JP2021127513A - Alloy steel for mechanical structure excellent in balance of hardness and toughness - Google Patents

Alloy steel for mechanical structure excellent in balance of hardness and toughness Download PDF

Info

Publication number
JP2021127513A
JP2021127513A JP2020024680A JP2020024680A JP2021127513A JP 2021127513 A JP2021127513 A JP 2021127513A JP 2020024680 A JP2020024680 A JP 2020024680A JP 2020024680 A JP2020024680 A JP 2020024680A JP 2021127513 A JP2021127513 A JP 2021127513A
Authority
JP
Japan
Prior art keywords
toughness
hardness
steel
less
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020024680A
Other languages
Japanese (ja)
Inventor
春香 ▲高▼橋
春香 ▲高▼橋
Haruka Takahashi
和弥 橋本
Kazuya Hashimoto
和弥 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2020024680A priority Critical patent/JP2021127513A/en
Publication of JP2021127513A publication Critical patent/JP2021127513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide an alloy steel for a mechanical structure simultaneously realizing hardness and toughness in a good balance.SOLUTION: An alloy steel for a mechanical structure is a steel including, by mass, 0.25 to 0.40% C, 0.05 to 0.30% Si, 1.00 to 1.50% Mn, 0.030% or less P, 0.030% or less S, 1.50 to 3.00% Cr, 0.05 to 0.50% Mo, 0.020 to 0.050% Al, and 0.0100 to 0.0200% N, and the balance Fe with inevitable impurities, in which a value of a formula 0.5C×(1+0.7Si)×(1+3.6Mn)×(1+2.2Cr)×(1+3.0Mo) satisfies 10 to 20, a hardness is 45 HRC or more, and an average of old austenite grain diameters is 20 μm or less.SELECTED DRAWING: None

Description

本発明は、土木、建設等の分野で使用される土木建設機械等に使用される機械構造用合金鋼に関する。とりわけ土砂や岩石等との摩耗や折損が問題となる環境下で使用される部材として良好な機械構造用合金鋼に関する。 The present invention relates to alloy steel for machine structural use used in civil engineering and construction machinery and the like used in fields such as civil engineering and construction. In particular, the present invention relates to alloy steel for machine structure, which is good as a member used in an environment where wear and breakage with earth and sand and rocks are a problem.

土木建設機械に使用される部材は、岩石等との衝突により折損等を生じることがある。また、土砂、岩石等により摩耗も引き起こされる。近年、土木建設機械が使用される環境はますます過酷になってきており、部材の早期折損、早期摩耗が問題視されている。
こうした早期折損に対しては部材の靭性を向上させること、早期摩耗に対しては部材を高強度化、高硬度化させることが望ましいところである。もっとも、靭性と硬度とはトレードオフの関係にあるので、高強度化と高硬度化の双方を両立させることは一般的に困難である。
Members used in civil engineering and construction machinery may break due to collisions with rocks and the like. Wear is also caused by earth and sand, rocks, etc. In recent years, the environment in which civil engineering and construction machinery is used has become more and more harsh, and early breakage and early wear of members are regarded as problems.
It is desirable to improve the toughness of the member for such early breakage, and to increase the strength and hardness of the member for early wear. However, since there is a trade-off relationship between toughness and hardness, it is generally difficult to achieve both high strength and high hardness at the same time.

また、土木建設機械用の部材は大型の部品であることが多いために、焼入れ時に完全に部品の中心部まで硬化させる必要がある。焼入れ硬化層が浅い場合には、表面部に硬化層があるものの、この表面部の硬化層が摩耗しきってしまうと、とたんに軟質な内部が急激に摩耗してしまうこととなる。そこで、土木建設機械用鋼においては、大型部材に用いる機械構造用合金鋼においては、中心部まで焼入れ硬化が可能となる十分な焼入性を備えることが必要となる。 In addition, since members for civil engineering and construction machinery are often large parts, it is necessary to completely cure them to the center of the parts during quenching. When the quenching hardened layer is shallow, there is a hardened layer on the surface portion, but when the hardened layer on the surface portion is completely worn, the soft inside is rapidly worn. Therefore, in the steel for civil engineering and construction machinery, it is necessary for the alloy steel for machine structure used for large members to have sufficient hardenability so that quenching and hardening can be performed up to the center.

従来、土砂や岩石等による摩耗が問題となる土木建設機械に使用される部材に対しては、Cr、Mo等の合金元素を多量に添加した鋼材に焼入れを行い、高硬度化した鋼材が使用されている。 Conventionally, for members used in civil engineering construction machinery where wear due to earth and sand, rocks, etc. is a problem, steel materials with a large amount of alloying elements such as Cr and Mo are hardened and hardened. Has been done.

また、C添加による高硬度化、Si、Cr添加による焼入性の増大、Si添加による焼戻し軟化抵抗性の向上により、耐摩耗性の向上を指向する方法が提案されている(特許文献1参照。)。
しかし、この提案の方法では、硬度向上のためのC増加により、他方で靭性が低下するという問題が生じる。また、焼入性向上のためにSi、Crを多量に添加しているものの、今度は過剰な焼入性によって製造性の低下が懸念される。
Further, a method has been proposed in which the abrasion resistance is improved by increasing the hardness by adding C, increasing the hardenability by adding Si and Cr, and improving the temper softening resistance by adding Si (see Patent Document 1). .).
However, in the proposed method, there arises a problem that the toughness is lowered due to the increase in C for improving the hardness. Further, although a large amount of Si and Cr are added to improve the hardenability, there is a concern that the manufacturability may be lowered due to the excessive hardenability.

また、B添加による粒界強化によって靭性の向上を図るとともに、Siの添加による固溶強化によって耐摩耗性の向上を指向する方法も提案されている(特許文献2参照。)。
しかし、この提案の方法では、Mn、Bの添加により焼入性の向上が図られるものの、合金元素が不足しているために焼入性が未だ低く十分とはいえない。つまり、大型部材に対し焼入れを行った場合には中心部までの硬化が得られず、耐摩耗性が十分とはいえなかった。
Further, a method has been proposed in which the toughness is improved by strengthening the grain boundaries by adding B and the wear resistance is improved by strengthening the solid solution by adding Si (see Patent Document 2).
However, in the proposed method, although the hardenability can be improved by adding Mn and B, the hardenability is still low and cannot be said to be sufficient due to the lack of alloying elements. That is, when the large member was hardened, the hardening to the central part could not be obtained, and the abrasion resistance could not be said to be sufficient.

また、Mn、Cr、Moの複合添加により焼入性、焼戻し軟化抵抗性の向上および靭性の向上を指向する方法が提案されている(特許文献3参照。)。
しかし、Mnの添加により粒界への炭化物の偏析が大きくなるので、靭性を低下させる要因となる。また、Moを多量に添加するため、成分偏析が大きくなることによる靭性の低下、過剰な焼入性による製造性の低下等も懸念される。
Further, a method has been proposed in which a composite addition of Mn, Cr and Mo is aimed at improving hardenability, temper softening resistance and toughness (see Patent Document 3).
However, the addition of Mn increases the segregation of carbides at the grain boundaries, which causes a decrease in toughness. In addition, since a large amount of Mo is added, there are concerns about a decrease in toughness due to an increase in component segregation, a decrease in manufacturability due to excessive hardenability, and the like.

また、Si添加量の低減による粒界炭化物析出の抑制、Al、Nの添加によるオーステナイト粒粗大化抑制およびC、Mn、Cr、Moの適切な添加により、靭性と耐摩耗性の向上を指向する方法が提案されている(特許文献4参照。)。
しかし、この提案の方法では、靭性に与える影響が一般的に大きいとされる旧オーステナイト粒径の制御が未だ不十分であって、ひとたび粗大化が発生すると深刻な靭性の低下が引き起こされる懸念があった。
Further, the toughness and abrasion resistance are improved by suppressing the precipitation of intergranular carbides by reducing the amount of Si added, suppressing the coarsening of austenite grains by adding Al and N, and appropriately adding C, Mn, Cr and Mo. A method has been proposed (see Patent Document 4).
However, with this proposed method, the control of the old austenite grain size, which is generally considered to have a large effect on toughness, is still insufficient, and there is a concern that once coarsening occurs, a serious decrease in toughness will occur. there were.

再表2016/170866号公報Re-table 2016/170866 特開2012−233252号公報Japanese Unexamined Patent Publication No. 2012-233252 特開平08−199287号公報Japanese Unexamined Patent Publication No. 08-199287 特開2020−015927号公報Japanese Unexamined Patent Publication No. 2020-015927

そこで、本発明が解決しようとする課題は、土木建設機械用部材、例えばトラックリンク、トラックシュー、リッパーポイント等のような大型の部材にも適用可能で、かつ厳しい衝撃が加わったり摩耗が生じやすい厳しい環境下での使用に適した鋼材として、中心部まで焼入れ硬化が可能な焼入性に優れる機械構造用合金鋼を提供することである。
また、上記の機械構造用合金鋼を焼入れ焼戻し処理した際に、優れた硬度と靭性を兼ね備えている機械構造用合金鋼の提供、すなわち、土木建設機械用部材に好適な、焼入れ焼戻し後の鋼材中心部の硬さが45HRC以上、2mmVノッチシャルピー衝撃試験により測定した衝撃値が50J/cm2以上であることを満たす、硬度と靭性のバランスに優れた機械構造用合金鋼を提供することである。
Therefore, the problem to be solved by the present invention can be applied to members for civil engineering and construction machinery, for example, large members such as track links, track shoes, ripper points, etc., and is prone to severe impact and wear. As a steel material suitable for use in a harsh environment, it is to provide an alloy steel for machine structure having excellent hardenability that can be hardened to the center.
Further, when the above-mentioned alloy steel for machine structure is hardened and tempered, it is possible to provide the alloy steel for machine structure having excellent hardness and toughness, that is, a steel material after quenching and tempering suitable for a member for civil engineering and construction machinery. It is an object of the present invention to provide an alloy steel for mechanical structure having an excellent balance between hardness and toughness, satisfying that the hardness of the central portion is 45 HRC or more and the impact value measured by a 2 mm V notch shearpy impact test is 50 J / cm 2 or more. ..

本願の発明者らは、焼入れ焼戻し処理を施して用いられる土木建設機械用部材に対し、Siの低減によって粒界炭化物およびオーステナイト粒の粗大化を抑制し、また、圧延工程の加熱温度を1150℃以下の低温とすることにより結晶粒粗大化を防止することで靭性を改善し、さらにC、Mn、Cr、Moを適切に添加することにより焼入れ時に鋼材の中心部まで焼入れ硬化する特性の、靭性と耐摩耗性の双方に優れる鋼を見出した。 The inventors of the present application suppress the coarsening of grain-bound carbides and austenite grains by reducing Si in the members for civil engineering and construction machinery used by quenching and tempering, and the heating temperature in the rolling process is set to 1150 ° C. The toughness is improved by preventing the coarsening of crystal grains by lowering the temperature below, and the toughness has the property of quenching and hardening to the center of the steel material during quenching by appropriately adding C, Mn, Cr, and Mo. We found a steel with excellent both wear resistance and abrasion resistance.

すなわち、本発明の課題を解決する第1の手段は、質量%で、C:0.25〜0.40%、Si:0.05〜0.30%、Mn:1.00〜1.50%、P:0.030%以下、S:0.030%以下、Cr:1.50〜3.00%、Mo:0.05〜0.50%、Al:0.020〜0.050%、N:0.0100〜0.0200%を含有し、残部がFeおよび不可避不純物からなり、かつ、以下の式(1)のAの値が10〜20を満足する鋼であって、
さらに、硬さが45HRC以上であって、旧オーステナイト結晶粒径の平均が20μm以下であることを特徴とする、機械構造用合金鋼である。
A=0.5C×(1+0.7Si)×(1+3.6Mn)×(1+2.2Cr)×(1+3.0Mo)・・・式(1)
ただし、式(1)の右辺の元素記号には、各元素の含有率(質量%)を代入する。
That is, the first means for solving the problem of the present invention is by mass%, C: 0.25 to 0.40%, Si: 0.05 to 0.30%, Mn: 1.00 to 1.50. %, P: 0.030% or less, S: 0.030% or less, Cr: 1.50 to 3.00%, Mo: 0.05 to 0.50%, Al: 0.020 to 0.050% , N: 0.0100 to 0.0200%, the balance is Fe and unavoidable impurities, and the value of A in the following formula (1) satisfies 10 to 20.
Further, it is an alloy steel for machine structure, characterized in that the hardness is 45 HRC or more and the average of the old austenite crystal grain size is 20 μm or less.
A = 0.5C x (1 + 0.7Si) x (1 + 3.6Mn) x (1 + 2.2Cr) x (1 + 3.0Mo) ... Equation (1)
However, the content rate (mass%) of each element is substituted for the element symbol on the right side of the formula (1).

その第2の手段は、第1の手段に記載の化学成分に加えて、質量%でNb:0.02〜0.04%、Ti:0.005〜0.030%のうちいずれか一種または双方を含有し、かつNbとTiの質量%の合計値は0.005≦(Nb+Ti)≦0.050を満足するものであって、残部がFeおよび不可避不純物からなり、かつ、以下の式(1)のAの値が10〜20を満足する鋼であって、
さらに、硬さが45HRC以上であって、旧オーステナイト結晶粒径の平均が20μm以下であることを特徴とする、機械構造用合金鋼である。
A=0.5C×(1+0.7Si)×(1+3.6Mn)×(1+2.2Cr)×(1+3.0Mo)・・・式(1)
ただし、式(1)の右辺の元素記号には、各元素の含有率(質量%)を代入する。
The second means is, in addition to the chemical composition described in the first means, any one of Nb: 0.02 to 0.04% and Ti: 0.005 to 0.030% in mass%. Both are contained, and the total value of mass% of Nb and Ti satisfies 0.005 ≦ (Nb + Ti) ≦ 0.050, the balance is composed of Fe and unavoidable impurities, and the following formula ( Steel in which the value of A in 1) satisfies 10 to 20.
Further, it is an alloy steel for machine structure, characterized in that the hardness is 45 HRC or more and the average of the old austenite crystal grain size is 20 μm or less.
A = 0.5C x (1 + 0.7Si) x (1 + 3.6Mn) x (1 + 2.2Cr) x (1 + 3.0Mo) ... Equation (1)
However, the content rate (mass%) of each element is substituted for the element symbol on the right side of the formula (1).

本発明の鋼は、焼入れ温度を規定することで焼入れ焼戻し後の鋼材中心部の硬さが45HRC以上と高硬度となっていることに加えて、さらに旧オーステナイト粒径の平均が20μm以下であることから50J/cm2以上の衝撃値が確保されており、高靱性ともなっている。そこで、大型の土木建設機械にも好適な、中心部まで焼入れ硬化し、かつ高靭性な、硬さと靱性の双方をバランスよく兼ね備えた機械構造用合金鋼を得ることができる。 The steel of the present invention has a high hardness of 45 HRC or more at the center of the steel material after quenching and tempering by specifying the quenching temperature, and further, the average particle size of the old austenite is 20 μm or less. Therefore, an impact value of 50 J / cm 2 or more is secured, and it is also highly tough. Therefore, it is possible to obtain an alloy steel for machine structural use, which is suitable for large-scale civil engineering and construction machines, is hardened to the center, and has high toughness, and has both hardness and toughness in a well-balanced manner.

本発明の実施の形態を詳述するに先立ち、本発明の機械構造用合金鋼の各化学成分を規定する理由と、熱処理条件、硬度、オーステナイト粒径等を規定する理由について説明する。なお、各化学成分の%の記載は質量%を意味する。 Prior to detailing the embodiment of the present invention, the reason for defining each chemical component of the alloy steel for mechanical structure of the present invention and the reason for defining the heat treatment conditions, hardness, austenite particle size and the like will be described. In addition, the description of% of each chemical component means mass%.

C:0.25〜0.40%
Cは、焼入れ時のマトリックス強度を向上させ、焼入性、耐摩耗性を向上させるのに有効な元素である。Cが0.25%未満では十分な硬度が確保できないため、0.25%以上とする。他方、C量が過剰であると、靭性を大きく低下させる。そのため、Cは上限を0.40%とする。
そこで、Cは0.25〜0.40%とする。好ましくは、Cは0.25〜0.35%である。
C: 0.25 to 0.40%
C is an element effective for improving the matrix strength at the time of quenching and improving the hardenability and abrasion resistance. If C is less than 0.25%, sufficient hardness cannot be secured, so the hardness is set to 0.25% or more. On the other hand, if the amount of C is excessive, the toughness is greatly reduced. Therefore, C has an upper limit of 0.40%.
Therefore, C is set to 0.25 to 0.40%. Preferably, C is 0.25 to 0.35%.

Si:0.05〜0.30%
Siは鋼の脱酸に必要であるとともに、焼入性の向上に影響する元素である。そのため、Siは0.05以上必要である。他方、Siが0.30%を超えると、粒界炭化物の生成およびオーステナイト粒の粗大化を引き起こし、靭性を低下させる。そのため、Siは上限を0.30%とする。
そこで、Siは0.05〜0.30%とする。
Si: 0.05 to 0.30%
Si is an element that is necessary for deoxidizing steel and affects the improvement of hardenability. Therefore, Si is required to be 0.05 or more. On the other hand, when Si exceeds 0.30%, it causes the formation of intergranular carbides and the coarsening of austenite grains, resulting in a decrease in toughness. Therefore, the upper limit of Si is set to 0.30%.
Therefore, Si is set to 0.05 to 0.30%.

Mn:1.00〜1.50%
Mnは焼入性の向上、焼戻し軟化抵抗の向上に有効な元素である。そのため、Mnは1.00%以上必要である。他方、Mnが1.50%を超えると結晶粒界に偏析し靭性を低下させる。そのため、Mnは上限を1.50%とする。
そこで、Mnは1.00〜1.50%である。
Mn: 1.00 to 1.50%
Mn is an element effective for improving hardenability and tempering softening resistance. Therefore, Mn needs to be 1.00% or more. On the other hand, when Mn exceeds 1.50%, segregation occurs at the grain boundaries and the toughness is lowered. Therefore, the upper limit of Mn is 1.50%.
Therefore, Mn is 1.00 to 1.50%.

P:0.030%以下
Pは結晶粒界に偏析し、靭性を低下させるため、0.030%以下とする。
P: 0.030% or less P is 0.030% or less because it segregates at the grain boundaries and reduces toughness.

S:0.030%以下
Sは靭性の低下を招くため、0.030%以下とする。
S: 0.030% or less Since S causes a decrease in toughness, it should be 0.030% or less.

Cr:1.50〜3.00%
Crは焼入性、焼戻し軟化抵抗を増加させ、耐摩耗性を向上させるのに有効な元素である。Crは1.50%以下では鋼材の中心部まで焼入れ硬化させることができないため、Crは1.50%以上が必要である。他方、Crは3.00%を超えると靭性の低下、焼入性過剰による製造性の低下を招く。そのため、Crは上限を3.00%とする。
そこで、Crは1.50〜3.00%とする。
Cr: 1.50 to 3.00%
Cr is an element effective for increasing hardenability and temper softening resistance and improving wear resistance. If Cr is 1.50% or less, it cannot be hardened by quenching to the center of the steel material, so Cr must be 1.50% or more. On the other hand, if Cr exceeds 3.00%, the toughness is lowered and the manufacturability is lowered due to excessive hardenability. Therefore, the upper limit of Cr is set to 3.00%.
Therefore, Cr is set to 1.50 to 3.00%.

Mo:0.05〜0.50%
Moは焼入性、焼戻し軟化抵抗の向上に有効な元素である。そのため、Moは0.05%以上の添加が必要である。他方、Moは0.50%を超えると、鋼材の成分偏析および製造性の低下を引き起こす。そのため、Moは上限を0.50%とする。
そこで、Moは0.05〜0.50%とする。
Mo: 0.05 to 0.50%
Mo is an element effective for improving hardenability and temper softening resistance. Therefore, Mo needs to be added in an amount of 0.05% or more. On the other hand, if Mo exceeds 0.50%, component segregation of the steel material and deterioration of manufacturability are caused. Therefore, Mo has an upper limit of 0.50%.
Therefore, Mo is set to 0.05 to 0.50%.

Al:0.020〜0.050%
Alは鋼中でAlNを形成し、ピンニング粒子としてオーステナイト粒径の粗大化を抑制し、靭性の向上に寄与する。そのため、Alは0.020%以上が必要である。もっとも、Alは0.050%を超えると、窒化物や酸化物が粗大化することにより靭性が低下する。また、製造性の低下を引き起こすことから、Alは上限を0.050%とする。
そこでAlは0.020〜0.050%とする。
Al: 0.020 to 0.050%
Al forms AlN in steel, suppresses coarsening of austenite particle size as pinning particles, and contributes to improvement of toughness. Therefore, Al needs to be 0.020% or more. However, if Al exceeds 0.050%, the toughness decreases due to the coarsening of nitrides and oxides. Further, since it causes a decrease in manufacturability, the upper limit of Al is set to 0.050%.
Therefore, Al is set to 0.020 to 0.050%.

N:0.0100〜0.0200%
Nは鋼中でAlNを形成し、オーステナイト粒径の粗大化を抑制する元素である。そのため、Nは0.0100%以上必要である。もっともNは0.0200%を超えると、窒化物が粗大化し、靭性が低下するため、Nは上限を0.0200%とする。
そこで、Nは0.0100〜0.0200%とする。
N: 0.0100 to 0.0200%
N is an element that forms AlN in steel and suppresses coarsening of the austenite particle size. Therefore, N is required to be 0.0100% or more. However, if N exceeds 0.0200%, the nitride becomes coarse and the toughness decreases. Therefore, the upper limit of N is set to 0.0200%.
Therefore, N is set to 0.0100 to 0.0200%.

本発明の機械構造用合金鋼には、NiとTiのいずれか1種あるいは双方を、以下の範囲で添加することができる。
Ti:0.005〜0.030%、
Nb:0.02〜0.04%、
Ti+Nb:0.005〜0.050%
Either one or both of Ni and Ti can be added to the alloy steel for mechanical structure of the present invention in the following range.
Ti: 0.005 to 0.030%,
Nb: 0.02 to 0.04%,
Ti + Nb: 0.005 to 0.050%

Tiは、Alと同様にオーステナイト粒径の粗大化を抑制するのに有効な元素である。そのためにはTiは0.005%以上添加することが望ましい。もっとも、Tiが過剰であると窒化物の粗大化による靭性の低下、製造性の低下を招くため、Tiは上限を0.030%とする。
Nbは鋼中でNbCNを形成し、オーステナイト粒の粗大化を抑制することで靭性の向上に寄与する。そのためにはNbは0.02%以上添加することが望ましい。もっとも、Nbは過剰であると粗大なNbCNの析出により靭性が低下するため、Nbは上限を0.04%とする。
ただし、TiとNbは、いずれか1種あるいは双方を添加してもよいが、その合計量が0.050%を超えると効果が飽和するため、Ti+Nbの添加は、その上限を0.050%とする。
そこで、本発明の機械構造用合金鋼には、Ti:0.005〜0.030%、Nb:0.02〜0.04%、のいずれか1種または双方を、Ti+Nbの合計で0.005〜0.050%の範囲で添加しうるものとする。
Like Al, Ti is an element effective in suppressing coarsening of the austenite particle size. Therefore, it is desirable to add 0.005% or more of Ti. However, if Ti is excessive, the toughness is lowered due to the coarsening of the nitride and the manufacturability is lowered. Therefore, the upper limit of Ti is set to 0.030%.
Nb forms NbCN in steel and contributes to the improvement of toughness by suppressing the coarsening of austenite grains. Therefore, it is desirable to add 0.02% or more of Nb. However, if Nb is excessive, the toughness decreases due to the precipitation of coarse NbCN, so the upper limit of Nb is set to 0.04%.
However, either one or both of Ti and Nb may be added, but since the effect is saturated when the total amount exceeds 0.050%, the upper limit of the addition of Ti + Nb is 0.050%. And.
Therefore, in the alloy steel for mechanical structure of the present invention, any one or both of Ti: 0.005 to 0.030% and Nb: 0.02 to 0.04% are used, and the total of Ti + Nb is 0. It shall be possible to add in the range of 005 to 0.050%.

式(1)におけるAの値:10〜20
A=0.5C×(1+0.7Si)×(1+3.6Mn)×(1+2.2Cr)×(1+3.0Mo)・・・式(1)
(ただし、式(1)の右辺の元素記号には、各元素の含有率(質量%)の値を代入する。)
式(1)におけるAの値は、鋼材の焼入性に関わる指標である。A値の値が増加する程、鋼材の焼入性が向上する。すなわち、A値は、焼入性に関わるC,Si,Mn,Cr,Moのバランスを考慮した式(1)に各化学成分の値を代入して算定するものであるから、この式(1)を用いることで、鋼材の焼入れ性を適切に把握することができる。
そして、A値が高くなると、鋼材の中心部まで焼入れ硬化することによって耐摩耗性が向上することから、中心まで焼きが入る部材を選別でき、大型の部材としても十分適用できるようになる。そこで、φ200未満の鋼材径に対し、中心部まで焼入れ硬化できるよう、A値は10以上とする。
もっとも、A値が20以上であると、焼入性が過剰となりやすく、製造性の低下を招くとともに、コスト増加の要因となる。そのため、A値は20以下とする。
そこで、A値の値は、10〜20とする。
Value of A in formula (1): 10 to 20
A = 0.5C x (1 + 0.7Si) x (1 + 3.6Mn) x (1 + 2.2Cr) x (1 + 3.0Mo) ... Equation (1)
(However, the value of the content rate (mass%) of each element is substituted for the element symbol on the right side of the formula (1).)
The value of A in the formula (1) is an index related to the hardenability of the steel material. As the value of A value increases, the hardenability of the steel material improves. That is, since the A value is calculated by substituting the value of each chemical component into the formula (1) considering the balance of C, Si, Mn, Cr, and Mo related to hardenability, this formula (1). ) Can be used to appropriately grasp the hardenability of steel materials.
When the A value becomes high, the wear resistance is improved by quenching and hardening to the center of the steel material, so that the members that are quenched to the center can be selected and can be sufficiently applied as a large member. Therefore, for steel materials with a diameter of less than φ200, the A value is set to 10 or more so that quenching and hardening can be performed up to the center.
However, when the A value is 20 or more, the hardenability tends to be excessive, which causes a decrease in manufacturability and a factor of cost increase. Therefore, the A value is set to 20 or less.
Therefore, the value of the A value is set to 10 to 20.

旧オーステナイト粒径:20μm以下
オーステナイト粒の粗大化は靭性の低下を引き起こすため、旧オーステナイト結晶粒径の平均値は、上限を20μmとする。
Old austenite grain size: 20 μm or less Since coarsening of austenite grains causes a decrease in toughness, the upper limit of the average value of the old austenite crystal grain size is 20 μm.

本発明の第1又は第2の手段に記載の化学成分と式(1)のA値が10〜20を満足する機械構造用合金鋼を、たとえば1150℃以下で塑性加工して焼ならしした後、オーステナイト化温度より30〜100℃高い加熱温度から焼入れ焼戻し処理することで、焼入れ硬さが45HRC以上かつ旧オーステナイト結晶粒径の平均が20μm以下の機械構造用合金鋼を得ることができる。 A machine structural alloy steel satisfying the chemical composition according to the first or second means of the present invention and the A value of the formula (1) of 10 to 20 was subjected to, for example, plastic working at 1150 ° C. or lower and quenched. After that, by quenching and tempering from a heating temperature 30 to 100 ° C. higher than the austenitizing temperature, an alloy steel for mechanical structure having a quenching hardness of 45 HRC or more and an average of the old austenite crystal grain size of 20 μm or less can be obtained.

焼入温度:オーステナイト化温度+30〜100℃
焼入温度が低いと、十分に鋼材を焼入れ硬化させることができないため、焼入温度は鋼材のオーステナイト化温度より30℃以上高いものとする。もっとも、焼入温度が高すぎると、結晶粒の粗大化により靭性が低下する。そのため、焼入温度は鋼材のオーステナイト化温度から高くとも100℃までとするとよい。
Quenching temperature: Austenitization temperature + 30-100 ° C
If the quenching temperature is low, the steel material cannot be sufficiently quenched and hardened. Therefore, the quenching temperature is set to be 30 ° C. or more higher than the austenitizing temperature of the steel material. However, if the quenching temperature is too high, the toughness decreases due to the coarsening of the crystal grains. Therefore, the quenching temperature is preferably 100 ° C. at the highest from the austenitizing temperature of the steel material.

塑性加工のための加熱温度:1150℃以下
本発明では、オーステナイト化温度より30〜100℃高い加熱温度から焼入れ焼戻し処理を行った場合、旧オーステナイト結晶粒度の平均粒径が20μm以下となる鋼を得るためには、低温にて圧延工程等の塑性加工を行う必要がある。そこで、本発明の機械構造用合金鋼を得るためには、塑性加工のための加熱温度を1150℃以下とするとよい。
Heating temperature for plastic processing: 1150 ° C or less In the present invention, when quenching and tempering treatment is performed from a heating temperature 30 to 100 ° C higher than the austenitizing temperature, a steel having an average austenite crystal grain size of 20 μm or less is produced. In order to obtain it, it is necessary to perform plastic processing such as a rolling process at a low temperature. Therefore, in order to obtain the alloy steel for mechanical structure of the present invention, the heating temperature for plastic working is preferably 1150 ° C. or lower.

(実施例について)
表1に示す実施例鋼および比較例鋼のそれぞれの化学成分からなる鋼を100kg真空溶解炉で溶製した。
得られた鋼部材を試験片へと加工し、靭性についてはJIS Z 2242に基づいたシャルピー衝撃試験を用いて評価した。
また、耐摩耗性については直径160mmの鋼材を焼入れ焼戻ししたときの鋼材中心部の硬さをJIS Z 2245に基づいたロックウェル硬度測定にて評価した。
(About examples)
Steels composed of the chemical components of the example steels and comparative example steels shown in Table 1 were melted in a 100 kg vacuum melting furnace.
The obtained steel member was processed into a test piece, and the toughness was evaluated using a Charpy impact test based on JIS Z 2242.
Regarding the wear resistance, the hardness of the central part of the steel material when the steel material having a diameter of 160 mm was quenched and tempered was evaluated by Rockwell hardness measurement based on JIS Z 2245.

Figure 2021127513
Figure 2021127513

まず表1に示す鋼を、1150℃もしくは比較のために1250℃で直径160mmに鍛伸した後、870℃で1時間保持後空冷の焼ならしを行った。
その後、焼入れ処理として870℃に加熱して100〜200分保持後に油冷し室温まで冷却した後、210℃にて60〜90分保持後に空冷し室温まで冷却して焼戻しを行い棒鋼を得た。
得られた棒鋼について、靭性、耐摩耗性を評価した。
First, the steels shown in Table 1 were forged to a diameter of 160 mm at 1150 ° C. or 1250 ° C. for comparison, held at 870 ° C. for 1 hour, and then air-cooled normalized.
Then, as a quenching treatment, it was heated to 870 ° C., held for 100 to 200 minutes, oil-cooled and cooled to room temperature, then air-cooled at 210 ° C. for 60 to 90 minutes, cooled to room temperature and tempered to obtain steel bars. ..
The toughness and wear resistance of the obtained steel bars were evaluated.

すなわち、上記の条件で製造、熱処理を行った棒鋼について、鋼材中心の位置より、それぞれJIS 3号 2mm Vノッチシャルピー衝撃試験片を採取し、JIS Z 2242に準拠してシャルピー衝撃試験を行った。 That is, for the steel bars manufactured and heat-treated under the above conditions, JIS No. 3 2 mm V-notch Charpy impact test pieces were collected from the positions of the center of the steel material, and the Charpy impact test was conducted in accordance with JIS Z 2242.

また、上記の条件で製造、熱処理を行った棒鋼について、棒鋼の長さの中心位置(1/2L位置)より、直径160mm×長さ15mmを硬さ測定用試験片として採取し、JIS Z 2245に準拠し、鋼材の直径160mmの中心部の硬さをロックウェル硬度測定機にて測定した。 Further, with respect to the steel bar manufactured and heat-treated under the above conditions, a diameter of 160 mm × a length of 15 mm was collected as a test piece for hardness measurement from the center position (1 / 2L position) of the length of the steel bar, and JIS Z 2245. The hardness of the central portion of the steel material having a diameter of 160 mm was measured with a Rockwell hardness measuring machine in accordance with the above.

旧オーステナイト結晶粒界は、採取した試料の断面を鏡面研磨した後に、直径160mmの鋼材の中心の位置について、ピクリン酸の飽和水溶液ベースの腐食液に浸漬させて現出させた。これを光学顕微鏡で観察し、粒径の平均値を旧オーステナイト平均粒径として記録した。 The former austenite grain boundaries were revealed by mirror-polishing the cross section of the collected sample and then immersing the center position of the steel material having a diameter of 160 mm in a corrosive solution based on a saturated aqueous solution of picric acid. This was observed with an optical microscope, and the average value of the particle size was recorded as the old austenite average particle size.

表2にシャルピー衝撃試験、硬さ測定、旧オーステナイト平均粒径の結果を示す。表2の右端には、焼入性の指標であるA値を表1から転記して示す。 Table 2 shows the results of the Charpy impact test, hardness measurement, and old austenite average particle size. At the right end of Table 2, the A value, which is an index of hardenability, is transcribed from Table 1.

Figure 2021127513
Figure 2021127513

表2に示す通り、1150℃にて鍛伸を実施した本発明に従う実施例鋼(No.1〜10)は、いずれも中心部硬さが45HRC以上、シャルピー衝撃値が50J/cm2以上を満たしており、硬さと靭性のバランスに優れる機械構造用合金鋼として、土木建設機械用の部材に好適となることが確認された。 As shown in Table 2, the example steels (Nos. 1 to 10) according to the present invention, which were forged at 1150 ° C., had a central hardness of 45 HRC or more and a Charpy impact value of 50 J / cm 2 or more. It was confirmed that the alloy steel for machine structure, which is satisfied and has an excellent balance between hardness and toughness, is suitable for members for civil engineering and construction machinery.

これに対し、式(1)で示すA値が10未満である比較例鋼No.11、16、18、19、21は、1150℃にて鍛伸時に鋼材中心部の硬さが45HRCを下回っており、焼入性の不足から、鋼材の中心部まで焼入れ硬化していないことが確認された。 On the other hand, Comparative Example Steel No. in which the A value represented by the formula (1) is less than 10. In 11, 16, 18, 19, and 21, the hardness of the central part of the steel material was less than 45 HRC at the time of forging at 1150 ° C., and due to insufficient hardenability, the central part of the steel material was not hardened by quenching. confirmed.

一方、式(1)で示すA値が20以上である比較例鋼No.12、13、17、20、22、23は、合金元素量が多いことから焼入性が過剰となっており、製造性の低下、コストの増加が懸念されるとともに、靭性の低下も認められた。 On the other hand, Comparative Example Steel No. 1 in which the A value represented by the formula (1) is 20 or more. In 12, 13, 17, 20, 22, and 23, the hardenability is excessive due to the large amount of alloying elements, and there is concern about a decrease in manufacturability and an increase in cost, and a decrease in toughness is also observed. rice field.

さらに、C量が多い比較例鋼No.17、20、22、23では、C量が過剰であることから、過度な高硬度化に伴う靭性の低下を招いている。 Further, Comparative Example Steel No. 1 having a large amount of C. In Nos. 17, 20, 22, and 23, since the amount of C is excessive, the toughness is lowered due to the excessively high hardness.

また、本発明の熱処理方法として適さない1250℃にて鍛伸を実施した場合、実施例鋼(No.1〜10)および比較例鋼(No.11〜23)は、いずれも鍛伸温度の高温化によって旧オーステナイト粒径の平均が20μm以上となり、その衝撃値も50J/cm2を下回るものとなった。このように旧オーステナイト粒径の平均値が増大すると、靭性が低下することが確認された。 Further, when forging was performed at 1250 ° C., which is not suitable for the heat treatment method of the present invention, the example steels (No. 1 to 10) and the comparative example steels (No. 11 to 23) were both at the forging temperature. Due to the high temperature, the average particle size of the old austenite became 20 μm or more, and the impact value became less than 50 J / cm 2 . It was confirmed that when the average value of the old austenite particle size increases in this way, the toughness decreases.

Claims (2)

質量%で、C:0.25〜0.40%、Si:0.05〜0.30%、Mn:1.00〜1.50%、P:0.030%以下、S:0.030%以下、Cr:1.50〜3.00%、Mo:0.05〜0.50%、Al:0.020〜0.050%、N:0.0100〜0.0200%を含有し、残部がFeおよび不可避不純物からなり、かつ、以下の式(1)のAの値が10〜20を満足する鋼であって、
さらに、硬さが45HRC以上であって、旧オーステナイト結晶粒径の平均が20μm以下であることを特徴とする、機械構造用合金鋼。
A=0.5C×(1+0.7Si)×(1+3.6Mn)×(1+2.2Cr)×(1+3.0Mo)・・・式(1)
ただし、式(1)の右辺の元素記号には、各元素の含有率(質量%)を代入する。
By mass%, C: 0.25 to 0.40%, Si: 0.05 to 0.30%, Mn: 1.00 to 1.50%, P: 0.030% or less, S: 0.030 % Or less, Cr: 1.50 to 3.00%, Mo: 0.05 to 0.50%, Al: 0.020 to 0.050%, N: 0.0100 to 0.0200%. A steel in which the balance is composed of Fe and unavoidable impurities, and the value of A in the following formula (1) satisfies 10 to 20.
Further, an alloy steel for machine structure, characterized in that the hardness is 45 HRC or more and the average of the old austenite crystal grain size is 20 μm or less.
A = 0.5C x (1 + 0.7Si) x (1 + 3.6Mn) x (1 + 2.2Cr) x (1 + 3.0Mo) ... Equation (1)
However, the content rate (mass%) of each element is substituted for the element symbol on the right side of the formula (1).
請求項1に記載の化学成分に加えて、質量%でNb:0.02〜0.04%、Ti:0.005〜0.030%のうちいずれか一種または双方を含有し、かつNbとTiの質量%の合計値は0.005≦(Nb+Ti)≦0.050を満足するものであって、残部がFeおよび不可避不純物からなり、かつ、以下の式(1)のAの値が10〜20を満足する鋼であって、
さらに、硬さが45HRC以上であって、旧オーステナイト結晶粒径の平均が20μm以下であることを特徴とする、機械構造用合金鋼。
A=0.5C×(1+0.7Si)×(1+3.6Mn)×(1+2.2Cr)×(1+3.0Mo)・・・式(1)
ただし、式(1)の右辺の元素記号には、各元素の含有率(質量%)を代入する。
In addition to the chemical composition according to claim 1, one or both of Nb: 0.02 to 0.04% and Ti: 0.005 to 0.030% in mass% are contained, and Nb and The total value of mass% of Ti satisfies 0.005 ≦ (Nb + Ti) ≦ 0.050, the balance is composed of Fe and unavoidable impurities, and the value of A in the following formula (1) is 10. Steel that satisfies ~ 20
Further, an alloy steel for machine structure, characterized in that the hardness is 45 HRC or more and the average of the old austenite crystal grain size is 20 μm or less.
A = 0.5C x (1 + 0.7Si) x (1 + 3.6Mn) x (1 + 2.2Cr) x (1 + 3.0Mo) ... Equation (1)
However, the content rate (mass%) of each element is substituted for the element symbol on the right side of the formula (1).
JP2020024680A 2020-02-17 2020-02-17 Alloy steel for mechanical structure excellent in balance of hardness and toughness Pending JP2021127513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020024680A JP2021127513A (en) 2020-02-17 2020-02-17 Alloy steel for mechanical structure excellent in balance of hardness and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020024680A JP2021127513A (en) 2020-02-17 2020-02-17 Alloy steel for mechanical structure excellent in balance of hardness and toughness

Publications (1)

Publication Number Publication Date
JP2021127513A true JP2021127513A (en) 2021-09-02

Family

ID=77488076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020024680A Pending JP2021127513A (en) 2020-02-17 2020-02-17 Alloy steel for mechanical structure excellent in balance of hardness and toughness

Country Status (1)

Country Link
JP (1) JP2021127513A (en)

Similar Documents

Publication Publication Date Title
KR101165654B1 (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
JP4728883B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP6797181B2 (en) New martensitic stainless steel
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
JP6703385B2 (en) Steel with high hardness and excellent toughness
KR20120053616A (en) Bucket tooth for construction equipment with enhanced abrasion resistance and impact resistance
CN109790602B (en) Steel
JP6620490B2 (en) Age-hardening steel
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP2001123244A (en) Steel for large-sized bearing and large-sized bearing parts
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP5962160B2 (en) Alloy steel for machine structure with excellent wear resistance
JP7223997B2 (en) Steel with high hardness and excellent toughness
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP5017937B2 (en) Wear-resistant steel plate with excellent bending workability
JP5688742B2 (en) Steel manufacturing method with excellent toughness and wear resistance
JP5868099B2 (en) Steel with excellent toughness and wear resistance
JP4640101B2 (en) Hot forged parts
JP4645306B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP2021127513A (en) Alloy steel for mechanical structure excellent in balance of hardness and toughness
JP7176877B2 (en) Alloy steel for machine structural use with excellent impact resistance
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240510