JP2021128103A - Sample preprocessing method for photographing with scanning electron microscope - Google Patents

Sample preprocessing method for photographing with scanning electron microscope Download PDF

Info

Publication number
JP2021128103A
JP2021128103A JP2020023976A JP2020023976A JP2021128103A JP 2021128103 A JP2021128103 A JP 2021128103A JP 2020023976 A JP2020023976 A JP 2020023976A JP 2020023976 A JP2020023976 A JP 2020023976A JP 2021128103 A JP2021128103 A JP 2021128103A
Authority
JP
Japan
Prior art keywords
particles
scanning electron
electron microscope
dispersion
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020023976A
Other languages
Japanese (ja)
Other versions
JP7277399B2 (en
Inventor
雅史 大野
Masafumi Ono
雅史 大野
木綿子 越前谷
Yuuko Echizenya
木綿子 越前谷
南海子 乘藤
Namiko Norito
南海子 乘藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2020023976A priority Critical patent/JP7277399B2/en
Publication of JP2021128103A publication Critical patent/JP2021128103A/en
Application granted granted Critical
Publication of JP7277399B2 publication Critical patent/JP7277399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a sample preprocessing method for allowing automatic processing of coarse particle measurement, connected particle measurement, and particle analysis using an image photographed with a scanning electron microscope.SOLUTION: A sample preprocessing method for photographing with a scanning electron microscope is a sample preprocessing method for photographing with a scanning electron microscope for automatically measuring the number of coarse particles and connected particles present in metal powder 1 based on an image photographed by the scanning electron microscope, and includes: a dispersion step of dispersing the metal powder 1 in a dispersion medium; and an application step of dispensing a dispersion 3 in which the metal powder 1 is dispersed and applying the dispersion on a membrane filter 5. The application step includes sucking and filtering a liquid of the dispersion 3 from the back face side of the membrane filter 5, while spraying the dispersion 3 on the front face of the membrane filter 5 with an air brush 7.SELECTED DRAWING: Figure 2

Description

本発明は、例えば積層セラミックコンデンサ、積層インダクタ等の電子部品の電極材料、電子機器部品に用いられる導電性ペーストのフィラーなどに好適なニッケル粉末のような、ナノ及びサブミクロンサイズの粒子集合体から粗大粒子及び連結粒子を分析する技術に関し、特に金属粉末の試料中に存在する粗大粒子及び連結粒子を、走査型電子顕微鏡で撮影するための試料の前処理方法に関する。 The present invention is from nano and submicron size particle aggregates such as nickel powder suitable for electrode materials for electronic components such as multilayer ceramic capacitors and laminated inductors, fillers for conductive pastes used in electronic device components, etc. The present invention relates to a technique for analyzing coarse particles and linked particles, and particularly to a sample pretreatment method for photographing coarse particles and linked particles present in a metal powder sample with a scanning electron microscope.

電子部品の小型化、高容量化、低背化に伴い電子回路中の電極の多様化、薄層化の要求が強くなっている。
特に積層セラミックコンデンサにおいては、電極材料に使用される金属粉末も、例えば粒子径が0.4μm超の粗大粒子をカットしたものが最先端製品として商品化されている。
As electronic components become smaller, have higher capacities, and have lower heights, there is an increasing demand for diversification and thinning of electrodes in electronic circuits.
In particular, in multilayer ceramic capacitors, metal powders used as electrode materials, for example, those obtained by cutting coarse particles having a particle diameter of more than 0.4 μm have been commercialized as state-of-the-art products.

電極層を薄層化するには、内部電極厚を薄層化する必要があり、それに伴い電極材料中の粗大粒子の存在が問題となる。
製品となる金属粉末から除去するべき粗大粒子の粒子径は、試料となる金属粉の平均粒径によって異なるが、本明細書では粒子径が、0.4μm超のものをいう。
また、本明細書中で連結粒子とは、金属粉末粒子同士が衝突、及び焼結し二つ以上の粒子が連結した粒子をいう。
In order to thin the electrode layer, it is necessary to thin the internal electrode thickness, and the presence of coarse particles in the electrode material becomes a problem accordingly.
The particle size of the coarse particles to be removed from the metal powder as a product varies depending on the average particle size of the metal powder as a sample, but in the present specification, the particle size is more than 0.4 μm.
Further, in the present specification, the connecting particles refer to particles in which metal powder particles collide with each other and are sintered and two or more particles are connected.

粗大粒子は電極中で過焼結の核となり信頼性を悪化させ、誘電体を突き破り絶縁不良の原因となる。また、連結粒子は形状が長針状であるため、球形の粒子に比べ大きく分散性が低下し、重力場でも複雑な挙動を示すことから連結粒子の増加に伴い歩留は低下する傾向にあるため、このような異形粒子の存在率を画像解析により管理する必要がある。 Coarse particles become nuclei of oversintering in the electrode, deteriorating reliability, breaking through the dielectric and causing poor insulation. In addition, since the connected particles have a long-needle shape, their dispersibility is greatly reduced compared to spherical particles, and they behave in a complicated manner even in a gravitational field, so that the yield tends to decrease as the number of connected particles increases. , It is necessary to control the abundance of such irregular particles by image analysis.

しかし、ニッケル超微粉中の2.0μm以上の粗大粒子は非常に少なく、例えば、平均粒子径0.2μm以上のニッケル超微粉中では、個数基準で0.004%〜0.008%である。これを分級操作して粗大粒子を減らしたものはさらに存在率が低くなり、その計数が難しい。 However, the number of coarse particles of 2.0 μm or more in nickel ultrafine powder is very small, and for example, in nickel ultrafine powder of average particle diameter of 0.2 μm or more, it is 0.004% to 0.008% on a number basis. If this is classified and the coarse particles are reduced, the abundance rate becomes even lower, and it is difficult to count the particles.

この低い存在率の粗大粒子を測定するための前処理方法としては、沈降濃縮法がある。
この、沈降濃縮法を用いた粗大粒子評価方法が特許文献1に開示されている。
特許文献1に開示された粗大粒子評価は、「少なくとも導電性粉末を含む導電性ペーストにアルコールを添加し、前記導電性ペーストが分散した分散溶液を形成する第1工程と、前記分散溶液を静置して、前記分散溶液を沈降物と上澄み液に分離し、分離した前記上澄み液を除去して沈降物を回収する第2工程と、回収した前記沈降物を塗布処理により平滑な面を有する塗膜を形成後、乾燥して乾燥塗膜を形成する第3工程と、前記乾燥塗膜を、走査型電子顕微鏡観察により前記乾燥塗膜の乾燥塗膜面像を得て、前記乾燥塗膜面像を用いて、前記導電性ペーストに含まれる前記導電性粉末の粗大粒子を評価する第4工程とからなることを特徴とする」(請求項1参照)ものである。
As a pretreatment method for measuring the coarse particles having a low abundance, there is a sedimentation concentration method.
Patent Document 1 discloses a method for evaluating coarse particles using the sedimentation concentration method.
The coarse particle evaluation disclosed in Patent Document 1 is based on "the first step of adding alcohol to a conductive paste containing at least a conductive powder to form a dispersion solution in which the conductive paste is dispersed, and statically measuring the dispersion solution. The dispersion solution is separated into a sediment and a supernatant, and the separated supernatant is removed to recover the sediment, and the recovered sediment has a smooth surface by a coating treatment. The third step of forming the coating film and then drying to form the dry coating film, and the dry coating film are observed with a scanning electron microscope to obtain a dry coating surface image of the dry coating film, and the dry coating film is obtained. It comprises a fourth step of evaluating the coarse particles of the conductive powder contained in the conductive paste using a surface image ”(see claim 1).

沈降濃縮法は、主として2.0μm以上の粗大粒子計測を目的として実施される方法であり、特許文献1の請求項1の第1工程、第2工程として記載されているように、有機溶媒中に金属粉を分散し、静置することで粗大粒子の沈降処理を行い、上澄みを除去して粗大粒子を濃縮するというものである。 The sedimentation concentration method is a method mainly carried out for the purpose of measuring coarse particles of 2.0 μm or more, and as described as the first step and the second step of claim 1 of Patent Document 1, in an organic solvent. The metal powder is dispersed and allowed to stand to settle the coarse particles, and the supernatant is removed to concentrate the coarse particles.

また、粗大粒子よりも粒子径が小さいものを含む連結粒子の計測や、金属粒子の粒度分布の計測といった粒子解析は、カーボンテープに金属粉末を直接圧接するプレス法と呼ばれる前処理を経て、走査型電子顕微鏡で観察、撮影を行い、その画像を画像処理ソフトを用いて粒度計測するという手法が行われていた。 In addition, particle analysis such as measurement of connected particles including those having a particle size smaller than that of coarse particles and measurement of particle size distribution of metal particles is performed by scanning through a pretreatment called a press method in which metal powder is directly pressed against carbon tape. A method of observing and photographing with a type electron microscope and measuring the particle size of the image using image processing software has been performed.

特開2015−161536号公報Japanese Unexamined Patent Publication No. 2015-161536

しかしながら、沈降濃縮法及びプレス法のいずれも下記に示すような問題がある。
まず、沈降濃縮法は2.0μm以上の粗大粒子の濃縮は可能であるが、前述した次世代製品のように粗大粒子として粒子径が0.4μm超のものを除去するような場合には、2.0μm以上の粗大粒子を濃縮する場合の沈降濃縮時間では沈降が十分ではなく、沈降させなければならない計測対象粒子まで上澄みとして除去してしまっているという問題がある。
However, both the sedimentation concentration method and the press method have the following problems.
First, the sedimentation concentration method can concentrate coarse particles of 2.0 μm or more, but when removing coarse particles having a particle size of more than 0.4 μm as in the next-generation products described above, 2.0 μm. When the above coarse particles are concentrated, the sedimentation concentration time is not sufficient, and there is a problem that even the measurement target particles that must be sedimented are removed as the supernatant.

また、沈降濃縮法は、沈降濃縮率が一定でなく、粗大粒子計測個数にバラツキを与えるという問題がある。さらに、図5に示すように、沈降濃縮物を試料台11に塗布する際、厚みが一定ではなく、他の粒子が粗大粒子1aを隠してしまったり、凝集体により観察面に凹凸が生じたりすることで、粗大粒子計測ができないという問題もある。 Further, the sedimentation concentration method has a problem that the sedimentation concentration rate is not constant and the number of coarse particles measured varies. Further, as shown in FIG. 5, when the sedimented concentrate is applied to the sample table 11, the thickness is not constant, other particles may hide the coarse particles 1a, or the agglomerates may cause irregularities on the observation surface. By doing so, there is also a problem that coarse particle measurement cannot be performed.

一方、プレス法はカーボンテープ13に金属粉末1を直接圧接して試料とする前処理方法であるが、このような前処理をした試料は、金属粉末1の粒子が何層にも重なり、図6(a)に示すように、粗大粒子1a(図6(a)参照)や連結粒子1b(図6(b)参照)が隠れてしまう。このため、走査型電子顕微鏡で観察する際に重なった粒子同士を画像処理によって自動的に分離することができず、目視で連結粒子等の識別を行わざるを得ないが、粒子の連結部分を目視で判断するのは基準が曖昧でかつ熟練の技術が必要となる。 On the other hand, the pressing method is a pretreatment method in which the metal powder 1 is directly pressed against the carbon tape 13 to prepare a sample. As shown in 6 (a), the coarse particles 1a (see FIG. 6 (a)) and the connecting particles 1b (see FIG. 6 (b)) are hidden. For this reason, when observing with a scanning electron microscope, the overlapping particles cannot be automatically separated by image processing, and the connected particles must be visually identified. However, the connected portion of the particles must be visually identified. Visual judgment requires ambiguous standards and skillful skills.

以上のように、沈降濃縮法及びプレス法のいずれの前処理方法にも課題があり、画像解析による粗大粒子計測、連結粒子計測及び粒子解析の自動処理が可能となる試料の前処理方法の開発が望まれている。 As described above, both the sedimentation concentration method and the press method have problems, and development of a sample pretreatment method that enables automatic processing of coarse particle measurement, linked particle measurement, and particle analysis by image analysis. Is desired.

本発明はかかる課題を解決するためになされたものであり、走査型電子顕微鏡で撮影した画像を用いた粗大粒子計測、連結粒子計測及び粒子解析の自動処理が可能となる試料の前処理方法を提供することを目的としている。 The present invention has been made to solve such a problem, and provides a sample pretreatment method that enables automatic processing of coarse particle measurement, connected particle measurement, and particle analysis using an image taken by a scanning electron microscope. It is intended to be provided.

(1)本発明に係る走査型電子顕微鏡で撮影するための試料の前処理方法は、金属粉末中に存在する粗大粒子及び連結粒子の個数を、走査型電子顕微鏡で撮影した画像に基づいて自動計測するために、前記走査型電子顕微鏡で撮影するための試料の前処理方法であって、前記金属粉末を分散媒中に分散させる分散工程と、前記金属粉末が分散された分散液を分取して、メンブレンフィルター上に塗布する塗布工程とを有し、該塗布工程は、前記メンブレンフィルターの表面にエアーブラシで前記分散液を噴霧しながら、前記メンブレンフィルターの裏面側から前記分散液の液体を吸引ろ過することを特徴とするものである。 (1) The sample pretreatment method for photographing with the scanning electron microscope according to the present invention automatically determines the number of coarse particles and connecting particles existing in the metal powder based on the image taken with the scanning electron microscope. A sample pretreatment method for photographing with the scanning electron microscope for measurement, in which a dispersion step of dispersing the metal powder in a dispersion medium and a dispersion liquid in which the metal powder is dispersed are separated. Then, the coating step includes a coating step of applying the dispersion liquid onto the membrane filter, and the coating step comprises spraying the dispersion liquid on the surface of the membrane filter with an air brush and spraying the dispersion liquid from the back surface side of the membrane filter. Is characterized by suction filtration.

(2)また、上記(1)に記載のものにおいて、前記金属粉末が、ニッケル粉末、鉄粉末、銅粉末であることを特徴とするものである。 (2) Further, in the above-mentioned item (1), the metal powder is a nickel powder, an iron powder, or a copper powder.

本発明においては、分散工程と塗布工程とを有し、該塗布工程において、メンブレンフィルターの表面にエアーブラシで分散液を噴霧しながら、メンブレンフィルターの裏面側から分散液の液体を吸引ろ過するので、粒子が凝集することなく、かつ、薄層な粒子層が形成された試料を得ることができる。
これにより、前記試料を走査型電子顕微鏡で撮影した画像を用いれば、画像処理において粗大粒子及び連結粒子を明瞭に分離できるので、粗大粒子及び連結粒子の自動計測及び粒子解析の自動処理が可能となる。
The present invention has a dispersion step and a coating step, and in the coating step, the dispersion liquid is suction-filtered from the back surface side of the membrane filter while spraying the dispersion liquid on the surface of the membrane filter with an air brush. , It is possible to obtain a sample in which a thin particle layer is formed without agglomeration of particles.
As a result, if the image of the sample taken with a scanning electron microscope is used, coarse particles and linked particles can be clearly separated in image processing, so that automatic measurement of coarse particles and linked particles and automatic processing of particle analysis are possible. Become.

さらに、本発明においては、小さい粒径の粒子を除去することがないので、次世代製品のように粒径の小さい粒子を粗大粒子として計測したい場合にも有効である。 Further, in the present invention, since particles having a small particle size are not removed, it is also effective when it is desired to measure particles having a small particle size as coarse particles as in a next-generation product.

本発明の一実施の形態に係る試料の前処理方法を説明するためのフロー図である。It is a flow chart for demonstrating the sample pretreatment method which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る塗布工程を説明するための説明図である。It is explanatory drawing for demonstrating the coating process which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る試料の前処理方法によって得られる試料の状態を示す図である。It is a figure which shows the state of the sample obtained by the sample pretreatment method which concerns on one Embodiment of this invention. 実施例1に係る比較例2のろ過方法の説明と、比較例2で得られる試料の状態を示す図である。It is a figure which shows the explanation of the filtration method of the comparative example 2 which concerns on Example 1, and the state of the sample obtained in the comparative example 2. 従来の試料の前処理方法によって得られる試料の状態を示す図である(その1)。It is a figure which shows the state of the sample obtained by the conventional sample pretreatment method (the 1). 従来の試料の前処理方法によって得られる試料の状態を示す図である(その2)。It is a figure which shows the state of the sample obtained by the conventional sample pretreatment method (the 2).

本発明に係る走査型電子顕微鏡で撮影するための試料の前処理方法は、金属粉末1中に存在する粗大粒子1a及び連結粒子1bの個数を、走査型電子顕微鏡で撮影した画像に基づいて自動計測するための方法であって、図1に示すように、金属粉末1を分散媒中に分散させる分散工程S1と、金属粉末1が分散された分散液3を分取して、メンブレンフィルター5上に塗布する塗布工程S3とを有している。
以下、金属粉末1として、気相法や液相法などに公知の方法で製造されたニッケル超微粉(ニッケル粉末)を例に挙げて、上記の各工程を詳細に説明する。なお、本発明は、平均粒子径が0.1μm〜0.6μmの金属粉末の前処理に好適である。
The sample pretreatment method for photographing with the scanning electron microscope according to the present invention automatically determines the number of coarse particles 1a and connecting particles 1b existing in the metal powder 1 based on the images taken with the scanning electron microscope. A method for measuring, as shown in FIG. 1, a dispersion step S1 in which the metal powder 1 is dispersed in a dispersion medium and a dispersion liquid 3 in which the metal powder 1 is dispersed are separated to form a membrane filter 5. It has a coating step S3 for coating on top.
Hereinafter, each of the above steps will be described in detail by taking as an example nickel ultrafine powder (nickel powder) produced by a method known to a vapor phase method, a liquid phase method, or the like as the metal powder 1. The present invention is suitable for pretreatment of metal powder having an average particle size of 0.1 μm to 0.6 μm.

<分散工程>
分散工程S1は、金属粉末1を分散媒中に分散させる工程である。
分散媒には、イオン交換水(以下純水とする)、ヘキサメタリン酸ナトリウム溶液、有機溶媒(エタノール、メタノールなど)を用いることができる。それぞれの溶液で金属粉末1のスラリー化は可能であるが、0.4μm超のものは純水、0.4μm以下のものはヘキサメタリン酸ナトリウム溶液が望ましい。
<Dispersion process>
The dispersion step S1 is a step of dispersing the metal powder 1 in the dispersion medium.
As the dispersion medium, ion-exchanged water (hereinafter referred to as pure water), a sodium hexametaphosphate solution, and an organic solvent (ethanol, methanol, etc.) can be used. Although it is possible to make the metal powder 1 into a slurry with each solution, pure water is preferable for those having a thickness of more than 0.4 μm, and sodium hexametaphosphate solution is preferable for those having a thickness of 0.4 μm or less.

ヘキサメタリン酸ナトリウム溶液は、一級以上の工業試薬を用い純水に規定濃度量を溶解させたものである。ヘキサメタリン酸ナトリウム溶液の濃度は0.1wt%〜0.5wt%が望ましく、それ以上の濃度の溶液で分散を加えると、塗布工程においてメンブレンフィルター5上に分散液3を噴霧する際、観察面にヘキサメタリン酸ナトリウムの再結晶化が起こり、観察面に悪影響を及ぼす可能性がある。 The sodium hexametaphosphate solution is prepared by dissolving a specified concentration in pure water using a first-class or higher industrial reagent. The concentration of the sodium hexametaphosphate solution is preferably 0.1 wt% to 0.5 wt%, and if dispersion is added with a solution having a higher concentration, hexametaphosphate is applied to the observation surface when the dispersion liquid 3 is sprayed on the membrane filter 5 in the coating step. Recrystallization of sodium may occur, which may adversely affect the observation surface.

分散媒中の金属粉末1の濃度は均一に分散する濃度であれば問題ない。しかし金属粉末1の量が多すぎると、凝集体解砕に時間がかかり、また少なすぎると秤量誤差が発生する。純水または0.2wt%ヘキサメタリン酸ナトリウム溶液の分散媒120mlに、0.1から0.5gの金属粉末1を分散させると均一に分散可能な濃度度合いとなり、凝集体解砕にかかる時間が短く作業性が好適である。 There is no problem as long as the concentration of the metal powder 1 in the dispersion medium is a concentration that uniformly disperses. However, if the amount of the metal powder 1 is too large, it takes time to crush the agglomerates, and if it is too small, a weighing error occurs. When 0.1 to 0.5 g of metal powder 1 is dispersed in 120 ml of a dispersion medium of pure water or a 0.2 wt% sodium hexametaphosphate solution, the concentration becomes uniformly dispersible, the time required for agglomerate crushing is short, and workability is suitable. Is.

分散機には、高速攪拌機または超音波ホモジナイザーを用いる。超音波ホモジナイザーを用いる場合には、間接式の超音波ホモジナイザーが好ましい。これは、超音波振動子チップを溶液中に入れる形式の超音波ホモジナイザーを用いると、チップの先端から分散液3中にコンタミが混入する可能性があり、画像解析の際に、混入したコンタミが金属粉末1の粒子と誤認識される恐れがあるからである。 A high-speed stirrer or an ultrasonic homogenizer is used as the disperser. When an ultrasonic homogenizer is used, an indirect ultrasonic homogenizer is preferable. This is because if an ultrasonic homogenizer in which the ultrasonic transducer chip is placed in a solution is used, there is a possibility that contamination may be mixed into the dispersion liquid 3 from the tip of the chip, and the mixed contamination may be mixed during image analysis. This is because there is a risk of being mistakenly recognized as the particles of the metal powder 1.

なお、分級操作した金属粉末1には凝集体が混在しており、凝集体を解砕できる強力な分散力を必要とするので、ローター・ステーター式分散機等の高速攪拌機を用いるのが望ましい。
高速攪拌を行う場合には、ガラス製もしくはステンレス製の高さ110mm以上のトールビーカー等の容器を用いるのが好ましい。
In addition, since agglomerates are mixed in the metal powder 1 that has been classified and a strong dispersing force capable of crushing the agglomerates is required, it is desirable to use a high-speed stirrer such as a rotor / stator type disperser.
When high-speed stirring is performed, it is preferable to use a container made of glass or stainless steel such as a tall beaker having a height of 110 mm or more.

ローター・ステーター式分散機による攪拌速度は、10000から21500rpm、攪拌時間は5〜10分が好適である。また、攪拌効率向上及び飛散防止のために、容器に邪魔板を取り付けることが好ましい。分散処理中に分散液3の温度が35℃以上に上昇すると、分散液3中の金属粉末1が再凝集を起こすので、分散処理中は容器を10℃未満の冷水槽上に置くとよい。 The stirring speed by the rotor / stator type disperser is preferably 10000 to 21500 rpm, and the stirring time is preferably 5 to 10 minutes. Further, in order to improve the stirring efficiency and prevent scattering, it is preferable to attach a baffle plate to the container. If the temperature of the dispersion liquid 3 rises to 35 ° C. or higher during the dispersion treatment, the metal powder 1 in the dispersion liquid 3 reaggregates. Therefore, it is preferable to place the container on a cold water tank at a temperature lower than 10 ° C. during the dispersion treatment.

<塗布工程>
塗布工程S3は、分散工程S1によって得られた分散液3を所定の量分取して、メンブレンフィルター5上に塗布する工程である。以下、図2を用いて具体的に説明する。
<Applying process>
The coating step S3 is a step of taking a predetermined amount of the dispersion liquid 3 obtained in the dispersion step S1 and coating it on the membrane filter 5. Hereinafter, a specific description will be given with reference to FIG.

塗布工程S3では、図2に示すように、メンブレンフィルター5の表面にエアーブラシ7で分散液3を噴霧しながら、メンブレンフィルター5の裏面側から循環式アスピレーター(図示なし)を用いて吸引ろ過する。 In the coating step S3, as shown in FIG. 2, while spraying the dispersion liquid 3 on the surface of the membrane filter 5 with an airbrush 7, suction filtration is performed from the back surface side of the membrane filter 5 using a circulating aspirator (not shown). ..

このようにメンブレンフィルター5の表面にエアーブラシ7で分散液3を噴霧するとともに、裏面側から循環式アスピレーターで吸引ろ過することで、噴霧された分散液3の液体がメンブレンフィルター5上に滞留することがないので、滞留がある場合に生ずる金属粉末1の凝集(図4参照)を防ぐことができる。 In this way, the dispersion liquid 3 is sprayed on the front surface of the membrane filter 5 with an air brush 7, and suction filtration is performed from the back surface side with a circulation type aspirator, so that the sprayed dispersion liquid 3 liquid stays on the membrane filter 5. Since there is no such thing, it is possible to prevent the agglomeration of the metal powder 1 (see FIG. 4) that occurs when there is retention.

なお、エアーブラシ7に分取する分散液3の量(メンブレンフィルター5に塗布する量)は、多すぎるとメンブレンフィルター5上に分散液3が滞留しやすくなり、少なすぎると塗布面積が小さくなるため、観察面を形成することができない。
分取する分散液3の適切な量は液中の金属粉末1の平均粒子径により異なるが、例えば、平均粒子径0.2μm〜0.4μmの金属粉末1の場合は、0.1ml〜0.5ml分取するとよい(分散液3における金属粉末1の濃度が0.08wt%の場合)。
If the amount of the dispersion liquid 3 to be sorted into the air brush 7 (the amount to be applied to the membrane filter 5) is too large, the dispersion liquid 3 tends to stay on the membrane filter 5, and if it is too small, the coating area becomes small. Therefore, the observation surface cannot be formed.
The appropriate amount of the dispersion liquid 3 to be sorted depends on the average particle size of the metal powder 1 in the liquid. For example, in the case of the metal powder 1 having an average particle size of 0.2 μm to 0.4 μm, 0.1 ml to 0.5 ml is sorted. (When the concentration of the metal powder 1 in the dispersion liquid 3 is 0.08 wt%).

このように、所定の量の分散液3をメンブレンフィルター5上に噴霧しながら、吸引ろ過を行うことで、メンブレンフィルター5上には、図3に示すように、粒子が均一に塗布された一層の金属粒子層を形成することができる。 In this way, by performing suction filtration while spraying a predetermined amount of the dispersion liquid 3 on the membrane filter 5, as shown in FIG. 3, a layer in which particles are uniformly applied onto the membrane filter 5. Metal particle layer can be formed.

なお、メンブレンフィルター5は、孔径0.2μmのものを用いることができる。孔径が大きいと、金属粉末1が通過するため、金属粉末1の平均粒子径に合わせて、フィルター孔径を選択する。メンブレンフィルター5の材質はポリカーボネートが好適である。 As the membrane filter 5, a membrane filter 5 having a pore size of 0.2 μm can be used. If the pore size is large, the metal powder 1 passes through, so the filter pore size is selected according to the average particle size of the metal powder 1. The material of the membrane filter 5 is preferably polycarbonate.

このように、粒子が一層で均一に塗布された金属粒子層(図3参照)を形成することで、図5、図6に示したような、他の粒子の凝集体によって粗大粒子1a及び連結粒子1bが隠れることがなく、走査型電子顕微鏡で撮影した画像を用いて粗大粒子1a及び連結粒子1bの計測をする際に、粒子の分離(自動識別)が可能となり、粗大粒子計測、連結粒子計測及び粒子解析の自動処理が可能となる。 By forming the metal particle layer (see FIG. 3) in which the particles are uniformly applied in one layer in this way, the coarse particles 1a and the coarse particles 1a are connected by the agglomerates of other particles as shown in FIGS. 5 and 6. The particles 1b are not hidden, and when measuring the coarse particles 1a and the connected particles 1b using the image taken by the scanning electron microscope, the particles can be separated (automatically identified), and the coarse particle measurement and the connected particles can be measured. Automatic processing of measurement and particle analysis becomes possible.

上述した本実施の形態に係る試料の前処理を施した後、以下に一例を示すような走査型電子顕微鏡による撮影を行う。
まず、金属粒子層が形成されたメンブレンフィルター5を走査型電子顕微鏡用の試料台にカーボンテープで固定し、導電性を持たせる為、金属蒸着を行う。
その後、走査型電子顕微鏡で粒子が均一な一層に形成されている範囲を選出し、撮影する。
After pretreating the sample according to the present embodiment described above, imaging is performed with a scanning electron microscope as shown in an example below.
First, the membrane filter 5 on which the metal particle layer is formed is fixed to a sample table for a scanning electron microscope with carbon tape, and metal vapor deposition is performed in order to provide conductivity.
Then, a scanning electron microscope is used to select a region in which particles are formed in a uniform single layer, and an image is taken.

粗大粒子観察における走査型電子顕微鏡での撮影は、観察しやすい倍率と視野で行えばよい。ただし、倍率を下げると観察視野面積が増えるが粗大粒子1aを見逃す可能性があるため、適度な倍率で行うことが望ましく、例えば、0.4〜0.6μmの粒子を粗大粒子1aとして観察する場合は、10000倍、それ以上の粒径の粒子を粗大粒子1aとして観察する場合は、3000倍から10000倍の倍率で観察を行うのが好適である。 Imaging with a scanning electron microscope in coarse particle observation may be performed at a magnification and a field of view that are easy to observe. However, if the magnification is lowered, the observation field area increases, but coarse particles 1a may be overlooked. Therefore, it is desirable to perform the observation at an appropriate magnification. For example, when observing particles of 0.4 to 0.6 μm as coarse particles 1a, When observing particles having a particle size of 10000 times or more as coarse particles 1a, it is preferable to observe at a magnification of 3000 times to 10000 times.

連結粒子観察における走査型電子顕微鏡での撮影は、観察しやすい倍率と視野で行えばよい。ただし、倍率を下げると粒子同士の連結部分の観察が困難になる為、適度な倍率で行うことが望ましく、例えば、平均粒子径0.2μmのニッケル粉末中の連結粒子1bを観察する場合は、20000倍の倍率で観察を行うのが好適である。 When observing connected particles, imaging with a scanning electron microscope may be performed at a magnification and a field of view that are easy to observe. However, if the magnification is lowered, it becomes difficult to observe the connecting portion between the particles. Therefore, it is desirable to perform the measurement at an appropriate magnification. For example, when observing the connecting particles 1b in the nickel powder having an average particle diameter of 0.2 μm, 20000 It is preferable to observe at a magnification of 2 times.

走査型電子顕微鏡の観察像(撮影画像)は、画像処理ソフトを用い、2値化により、粒子の自動分離、抽出を行うことから、反射電子像(BSE像)が好適である。 As the observation image (photographed image) of the scanning electron microscope, a backscattered electron image (BSE image) is preferable because particles are automatically separated and extracted by binarization using image processing software.

上述した本実施の形態では、金属粉末1としてニッケル粉末を例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば、金属粉末1が、鉄粉末や銅粉末であってもよい。 In the above-described embodiment, nickel powder has been described as an example of the metal powder 1, but the present invention is not limited thereto. For example, the metal powder 1 is an iron powder or a copper powder. May be good.

次に、上述した実施の形態に係る走査型電子顕微鏡で撮影するための試料の前処理方法を実施した場合の作用効果を確認する実験を行ったので、その結果について以下に説明する。ただし、本発明はこの実施例に限定されるものではない。 Next, an experiment was conducted to confirm the action and effect when the sample pretreatment method for photographing with the scanning electron microscope according to the above-described embodiment was carried out, and the results will be described below. However, the present invention is not limited to this embodiment.

本実施例では、試料に平均粒径0.2μmのニッケル粉末を用いて、発明例1、比較例1及び比較例2において異なる前処理方法をそれぞれ2回ずつ実施し、各前処理を施した試料を走査型電子顕微鏡で撮影して、粗大粒子計測を行った。以下に、それぞれの前処理方法について説明する。 In this example, using nickel powder having an average particle size of 0.2 μm as a sample, different pretreatment methods in Invention Example 1, Comparative Example 1 and Comparative Example 2 were carried out twice, and each pretreatment was performed on the sample. Was photographed with a scanning electron microscope, and coarse particle measurement was performed. Each pretreatment method will be described below.

(発明例1)
ステンレス製のトールビーカーに、分散媒としてヘキサメタリン酸ナトリウム溶液120mlと試料100mgを入れ、邪魔板を設置し、ローター・ステーター式分散機(ウルトラタラックスT25)を用いて、10000rpmで10分間分散処理を行った。分散処理中は、ビーカー周りを10℃の冷却水槽で冷やした。
(Invention Example 1)
Put 120 ml of sodium hexametaphosphate solution and 100 mg of sample as a dispersion medium in a stainless steel tall beaker, install a baffle plate, and disperse at 10000 rpm for 10 minutes using a rotor-stator type disperser (Ultra Tarax T25). went. During the dispersion treatment, the area around the beaker was cooled in a cooling water tank at 10 ° C.

上記処理によって得られた分散液3を0.2ml分取して、メンブレンフィルター5(孔径0.2μm、ポリカーボネート製)の表面にエアーブラシ7で噴霧するとともに、裏面側から吸引ろ過した。 0.2 ml of the dispersion liquid 3 obtained by the above treatment was separated, sprayed on the front surface of the membrane filter 5 (pore diameter 0.2 μm, made of polycarbonate) with an airbrush 7, and suction-filtered from the back surface side.

表面に金属粒子層が形成されたメンブレンフィルター5を、カーボンテープで試料台に固定して白金蒸着を行い、白金蒸着を施した試料を走査型電子顕微鏡の所定の観察位置にセットして、後述する粗大粒子計測方法によって粗大粒子を計測した。 A membrane filter 5 having a metal particle layer formed on its surface is fixed to a sample table with carbon tape to perform platinum vapor deposition, and the platinum-deposited sample is set at a predetermined observation position of a scanning electron microscope, which will be described later. Coarse particles were measured by the coarse particle measuring method.

(比較例1)
50mlデスカップに、分散媒としてエタノール溶液20ml、試料600mgを入れ、超音波ホモジナイザーを用いて5分間分散処理を行った後、10分間静置して上澄み溶液を除去した。
(Comparative Example 1)
20 ml of an ethanol solution and 600 mg of a sample were placed in a 50 ml descup as a dispersion medium, dispersed for 5 minutes using an ultrasonic homogenizer, and then allowed to stand for 10 minutes to remove the supernatant solution.

磁石で沈降物を回収して試料台に塗布し(図5参照)、白金蒸着を行い、白金蒸着を施した試料を走査型電子顕微鏡の所定の観察位置にセットして、後述する粗大粒子計測方法によって粗大粒子を計測した。 The sediment is collected by a magnet and applied to a sample table (see FIG. 5), platinum-deposited, and the platinum-deposited sample is set at a predetermined observation position of a scanning electron microscope, and coarse particle measurement described later is performed. Coarse particles were measured by the method.

(比較例2)
ステンレス製のトールビーカーに、分散媒としてヘキサメタリン酸ナトリウム溶液120mlと試料100mgを入れ、邪魔板を設置し、ローター・ステーター式分散機(ウルトラタラックスT25)を用いて、10000rpmで10分間分散処理を行った。分散処理中は、ビーカー周りを10℃の冷却水槽で冷やした。
(Comparative Example 2)
Put 120 ml of sodium hexametaphosphate solution and 100 mg of sample as a dispersion medium in a stainless steel tall beaker, install a baffle plate, and disperse at 10000 rpm for 10 minutes using a rotor-stator type disperser (Ultra Tarax T25). went. During the dispersion treatment, the area around the beaker was cooled in a cooling water tank at 10 ° C.

上記処理によって得られた分散液3を、マイクロピペットで5ml分取してポリプロピレン製のディスポーサブルカップに入れ、さらに純水を10ml加え、600Wの間接式ホモジナイザーで2分間分散処理を行った。 5 ml of the dispersion liquid 3 obtained by the above treatment was separated by a micropipette, placed in a polypropylene disposable cup, 10 ml of pure water was further added, and dispersion treatment was performed with a 600 W indirect homogenizer for 2 minutes.

上記処理によって得られた分散液3を、図4(a)に示すようなガラスろ過器9を用いて、メンブレンフィルター5(孔径0.2μm、ポリカーボネート製)に全量ろ過した。 The dispersion liquid 3 obtained by the above treatment was totally filtered through a membrane filter 5 (pore diameter 0.2 μm, made of polycarbonate) using a glass filter 9 as shown in FIG. 4 (a).

表面に金属粒子層が形成されたメンブレンフィルター5は、前述した発明例1と同様の処理を行い、後述する粗大粒子計測方法によって粗大粒子を計測した。 The membrane filter 5 having the metal particle layer formed on the surface was subjected to the same treatment as in Invention Example 1 described above, and the coarse particles were measured by the coarse particle measuring method described later.

本実施例における走査型電子顕微鏡による撮影、及び、粗大粒子計測は以下のように行った。
走査型電子顕微鏡(SU-5000、日立製作所製)を用いて、倍率10000倍のBSE画像を40視野得る。その後、得られたBSE画像を、画像解析ソフト(WinROOF、三谷商事株式会社製)により解析し、BSE画像内の粒子形状の全様が見える粒子の外枠を計測して各粒子の長径を求め、その長径が0.6μm以上である粒子を粗大粒子と規定し、その数を自動計測した。
上記の方法により粗大粒子の数を計測した結果を表1に示す。
The imaging with the scanning electron microscope and the measurement of coarse particles in this example were performed as follows.
Using a scanning electron microscope (SU-5000, manufactured by Hitachi, Ltd.), 40 fields of BSE images with a magnification of 10000 can be obtained. After that, the obtained BSE image is analyzed by image analysis software (WinROOF, manufactured by Mitani Shoji Co., Ltd.), and the outer frame of the particles in which the entire particle shape in the BSE image can be seen is measured to obtain the major axis of each particle. , Particles having a major axis of 0.6 μm or more were defined as coarse particles, and the number was automatically measured.
Table 1 shows the results of measuring the number of coarse particles by the above method.

Figure 2021128103
Figure 2021128103

表1に示すように、比較例1及び比較例2は1回目と2回目の計測結果にばらつきがみられ、特に、比較例1は、粗大粒子の検出数が発明例1の半分以下であった。
これは、従来の沈降濃縮法を用いた比較例1では、粗大粒子として規定した0.6μm以上の粒子の一部が上澄みとして除去されているからと考えられる。また、沈降物内に存在する粗大粒子についても、試料台11に塗布される試料は、金属粒子層が厚いので、層の上側の粒子によって下側の粗大粒子1aが隠れ(図5参照)、検出される数が少なかったと考えられる。
As shown in Table 1, there are variations in the measurement results of the first and second times in Comparative Example 1 and Comparative Example 2, and in particular, in Comparative Example 1, the number of coarse particles detected is less than half that of Invention Example 1. rice field.
It is considered that this is because in Comparative Example 1 using the conventional sedimentation concentration method, a part of the particles having a size of 0.6 μm or more defined as coarse particles is removed as the supernatant. As for the coarse particles existing in the sediment, the sample applied to the sample table 11 has a thick metal particle layer, so that the particles on the upper side of the layer hide the coarse particles 1a on the lower side (see FIG. 5). It is probable that the number detected was small.

また、ガラスろ過器9を用いた比較例2は、ろ過の際、メンブレンフィルター5上に分散液3が滞留する(図4(a)参照)ので、金属粉末1の再凝集が生じる。さらに、メンブレンフィルター5上に形成される粒子層も厚く重なるので(図4(b)参照)、粗大粒子1aが検出しにくくなり、計測数にばらつきが出たと考えられる。 Further, in Comparative Example 2 using the glass filter 9, the dispersion liquid 3 stays on the membrane filter 5 during filtration (see FIG. 4A), so that the metal powder 1 reaggregates. Further, since the particle layers formed on the membrane filter 5 are also thickly overlapped (see FIG. 4B), it is considered that the coarse particles 1a are difficult to detect and the number of measurements varies.

この点、実施の形態で説明した前処理方法を用いた発明例1は、比較例1の検出数が多い1回目と比べても、0.6μm〜0.8μmの粗大粒子、0.8μm〜1μmの粗大粒子共に、検出率が約2倍に向上しており、かつ、2回行った計測でもばらつきが小さく、安定した結果を得ることができた。 In this respect, Invention Example 1 using the pretreatment method described in the embodiment has coarse particles of 0.6 μm to 0.8 μm and coarse particles of 0.8 μm to 1 μm, even when compared with the first time in which the number of detections of Comparative Example 1 is large. The detection rate of both particles was improved about twice, and the variation was small even in the measurement performed twice, and stable results could be obtained.

また、ガラスろ過器9を用いて粒子層を形成する比較例2では、一度分散処理した分散液3を希釈して再度分散処理を行っている。これは、ろ過中に生じる粒子の再凝集や、ろ過後の粒子層の厚さを低減するために分散液3の濃度を調整するものである。 Further, in Comparative Example 2 in which the particle layer is formed by using the glass filter 9, the dispersion liquid 3 which has been once dispersed is diluted and the dispersion treatment is performed again. This is for adjusting the concentration of the dispersion liquid 3 in order to reduce the reaggregation of particles generated during filtration and the thickness of the particle layer after filtration.

この点においても、本発明による前処理方法では、分散液3の濃度に合わせてエアーブラシ7に分取する量を調整すればよく、また、粒子がまばらにならないよう密集させて粒子層を形成するには一定の濃度を必要とするので、上述した希釈及び再分散処理は不要である。 In this respect as well, in the pretreatment method according to the present invention, the amount to be dispensed to the airbrush 7 may be adjusted according to the concentration of the dispersion liquid 3, and the particles are densely packed so as not to be sparse to form a particle layer. This requires a constant concentration, so the above-mentioned dilution and redispersion treatment is not necessary.

本実施例では、試料に平均粒径0.15μmのニッケル粉末を用いて、発明例2及び比較例3において異なる前処理方法をそれぞれ2回ずつ実施し、各前処理を施した試料を走査型電子顕微鏡で撮影して、粗大粒子計測を行った。なお、発明例2は発明例1と同様の前処理を行い、比較例3は比較例1と同様の前処理を行ったものとし、説明を省略する。 In this example, using nickel powder having an average particle size of 0.15 μm as the sample, the different pretreatment methods in Invention Example 2 and Comparative Example 3 were carried out twice each, and the sample subjected to each pretreatment was subjected to scanning electron electrons. Coarse particles were measured by photographing with a microscope. It is assumed that Invention Example 2 is subjected to the same pretreatment as Invention Example 1 and Comparative Example 3 is subjected to the same pretreatment as Comparative Example 1, and the description thereof will be omitted.

本実施例における走査型電子顕微鏡による撮影、及び、粗大粒子計測は実施例1と同様に行った。なお、本実施例における粗大粒子計測では、粒子の長径が0.4μm以上である粒子を粗大粒子と規定し、その数を自動計測した。
上記の方法により粗大粒子の数を計測した結果を表2に示す。
Imaging with a scanning electron microscope and measurement of coarse particles in this example were carried out in the same manner as in Example 1. In the coarse particle measurement in this example, particles having a major axis of 0.4 μm or more were defined as coarse particles, and the number of particles was automatically measured.
Table 2 shows the results of measuring the number of coarse particles by the above method.

Figure 2021128103
Figure 2021128103

表2に示すように、従来の沈降濃縮法を用いた比較例3は計測結果にばらつきがみられ、粗大粒子の検出数は発明例2と比較して少なかった。
発明例2と比較例3における計測数の差は、粒径の小さい粗大粒子ほど顕著に表れており、これは、前述したように、粒径の小さい粒子ほど前処理中に上澄みとして除去されやすいからと考えられる。
As shown in Table 2, the measurement results of Comparative Example 3 using the conventional sedimentation concentration method varied, and the number of coarse particles detected was smaller than that of Invention Example 2.
The difference in the number of measurements between Invention Example 2 and Comparative Example 3 is more pronounced in coarse particles having a smaller particle size, and as described above, particles having a smaller particle size are more likely to be removed as supernatant during pretreatment. It is thought that it is from.

この点、発明例2は、粒径の小さい粒子を含めて検出率は向上しており、かつ、2回行った計測でもばらつきが小さく安定した結果を得ることができた。 In this respect, in Invention Example 2, the detection rate was improved including particles having a small particle size, and stable results could be obtained even in the measurement performed twice with little variation.

実施例1及び実施例2で説明したように、本発明によれば、走査型電子顕微鏡で撮影した画像を用いて自動処理による粗大粒子計測を行うに際し、従来よりも高い検出率を安定して得ることができる。特に、次世代製品のように、従来よりも小さい粒径の金属粉末に対しては、より本発明の効果を奏するものである。 As described in Example 1 and Example 2, according to the present invention, when performing coarse particle measurement by automatic processing using an image taken by a scanning electron microscope, a higher detection rate than before is stably achieved. Obtainable. In particular, the effect of the present invention is more exerted on a metal powder having a particle size smaller than that of the conventional one, such as a next-generation product.

本実施例では、試料に平均粒径0.2μmのニッケル粉末を用いて、発明例3及び比較例4において異なる前処理方法をそれぞれ3回ずつ実施し、各前処理を施した試料を走査型電子顕微鏡で撮影して、連結粒子計測を行った。なお、発明例3は発明例1と同様の前処理を行ったものとし、説明を省略する。以下に、比較例4の前処理方法について説明する。 In this example, using nickel powder having an average particle size of 0.2 μm as the sample, the different pretreatment methods in Invention Example 3 and Comparative Example 4 were carried out three times each, and the sample subjected to each pretreatment was subjected to scanning electron electrons. The images were taken with a microscope to measure the connected particles. It is assumed that Invention Example 3 has undergone the same pretreatment as Invention Example 1, and the description thereof will be omitted. The pretreatment method of Comparative Example 4 will be described below.

(比較例4)
カーボンテープ13に試料を直接圧接し観察試料を作製した(図6参照)。得られた観察試料を走査型電子顕微鏡の所定の観察位置にセットして、後述する連結粒子計測方法によって連結粒子計測を行った。
(Comparative Example 4)
The sample was directly pressed against the carbon tape 13 to prepare an observation sample (see FIG. 6). The obtained observation sample was set at a predetermined observation position of a scanning electron microscope, and the connection particles were measured by the connection particle measurement method described later.

本実施例における走査型電子顕微鏡による撮影、及び、連結粒子計測は以下のように行った。
走査型電子顕微鏡(SU-5000、日立製作所製)を用いて、倍率20000倍のBSE画像を8視野得る。その後、得られたBSE画像を、画像解析ソフト(WinROOF、三谷商事株式会社製)により解析し、BSE画像内の粒子形状の全様が見える粒子の外枠を計測し、各粒子の特徴量として円形度、アスペクト比、楕円長短比、円凹凸度の組み合わせを用いた一定の抽出条件により、連結粒子を自動処理にて抽出した。なお、各特徴量は、目視計測を行って抽出した粒子を解析することによって得た数値とした。
上記の方法により連結粒子及び全粒子の数を計測した結果を表3に示す。
The imaging with the scanning electron microscope and the measurement of the connected particles in this example were performed as follows.
Using a scanning electron microscope (SU-5000, manufactured by Hitachi, Ltd.), 8 fields of BSE images with a magnification of 20000 can be obtained. After that, the obtained BSE image is analyzed by image analysis software (WinROOF, manufactured by Mitani Shoji Co., Ltd.), and the outer frame of the particles in which the entire particle shape in the BSE image can be seen is measured and used as the feature amount of each particle. The connected particles were automatically processed under certain extraction conditions using a combination of circularity, aspect ratio, elliptical length / shortness ratio, and circular unevenness. Each feature amount was a numerical value obtained by visually measuring and analyzing the extracted particles.
Table 3 shows the results of measuring the number of connected particles and the total number of particles by the above method.

Figure 2021128103
Figure 2021128103

表3に、計測された連結粒子数、全粒子数、連結粒子率、相対標準偏差を示す。連結粒子率は全粒子数に対する連結粒子の存在割合を示すものであり、相対標準偏差は、発明例3及び比較例4でそれぞれ3回の計測によって得られた連結粒子率のばらつきを示すものである。 Table 3 shows the measured number of connected particles, total number of particles, connected particle ratio, and relative standard deviation. The linked particle ratio indicates the abundance ratio of the linked particles to the total number of particles, and the relative standard deviation indicates the variation in the linked particle ratio obtained by three measurements in each of Invention Example 3 and Comparative Example 4. be.

表3に示すように、従来のプレス法を用いた比較例4では3回の計測において、連結粒子及び全粒子の検出数にばらつきがみられ、これにより算出される連結粒子率もばらつきが大きい。
これは、カーボンテープ13に圧接された試料は、金属粒子層が厚く、層の上側の粒子によって下側の連結粒子1bが隠され(図6(b)参照)、各特徴量を用いた自動解析では、安定した抽出が行えなかったからと考えられる。
As shown in Table 3, in Comparative Example 4 using the conventional press method, the number of detected connected particles and all particles varies in the three measurements, and the connected particle ratio calculated by this also varies greatly. ..
This is because the sample pressed against the carbon tape 13 has a thick metal particle layer, and the lower connecting particles 1b are hidden by the particles on the upper side of the layer (see FIG. 6B), and automatic use of each feature amount is used. It is probable that stable extraction could not be performed in the analysis.

この点、発明例3は、3回の計測において、連結粒子数、全粒子数共に検出数のばらつきが小さく、安定した結果を得ることができた。
これは、薄層の粒子層(図3)を形成したことで、自動画像解析による粒子の分離精度が向上したからと考えられる。
In this respect, in Invention Example 3, the variation in the number of detected particles was small in both the number of connected particles and the total number of particles in the three measurements, and stable results could be obtained.
It is considered that this is because the formation of the thin particle layer (FIG. 3) improved the separation accuracy of the particles by the automatic image analysis.

実施例3で説明したように、本発明によれば、走査型電子顕微鏡で撮影した画像を用いて自動処理による連結粒子計測を行うに際し、安定した計測結果を得ることができる。 As described in Example 3, according to the present invention, stable measurement results can be obtained when the connected particles are measured by automatic processing using the images taken by the scanning electron microscope.

1 金属粉末
1a 粗大粒子
1b 連結粒子
3 分散液
5 メンブレンフィルター
7 エアーブラシ
9 ガラスろ過器
11 試料台
13 カーボンテープ
1 Metal powder 1a Coarse particles 1b Connected particles 3 Dispersion 5 Membrane filter 7 Air brush 9 Glass filter 11 Sample stand 13 Carbon tape

Claims (2)

金属粉末中に存在する粗大粒子及び連結粒子の個数を、走査型電子顕微鏡で撮影した画像に基づいて自動計測するために、前記走査型電子顕微鏡で撮影するための試料の前処理方法であって、
前記金属粉末を分散媒中に分散させる分散工程と、
前記金属粉末が分散された分散液を分取して、メンブレンフィルター上に塗布する塗布工程とを有し、
該塗布工程は、前記メンブレンフィルターの表面にエアーブラシで前記分散液を噴霧しながら、前記メンブレンフィルターの裏面側から前記分散液の液体を吸引ろ過することを特徴とする走査型電子顕微鏡で撮影するための試料の前処理方法。
This is a sample pretreatment method for photographing with the scanning electron microscope in order to automatically measure the number of coarse particles and connected particles existing in the metal powder based on the image taken with the scanning electron microscope. ,
A dispersion step of dispersing the metal powder in a dispersion medium,
It has a coating step of separating the dispersion liquid in which the metal powder is dispersed and coating it on a membrane filter.
The coating step is photographed with a scanning electron microscope characterized in that the dispersion liquid is suction-filtered from the back surface side of the membrane filter while spraying the dispersion liquid on the surface of the membrane filter with an air brush. Sample pretreatment method for.
前記金属粉末が、ニッケル粉末、鉄粉末、銅粉末であることを特徴とする請求項1記載の走査型電子顕微鏡で撮影するための試料の前処理方法。 The method for pretreating a sample for photographing with a scanning electron microscope according to claim 1, wherein the metal powder is nickel powder, iron powder, or copper powder.
JP2020023976A 2020-02-17 2020-02-17 A sample pretreatment method for imaging with a scanning electron microscope Active JP7277399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020023976A JP7277399B2 (en) 2020-02-17 2020-02-17 A sample pretreatment method for imaging with a scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023976A JP7277399B2 (en) 2020-02-17 2020-02-17 A sample pretreatment method for imaging with a scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2021128103A true JP2021128103A (en) 2021-09-02
JP7277399B2 JP7277399B2 (en) 2023-05-18

Family

ID=77488412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023976A Active JP7277399B2 (en) 2020-02-17 2020-02-17 A sample pretreatment method for imaging with a scanning electron microscope

Country Status (1)

Country Link
JP (1) JP7277399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899608A (en) * 2021-10-29 2022-01-07 蜂巢能源科技有限公司 Method for analyzing magnetic foreign matter of material for lithium ion battery
WO2023013440A1 (en) 2021-08-04 2023-02-09 日本ペイント・オートモーティブコーティングス株式会社 Coating composition set

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207777A (en) * 1990-01-10 1991-09-11 Sugitani Kinzoku Kogyo Kk Heat resistant composition having water-dispersible property and use thereof
JP2001252601A (en) * 2000-03-14 2001-09-18 Makoto Yamashita Portable coating booth
JP2014029308A (en) * 2012-07-31 2014-02-13 Hokkaido Univ Sample sheet and method for producing sample
JP2015161536A (en) * 2014-02-26 2015-09-07 住友金属鉱山株式会社 Evaluation method for coarse particle in conductive powder included in conductive paste
JP2015190043A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Wet manufacturing process of nickel powder
JP2017191011A (en) * 2016-04-13 2017-10-19 株式会社村田製作所 Powder evaluation method
US20200029477A1 (en) * 2017-09-28 2020-01-23 Murata Manufacturing Co., Ltd. Electromagnetic shielding material and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207777A (en) * 1990-01-10 1991-09-11 Sugitani Kinzoku Kogyo Kk Heat resistant composition having water-dispersible property and use thereof
JP2001252601A (en) * 2000-03-14 2001-09-18 Makoto Yamashita Portable coating booth
JP2014029308A (en) * 2012-07-31 2014-02-13 Hokkaido Univ Sample sheet and method for producing sample
JP2015161536A (en) * 2014-02-26 2015-09-07 住友金属鉱山株式会社 Evaluation method for coarse particle in conductive powder included in conductive paste
JP2015190043A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Wet manufacturing process of nickel powder
JP2017191011A (en) * 2016-04-13 2017-10-19 株式会社村田製作所 Powder evaluation method
US20200029477A1 (en) * 2017-09-28 2020-01-23 Murata Manufacturing Co., Ltd. Electromagnetic shielding material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013440A1 (en) 2021-08-04 2023-02-09 日本ペイント・オートモーティブコーティングス株式会社 Coating composition set
CN113899608A (en) * 2021-10-29 2022-01-07 蜂巢能源科技有限公司 Method for analyzing magnetic foreign matter of material for lithium ion battery

Also Published As

Publication number Publication date
JP7277399B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US8384897B2 (en) Method of analyzing particle size distribution of particles in metal material
JP7277399B2 (en) A sample pretreatment method for imaging with a scanning electron microscope
TWI600776B (en) Silver powder, and electrically conductive paste
CN102818723B (en) Method of electrolytically extracting and detecting fine inclusions in steel
Lim et al. A mesopore-stimulated electromagnetic near-field: electrochemical synthesis of mesoporous copper films by micelle self-assembly
KR101106515B1 (en) Method for analyzing metallic material
US20070079665A1 (en) Fine particulate silver powder and production method thereof
Fernandes et al. A semi-automated general statistical treatment of graphene systems
JP5942873B2 (en) Method for producing thin sample and method for observing sample
Holbrook et al. An investigation into LA-spICP-ToF-MS uses for in situ measurement of environmental multi-elemental nanoparticles
JP6727922B2 (en) Silver powder, method for producing the same, and conductive paste
JP2015071819A (en) Flaky copper powder and production method thereof
JP5277906B2 (en) Measuring method of particle size distribution of fine particles
Motellier et al. Contribution of single particle inductively coupled plasma mass spectrometry and asymmetrical flow field-flow fractionation for the characterization of silver nanosuspensions. Comparison with other sizing techniques
JP6466758B2 (en) Silver-coated flaky copper powder, method for producing the same, and conductive paste using the silver-coated flaky copper powder
JP2014029845A (en) Method for producing conductive paste
JP4972784B2 (en) Analysis method of fine particles in steel
CN115032183A (en) Device and method for measuring colloid stability and collision strength between colloid particles
JP5042806B2 (en) Method for producing metal oxide fine particles, method for evaluating metal oxide fine particles, and metal oxide fine particles
JP2017191011A (en) Powder evaluation method
JP2005146386A (en) Method of producing metal powder slurry, and nickel powder slurry obtained by the production method
JP6118193B2 (en) Method for producing dispersible nickel fine particle slurry
WO2019239975A1 (en) Alcohol-based silver nanowire dispersion liquid and method for producing same
CN115315326A (en) Method for producing silver powder
CN106644857A (en) Detection method of aggregates in superfine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7277399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150