53 min
Cbz-Phe-Val-Aib-OH MS (ESI): m / z 484.15 (calcd [M + H] + = 484.57)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 25.31 min
Cbz-Phe-Val-Pg-OH MS (ESI): m / z 532.15 (calcd [M + H] + = 532.62)

[合成実施例2]
保護基の検討
ペプチド合成にて汎用されるFmoc、およびBocを有する末端Valジペプチドを用いて検討を行った。結果を以下に示す。
[Synthesis Example 2]
Examination of protecting groups Fmoc, which is widely used in peptide synthesis, and terminal Val dipeptides having Boc were used for examination. The results are shown below.

Figure 2021130656
Figure 2021130656

上記で得られたペプチドの特性を調べた結果を以下に記載する。
Fmoc-Phe-Val-Ala-OH MS (ESI): m/z 580.15 (calcd [M+Na]+ = 580.64)
Purity: >95% (HPLC analysis at 230 nm) Retention time 29.83 min
Boc-Phe-Val-Ala-OH MS (ESI): m/z 458.15 (calcd [M+Na]+ = 458.51)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 24.62 min
The results of examining the properties of the peptides obtained above are described below.
Fmoc-Phe-Val-Ala-OH MS (ESI): m / z 580.15 (calcd [M + Na] + = 580.64)
Purity:> 95% (HPLC analysis at 230 nm) Retention time 29.83 min
Boc-Phe-Val-Ala-OH MS (ESI): m / z 458.15 (calcd [M + Na] + = 458.51)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 24.62 min

表2で示されるように、Cbzを用いた場合と同様に反応は高収率および低エピメリ化率にて進行した。 As shown in Table 2, the reaction proceeded in high yield and low epimerization rate as in the case of using Cbz.

[合成実施例3]
C末端残基の検討
C末端残基がVal以外のジペプチドチオ酸を用いた検討を行った。結果を以下に示す。
[Synthesis Example 3]
Examination of C-terminal residue A study was conducted using a dipeptide thioic acid whose C-terminal residue was other than Val. The results are shown below.

Figure 2021130656
Figure 2021130656

上記で得られたペプチドの特性を調べた結果を以下に記載する。
Cbz-Phe-Phe-Ala-OH MS (ESI): m/z 540.05 (calcd [M+Na]+ = 540.21)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 27.56 min
Cbz-Phe-Phe-Val-OH MS (ESI): m/z 568.10 (calcd [M+Na]+ = 568.24)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 29.28 min
Cbz-Phe-Lys(Boc)-Ala-OH MS (ESI): m/z 621.20 (calcd [M+Na]+ = 621.69)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 27.95 min
Cbz-Phe-Lys(Boc)-Val-OH MS (ESI): m/z 649.25 (calcd [M+Na]+ = 649.74)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 29.53 min
Cbz-Phe-Cys(Trt)-Ala-OH MS (ESI): m/z 738.15 (calcd [M+Na]+ = 738.85)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 34.15 min
Cbz-Phe-Cys(Trt)-Val-OH MS (ESI): m/z 766.10 (calcd [M+Na]+ = 766.91)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 35.33 min
The results of examining the properties of the peptides obtained above are described below.
Cbz-Phe-Phe-Ala-OH MS (ESI): m / z 540.05 (calcd [M + Na] + = 540.21)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 27.56 min
Cbz-Phe-Phe-Val-OH MS (ESI): m / z 568.10 (calcd [M + Na] + = 568.24)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 29.28 min
Cbz-Phe-Lys (Boc)-Ala-OH MS (ESI): m / z 621.20 (calcd [M + Na] + = 621.69)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 27.95 min
Cbz-Phe-Lys (Boc)-Val-OH MS (ESI): m / z 649.25 (calcd [M + Na] + = 649.74)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 29.53 min
Cbz-Phe-Cys (Trt)-Ala-OH MS (ESI): m / z 738.15 (calcd [M + Na] + = 738.85)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 34.15 min
Cbz-Phe-Cys (Trt)-Val-OH MS (ESI): m / z 766.10 (calcd [M + Na] + = 766.91)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 35.33 min

C末端として、疎水性アミノ酸Pheを用いた場合および親水性アミノ酸Lys(Boc)を用いた場合のどちらにおいても反応は高い収率で進行し、またエピメリ化率も1%未満に抑えられていた。一方、エピメリ化が起きやすいとされているCys(Trt)を用いた場合では、Alaとのカップリングで4%、バリンとのカップリングで2%程度のエピメリ化が認められた。 The reaction proceeded in high yield in both the case where the hydrophobic amino acid Ph was used and the case where the hydrophilic amino acid Lys (Boc) was used as the C-terminal, and the epimerization rate was suppressed to less than 1%. .. On the other hand, when Cys (Trt), which is considered to be prone to epimerization, was used, epimerization of about 4% was observed in the coupling with Ala and about 2% in the coupling with valine.

[合成実施例4]
添加剤(エピメリ化抑制剤)の検討(1)
Cbz-Phe-Val-SHとアラニンとの以下の縮合反応において、添加剤の種類を変更した。その結果を以下にまとめる。
[Synthesis Example 4]
Examination of Additives (Epimerization Inhibitors) (1)
In the following condensation reaction of Cbz-Phe-Val-SH and alanine, the type of additive was changed. The results are summarized below.

Figure 2021130656
Figure 2021130656

Figure 2021130656
Figure 2021130656

メチルエステルの部分をアミド構造にし、塩基性部位であるピリジンを持たせたものは、おそらくは活性エステルの段階で脱プロトン化が促進し、かつ活性エステルの反応性もエステル型より悪いために、収率/エピ化率ともに悪い結果を与えた。塩素置換体はヒドロキシ基の求核力が低く、活性エステル形成が適切な速度で行われないため、収率が低下する傾向にあった。 The methyl ester portion having an amide structure and having pyridine, which is a basic moiety, is likely to be deprotonated at the stage of the active ester, and the reactivity of the active ester is worse than that of the ester type. Both rate / epitonation rate gave bad results. The chlorine substituent has a low nucleophilic force of the hydroxy group, and the active ester formation is not performed at an appropriate rate, so that the yield tends to decrease.

[合成実施例5]
添加剤(エピメリ化抑制剤)の検討(2)
Cbz-Phe-Val-SHとアラニンとの以下の縮合反応において、添加剤の種類を変更した。その結果を以下にまとめる。
[Synthesis Example 5]
Examination of Additives (Epimerization Inhibitors) (2)
In the following condensation reaction of Cbz-Phe-Val-SH and alanine, the type of additive was changed. The results are summarized below.

Figure 2021130656
Figure 2021130656

反応時間を22時間にして、各種添加剤(エピメリ化抑制剤)を用いた場合の結果(収率、エピメリ度)を以下に示す。

Figure 2021130656
The results (yield, degree of epimery) when various additives (epimerization inhibitors) were used with the reaction time set to 22 hours are shown below.
Figure 2021130656

一般式(III)において、Rがエステル基であり、Lが水素である化合物5は、化合物1等に比べてエピメリ度が若干高いものの、高い収率で生成物を得ることができた。 In the general formula (III), the compound 5 in which R 4 is an ester group and L is hydrogen was able to obtain a product in a high yield, although the degree of epimery was slightly higher than that of compound 1 and the like.

Figure 2021130656
Figure 2021130656

反応時間を6時間にして、各種添加剤を用いた場合の結果(収率、エピメリ度)を以下に示す。

Figure 2021130656
The results (yield, epimery degree) when various additives were used with the reaction time set to 6 hours are shown below.
Figure 2021130656

H−Al−OHを2当量に、添加剤を2当量にして、各種添加剤を用いた場合の結果(収率、エピメリ度)を以下に示す。

Figure 2021130656
The results (yield, epimery degree) when various additives were used with H-Al-OH at 2 equivalents and additives at 2 equivalents are shown below.
Figure 2021130656

Figure 2021130656
Figure 2021130656

メチルエステルの部分のアルキル鎖を伸長したものは、収率、エピメリ度とも良好であった。ただし、エステル部分のアルキル鎖の炭素数が6である化合物11では、結晶化度が高く、生成物2baから分離するのは困難であった。これに対して、アルキル鎖の炭素数が化合物11よりも大きいが分岐型のアルキル鎖を有する化合物12、13では、再結晶することにより、夫々、76%、73%の添加剤を回収することができた。 The extended alkyl chain of the methyl ester moiety had good yield and epimery. However, in the compound 11 having 6 carbon atoms in the alkyl chain of the ester portion, the crystallinity was high and it was difficult to separate from the product 2ba. On the other hand, in the compounds 12 and 13 having a branched alkyl chain having a larger carbon number than that of the compound 11, 76% and 73% of the additives can be recovered by recrystallization, respectively. Was made.

[合成実施例6]
ジペプチドチオ酸と種々のアミノ酸との縮合
以下の反応スキ-ムにより、ジペプチドチオ酸と種々のアミノ酸との縮合を行った。

Figure 2021130656
[Synthesis Example 6]
Condensation of dipeptide thioic acid with various amino acids Condensation of dipeptide thioic acid with various amino acids was carried out by the following reaction skim.
Figure 2021130656

試験管にN-ヒドロキシピリドン(78.4mg、0.18mmol)、ジペプチドチオ酸(50mg、0.12mmol)、L−バリン(28.1mg、0.24mmol)を添加した。次いで、トルエン(600μL)、ジメチルスルホキシド(600μL)を添加し、反応溶液を30℃で6時間撹拌した。反応溶液(12μL)を1%トリフルオロ酢酸のジメチルスルホキシド溶液(68μL)で希釈し、HPLCで分析した。収率、エピメリ度は検量線により決定した(収率 <99%、エピメリ度 <1%)。残りの反応溶液の溶媒を減圧除去し、残渣に酢酸エチル及び1MHCl水溶液を添加し、酢酸エチルで抽出した。Na2SO4上で乾燥し、濾過し、溶媒を減圧除去して粗生成物トリペプチドを得た。粗生成物をシリカゲルカラムクロマトグラフィ-(酢酸エチル/ヘキサン=30:70 → 100:0)で精製して、トリペプチド(50mg、84%)を得た。 N-Hydroxypyridone (78.4 mg, 0.18 mmol), dipeptide thioic acid (50 mg, 0.12 mmol) and L-valine (28.1 mg, 0.24 mmol) were added to the test tube. Then, toluene (600 μL) and dimethyl sulfoxide (600 μL) were added, and the reaction solution was stirred at 30 ° C. for 6 hours. The reaction solution (12 μL) was diluted with 1% trifluoroacetic acid in dimethyl sulfoxide (68 μL) and analyzed by HPLC. The yield and the degree of epimery were determined by the calibration curve (yield <99%, degree of epimery <1%). The solvent of the remaining reaction solution was removed under reduced pressure, ethyl acetate and 1M HCl aqueous solution were added to the residue, and the mixture was extracted with ethyl acetate. It was dried over Na2SO4, filtered and the solvent removed under reduced pressure to give the crude product tripeptide. The crude product was purified by silica gel column chromatography (ethyl acetate / hexane = 30: 70 → 100: 0) to give a tripeptide (50 mg, 84%).

[合成実施例7]
可溶化剤の検討
Cbz−Phe−Val−SHとアラニンとの以下の縮合反応において、可溶化剤の種類を変更した。その結果を以下にまとめる。

Figure 2021130656
[Synthesis Example 7]
Examination of solubilizer In the following condensation reaction of Cbz-Phe-Val-SH and alanine, the type of solubilizer was changed. The results are summarized below.
Figure 2021130656

ジアルキルホスファイトが良好な結果をあたえ、特にジエチルホスファイトを用いた時最も高い反応加速効果が見られた。反応開始から6時間の時点での収率は非添加の59%から84%に向上した。エトキシ基からさらに嵩高い官能基を持つジアルキルホスファイトを用いた場合、収率の低減が見られたことから、ホスファイト上の立体が反応性に寄与していることが考えられる。また、アルキル基がリン上に直接導入されているホスファイトを用いた場合にも反応性が低下したことから、立体効果に加え、電子状態も反応性に寄与していることが示唆された。また、ジエチルチオホスファイトを用いた場合には、チオ酸とチオホスファイトが直接反応しているためか系が複雑化し、トリペプチドの収率も34%まで低下した。 Dialkylphosphite gave good results, and the highest reaction acceleration effect was observed especially when diethylphosphite was used. The yield at 6 hours from the start of the reaction improved from 59% without addition to 84%. When dialkylphosphite having a bulkier functional group than the ethoxy group was used, the yield was reduced, suggesting that the steric structure on the phosphite contributes to the reactivity. In addition, the reactivity was also reduced when phosphite in which the alkyl group was directly introduced onto phosphorus was used, suggesting that the electronic state also contributes to the reactivity in addition to the stereoscopic effect. In addition, when diethylthiophosphite was used, the system was complicated probably because thioacid and thiophosphite reacted directly, and the yield of tripeptide was reduced to 34%.

[合成実施例8]
フラグメントカップリング反応の一般的方法
N-ヒドロキシピリドン添加剤1(12μmol)、亜りん酸ジエチル(12μmol),DIPEA(24μmol)及びペプチドチオ酸(12μミリモル)を、それぞれ原液として用いた。1.5mLマイクロチュ-ブに、ペプチド断片(14.4μmol)を添加した。次いで,N-ヒドロキシピリドン添加剤1(DMSO中12μmol、12μL)、亜リン酸ジエチル(DMSO中12μmol、12μL)、及びDIPEA(DMSO中12μmol、12μL)の原液をマイクロチュ-ブに添加した。最後に、ペプチドチオ酸(DMSO中12μmol、48μL)の溶液を加え、指示された反応時間の間、30℃で撹拌した。反応混合物をDMSO(680μL)の1% TFA溶液で希釈し、HPLCで分析した。検量線に基づいてHPLCにより収率を測定した。
[Synthesis Example 8]
General Method of Fragment Coupling Reaction N-hydroxypyridone additive 1 (12 μmol), diethyl phosphite (12 μmol), DIPEA (24 μmol) and peptide thioic acid (12 μmol) were used as stock solutions. A peptide fragment (14.4 μmol) was added to a 1.5 mL microtube. Then, a stock solution of N-hydroxypyridone additive 1 (12 μmol in DMSO, 12 μL), diethyl phosphite (12 μmol in DMSO, 12 μL), and DIPEA (12 μmol in DMSO, 12 μL) was added to the microtube. Finally, a solution of peptide thioic acid (12 μmol in DMSO, 48 μL) was added and stirred at 30 ° C. for the indicated reaction time. The reaction mixture was diluted with a 1% TFA solution of DMSO (680 μL) and analyzed by HPLC. The yield was measured by HPLC based on the calibration curve.

[合成実施例9]
連続ペプチド合成
(1)Cbz−Tyr(OBu)−OH −> Cbz−Tyr(OBu)−SH
フレ-ム乾燥した試験管に、Cbz−Tyr(OBu)−OH(74mg,0.2mmol)とDMF(2mL)をアルゴン雰囲気下で添加した。次いで、AcSK(114mg、1.0mmol)とAcS(12μL、0.1ミリモル)を溶液に添加した。反応混合物を0℃で5時間攪拌し、混合物を酢酸エチルで抽出し、合わせた有機層を1M HCl水溶液及び食塩水で洗浄し、次いでNaSO上で乾燥した。乾燥剤を濾取した後、濾液を減圧下で濃縮した。残渣を凍結乾燥し、さらなる精製なしに次の反応に使用した。
[Synthesis Example 9]
Continuous Peptide Synthesis (1) Cbz-Tyr (O t Bu) -OH -> Cbz-Tyr (O t Bu) -SH
Frame - the arm dry test tube, Cbz-Tyr (O t Bu ) -OH (74mg, 0.2mmol) and DMF and (2 mL) was added under an argon atmosphere. It was then added AcSK (114 mg, 1.0 mmol) and Ac 2 S (12μL, 0.1 mmol) to the solution. The reaction mixture was stirred at 0 ° C. for 5 hours, the mixture was extracted with ethyl acetate and the combined organic layers were washed with 1M aqueous HCl and brine and then dried over Na 2 SO 4. After the desiccant was collected by filtration, the filtrate was concentrated under reduced pressure. The residue was lyophilized and used in the next reaction without further purification.

(2)Cbz−Tyr(OBu)−SH −> Cbz−Tyr(OBu)−Gly−OH
試験管に、Cbz−Tyr(OBu)−Gly−SH及びDMSO:トルエン=1:1(2mL)の混合溶媒液を加えた。次いで、N-ヒドロキシピリドン添加剤1(34mg、0.2 mmol)、Gly(18mg、0.24mmol)、亜リン酸ジエチル(26μL)を加え、30℃で6時間攪拌し、反応混合物を1.5mMに希釈し、分析用HPLCで分析したところ、HPLC収率は89%であった。次いで、シリンジフィルタ-で不溶性物質を除去し、反応混合物を分取HPLCで精製した。Cbz−Tyr(OBu)−Gly−OHを66mg(77%)得た。
Cbz−Tyr(OBu)−Gly−OHの特性を調べた結果は以下の通りである。
MS (ESI): m/z 451.15 (calcd [M+Na]+ = 451.47)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 26.87 min
(2) Cbz-Tyr (O t Bu) -SH -> Cbz-Tyr (O t Bu) -Gly-OH
In a test tube, Cbz-Tyr (O t Bu ) -Gly-SH and DMSO: toluene = 1: plus 1 mixed solvent solution (2 mL). Next, N-hydroxypyridone additive 1 (34 mg, 0.2 mmol), Gly (18 mg, 0.24 mmol), and diethyl phosphite (26 μL) were added, and the mixture was stirred at 30 ° C. for 6 hours to prepare the reaction mixture. When diluted to 5 mM and analyzed by analytical HPLC, the HPLC yield was 89%. The insoluble material was then removed with a syringe filter and the reaction mixture was purified by preparative HPLC. Cbz-Tyr the (O t Bu) -Gly-OH 66mg (77%) was obtained.
Cbz-Tyr (O t Bu) -Gly-OH results properties were examined in are as follows.
MS (ESI): m / z 451.15 (calcd [M + Na] + = 451.47)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 26.87 min

(3)Cbz-Tyr(OBu)-Gly-OH -> Cbz-Tyr(OBu)-Gly-SH
フレ-ム乾燥した試験管に、Cbz−Tyr(OBu)−Gly−OH(85mg、0.2mmol)及びDMF(2mL)をアルゴン雰囲気下で添加した。次いで、AcSK(114mg、1.0mmol)とAcS(12μL、0.1ミリモル)を溶液に添加した。反応混合物を0℃で5時間攪拌し、混合物を酢酸エチルで抽出し、合わせた有機層を1M HCl水溶液及び食塩水で洗浄し、次いでNaSO上で乾燥した。乾燥剤を濾取した後、濾液を還元圧力下で濃縮した。残渣を凍結乾燥し、さらなる精製なしに次の反応に使用した。
(3) Cbz-Tyr (O t Bu) -Gly-OH -> Cbz-Tyr (O t Bu) -Gly-SH
Frame - the arm dry test tube, Cbz-Tyr (O t Bu ) -Gly-OH (85mg, 0.2mmol) and DMF (2 mL) was added under an argon atmosphere. It was then added AcSK (114 mg, 1.0 mmol) and Ac 2 S (12μL, 0.1 mmol) to the solution. The reaction mixture was stirred at 0 ° C. for 5 hours, the mixture was extracted with ethyl acetate and the combined organic layers were washed with 1M aqueous HCl and brine and then dried over Na 2 SO 4. After the desiccant was collected by filtration, the filtrate was concentrated under reducing pressure. The residue was lyophilized and used in the next reaction without further purification.

(4)Cbz−Tyr(OBu)−Gly−SH −> Cbz−Tyr(OBu)−Gly−Gly−OH
試験管に、Cbz−Tyr(OBu)−Gly−SH及びDMSO:トルエン=1:1(2mL)の混合溶媒液を加えた。次いで、N-ヒドロキシピリドン添加剤1(34mg、0.2 mmol)、Gly(18mg、0.24mmol)、亜リン酸ジエチル(26μL)を加え、30℃で6時間攪拌し、反応混合物を1.5mMに希釈し、分析用HPLCで分析したところ、HPLC収率は94%であった。次いで、シリンジフィルタ-で不溶性物質を除去し、反応混合物を分取HPLCで精製した。Cbz−Tyr(OBu)−Gly−Gly−OHを71mg(73%)得た。
Cbz−Tyr(OBu)−Gly−Gly−OHの特性を調べた結果は以下の通りである。
MS (ESI): m/z 508.15 (calcd [M+Na]+ = 508.21)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 26.87 min
(4) Cbz-Tyr (O t Bu) -Gly-SH -> Cbz-Tyr (O t Bu) -Gly-Gly-OH
In a test tube, Cbz-Tyr (O t Bu ) -Gly-SH and DMSO: toluene = 1: plus 1 mixed solvent solution (2 mL). Next, N-hydroxypyridone additive 1 (34 mg, 0.2 mmol), Gly (18 mg, 0.24 mmol), and diethyl phosphite (26 μL) were added, and the mixture was stirred at 30 ° C. for 6 hours to prepare the reaction mixture. When diluted to 5 mM and analyzed by analytical HPLC, the HPLC yield was 94%. The insoluble material was then removed with a syringe filter and the reaction mixture was purified by preparative HPLC. Cbz-Tyr the (O t Bu) -Gly-Gly -OH 71mg (73%) was obtained.
Cbz-Tyr (O t Bu) -Gly-Gly-OH results properties were examined in are as follows.
MS (ESI): m / z 508.15 (calcd [M + Na] + = 508.21)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 26.87 min

(5)Cbz−Tyr(OBu)−Gly−Gly−OH −> Cbz−Tyr(OBu)−Gly−Gly−SH
フレ−ム乾燥試験管に、Cbz−Tyr(OBu)−Gly−Gly−OH(49mg、0.1mmol)及びDMF(1mL)をアルゴン雰囲気下で添加した。次いで、AcSK(34mg、0.3mmol)とAcS(2.1μL、0.02ミリモル)を溶液に添加した。反応混合物を0℃で3時間攪拌し、混合物を酢酸エチルで抽出し、合わせた有機層を1M HCl水溶液及び食塩水で洗浄し、次いでNaSO上で乾燥した。乾燥剤を濾取した後、濾液を減圧下で濃縮した。残渣を凍結乾燥し、さらなる精製なしに次の反応に使用した。
(5) Cbz-Tyr (O t Bu) -Gly-Gly-OH -> Cbz-Tyr (O t Bu) -Gly-Gly-SH
Frame - the arm dry test tube, Cbz-Tyr (O t Bu ) -Gly-Gly-OH (49mg, 0.1mmol) and DMF (1 mL) was added under an argon atmosphere. AcSK (34 mg, 0.3 mmol) and Ac 2 S (2.1 μL, 0.02 mmol) were then added to the solution. The reaction mixture was stirred at 0 ° C. for 3 hours, the mixture was extracted with ethyl acetate and the combined organic layers were washed with 1M aqueous HCl and brine and then dried over Na 2 SO 4. After the desiccant was collected by filtration, the filtrate was concentrated under reduced pressure. The residue was lyophilized and used in the next reaction without further purification.

(6)Cbz−Tyr(OBu)−Gly−Gly−SH −> Cbz−Tyr(OBu)−Gly−Gly−Phe−OH
試験管に、Cbz−Tyr(OBu)−Gly−Gly−SH及びDMSO:トルエン=1:1(1mL)の混合溶媒液を加えた。次いで、N-ヒドロキシピリドン添加剤1(17mg、0.1 mmol)、Phe(20mg、0.12 mmol)、亜リン酸ジエチル(13μL)を加え、30℃で6時間攪拌し、反応混合物を1.5 mMに希釈し、分析用HPLCで分析したところ、HPLC収率は87%であった。次いで、シリンジフィルタ-で不溶性物質を除去し、反応混合物を分取HPLCで精製した。Cbz−Tyr(OBu)−Gly−Gly−Phe−OHを40mg(63%)た。
Cbz−Tyr(OBu)−Gly−Gly−Phe−OHの特性を調べた結果は以下の通りである。
MS (ESI): m/z 655.25 (calcd [M+Na]+ = 655.27)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 28.39 min
(6) Cbz-Tyr (O t Bu) -Gly-Gly-SH -> Cbz-Tyr (O t Bu) -Gly-Gly-Phe-OH
In a test tube, Cbz-Tyr (O t Bu ) -Gly-Gly-SH and DMSO: toluene = 1: plus 1 mixed solvent solution (1 mL). Next, N-hydroxypyridone additive 1 (17 mg, 0.1 mmol), Ph (20 mg, 0.12 mmol), and diethyl phosphite (13 μL) were added, and the mixture was stirred at 30 ° C. for 6 hours to add 1 reaction mixture. When diluted to 5.5 mM and analyzed by analytical HPLC, the HPLC yield was 87%. The insoluble material was then removed with a syringe filter and the reaction mixture was purified by preparative HPLC. Cbz-Tyr the (O t Bu) -Gly-Gly -Phe-OH was 40mg (63%).
Cbz-Tyr (O t Bu) -Gly-Gly-Phe-OH results properties were examined in are as follows.
MS (ESI): m / z 655.25 (calcd [M + Na] + = 655.27)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 28.39 min

(7)Cbz−Tyr(OBu)−Gly−Gly−Phe−OH −> Cbz−Tyr(OBu)−Gly−Gly−Phe−SH
フレ−ム乾燥試験管に、Cbz−Tyr(OBu)−Gly−Gly−Phe−OH(13mg、20μmol)及びDMF(200μL)をアルゴン雰囲気下で添加した。次いで,AcSK(11mg、100μmol)とAcS(1μL、10μmol)を溶液に添加した。反応混合物を0℃で5時間攪拌し、混合物を酢酸エチルで抽出し、合わせた有機層を1M HCl水溶液及び食塩水で洗浄し、次いでNaSO上で乾燥した。乾燥剤を濾取した後、濾液を減圧下で濃縮した。残渣を凍結乾燥し、さらなる精製なしに次の反応に使用した。
(7) Cbz-Tyr (O t Bu) -Gly-Gly-Phe-OH -> Cbz-Tyr (O t Bu) -Gly-Gly-Phe-SH
Frame - the arm drying tube and Cbz-Tyr (O t Bu) -Gly-Gly-Phe-OH (13mg, 20μmol) and DMF (200 [mu] L) was added under an argon atmosphere. Then, AcSK (11 mg, 100 μmol) and Ac 2 S (1 μL, 10 μmol) were added to the solution. The reaction mixture was stirred at 0 ° C. for 5 hours, the mixture was extracted with ethyl acetate and the combined organic layers were washed with 1M aqueous HCl and brine and then dried over Na 2 SO 4. After the desiccant was collected by filtration, the filtrate was concentrated under reduced pressure. The residue was lyophilized and used in the next reaction without further purification.

(8)Cbz−Tyr(OBu)−Gly−Gly−Phe−SH −> Cbz−Tyr(OBu)−Gly−Gly−Phe−Leu−OH
試験管に、Cbz−Tyr(OBu)−Gly−Gly−Phe−SH及びDMSO:トルエン=1:1(200μL)の混合溶媒液を加えた。次いで、N−ヒドロキシピリドン添加剤1(4mg、20μmol)、Leu(4mg、24μmol)、亜リン酸ジエチル(13μL)を加え、30℃で6時間攪拌し、反応混合物を1.5 mMに希釈し、分析用HPLCで分析したところ、HPLC収率は54%であった。次いで、シリンジフィルタ−で不溶性物質を除去し、反応混合物を分取HPLCで精製した。Cbz−Tyr(OBu)−Gly−Gly−Phe−Leu−OHを7mg(47%)得た。
Cbz-Tyr(OBu)-Gly-Gly-Phe-LeuOHの特性を調べた結果は以下の通りである。
MS (ESI): m/z 768.25 (calcd [M+Na]+ = 768.36)
Purity: >95% (HPLC analysis at 230 nm) Retention time: 30.00 min
(8) Cbz-Tyr (O t Bu) -Gly-Gly-Phe-SH -> Cbz-Tyr (O t Bu) -Gly-Gly-Phe-Leu-OH
In a test tube, Cbz-Tyr (O t Bu ) -Gly-Gly-Phe-SH and DMSO: toluene = 1: plus 1 mixed solvent solution (200 [mu] L). Next, N-hydroxypyridone additive 1 (4 mg, 20 μmol), Leu (4 mg, 24 μmol), and diethyl phosphite (13 μL) were added, and the mixture was stirred at 30 ° C. for 6 hours to dilute the reaction mixture to 1.5 mM. As a result of analysis by HPLC for analysis, the HPLC yield was 54%. The insoluble material was then removed with a syringe filter and the reaction mixture was purified by preparative HPLC. Cbz-Tyr the (O t Bu) -Gly-Gly -Phe-Leu-OH was obtained 7mg (47%).
Cbz-Tyr (O t Bu) -Gly-Gly-Phe-LeuOH result characteristics were examined in are as follows.
MS (ESI): m / z 768.25 (calcd [M + Na] + = 768.36)
Purity:> 95% (HPLC analysis at 230 nm) Retention time: 30.00 min

Claims (6)

以下の式(I)で表される化合物と、以下の式(II)で表されるアミノ酸を、以下の式(III)で表される化合物及び以下の式(IV)で表される化合物の存在下で反応させることにより、式(V)の化合物を調製する方法。
Figure 2021130656
(式中、
Figure 2021130656
は、
保護基を表すか、N末端が保護基で保護されたアミノ酸又はペプチドを表し、
は、α−アミノ酸の側鎖であり、当該側鎖は保護基で保護されていてもよい。)
Figure 2021130656
(式中、Rは、α−アミノ酸の側鎖であり、当該側鎖は保護基で保護されていてもよい。)
Figure 2021130656
(式中、
Lは、エステル基(−COR;Rは炭素数1〜30のアルキル基)、置換又は無置換のアリ−ル基、置換又は無置換のベンゾイル基、アミノ基で置換されていてもよいアミド基(−CONR’R’’;R’、R’’は、各々独立に、水素原子又は炭素数1〜4の置換又は無置換のアルキル基であり、R’及びR’’の少なくとも一方はアミノ基で置換されているアルキル基である)、及びアシル基(−COR’; R’は炭素数1〜4のアルキル基)からなる群から選択され、但し、R及びRの少なくとも1つがエステル基(−CO;Rは炭素数1〜4のアルキル基)である場合は、Lは水素(H)であってもよく、
及びRは、各々独立に、水素、炭素数1〜4のアルキル基、ハロゲン又はエステル基(−CO;Rは炭素数1〜4のアルキル基)を表す。)
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。)
Figure 2021130656
(式中、
Figure 2021130656
、R及びRは、上記で定義した通りである。)
The compound represented by the following formula (I) and the amino acid represented by the following formula (II) are represented by the compound represented by the following formula (III) and the compound represented by the following formula (IV). A method for preparing a compound of formula (V) by reacting in the presence.
Figure 2021130656
(During the ceremony,
Figure 2021130656
teeth,
Represents a protecting group or represents an amino acid or peptide with the N-terminus protected by a protecting group.
R 1 is a side chain of α-amino acid, and the side chain may be protected by a protecting group. )
Figure 2021130656
(In the formula, R 2 is a side chain of α-amino acid, and the side chain may be protected by a protecting group.)
Figure 2021130656
(During the ceremony,
L may be substituted with an ester group (-CO 2 R; R is an alkyl group having 1 to 30 carbon atoms), a substituted or unsubstituted allyl group, a substituted or unsubstituted benzoyl group, or an amino group. The amide group (-CONR'R ";R',R" is an independently substituted or unsubstituted alkyl group having a hydrogen atom or 1 to 4 carbon atoms, and at least one of R'and R ". Is an alkyl group substituted with an amino group), and selected from the group consisting of an acyl group (-COR a '; Ra ' is an alkyl group having 1 to 4 carbon atoms), provided that R 3 and R 4 are used. When at least one of is an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms), L may be hydrogen (H).
R 3 and R 4 independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, a halogen or an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms). )
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )
Figure 2021130656
(During the ceremony,
Figure 2021130656
, R 1 and R 2 are as defined above. )
反応溶媒として、DMSOとトルエンの混合溶媒を用いる、請求項1に記載の方法。 The method according to claim 1, wherein a mixed solvent of DMSO and toluene is used as the reaction solvent. 前記カップリング反応の前に、以下の式(VI)で表される化合物を、以下の式(1)の化合物と反応させることにより、式(I)で表される化合物を調製する工程を含む、請求項1又は2に記載の方法。
Figure 2021130656
(式中、Rは、式(I)で定義した通りである。)
Figure 2021130656
(式中、Rは、炭素数1〜4のアルキル基又は置換又は無置換のアリ-ル基である。)
Prior to the coupling reaction, a step of preparing a compound represented by the formula (I) by reacting the compound represented by the following formula (VI) with the compound represented by the following formula (1) is included. , The method according to claim 1 or 2.
Figure 2021130656
(In the equation, R 1 is as defined in equation (I).)
Figure 2021130656
(In the formula, R 7 is an alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group.)
PG−(AA)−SH:
(PGは、N末端の保護基を表し、
AAは、任意のアミノ酸残基を表し、各出現において同一又は異なっていてもよく、アミノ酸残基の一部又は全ての側鎖は保護基で保護されていてもよく、
nは、1〜4の整数である。)
で表される化合物と、
H−(AA’)−OH:
(AA’は、任意のアミノ酸残基を表し、各出現において同一又は異なっていてもよく、アミノ酸残基の一部又は全ての側鎖は保護基で保護されていてもよく、
mは、1〜4の整数である。)
で表されるアミノ酸又はペプチドを、
以下の式(III)で表される化合物及び以下の式(IV)で表される化合物の存在下で反応させることにより、PG−(AA)(AA’)−OHで表される化合物を調製する方法。
Figure 2021130656
(式中、
Lは、エステル基(−COR;Rは炭素数1〜30のアルキル基)、置換又は無置換のアリ−ル基、置換又は無置換のベンゾイル基、アミノ基で置換されていてもよいアミド基(−CONR’R’’;R’、R’’は、各々独立に、水素原子又は炭素数1〜4の置換又は無置換のアルキル基であり、R’及びR’’の少なくとも一方はアミノ基で置換されているアルキル基である)、及びアシル基(−COR’; R’は炭素数1〜4のアルキル基)からなる群から選択され、但し、R及びRの少なくとも1つがエステル基(−CO;Rは炭素数1〜4のアルキル基)である場合は、Lは水素(H)であってもよく、
及びRは、各々独立に、炭素数1〜4のアルキル基、又はハロゲン又はエステル基(−CO;Rは炭素数1〜4のアルキル基)を表す。)
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。)
PG- (AA) n- SH:
(PG represents an N-terminal protecting group,
AA represents any amino acid residue, which may be the same or different at each appearance, and some or all side chains of the amino acid residue may be protected by a protecting group.
n is an integer of 1 to 4. )
And the compound represented by
H- (AA') m- OH:
(AA'represents any amino acid residue, which may be the same or different at each appearance, and some or all side chains of the amino acid residue may be protected by a protecting group.
m is an integer of 1 to 4. )
Amino acids or peptides represented by
A compound represented by PG- (AA) n (AA') m- OH by reacting in the presence of a compound represented by the following formula (III) and a compound represented by the following formula (IV). How to prepare.
Figure 2021130656
(During the ceremony,
L may be substituted with an ester group (-CO 2 R; R is an alkyl group having 1 to 30 carbon atoms), a substituted or unsubstituted allyl group, a substituted or unsubstituted benzoyl group, or an amino group. The amide group (-CONR'R ";R',R" is an independently substituted or unsubstituted alkyl group having a hydrogen atom or 1 to 4 carbon atoms, and at least one of R'and R ". Is an alkyl group substituted with an amino group), and selected from the group consisting of an acyl group (-COR a '; Ra ' is an alkyl group having 1 to 4 carbon atoms), provided that R 3 and R 4 are used. When at least one of is an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms), L may be hydrogen (H).
R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms, or a halogen or ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms). )
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )
請求項1〜3のいずれか1項に記載の方法に続けて、
(i)以下の式(V)で表される化合物を、以下の式(1)の化合物と反応させることにより、式(VII)で表される化合物を調製する工程:
Figure 2021130656
(式中、
Figure 2021130656
、R、Rは、式(I)及び(II)で定義した通りである。)
Figure 2021130656
(式中、Rは、炭素数1〜4のアルキル基又は置換又は無置換のアリ-ル基である。)
Figure 2021130656
(ii)式(VII)で表される化合物と、以下の式(VIII)で表されるアミノ酸を、以下の式(III)で表される化合物及び以下の式(IV)で表される化合物の存在下で反応させる工程:
を含む、式(VIIII)の化合物を調製する方法。
Figure 2021130656
(式中、R3aは、α−アミノ酸の側鎖であり、当該側鎖は保護基で保護されていてもよい。)
Figure 2021130656
(式中、
Lは、エステル基(−COR;Rは炭素数1〜30のアルキル基)、置換又は無置換のアリ−ル基、置換又は無置換のベンゾイル基、アミノ基で置換されていてもよいアミド基(−CONR’R’’;R’、R’’は、各々独立に、水素原子又は炭素数1〜4の置換又は無置換のアルキル基であり、R’及びR’’の少なくとも一方はアミノ基で置換されているアルキル基である)、及びアシル基(−COR’; R’は炭素数1〜4のアルキル基)からなる群から選択され、但し、R及びRの少なくとも1つがエステル基(−CO;Rは炭素数1〜4のアルキル基)である場合は、Lは水素(H)であってもよく、
及びRは、各々独立に、炭素数1〜4のアルキル基、ハロゲン又はエステル基(−CO;Rは炭素数1〜4のアルキル基)を表す。)
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。)
Figure 2021130656
(式中、
Figure 2021130656
、R〜R、R3aは、上記で定義した通りである。)
Following the method according to any one of claims 1 to 3,
(I) A step of preparing a compound represented by the formula (VII) by reacting the compound represented by the following formula (V) with the compound represented by the following formula (1):
Figure 2021130656
(During the ceremony,
Figure 2021130656
, R 1 and R 2 are as defined by equations (I) and (II). )
Figure 2021130656
(In the formula, R 7 is an alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group.)
Figure 2021130656
(Ii) The compound represented by the formula (VII) and the amino acid represented by the following formula (VIII) are represented by the compound represented by the following formula (III) and the compound represented by the following formula (IV). Process of reacting in the presence of
A method for preparing a compound of formula (VIIII), comprising:
Figure 2021130656
(In the formula, R 3a is a side chain of α-amino acid, and the side chain may be protected by a protecting group.)
Figure 2021130656
(During the ceremony,
L may be substituted with an ester group (-CO 2 R; R is an alkyl group having 1 to 30 carbon atoms), a substituted or unsubstituted allyl group, a substituted or unsubstituted benzoyl group, or an amino group. The amide group (-CONR'R ";R',R" is an independently substituted or unsubstituted alkyl group having a hydrogen atom or 1 to 4 carbon atoms, and at least one of R'and R ". Is an alkyl group substituted with an amino group), and selected from the group consisting of an acyl group (-COR a '; Ra ' is an alkyl group having 1 to 4 carbon atoms), provided that R 3 and R 4 are used. When at least one of is an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms), L may be hydrogen (H).
R 3 and R 4 independently represent an alkyl group having 1 to 4 carbon atoms, a halogen or an ester group (-CO 2 Ra ; Ra is an alkyl group having 1 to 4 carbon atoms). )
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )
Figure 2021130656
(During the ceremony,
Figure 2021130656
, R 1 to R 2 and R 3a are as defined above. )
以下の式(IV)で表される化合物をペプチド合成において可溶化剤として使用する方法。
Figure 2021130656
(式中、R及びRは、各々独立に、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、置換基を有していてもよいベンジルオキシ基又はヒドロキシ基を表し(但し、R及びRの両方がヒドロキシ基になることはない)、
及びRは一緒になってR及びRが結合しているリン原子を含む4〜7員の置換又は無置換のヘテロシクリルを形成してもよい。)
A method of using a compound represented by the following formula (IV) as a solubilizer in peptide synthesis.
Figure 2021130656
(In the formula, R 5 and R 6 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a benzyloxy group or a hydroxy group which may have a substituent. (However, both R 5 and R 6 do not become hydroxy groups),
R 5 and R 6 may be combined to form a 4- to 7-membered substituted or unsubstituted heterocyclyl containing a phosphorus atom to which R 5 and R 6 are attached. )
JP2021024252A 2020-02-18 2021-02-18 Peptide synthesis Pending JP2021130656A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020024974 2020-02-18
JP2020024974 2020-02-18

Publications (1)

Publication Number Publication Date
JP2021130656A true JP2021130656A (en) 2021-09-09

Family

ID=77552246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021024252A Pending JP2021130656A (en) 2020-02-18 2021-02-18 Peptide synthesis

Country Status (1)

Country Link
JP (1) JP2021130656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115140763A (en) * 2022-08-04 2022-10-04 先导薄膜材料有限公司 Method for removing impurities in ITO tower cleaning powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115140763A (en) * 2022-08-04 2022-10-04 先导薄膜材料有限公司 Method for removing impurities in ITO tower cleaning powder
CN115140763B (en) * 2022-08-04 2023-05-30 先导薄膜材料有限公司 Method for removing impurities in ITO (indium tin oxide) tower cleaning powder

Similar Documents

Publication Publication Date Title
US5384410A (en) Removal of boronic acid protecting groups by transesterification
Dudash Jr et al. Comparative study of selected coupling reagents in dipeptide synthesis
EP2627636B1 (en) Process for making bortezomib and the intermediates for the process
KR102337328B1 (en) Systems and Methods for Synthesis of GAP Peptides in Solution Phase
CN112236436B (en) Method for synthesizing solution phase peptide and protection strategy thereof
MX2015004629A (en) Solution phase processes for the manufacture of macrocyclic depsipeptides and new intermediates.
WO2021002408A1 (en) Peptide and method for manufacturing same
JP2021130656A (en) Peptide synthesis
EP3924330A1 (en) Method of preparing a don prodrug from l-glutamic acid
US20030125561A1 (en) Uronium and immonium salts for peptide coupling
JPH0832716B2 (en) Method for synthesizing peptide from amino acid
US20040142851A1 (en) Hydrazinopeptoids and their uses for treating cancers
Matveeva et al. Amino acids as suitable N-nucleophiles for the aza-Michael reaction of vinylphosphoryl compounds in water
TWI404723B (en) Probe compounds for protein tyrosine phosphatase (ptp) and precursors thereof
Kende et al. A useful synthesis of the Phe-Arg phosphinic acid dipeptide isostere
JP4734656B2 (en) Method for producing PF1022
JPS61155395A (en) Retro-reverse peptide and its synthesis
Lange et al. Efficient Synthesis of Differentially Protected (S, S)‐2, 7‐Diaminooctanedioic Acid, the Dicarba Analogue of Cystine
WO2022149584A1 (en) Peptide
CA1284550C (en) Retro-inverso analogs of the bradykinin potentiating peptide bpp*in5a*xx
KR890000769B1 (en) Process for preparing of proyline derivatives
EP3672978A1 (en) Process for making ixazomib or intermediates therefor
JP2000154198A (en) Solid phase synthesis of cyclic depsipeptide and its intermediate
RU2817013C1 (en) Method for synthesis of cyclic depsipeptides
Kawai et al. Synthesis of novel 3-methylstatine analogs. Assignment of absolute configuration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240112