JP2021124071A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2021124071A
JP2021124071A JP2020018807A JP2020018807A JP2021124071A JP 2021124071 A JP2021124071 A JP 2021124071A JP 2020018807 A JP2020018807 A JP 2020018807A JP 2020018807 A JP2020018807 A JP 2020018807A JP 2021124071 A JP2021124071 A JP 2021124071A
Authority
JP
Japan
Prior art keywords
combustion
output value
ignition
air
knock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020018807A
Other languages
Japanese (ja)
Inventor
祐輔 木口
Yusuke Kiguchi
祐輔 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2020018807A priority Critical patent/JP2021124071A/en
Publication of JP2021124071A publication Critical patent/JP2021124071A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

To provide a control device of an internal combustion engine which enables stable spark auxiliary compression ignition combustion to be performed at a low cost by using an existing constitution.SOLUTION: In an internal combustion engine performing spark ignition combustion and spark auxiliary compression ignition combustion, in the spark auxiliary compression ignition combustion, a fuel injection valve performs injection a plurality of times including pre-stage injection for forming a premixed air-fuel mixture for compression ignition, and final injection for forming an air-fuel mixture for spark auxiliary ignition in the vicinity of an ignition plug. (a) When an output value of an air-fuel ratio sensor exceeds a misfire determination threshold, the fuel injection valve performs retardation control on final injection timing, and performs advance control on ignition timing, (b) when the output value of the air-fuel ratio sensor is equal to the misfire determination threshold or smaller, however, an output value of a knock sensor exceeds a trace knock threshold, the fuel injection valve performs retardation control on the ignition timing, and (c) when the output value of the air-fuel ratio sensor is equal to the misfire determination threshold or smaller, and the output value of the knock sensor is equal to the trace knock threshold or smaller, the fuel injection valve controls the final injection timing so that an exhaust temperature of the engine reaches the lowest temperature.SELECTED DRAWING: Figure 4

Description

本発明は、内燃エンジンの制御装置、特に往復動型内燃エンジンの制御装置に関する。 The present invention relates to a control device for an internal combustion engine, particularly a control device for a reciprocating internal combustion engine.

往復動型内燃エンジンにおいて、エンジンが高回転高負荷状態にある場合には火花着火燃焼を行い、低回転低負荷状態にある場合には、火花点火による火炎伝播が不可能なリーンな予混合気の圧縮後期に、点火プラグ近傍に燃料噴射を行い火花点火し、その燃焼による圧力上昇と温度上昇により予混合気の圧縮着火燃焼を行う技術が開発されている(例えば特許文献1参照)。 In a reciprocating internal combustion engine, spark ignition combustion is performed when the engine is in a high rotation and high load state, and a lean premixture in which flame propagation by spark ignition is impossible when the engine is in a low rotation and low load state. In the latter stage of compression, a technique has been developed in which fuel is injected into the vicinity of a spark plug to ignite sparks, and the premixture is compressed and ignited by the pressure rise and temperature rise due to the combustion (see, for example, Patent Document 1).

このようなエンジンでは、火花補助による圧縮着火式燃焼における燃焼状態の検知に筒内圧力センサを用い、目標となる燃焼圧とのずれに応じて、火花点火による燃焼(SI燃焼)とそれにより誘発される圧縮着火による燃焼(CI燃焼)の燃焼比率を変更することにより燃焼制御を行う。燃焼比率の変更は、EGRシステムを用い、混合気温度を変更することにより行われる。例えば、EGR率を低くして、混合気温度を上げれば、先に燃焼の始まるSI燃焼の比率が上がる。 In such an engine, an in-cylinder pressure sensor is used to detect the combustion state in compression ignition type combustion with spark assistance, and combustion by spark ignition (SI combustion) and induced by it according to the deviation from the target combustion pressure. Combustion control is performed by changing the combustion ratio of combustion (CI combustion) due to compression ignition. The combustion ratio is changed by changing the air-fuel mixture temperature using the EGR system. For example, if the EGR rate is lowered and the air-fuel mixture temperature is raised, the ratio of SI combustion in which combustion starts first increases.

ところで、燃焼状態の検知に使用する筒内圧力センサ(燃焼圧センサ、指圧センサ)は、燃焼サイクル内での筒内圧変化をサイクル、クランク角度毎に詳細に検知することができるが、高価なためエンジンのコスト増につながるうえ、検出精度の経年変化による耐久性の問題もある。また、EGRシステムによる燃焼比率の調整は応答性が悪く、EGRバルブを調整してから混合気温度が変わり燃焼に反映されるまで、数サイクルないし数十サイクルかかってしまうという課題がある。 By the way, the in-cylinder pressure sensor (combustion pressure sensor, finger pressure sensor) used for detecting the combustion state can detect the change in the in-cylinder pressure in the combustion cycle in detail for each cycle and crank angle, but it is expensive. In addition to increasing the cost of the engine, there is also the problem of durability due to aging of detection accuracy. Further, the adjustment of the combustion ratio by the EGR system has poor responsiveness, and there is a problem that it takes several cycles to several tens of cycles from the adjustment of the EGR valve until the temperature of the air-fuel mixture changes and is reflected in the combustion.

特開2018−193987号公報Japanese Unexamined Patent Publication No. 2018-193987

本発明は、従来技術の上記の点に鑑みてなされたものであり、その目的は、既存の構成を利用して低コストで安定的な火花補助圧縮着火燃焼を実施できる内燃エンジンの制御装置を提供することにある。 The present invention has been made in view of the above points of the prior art, and an object of the present invention is to provide a control device for an internal combustion engine capable of performing stable spark auxiliary compression ignition combustion at low cost by utilizing an existing configuration. To provide.

上記課題を解決するために、本発明は、
燃焼室内に直接燃料を噴射する燃料噴射弁、および、前記燃焼室内に配置された点火プラグを備えた往復動型内燃エンジンの制御装置であって、
前記燃焼室内の燃焼状態判定手段として空燃比センサ、ノックセンサ、および、排気温度センサを備え、それらの出力値に基づいて前記燃料噴射弁の噴射時期と前記点火プラグの点火時期を制御する制御部を備えており、
前記エンジンが、相対的に高回転高負荷状態にある場合には火花着火燃焼、相対的に低回転低負荷状態にある場合には火花補助圧縮着火燃焼を行うものにおいて、
前記火花補助圧縮着火燃焼では、前記燃料噴射弁は、圧縮着火のための予混合気を形成する前段噴射と、前記点火プラグの近傍に火花補助着火のための混合気を形成する最終噴射を含む複数噴射を行い、
(a)前記空燃比センサの出力値が失火判定閾値を越えた場合は、前記最終噴射時期を遅角制御するとともに、前記点火時期を進角制御し、
(b)前記空燃比センサの出力値が失火判定閾値以下であるが、前記ノックセンサの出力値がトレースノック閾値を越えた場合は、前記点火時期を遅角制御し、
(c)前記空燃比センサの出力値が失火判定閾値以下であり、前記ノックセンサの出力値がトレースノック閾値以下の場合は、前記エンジンの排気温度が最低温度になるように前記最終噴射時期を制御するように構成されていることを特徴とする。
In order to solve the above problems, the present invention
A control device for a reciprocating internal combustion engine equipped with a fuel injection valve that injects fuel directly into the combustion chamber and a spark plug arranged in the combustion chamber.
A control unit including an air-fuel ratio sensor, a knock sensor, and an exhaust temperature sensor as means for determining the combustion state in the combustion chamber, and controlling the injection timing of the fuel injection valve and the ignition timing of the spark plug based on their output values. Is equipped with
When the engine is in a relatively high rotation and high load state, spark ignition combustion is performed, and when the engine is in a relatively low rotation and low load state, spark auxiliary compression ignition combustion is performed.
In the spark auxiliary compression ignition combustion, the fuel injection valve includes a pre-stage injection that forms a premixture for compression ignition and a final injection that forms an air-fuel mixture for spark auxiliary ignition in the vicinity of the spark plug. Perform multiple injections
(A) When the output value of the air-fuel ratio sensor exceeds the misfire determination threshold value, the final injection timing is controlled to retard and the ignition timing is controlled to advance.
(B) When the output value of the air-fuel ratio sensor is equal to or less than the misfire determination threshold value, but the output value of the knock sensor exceeds the trace knock threshold value, the ignition timing is retarded and controlled.
(C) When the output value of the air-fuel ratio sensor is equal to or less than the misfire determination threshold value and the output value of the knock sensor is equal to or less than the trace knock threshold value, the final injection timing is set so that the exhaust temperature of the engine becomes the minimum temperature. It is characterized in that it is configured to control.

本発明は、上記のように、高価な割に耐久性に課題のある筒内圧力センサ(燃焼圧センサ、指圧センサ)を必要とせず、空燃比センサとノックセンサで燃焼状態を判定して失火やノッキングを回避しつつ、安定した火花補助圧縮着火燃焼を行うことができ、さらに、排気温度センサで排気温度を監視しつつ、応答性の良い噴射時期制御によりSI燃焼とCI燃焼の燃焼比率調整を行うことで、熱効率最適条件に素早く合わせることができ、直噴式内燃エンジンの既存の構成を利用して低コストで安定的な制御を実施できる。 As described above, the present invention does not require an in-cylinder pressure sensor (combustion pressure sensor, finger pressure sensor), which is expensive but has a problem in durability, and determines a combustion state by an air-fuel ratio sensor and a knock sensor to cause a misfire. Stable spark-assisted compression ignition combustion can be performed while avoiding knocking and knocking, and the combustion ratio of SI combustion and CI combustion is adjusted by responsive injection timing control while monitoring the exhaust temperature with an exhaust temperature sensor. By performing the above, it is possible to quickly adjust to the optimum thermal efficiency conditions, and to carry out stable control at low cost by utilizing the existing configuration of the direct injection internal combustion engine.

内燃エンジンの基本構成を示す模式的な平面図である。It is a schematic plan view which shows the basic structure of an internal combustion engine. BMEPとエンジン回転数に応じた運転領域を示す制御マップである。It is a control map which shows the operating area according to BMEP and the engine speed. A/Fとノック強度に応じた燃焼状態を示す制御マップである。It is a control map which shows the combustion state according to A / F and knock strength. 本発明実施形態に係る燃焼状態安定化および熱効率最適化制御を示すフローチャートである。It is a flowchart which shows the combustion state stabilization and thermal efficiency optimization control which concerns on embodiment of this invention. 2段目噴射時期と熱発生率の関係を示すグラフである。It is a graph which shows the relationship between the 2nd stage injection timing and the heat generation rate. 点火時期と熱発生率の関係を示すグラフである。It is a graph which shows the relationship between the ignition timing and the heat generation rate. (a)最終噴射時期と排気温度の関係を示すグラフ、(b)最終噴射時期と正味熱効率の関係を示すグラフである。(A) is a graph showing the relationship between the final injection timing and the exhaust temperature, and (b) is a graph showing the relationship between the final injection timing and the net thermal efficiency.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
図1は、本発明が実施される内燃エンジンの基本構成を示しており、図において、内燃エンジンは、4つのシリンダ11,12,13,14内に往復摺動可能に収容されたピストンを備えるピストン往復動式内燃エンジンであり、図示を省略するが、各ピストンはコネクティングロッドを介してクラックシャフトに連結され、ピストンの往復直線運動がクランクシャフトの回転運動に変換される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a basic configuration of an internal combustion engine in which the present invention is implemented. In the figure, the internal combustion engine includes pistons housed in four cylinders 11, 12, 13, and 14 so as to be slidable back and forth. It is a piston reciprocating internal combustion engine, and although not shown, each piston is connected to a crack shaft via a connecting rod, and the reciprocating linear motion of the piston is converted into the rotational motion of the crank shaft.

シリンダ11,12,13,14は、シリンダブロック15に画成され、シリンダブロック15の上部には、ピストン頂面との間に燃焼室を画成する不図示のシリンダヘッドが配設されている。シリンダヘッドには、各燃焼室(11,12,13,14)内に直接燃料を噴射する燃料噴射弁21,22,23,24が設けられるとともに、各燃焼室内に臨ませて点火プラグ31,32,33,34が配設されている。図1では概略的に示されているが、点火プラグ31,32,33,34は、燃焼室の天井面の中央に配設され、燃料噴射弁21,22,23,24は、天井面の一側の周縁部における吸気ポートの間に、点火プラグ31,32,33,34の下方に向けて配設されることが好ましい。 The cylinders 11, 12, 13, and 14 are defined by a cylinder block 15, and a cylinder head (not shown) that defines a combustion chamber between the cylinder block 15 and the top surface of the piston is arranged above the cylinder block 15. .. The cylinder head is provided with fuel injection valves 21, 22, 23, 24 that inject fuel directly into each combustion chamber (11, 12, 13, 14), and spark plugs 31 that face each combustion chamber. 32, 33, 34 are arranged. Although schematically shown in FIG. 1, the spark plugs 31, 32, 33, 34 are arranged in the center of the ceiling surface of the combustion chamber, and the fuel injection valves 21, 22, 23, 24 are on the ceiling surface. It is preferable that the spark plugs 31, 32, 33, 34 are arranged downward between the intake ports on one side of the peripheral edge.

また、燃焼室の一側の吸気ポートには、吸気通路40(集合部、サージタンク)から分岐した吸気通路41,42,43,44(インテークマニホールド)が連通しており、燃焼室の他側の排気ポートに連通する排気通路51,52,53,54(エキゾーストマニホールド)は排気通路50(集合部)に連通しており、排気通路50には排ガス浄化装置55が設けられている。さらに、シリンダヘッドには、吸気ポートを開閉するための吸気バルブ、排気ポートを開閉するための排気バルブが設けられ、可変動弁機構により、それぞれの開閉時期を個別に制御可能である。 In addition, intake passages 41, 42, 43, 44 (intake manifolds) branched from the intake passage 40 (aggregate portion, surge tank) communicate with the intake port on one side of the combustion chamber, and the other side of the combustion chamber. The exhaust passages 51, 52, 53, 54 (exhaust manifolds) communicating with the exhaust port of the above are communicated with the exhaust passage 50 (collecting portion), and the exhaust passage 50 is provided with an exhaust gas purification device 55. Further, the cylinder head is provided with an intake valve for opening / closing the intake port and an exhaust valve for opening / closing the exhaust port, and the opening / closing timing of each can be individually controlled by the variable valve mechanism.

以上のような基本構成を有する内燃エンジンは、燃焼室内の燃焼状態判定手段として、異常燃焼に伴う振動を検出するノックセンサ16がシリンダブロック15に設けられ、排気ガス中の酸素濃度(混合気の空燃比)を検出するA/Fセンサ36(空燃比センサ)、および、排気温度センサ56が排気通路50に設けられており、各センサの出力値は制御部10(ECU)に入力される。 In an internal combustion engine having the above basic configuration, a knock sensor 16 for detecting vibration due to abnormal combustion is provided in the cylinder block 15 as a means for determining a combustion state in the combustion chamber, and the oxygen concentration in the exhaust gas (of the air-fuel mixture). An A / F sensor 36 (air-fuel ratio sensor) for detecting (air-fuel ratio) and an exhaust temperature sensor 56 are provided in the exhaust passage 50, and the output value of each sensor is input to the control unit 10 (ECU).

制御部10(ECU)は、エンジンの運転状態を反映する各状態値を検出するセンサからの入力信号に基づいて、燃料噴射弁21,22,23,24の噴射時期と点火プラグ31,32,33,34の点火時期を制御し、エンジンの燃焼状態を安定化させ、運転状態を最適化するための電子制御ユニット(コンピュータ、マイコン)であり、演算処理を行うCPU、制御プログラムや設定データなどを格納するROM、制御プログラムや設定データを読出し、動的データや演算処理結果を記憶するRAM、および、入出力ポートなどからなる。 The control unit 10 (ECU) determines the injection timing of the fuel injection valves 21, 22, 23, 24 and the ignition plugs 31, 32, based on the input signals from the sensors that detect each state value reflecting the operating state of the engine. It is an electronic control unit (computer, microcomputer) for controlling the ignition timings of 33 and 34, stabilizing the combustion state of the engine, and optimizing the operating state. It consists of a ROM that stores the data, a RAM that reads control programs and setting data, and stores dynamic data and arithmetic processing results, and an input / output port.

図2は、エンジンの負荷状態に対応するBMEP(正味平均有効圧力)とエンジン回転数に応じた運転領域を示す制御マップであり、本発明に係る制御装置は、エンジンが相対的に高回転高負荷状態にある運転領域(SI燃焼領域)では、通常の火花着火燃焼(Spark Ignition)を行い、エンジンが相対的に低回転低負荷状態にある運転領域(SACI燃焼領域)では、火花補助圧縮着火燃焼(Spark Assist Compression Ignition)を行うエンジンにおけるSACI燃焼領域の制御を対象としている。 FIG. 2 is a control map showing a BMEP (net mean effective pressure) corresponding to the load state of the engine and an operating region corresponding to the engine rotation speed. In the control device according to the present invention, the engine has a relatively high rotation height. In the operating region under load (SI combustion region), normal spark ignition combustion (Spark Ignition) is performed, and in the operating region (SACI combustion region) where the engine is in a relatively low rotation and low load state, spark auxiliary compression ignition is performed. It targets the control of the SACI combustion region in an engine that performs combustion (Spark Assist Compression Ignition).

このSACI燃焼領域では、吸気行程において、火花点火による火炎伝播が不可能なリーンな予混合気を形成する前段噴射を行い、予混合気の圧縮行程後期に、点火プラグ近傍に最終噴射を行い、局所的にリッチな混合気を形成した状態で火花点火し、その燃焼(SI燃焼)による圧力上昇と温度上昇により予混合気の圧縮着火燃焼(CI燃焼)を行うものであり、以下に述べるように、最終噴射時期と点火時期を調整し、SI燃焼とCI燃焼の燃焼比率を変更することで、効率の良い安定した燃焼状態を維持することができる。 In this SACI combustion region, in the intake stroke, pre-stage injection is performed to form a lean pre-mixture in which flame propagation by spark ignition is impossible, and in the latter half of the compression stroke of the pre-mixture, final injection is performed in the vicinity of the ignition plug. Spark ignition is performed in a state where a rich mixture is locally formed, and compression ignition combustion (CI combustion) of the premixture is performed by the pressure rise and temperature rise due to the combustion (SI combustion). In addition, by adjusting the final injection timing and ignition timing and changing the combustion ratio of SI combustion and CI combustion, it is possible to maintain an efficient and stable combustion state.

(SACI燃焼領域での最終噴射時期の調整)
先ず、SI燃焼のための最終噴射時期を調整し、点火プラグ周りへの混合気のλ(空気過剰率)を調整することにより、SI燃焼とCI燃焼の燃焼比率を制御することが可能である。最終噴射時期を遅角制御すると、点火までの時間が短くなるため、点火時に点火プラグ周りの混合気がリッチになり、SI燃焼の燃焼比率が大きくなる。逆に最終噴射時期を進角制御すると、点火までの時間が長くなるため、その間に混合気が拡散し、点火時に点火プラグ周りの混合気がリーン方向に移行し、SI燃焼の燃焼比率が小さくなる。
(Adjustment of final injection timing in SACI combustion region)
First, it is possible to control the combustion ratio between SI combustion and CI combustion by adjusting the final injection timing for SI combustion and adjusting the λ (excess air ratio) of the air-fuel mixture around the spark plug. .. When the final injection timing is retarded, the time until ignition is shortened, so that the air-fuel mixture around the spark plug becomes rich at the time of ignition, and the combustion ratio of SI combustion increases. On the contrary, if the final injection timing is advanced, the time until ignition becomes long, so that the air-fuel mixture diffuses during that time, the air-fuel mixture around the spark plug shifts in the lean direction at the time of ignition, and the combustion ratio of SI combustion is small. Become.

図5は、最終噴射時期(2段目噴射の開始時期、SOI:Start Of Injection)と熱発生率の関係を示している。このグラフにおいて、最終噴射時期=680(deg.CA)の場合にクランク角度=5(deg.CA ATDC)付近に現れる最初のピークはSI燃焼に対応し、その後、クランク角度=14(deg.CA ATDC)付近に現れる最も高いピークはCI燃焼に対応しており、最終噴射時期=680(deg.CA)から、675,670,665,660(deg.CA)と進角することにより、最初のピークは、クランク角度=5(deg.CA ATDC)付近からクランク角度=0(deg.CA ATDC)付近に移動するとともに低くなり、相対的にSI燃焼の熱発生率が低下し、CI燃焼の熱発生率が高くなっている。 FIG. 5 shows the relationship between the final injection timing (start of injection of the second stage, SOI: Start Of Injection) and the heat generation rate. In this graph, when the final injection time = 680 (deg.CA), the first peak that appears near the crank angle = 5 (deg.CA ATDC) corresponds to SI combustion, and then the crank angle = 14 (deg.CA). The highest peak that appears near (ATDC) corresponds to CI combustion, and the first angle is advanced from the final injection time = 680 (deg.CA) to 675,670,665,660 (deg.CA). The peak moves from the vicinity of the crank angle = 5 (deg.CA ATDC) to the vicinity of the crank angle = 0 (deg.CA ATDC) and becomes lower, the heat generation rate of SI combustion is relatively reduced, and the heat of CI combustion is reduced. The incidence is high.

この例では、図中二点鎖線で示された最終噴射時期=660(deg.CA)の場合にCI燃焼の比率は最も高いが、熱発生率の変動率(COV:Coefficient Of Variance)が増大するので、CI燃焼の安定性を維持した状態での熱発生率という点では、図中実線で示された最終噴射時期=665(deg.CA)の場合が最も良好である。 In this example, when the final injection time = 660 (deg.CA) shown by the alternate long and short dash line in the figure, the ratio of CI combustion is the highest, but the coefficient of variation (COV) of the heat generation rate increases. Therefore, in terms of the heat generation rate in a state where the stability of CI combustion is maintained, the case where the final injection time = 665 (deg.CA) shown by the solid line in the figure is the best.

(SACI燃焼領域での点火時期の調整)
次に、上記のような最終噴射時期調整によりSI燃焼とCI燃焼の燃焼比率が決定されれば、SI燃焼の熱発生率を概ね維持した状態で、点火時期を制御し、熱発生時期を変化させることで、CI燃焼の熱発生のみを変化させることが可能である。したがって、ノックセンサ16でノッキングを回避しつつ、点火時期の制御を行うことにより、通常のSI燃焼方式と同様に熱効率最適条件で運転が可能となる。
(Adjustment of ignition timing in SACI combustion region)
Next, if the combustion ratio between SI combustion and CI combustion is determined by the final injection timing adjustment as described above, the ignition timing is controlled and the heat generation timing is changed while maintaining the heat generation rate of SI combustion. By making it possible, it is possible to change only the heat generation of CI combustion. Therefore, by controlling the ignition timing while avoiding knocking with the knock sensor 16, it is possible to operate under the optimum thermal efficiency conditions as in the normal SI combustion method.

図6は、50%熱発生時期(MBF50:Mass Burned Fraction 50%、燃焼重心)と熱発生率の関係を示している。このグラフにおいて、それぞれのピークはMBF50と概ね一致しており、点火時期を進角することでMBF50のピークが高くなるが、点火時期を過度に進角するとSACI燃焼しつつもノッキングを発生することになる。したがって、ノックセンサ16によりノッキング強度を監視し、ノック限界を超えない範囲で点火時期を進角することにより、SACI燃焼の燃焼を安定化させつつ熱効率を向上できる。 FIG. 6 shows the relationship between the 50% heat generation time (MBF50: Mass Burned Fraction 50%, the center of gravity of combustion) and the heat generation rate. In this graph, each peak is almost the same as MBF50, and the peak of MBF50 becomes higher by advancing the ignition timing, but if the ignition timing is advanced excessively, knocking occurs while SAC combustion occurs. become. Therefore, by monitoring the knocking strength with the knock sensor 16 and advancing the ignition timing within a range not exceeding the knock limit, it is possible to improve the thermal efficiency while stabilizing the combustion of SACI combustion.

この例では、実線で示されたMBF50=15.0(deg.CA ATDC)がノック限界であり、これを超えない範囲では、破線で示されたMBF50=16.2(deg.CA ATDC)が、SACI燃焼における熱効率が最も高くなっている。 In this example, MBF50 = 15.0 (deg.CA ATDC) shown by the solid line is the knock limit, and MBF50 = 16.2 (deg.CA ATDC) shown by the broken line is within the range not exceeding this limit. , The thermal efficiency in SACI combustion is the highest.

以上のようなSACI燃焼領域での熱効率を最適化するために、本発明に係る制御装置では、先ず、(1)A/Fセンサ36による燃焼状態の監視と、ノックセンサ16によるノック強度の監視を組み合わせ、SACI燃焼領域での燃焼状態を判定し、それに基づき、必要に応じて最終噴射時期および/または点火時期の制御を行って燃焼状態を安定化させ、その上で、(2)排気温度センサにより最終噴射時期の最適化を行う。 In order to optimize the thermal efficiency in the SACI combustion region as described above, in the control device according to the present invention, first, (1) monitoring of the combustion state by the A / F sensor 36 and monitoring of the knock intensity by the knock sensor 16. , And determine the combustion state in the SACI combustion region, and based on that, control the final injection timing and / or ignition timing as necessary to stabilize the combustion state, and then (2) exhaust temperature. The sensor optimizes the final injection timing.

(SACI燃焼領域での燃焼状態判定)
図3に示すように、A/Fセンサ36の出力値が失火判定閾値以下か否か、および、ノックセンサ16の出力値がトレースノック閾値以下か否かによって、4つの燃焼状態に判別し、燃焼状態を安定化させるための制御を決定する。
(Judgment of combustion state in SACI combustion region)
As shown in FIG. 3, four combustion states are determined depending on whether the output value of the A / F sensor 36 is equal to or less than the misfire determination threshold value and whether the output value of the knock sensor 16 is equal to or less than the trace knock threshold value. Determine the controls to stabilize the combustion state.

例えば、図4に示すように、燃焼状態判定(100)において、先ず、A/Fセンサ出力値が失火判定閾値以下であるか否かが判定され(ステップ101)、その判定結果の各場合において、ノックセンサ出力値がトレースノック閾値以下であるか否かが判定される(ステップ102,103)。 For example, as shown in FIG. 4, in the combustion state determination (100), first, it is determined whether or not the A / F sensor output value is equal to or less than the misfire determination threshold value (step 101), and in each case of the determination result. , It is determined whether or not the knock sensor output value is equal to or less than the trace knock threshold value (steps 102 and 103).

(1)A/Fセンサ出力値>失火判定閾値(リーン側)、かつ、
ノックセンサ出力値>トレースノック閾値の場合、
・・・SI燃焼は燃えているが、CI燃焼が失火と判定する(111)。
(1) A / F sensor output value> misfire judgment threshold (lean side), and
When knock sensor output value> trace knock threshold,
... SI combustion is burning, but CI combustion is determined to be misfire (111).

(2)A/Fセンサ出力値>失火判定閾値(リーン側)、かつ、
ノックセンサ出力値≦トレースノック閾値の場合、
・・・SI燃焼が失火していると判定する(112)。
(2) A / F sensor output value> misfire judgment threshold (lean side), and
When the knock sensor output value ≤ trace knock threshold,
... It is determined that SI combustion has misfired (112).

(3)A/Fセンサ出力値≦失火判定閾値(リッチ側)、かつ、
ノックセンサ出力値>トレースノック閾値の場合、
・・・CI燃焼(またはSI燃焼)でノッキング発生と判定する(113)。
(3) A / F sensor output value ≤ misfire judgment threshold (rich side), and
When knock sensor output value> trace knock threshold,
... It is determined that knocking has occurred in CI combustion (or SI combustion) (113).

(4)A/Fセンサ出力値≦失火判定閾値(リッチ側)、かつ、
ノックセンサ出力値≦トレースノック閾値の場合、
・・・SI燃焼、CI燃焼とも安定;安定したSACI燃焼と判定する(114)。
(4) A / F sensor output value ≤ misfire judgment threshold (rich side), and
When the knock sensor output value ≤ trace knock threshold,
... Both SI combustion and CI combustion are stable; it is determined that SACI combustion is stable (114).

(SACI燃焼領域での燃焼状態安定化)
上記燃焼状態判定(100)において、上記(1)〜(3)の場合は、以下の燃焼状態安定化制御(120)を行い、上記(4)にて噴射時期と点火時期最適化(130)に移行する。
(Stabilization of combustion state in SACI combustion region)
In the above combustion state determination (100), in the cases of the above (1) to (3), the following combustion state stabilization control (120) is performed, and the injection timing and ignition timing optimization (130) in the above (4). Move to.

上記(1)の場合、噴射時期遅角によりSI燃焼比率を大きくするとともに、点火時期進角により燃焼位置を進角させて、安定した圧縮着火式燃焼に移行させる(ステップ121)。この場合における噴射時期の遅角量は、エンジン回転数および負荷に応じて決定される適合値より小さい値で実施し、オーバーシュートを回避する。 In the case of the above (1), the SI combustion ratio is increased by the injection timing retardation angle, and the combustion position is advanced by the ignition timing advance angle to shift to stable compression ignition type combustion (step 121). In this case, the retard angle amount of the injection timing is set to a value smaller than the conforming value determined according to the engine speed and the load to avoid overshoot.

上記(2)の場合も、噴射時期遅角によりSI燃焼比率を大きくするとともに、点火時期進角により燃焼位置を進角させて、安定した圧縮着火式燃焼に移行させる(ステップ122)。但し、この場合における遅角量は、上記適合値とするか、または、上記(1)の場合の噴射時期遅角量より大きい値とする。このように、上記(1)よりもSI燃焼比率の低い上記(2)で制御量を大きくすることにより、上記(1)の状態を経由せずに、上記(4)の安定したSACI燃焼状態に移行させる。 Also in the case of (2) above, the SI combustion ratio is increased by the injection timing retardation angle, and the combustion position is advanced by the ignition timing advance angle to shift to stable compression ignition type combustion (step 122). However, the retard angle amount in this case shall be the above-mentioned conforming value or a value larger than the injection timing retardation amount in the case of the above (1). In this way, by increasing the control amount in the above (2), which has a lower SI combustion ratio than the above (1), the stable SAC combustion state of the above (4) does not go through the state of the above (1). Migrate to.

上記(3)の場合、点火時期を遅角し、燃焼位置を遅角することによりCI燃焼におけるノッキングを回避する(ステップ123)。 In the case of (3) above, knocking in CI combustion is avoided by retarding the ignition timing and retarding the combustion position (step 123).

上記(4)の場合、SACI燃焼は安定しているので、噴射時期と点火時期の最適化(130)に移行する。以下、噴射時期と点火時期の最適化について述べる。 In the case of (4) above, since SACI combustion is stable, the process shifts to optimization of injection timing and ignition timing (130). The optimization of injection timing and ignition timing will be described below.

(SACI燃焼領域での噴射時期および点火時期の最適化)
図7(a)は、最終噴射時期と排気温度の関係を示すグラフ、図7(b)は、最終噴射時期と正味熱効率の関係を示すグラフであり、何れも、前段噴射と最終噴射の噴射分割比を6:4,5:5,4:6,3:7の4段階に変化させた各場合の値を示している。
(Optimization of injection timing and ignition timing in the SACI combustion region)
FIG. 7A is a graph showing the relationship between the final injection timing and the exhaust temperature, and FIG. 7B is a graph showing the relationship between the final injection timing and the net thermal efficiency, both of which are the injections of the pre-stage injection and the final injection. The values in each case where the division ratio is changed in four stages of 6: 4, 5: 5, 4: 6, 3: 7 are shown.

これらのグラフから、何れの噴射分割比においても、排気温度が最低の場合に正味熱効率が最も高い値を示していることが看取され、排気温度と熱効率の間に高い相関関係があることが分かる。そこで、排気温度センサ56を用いて以下のように噴射時期および点火時期の最適化を行う。 From these graphs, it can be seen that the net thermal efficiency is the highest when the exhaust temperature is the lowest at any of the injection division ratios, and there is a high correlation between the exhaust temperature and the thermal efficiency. I understand. Therefore, the exhaust temperature sensor 56 is used to optimize the injection timing and the ignition timing as follows.

先ず、図4に示すように、最終噴射時期を、エンジン回転数および負荷に応じて決定される適合値に進角するとともに、点火時期をMBTまたはトレースノックに合わせる(ステップ131)。なお、MBT(Minimum Advance for Best Torque)は、トルク最大点火時期、すなわち、最適点火時期であり、ピークトルクの99.5%、ノックが発生する限界点火時期である。 First, as shown in FIG. 4, the final injection timing is advanced to a conforming value determined according to the engine speed and the load, and the ignition timing is adjusted to MBT or trace knock (step 131). The MBT (Minimum Advance for Best Torque) is the maximum torque ignition timing, that is, the optimum ignition timing, which is 99.5% of the peak torque and the critical ignition timing at which knock occurs.

次いで、排気温度が上昇したか否かがチェックされ(ステップ132)、排気温度が低下した場合は、再度最終噴射時期を進角させ、上記進角制御を繰り返す。 Next, it is checked whether or not the exhaust temperature has risen (step 132), and if the exhaust temperature has fallen, the final injection timing is advanced again and the advance control is repeated.

排気温度が上昇した場合は過進角と判定し、最終噴射時期をエンジン回転数および負荷に応じて決定される適合値で遅角し、点火時期をMBTまたはトレースノックに合わせる(ステップ133)。 When the exhaust temperature rises, it is determined as an over-advance angle, the final injection timing is retarded by a suitable value determined according to the engine speed and the load, and the ignition timing is adjusted to MBT or trace knock (step 133).

次いで、排気温度が低下したか否かがチェックされ(ステップ134)、排気温度が低下した場合は、再度最終噴射時期を遅角させ、上記遅角制御を繰り返す。排気温度が上昇した場合は、過遅角と判定し、エンジン回転数および負荷に応じて決定される適合値で、最終噴射時期を1回だけ進角し、熱効率の最適条件を決定する(ステップ135)。 Next, it is checked whether or not the exhaust temperature has decreased (step 134), and if the exhaust temperature has decreased, the final injection timing is retarded again, and the retard angle control is repeated. When the exhaust temperature rises, it is determined to be an over-lagging angle, and the final injection timing is advanced only once with the conforming value determined according to the engine speed and load, and the optimum conditions for thermal efficiency are determined (step). 135).

(作用と効果)
以上述べたように、点火プラグを用いたガソリンエンジンの圧縮着火式燃焼(SACI燃焼)では、1段目の燃焼であるSI燃焼の状態(燃焼時期、熱発生量、空気過剰率λ)の安定化を前提として、2段目のCI燃焼の状態が決定される。
(Action and effect)
As described above, in the compression ignition type combustion (SACI combustion) of a gasoline engine using an ignition plug, the state of SI combustion (combustion timing, heat generation amount, air excess rate λ), which is the first stage combustion, is stable. The state of CI combustion in the second stage is determined on the premise of conversion.

本発明に係る制御装置では、高価な割に耐久性に課題のある筒内圧力センサ(燃焼圧センサ、指圧センサ)を追加することなく、A/Fセンサ36とノックセンサ16により燃焼状態を判定し、失火やノッキングを回避しつつ、安定したSACI燃焼を行うことができ、さらに、排気温度センサ56で排気温度を常に監視しつつ、応答性の良い噴射時期によりSI燃焼とCI燃焼の燃焼比率調整することで、熱効率最適条件に素早く合わせることができる。 In the control device according to the present invention, the combustion state is determined by the A / F sensor 36 and the knock sensor 16 without adding an in-cylinder pressure sensor (combustion pressure sensor, finger pressure sensor) which is expensive but has a problem in durability. Stable SACI combustion can be performed while avoiding misfire and knocking, and the combustion ratio of SI combustion and CI combustion is determined by the responsive injection timing while constantly monitoring the exhaust temperature with the exhaust temperature sensor 56. By adjusting, it is possible to quickly adjust to the optimum thermal efficiency conditions.

また、ノックセンサ16の出力値により算出したノック強度に加えて、A/Fセンサ36の出力値を燃焼状態の判定に用いることで、燃焼状態の悪化がSI燃焼側か、CI燃焼側かを判別することにより、燃焼状態安定化のためのパラメータを的確に決定することができ、実効性の高い制御を行うことができる。 Further, by using the output value of the A / F sensor 36 for determining the combustion state in addition to the knock strength calculated from the output value of the knock sensor 16, it is possible to determine whether the deterioration of the combustion state is on the SI combustion side or the CI combustion side. By discriminating, the parameters for stabilizing the combustion state can be accurately determined, and highly effective control can be performed.

さらに、安定したSACI燃焼に移行すれば、排気温度センサ56の検出値に基づいて熱効率最適条件に、応答性の高い噴射時期/点火時期制御により調整することができ、燃費の良い運転条件に瞬時に移行することができる。 Further, if the combustion shifts to stable SACI combustion, the optimum thermal efficiency condition can be adjusted based on the detection value of the exhaust temperature sensor 56 by the highly responsive injection timing / ignition timing control, and the fuel-efficient operating condition can be instantly adjusted. Can be migrated to.

以上、本発明の実施形態について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいてさらに各種の変形および変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications and modifications can be made based on the technical idea of the present invention.

11,12,13,14 シリンダ
15 シリンダブロック
16 ノックセンサ
21,22,23,24 燃料噴射弁
31,32,33,34 点火プラグ
36 A/Fセンサ(空燃比センサ)
40,41,42,43,44 吸気通路
50,51,52,53,54 排気通路
56 排気温度センサ
11, 12, 13, 14 Cylinder 15 Cylinder block 16 Knock sensor 21, 22, 23, 24 Fuel injection valve 31, 32, 33, 34 Spark plug 36 A / F sensor (air-fuel ratio sensor)
40, 41, 42, 43, 44 Intake passage 50, 51, 52, 53, 54 Exhaust passage 56 Exhaust temperature sensor

Claims (3)

燃焼室内に直接燃料を噴射する燃料噴射弁、および、前記燃焼室内に配置された点火プラグを備えた往復動型内燃エンジンの制御装置であって、
前記燃焼室内の燃焼状態判定手段として空燃比センサ、ノックセンサ、および、排気温度センサを備え、それらの出力値に基づいて前記燃料噴射弁の噴射時期と前記点火プラグの点火時期を制御する制御部を備えており、
前記エンジンが、相対的に高回転高負荷状態にある場合には火花着火燃焼、相対的に低回転低負荷状態にある場合には火花補助圧縮着火燃焼を行うものにおいて、
前記火花補助圧縮着火燃焼では、前記燃料噴射弁は、圧縮着火のための予混合気を形成する前段噴射と、前記点火プラグの近傍に火花補助着火のための混合気を形成する最終噴射を含む複数噴射を行い、
(a)前記空燃比センサの出力値が失火判定閾値を越えた場合は、前記最終噴射時期を遅角制御するとともに、前記点火時期を進角制御し、
(b)前記空燃比センサの出力値が失火判定閾値以下であるが、前記ノックセンサの出力値がトレースノック閾値を越えた場合は、前記点火時期を遅角制御し、
(c)前記空燃比センサの出力値が失火判定閾値以下であり、前記ノックセンサの出力値がトレースノック閾値以下の場合は、前記エンジンの排気温度が最低温度になるように前記最終噴射時期を制御するように構成されていることを特徴とする、内燃エンジンの制御装置。
A control device for a reciprocating internal combustion engine equipped with a fuel injection valve that injects fuel directly into the combustion chamber and a spark plug arranged in the combustion chamber.
A control unit including an air-fuel ratio sensor, a knock sensor, and an exhaust temperature sensor as means for determining the combustion state in the combustion chamber, and controlling the injection timing of the fuel injection valve and the ignition timing of the spark plug based on their output values. Is equipped with
When the engine is in a relatively high rotation and high load state, spark ignition combustion is performed, and when the engine is in a relatively low rotation and low load state, spark auxiliary compression ignition combustion is performed.
In the spark auxiliary compression ignition combustion, the fuel injection valve includes a pre-stage injection that forms a premixture for compression ignition and a final injection that forms an air-fuel mixture for spark auxiliary ignition in the vicinity of the spark plug. Perform multiple injections
(A) When the output value of the air-fuel ratio sensor exceeds the misfire determination threshold value, the final injection timing is controlled to retard and the ignition timing is controlled to advance.
(B) When the output value of the air-fuel ratio sensor is equal to or less than the misfire determination threshold value, but the output value of the knock sensor exceeds the trace knock threshold value, the ignition timing is retarded and controlled.
(C) When the output value of the air-fuel ratio sensor is equal to or less than the misfire determination threshold value and the output value of the knock sensor is equal to or less than the trace knock threshold value, the final injection timing is set so that the exhaust temperature of the engine becomes the minimum temperature. A control device for an internal combustion engine, characterized in that it is configured to control.
前記空燃比センサの出力値が失火判定閾値を越えた場合(a)において、前記ノックセンサの出力値がトレースノック閾値を越えた場合は、前記ノックセンサの出力値がトレースノック閾値以下の場合よりも小さい遅角量で前記最終噴射時期の遅角制御を行うように構成されていることを特徴とする、請求項1記載の内燃エンジンの制御装置。 When the output value of the air-fuel ratio sensor exceeds the misfire determination threshold value (a), when the output value of the knock sensor exceeds the trace knock threshold value, the output value of the knock sensor exceeds the trace knock threshold value. The control device for an internal combustion engine according to claim 1, wherein the retard angle control of the final injection timing is performed with a small retard angle amount. 前記空燃比センサの出力値が失火判定閾値以下であり、前記ノックセンサの出力値がトレースノック閾値以下の場合(c)において、前記最終噴射時期の制御は、前記排気温度が低下する間は前記最終噴射時期の進角制御を行い、排気温度の上昇が検出された場合は1回だけ、または、より小さい遅角量で遅角制御を行うように構成されていることを特徴とする、請求項1または2記載の内燃エンジンの制御装置。 When the output value of the air-fuel ratio sensor is equal to or less than the misfire determination threshold value and the output value of the knock sensor is equal to or less than the trace knock threshold value (c), the control of the final injection timing is performed while the exhaust temperature is lowered. The claim is characterized in that the advance angle control of the final injection timing is performed, and when an increase in the exhaust temperature is detected, the retard angle control is performed only once or with a smaller retard angle amount. Item 2. The control device for an internal combustion engine according to Item 1 or 2.
JP2020018807A 2020-02-06 2020-02-06 Control device of internal combustion engine Pending JP2021124071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020018807A JP2021124071A (en) 2020-02-06 2020-02-06 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018807A JP2021124071A (en) 2020-02-06 2020-02-06 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2021124071A true JP2021124071A (en) 2021-08-30

Family

ID=77459374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018807A Pending JP2021124071A (en) 2020-02-06 2020-02-06 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2021124071A (en)

Similar Documents

Publication Publication Date Title
RU2633208C1 (en) Controller for internal combustion engine
JP3500951B2 (en) Non-throttle compression-ignition internal combustion engine and control method thereof
EP1538325B1 (en) Control device of internal combustion engine
JP6262957B2 (en) Operation method of internal combustion engine
JP6044518B2 (en) Control device for internal combustion engine
US20170226956A1 (en) Control apparatus for internal combustion engine
CA2889605C (en) Detecting and mitigating abnormal combustion characteristics
WO2010038355A1 (en) Knock control device for a gasoline engine
JP2015094339A (en) Control device for internal combustion engine
US9976534B2 (en) Control device and control method for internal combustion engine
US9234818B2 (en) Combustion control device for gas engine
JP4784467B2 (en) Premixed compression ignition internal combustion engine
JP4438611B2 (en) Control device and control method for internal combustion engine
JP2007285194A (en) Control device of internal combustion engine
JP3965905B2 (en) Compression self-ignition internal combustion engine
JP4720721B2 (en) Ignition timing detection device
US7051712B2 (en) Method for computing an ignition angle of an internal combustion engine
JP2011157852A (en) Control device of internal combustion engine
JP2021124071A (en) Control device of internal combustion engine
JP2015014229A (en) Abnormal combustion avoidance device for internal combustion engine
JP6973228B2 (en) Internal combustion engine knocking determination device
JP2021161976A (en) Knocking control method of internal combustion engine and knocking control device
JP2015083814A (en) Control device of internal combustion engine
JP2021060001A (en) Controller of internal combustion engine
JP4830967B2 (en) Engine combustion state detection device