JP2021118322A - Three-dimensional printed matter and manufacturing method thereof and wiring pattern and manufacturing method thereof - Google Patents

Three-dimensional printed matter and manufacturing method thereof and wiring pattern and manufacturing method thereof Download PDF

Info

Publication number
JP2021118322A
JP2021118322A JP2020012362A JP2020012362A JP2021118322A JP 2021118322 A JP2021118322 A JP 2021118322A JP 2020012362 A JP2020012362 A JP 2020012362A JP 2020012362 A JP2020012362 A JP 2020012362A JP 2021118322 A JP2021118322 A JP 2021118322A
Authority
JP
Japan
Prior art keywords
printed matter
dimensional printed
dimensional
manufacturing
base width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020012362A
Other languages
Japanese (ja)
Other versions
JP7472510B2 (en
JP2021118322A5 (en
Inventor
邦裕 倉持
Kunihiro Kuramochi
邦裕 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2020012362A priority Critical patent/JP7472510B2/en
Priority claimed from JP2020012362A external-priority patent/JP7472510B2/en
Publication of JP2021118322A publication Critical patent/JP2021118322A/en
Publication of JP2021118322A5 publication Critical patent/JP2021118322A5/ja
Application granted granted Critical
Publication of JP7472510B2 publication Critical patent/JP7472510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a three-dimensional printed matter that can be produced in one printing process, a manufacturing method thereof, a wiring pattern produced using the printed matter, and a manufacturing method thereof.SOLUTION: There is provided a three-dimensional printed matter that includes a first three-dimensional printed matter having an N number of 1 or more and a second three-dimensional printed matter in contact with the upper surface of the first three-dimensional printed matter, and both the first three-dimensional printed matter and the second three-dimensional printed matter have a substantially rectangular parallelepiped shape, and extend in the same direction. When the average value of the lengths of the first three-dimensional printed matter in a direction orthogonal to the extending direction in the plan view at 1 or more N is set as a bottom width, and the length of the second three-dimensional printed matter in a direction orthogonal to the extending direction in the plan view is set as an upper base width, 1<upper base width of the second three-dimensional printed matter/lower base width of the first three-dimensional printed matter≤10 is satisfied, and there is an area in which the first three-dimensional printed matter does not exist in a plan view immediately below the second three-dimensional printed matter. There is also provided a manufacturing method of the three-dimensional printed matter of forming the three-dimensional printed matter in one printing process.SELECTED DRAWING: Figure 1

Description

本発明は、立体印刷物とその製造方法、及びそれらを用いる配線パターンとその製造方法に関する。 The present invention relates to a three-dimensional printed matter and a manufacturing method thereof, and a wiring pattern using them and a manufacturing method thereof.

従来からプリンタブルエレクトロニクス技術分野などで、導電材料または絶縁材料をグラビア印刷、スクリーン印刷、フレキソ印刷、オフセット印刷、インクジェット印刷、3Dプリンタなどで形成する技術が求められている。 Conventionally, in the field of printable electronics technology, there has been a demand for a technique for forming a conductive material or an insulating material by gravure printing, screen printing, flexographic printing, offset printing, inkjet printing, a 3D printer or the like.

しかしながら、これらの印刷法は印刷物の断面形状が略半球形状且つアスペクト比が低い印刷物となることが多く、今後のトレンドとして、印刷物の断面形状が矩形且つアスペクト比が高い印刷物が望まれている。 However, these printing methods often result in a printed matter having a substantially hemispherical cross-sectional shape and a low aspect ratio, and as a future trend, a printed matter having a rectangular cross-sectional shape and a high aspect ratio is desired.

印刷物の断面形状が略半球形状ということは、導電材料の場合、断面積による電気特性値を重要視する回路形成技術において不安定要素が大きくなる。例えば電流密度の計算は切断面を直接計測するなどの破壊試験を行う必要がある等の課題が生じる。また、配線に流れる電流量は矩形に比べて少なくなる、などの問題点も生じる。 The fact that the cross-sectional shape of the printed matter is substantially hemispherical means that in the case of a conductive material, an unstable element becomes large in the circuit forming technique in which the electrical characteristic value due to the cross-sectional area is emphasized. For example, the calculation of the current density causes problems such as the need to perform a destructive test such as directly measuring the cut surface. In addition, there is a problem that the amount of current flowing through the wiring is smaller than that of the rectangle.

印刷物の断面形状を矩形にすることで期待される効果としては、測定のための破壊試験を必要とせず、まず印刷物の断面積を簡単に求めることができることが挙げられる、その結果、配線抵抗値などを簡単に求めることができる。 The expected effect of making the cross-sectional shape of the printed matter rectangular is that the cross-sectional area of the printed matter can be easily obtained without the need for a fracture test for measurement, and as a result, the wiring resistance value. Etc. can be easily obtained.

また、同じ面積上に印刷した従来の印刷物と比較すると、配線に流れる電流をより多くすることが可能となり、特にセンサ類の電子回路のような、小スペースに配線が密集した箇所へ印刷することにより、効果の向上が期待される。 In addition, compared to conventional printed matter printed on the same area, it is possible to increase the current flowing through the wiring, and it is possible to print in places where wiring is dense, especially in electronic circuits of sensors. Therefore, the effect is expected to be improved.

ナノインプリントに代表される立体的転写技術による配線パターンの形成は、石英などのテンプレートを原版に押し付けてパターンを転写する技法である。しかしながら、テンプレートに形成したパターンサイズにバラツキが生じるとレジストが十分に充填されなかったり、離型時にレジストの一部が剥がれてしまい、寸法均一性が劣化する問題がある。 The formation of a wiring pattern by three-dimensional transfer technology represented by nanoimprint is a technique of pressing a template such as quartz against the original plate to transfer the pattern. However, if the pattern size formed on the template varies, there is a problem that the resist is not sufficiently filled or a part of the resist is peeled off at the time of mold release, resulting in deterioration of dimensional uniformity.

特許文献1では、アスペクト比の高い溝が形成された凹版に導電性インクを充填し基材へ転写するという方法によりアスペクト比の高い導電性の印刷物を形成している。しかしながらアスペクトが高い溝であり材料が完全に充填されにくいため、真空引きにて材料を充填する必要があった。また、この方法ではパターン毎に凹版を製作する必要があり、タクトが長くなり製造コストが上昇するという課題がある。 In Patent Document 1, a conductive printed matter having a high aspect ratio is formed by a method in which a concave plate having a groove having a high aspect ratio is filled with conductive ink and transferred to a base material. However, since the groove has a high aspect and it is difficult to completely fill the material, it is necessary to fill the material by evacuation. Further, in this method, it is necessary to manufacture an intaglio plate for each pattern, which causes a problem that the tact becomes long and the manufacturing cost increases.

また、基材に対し垂直方向にアスペクト比の高い印刷物に接するように立体的な構造の印刷物を形成する場合、低粘度材料では印刷直後にレベリング(平坦化)が生じやすい。そこで、ダミーパターンなどを形成した後に最終的に除去する方法や、積層により形成する方法が挙げられるが、工程数が増え、製造コストが上昇する課題がある。 Further, when a printed matter having a three-dimensional structure is formed so as to be in contact with a printed matter having a high aspect ratio in the direction perpendicular to the base material, leveling (flattening) is likely to occur immediately after printing with a low-viscosity material. Therefore, there are a method of finally removing the dummy pattern after forming the dummy pattern and a method of forming the dummy pattern by laminating, but there is a problem that the number of steps increases and the manufacturing cost increases.

一方で、高粘度材料を用いる場合は、印刷した高粘度パターンの面積が、印刷前の高粘度材料の断面積よりも大きくなるダイスウェル現象に代表されるような、印刷自体の課題も多く、技術的に極めて難しいのが現状である。 On the other hand, when a high-viscosity material is used, there are many problems in printing itself, such as the die-well phenomenon in which the area of the printed high-viscosity pattern becomes larger than the cross-sectional area of the high-viscosity material before printing. The current situation is that it is technically extremely difficult.

特開2002−52690号公報Japanese Unexamined Patent Publication No. 2002-52690

本発明は、上記のような問題に鑑みてなされたもので、その目的とするところは、1回の印刷工程で作成できる立体印刷物とその製造方法、及びそれらを用いて作製した配線パターンとその製造方法を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is a three-dimensional printed matter that can be produced in one printing process, a method for producing the same, a wiring pattern produced by using the three-dimensional printed matter, and a wiring pattern thereof. To provide a manufacturing method.

上記の課題を解決する手段として、本発明の立体印刷物の第1の態様は、1以上N数の第1立体印刷物と、前記第1立体印刷物の上面に接する第2立体印刷物と、からなり、前記第1立体印刷物及び前記第2立体印刷物はいずれも略直方体形状であり、いずれも同じ方向へ延在し、前記第1立体印刷物の、延在する方向と平面視で直交する方向の長さの1以上N数における平均値を下底幅とし、前記第2立体印刷物の、延在する方向と平面視で直交する方向の長さを上底幅とするとき、
1<(前記第2立体印刷物の上底幅/前記第1立体印刷物の下底幅)≦10
であり、前記第2立体印刷物の直下に、平面視で前記第1立体印刷物が存在しない領域が存在する、ことを特徴とする立体印刷物である。ここで、Nは整数とする。
As a means for solving the above problems, the first aspect of the three-dimensional printed matter of the present invention comprises a first three-dimensional printed matter having an N number or more and a second three-dimensional printed matter in contact with the upper surface of the first three-dimensional printed matter. Both the first three-dimensional printed matter and the second three-dimensional printed matter have a substantially rectangular shape, and both extend in the same direction, and the length of the first three-dimensional printed matter in a direction orthogonal to the extending direction in a plan view. When the average value of 1 or more and N numbers is defined as the lower base width, and the length of the second three-dimensional printed matter in a direction orthogonal to the extending direction in a plan view is defined as the upper base width.
1 <(upper base width of the second three-dimensional printed matter / lower base width of the first three-dimensional printed matter) ≦ 10
This is a three-dimensional printed matter characterized in that a region in which the first three-dimensional printed matter does not exist exists immediately below the second three-dimensional printed matter. Here, N is an integer.

尚、ここで、N数の第1立体印刷物、及び第2立体印刷物のY方向の長さが、それぞれX方向の位置により変化する場合は、X方向の両端部と中央部の3点の平均値のN数の平均値を下底幅、及びX方向の両端部と中央部の3点の平均値を上底幅とする。 Here, when the lengths of the N number of the first three-dimensional printed matter and the second three-dimensional printed matter in the Y direction change depending on the positions in the X direction, the average of the three points at both ends and the center in the X direction. The average value of the N numbers of the values is the lower base width, and the average value of the three points at both ends and the center portion in the X direction is the upper base width.

本発明の立体印刷物の第2の態様は、前記立体印刷物は粘弾性を有する導電性エラストマーからなる、ことを特徴とする立体印刷物である。 A second aspect of the three-dimensional printed matter of the present invention is a three-dimensional printed matter characterized in that the three-dimensional printed matter is made of a conductive elastomer having viscoelasticity.

また、本発明の立体印刷物の製造方法の第1の態様は、前記第1の態様及び第2の態様の立体印刷物を1回の印刷工程によって形成する、ことを特徴とする立体印刷物の製造方法である。 Further, the first aspect of the method for producing a three-dimensional printed matter of the present invention is a method for producing a three-dimensional printed matter, which comprises forming the three-dimensional printed matter of the first aspect and the second aspect by one printing step. Is.

本発明の立体印刷物の製造方法の第2の態様は、前記1回の印刷工程によって前記立体印刷物を形成する方法は、モーノディスペンサーで吐出する方法による、ことを特徴とする立体印刷物の製造方法である。 A second aspect of the method for producing a three-dimensional printed matter of the present invention is a method for producing a three-dimensional printed matter, wherein the method for forming the three-dimensional printed matter by the one printing step is a method of discharging with a mono dispenser. Is.

また、本発明の配線パターンの態様は、前記第1の態様及び第2の態様の立体印刷物を具備し、前記第2立体印刷物の直下で、平面視で前記第1立体印刷物が存在しない領域に、少なくとも1種類以上の金属ペーストが充填されている、ことを特徴とする配線パターンである。 Further, the aspect of the wiring pattern of the present invention includes the three-dimensional printed matter of the first aspect and the second aspect, and is located in a region where the first three-dimensional printed matter does not exist in a plan view directly under the second three-dimensional printed matter. , A wiring pattern characterized in that at least one kind of metal paste is filled.

また、本発明の配線パターンの製造方法の態様は、前記第1の態様及び第2の態様の立体印刷物の製造方法により製造される、ことを特徴とする前記態様の配線パターンの製造方法である。 Further, the aspect of the wiring pattern manufacturing method of the present invention is the method of manufacturing the wiring pattern of the above aspect, characterized in that it is manufactured by the method of manufacturing the three-dimensional printed matter of the first aspect and the second aspect. ..

本発明によれば、アスペクト比の高い立体印刷物が1回の印刷工程で得られ、導電材料により配線パターンを形成する場合、断面積が増えることで配線に流れる電流をより多くすることが可能となる。また、電子回路のような小スペースに密集した配線を形成する上で有利に作用し、従来の積層などの別な方法よりも低コストの代替技術として有用である。 According to the present invention, when a three-dimensional printed matter having a high aspect ratio is obtained in one printing process and a wiring pattern is formed by a conductive material, it is possible to increase the current flowing through the wiring by increasing the cross-sectional area. Become. It also has an advantage in forming dense wiring in a small space such as an electronic circuit, and is useful as an alternative technique at a lower cost than other methods such as conventional lamination.

本発明の第一実施形態に係る、立体印刷物の第1例であるT型立体印刷物を示す斜視図である。It is a perspective view which shows the T-type three-dimensional printed matter which is the 1st example of the three-dimensional printed matter which concerns on the 1st Embodiment of this invention. 本発明の第一実施形態に係る、立体印刷物の第2例である門型立体印刷物を示す斜視図である。It is a perspective view which shows the gate type 3D printed matter which is the 2nd example of the 3D printed matter which concerns on 1st Embodiment of this invention. 本発明の第二実施形態である立体印刷物の製造方法に係る、印刷ヘッドの第1例を示す概略斜視図である。It is a schematic perspective view which shows the 1st example of the print head which concerns on the manufacturing method of the 3D printed matter which is 2nd Embodiment of this invention. 本発明の第二実施形態である立体印刷物の製造方法に係る、印刷ヘッドの第2例を示す概略斜視図である。It is a schematic perspective view which shows the 2nd example of the print head which concerns on the manufacturing method of the 3D printed matter which is 2nd Embodiment of this invention. 本発明の第三実施形態に係る、配線パターンの第1例を示す斜視図である。It is a perspective view which shows the 1st example of the wiring pattern which concerns on 3rd Embodiment of this invention. 本発明の第三実施形態に係る、配線パターンの第2例を示す斜視図である。It is a perspective view which shows the 2nd example of the wiring pattern which concerns on 3rd Embodiment of this invention.

以下、本発明の実施形態に係る立体印刷物とその製造方法、及び配線パターンとその製造方法について図面を用いて説明する。同一の構成要素については便宜上の理由がない限り同一の符号を付ける。各図面において、見易さのため構成要素の厚さや比率は誇張されていることがあり、構成要素の数も減らして図示していることがある。また、本発明は以下の実施形態そのままに限定されるものではなく、主旨を逸脱しない限りにおいて、適宜の組み合わせ、変形によって具体化できる。 Hereinafter, the three-dimensional printed matter and its manufacturing method, and the wiring pattern and its manufacturing method according to the embodiment of the present invention will be described with reference to the drawings. The same components are designated by the same reference numerals unless there is a reason for convenience. In each drawing, the thickness and ratio of the components may be exaggerated for ease of viewing, and the number of components may also be reduced. Further, the present invention is not limited to the following embodiments as they are, and can be embodied by appropriate combinations and modifications as long as the gist is not deviated.

印刷物が形成される対象物は商材に応じ様々であるので、本願では、印刷物が形成される対象物をすべて「基材」と呼ぶことにする。 Since the objects on which the printed matter is formed vary depending on the product, in the present application, all the objects on which the printed matter is formed are referred to as "base materials".

[立体印刷物]
図1は、本発明の第一実施形態に係る、立体印刷物の第1例であるT型立体印刷物を示す斜視図である。基材10の上の断面形状がTの字のようであることからT型立体印刷物100と呼称する。
[Three-dimensional printed matter]
FIG. 1 is a perspective view showing a T-type three-dimensional printed matter which is a first example of a three-dimensional printed matter according to the first embodiment of the present invention. Since the cross-sectional shape on the base material 10 is like a T-shape, it is called a T-shaped three-dimensional printed matter 100.

T型立体印刷物100は、1つの第1立体印刷物101と、第1立体印刷物101の上面に接する第2立体印刷物102と、からなり、第1立体印刷物101及び第2立体印刷物102はいずれも略直方体形状であり、いずれも同じ方向(X方向)へ延在している。 The T-type three-dimensional printed matter 100 is composed of one first three-dimensional printed matter 101 and a second three-dimensional printed matter 102 in contact with the upper surface of the first three-dimensional printed matter 101, and both the first three-dimensional printed matter 101 and the second three-dimensional printed matter 102 are omitted. It has a rectangular parallelepiped shape and extends in the same direction (X direction).

また、第1立体印刷物101の、延在するX方向と平面視で直交するY方向の長さを下底幅103とし、第2立体印刷物102の、延在するX方向と平面視で直交するY方向の長さを上底幅104とするとき、
1<(上底幅104/下底幅103)≦10
であることを特徴としている。従って、第2立体印刷物102の直下で、平面視で第1立体印刷物101が存在しない領域が存在し、第2立体印刷物102の下面と基材10との間に間隙105を有する。
Further, the length of the first three-dimensional printed matter 101 in the Y direction orthogonal to the extending X direction in a plan view is defined as the bottom width 103, and the length of the second three-dimensional printed matter 102 is orthogonal to the extending X direction in a plan view. When the length in the Y direction is the upper base width 104,
1 <(upper base width 104 / lower base width 103) ≤ 10
It is characterized by being. Therefore, immediately below the second three-dimensional printed matter 102, there is a region in which the first three-dimensional printed matter 101 does not exist in a plan view, and there is a gap 105 between the lower surface of the second three-dimensional printed matter 102 and the base material 10.

尚、ここで、第1立体印刷物101、及び第2立体印刷物102のY方向の長さが、それぞれX方向の位置により変化する場合は、X方向の両端部と中央部の3点の平均値を下底幅、上底幅とする。 Here, when the lengths of the first three-dimensional printed matter 101 and the second three-dimensional printed matter 102 in the Y direction change depending on the positions in the X direction, the average value of the three points at both ends and the center in the X direction. Let be the bottom width and the top width.

図2は、本発明の第一実施形態に係る、立体印刷物の第2例である門型立体印刷物を示す斜視図である。基材10の上の断面形状が門の字のような桝型であることから門型立体印刷物200と呼称する。 FIG. 2 is a perspective view showing a gate-shaped three-dimensional printed matter which is a second example of the three-dimensional printed matter according to the first embodiment of the present invention. Since the cross-sectional shape on the base material 10 is a box shape like a gate, it is called a gate-shaped three-dimensional printed matter 200.

門型立体印刷物200は、2つの第1立体印刷物201a、201bと、第1立体印刷物201a、201bの上面に接する第2立体印刷物202と、からなり、第1立体印刷
物201a、201b及び第2立体印刷物202はいずれも略直方体形状であり、いずれも同じ方向(X方向)へ延在している。
The gate-type three-dimensional printed matter 200 is composed of two first three-dimensional printed matters 201a and 201b and a second three-dimensional printed matter 202 in contact with the upper surfaces of the first three-dimensional printed matters 201a and 201b. The printed matter 202 has a substantially rectangular parallelepiped shape, and both extend in the same direction (X direction).

また、第1立体印刷物201a、201bの、延在するX方向と平面視で直交するY方向の長さをそれぞれ下底幅203a、203b(ここでは203b=203aとする)とし、第2立体印刷物202の、延在するX方向と平面視で直交するY方向の長さを上底幅204とするとき、
1<(上底幅204/下底幅203a)≦10
であることを特徴としている。また、第2立体印刷物202の直下で、平面視で第1立体印刷物201a、201bが存在しない領域が存在し、従って第2立体印刷物202の下面と基材10との間に間隙205を有することを特徴とする。
Further, the lengths of the first three-dimensional printed matter 201a and 201b in the Y direction orthogonal to the extending X direction in a plan view are set to the lower base widths 203a and 203b (here, 203b = 203a), respectively, and the second three-dimensional printed matter. When the length of 202 in the Y direction orthogonal to the extending X direction in a plan view is the upper base width 204,
1 <(upper base width 204 / lower base width 203a) ≤ 10
It is characterized by being. Further, immediately below the second three-dimensional printed matter 202, there is a region in which the first three-dimensional printed matter 201a and 201b do not exist in a plan view, and therefore, a gap 205 is provided between the lower surface of the second three-dimensional printed matter 202 and the base material 10. It is characterized by.

尚、ここで、第1立体印刷物201a、201b、及び第2立体印刷物202のY方向の長さが、X方向の位置により変化する場合は、201a、201bのX方向の両端部と中央部の3点の平均値の201a、201bの平均値を下底幅、及び202のX方向の両端部と中央部の3点の平均値を上底幅とする。 Here, when the lengths of the first three-dimensional printed matter 201a and 201b and the second three-dimensional printed matter 202 in the Y direction change depending on the position in the X direction, both ends and the center portion of the 201a and 201b in the X direction are used. The average value of the three points 201a and 201b is the bottom width, and the average value of the three points at both ends and the center of 202 in the X direction is the top width.

上記の第1例、第2例では、第1立体印刷物がそれぞれ1つ、2つの場合を示したが、本発明の立体印刷物では第1立体印刷物は1以上N数(整数)であればよく、N数の場合、下底幅と上底幅の関係は、
1<(第2立体印刷物の上底幅/第1立体印刷物の下底幅)≦10
であることを特徴とする。
In the above first and second examples, the case where the first three-dimensional printed matter is one or two, respectively, is shown, but in the three-dimensional printed matter of the present invention, the first three-dimensional printed matter may be 1 or more and N numbers (integers). , In the case of N number, the relationship between the bottom width and the top width is
1 <(upper base width of the second three-dimensional printed matter / lower base width of the first three-dimensional printed matter) ≤ 10
It is characterized by being.

尚、ここで、N数の第1立体印刷物、及び第2立体印刷物のY方向の長さが、それぞれX方向の位置により変化する場合は、X方向の両端部と中央部の3点の平均値のN数の平均値を下底幅、及びX方向の両端部と中央部の3点の平均値を上底幅とする。 Here, when the lengths of the N number of the first three-dimensional printed matter and the second three-dimensional printed matter in the Y direction change depending on the positions in the X direction, the average of the three points at both ends and the center in the X direction. The average value of the N numbers of the values is the lower base width, and the average value of the three points at both ends and the center portion in the X direction is the upper base width.

従って、本発明の立体印刷物では、例えば下底幅が100μmであれば、上底幅は100μmより大きく、1000μm(=1mm)以下であることが特徴となる。 Therefore, the three-dimensional printed matter of the present invention is characterized in that, for example, when the lower base width is 100 μm, the upper base width is larger than 100 μm and 1000 μm (= 1 mm) or less.

また、第2立体印刷物の直下で、平面視でN数の第1立体印刷物が存在しない領域が存在し、従って第2立体印刷物の下面と基材との間に間隙を有することを特徴とする。 Further, immediately below the second three-dimensional printed matter, there is a region in which the first three-dimensional printed matter of N number does not exist in a plan view, and therefore, a gap is provided between the lower surface of the second three-dimensional printed matter and the base material. ..

立体印刷物が導電材料からなる場合、導電材料は、一般には、銀、銅、アルミニウムなどに代表される金属材料であるが、商材によっては材料自体に粘弾性やフレキシブル性が求められる。 When the three-dimensional printed matter is made of a conductive material, the conductive material is generally a metal material typified by silver, copper, aluminum, etc. However, depending on the commercial material, the material itself is required to have viscoelasticity and flexibility.

その場合、本発明の立体印刷物を成す導電材料は、粘弾性を有する導電性エラストマーであることが好ましい。すなわち、例えばカーボンを主剤とした導電性エラストマーからなるペーストであるが、粘度調整のために溶媒を混錬した導電性エラストマーとすることが好ましい。これにより材料そのものに滑り性が付与され、後述の印刷ヘッド先端部に設けた吐出溝と同じ形状で材料が吐出され、所望の形状の印刷物が1回の印刷工程で可能となる。粘弾性を有する導電性エラストマーであればフレキシブル性を要する商材の配線パターンとしても有用である。 In that case, the conductive material forming the three-dimensional printed matter of the present invention is preferably a conductive elastomer having viscoelasticity. That is, for example, it is a paste made of a conductive elastomer containing carbon as a main component, but it is preferable to use a conductive elastomer kneaded with a solvent for adjusting the viscosity. As a result, slipperiness is imparted to the material itself, the material is ejected in the same shape as the ejection groove provided at the tip of the printing head, which will be described later, and a printed matter having a desired shape can be produced in one printing step. A conductive elastomer having viscoelasticity is also useful as a wiring pattern for products that require flexibility.

前記で好ましい主剤として挙げた導電性エラストマーは、カーボンや金属粉、金属蒸着粉などの導電性粒子をシリコンゴムに一定の配合割合で均一に混錬した感圧導電性ゴムのことを指す。例えば、熱硬化型カーボンエラストマー、熱可塑性エラストマーなどが挙げられるが、特に限定はされない。 The conductive elastomer mentioned above as a preferable main agent refers to a pressure-sensitive conductive rubber in which conductive particles such as carbon, metal powder, and metal vapor deposition powder are uniformly kneaded with silicon rubber at a constant blending ratio. Examples thereof include thermosetting carbon elastomers and thermoplastic elastomers, but the present invention is not particularly limited.

[立体印刷物の製造方法]
図3、図4は、本発明の第二実施形態である立体印刷物の製造方法に係る、印刷ヘッドの、それぞれ第1例、第2例を示す概略斜視図である。
[Manufacturing method of three-dimensional printed matter]
3 and 4 are schematic perspective views showing a first example and a second example of the print head according to the method for manufacturing a three-dimensional printed matter according to the second embodiment of the present invention.

材料供給装置(図示せず)と印刷ヘッド300(図4では320)を接続し、材料は材料供給装置から印刷ヘッド300(図4では320)内へと送液され、先ずマニホールド301(図4では321)と呼ばれる溜り場に充填される。次に、複数本に分岐した流路302(図4では322)内を経由し先端部の吐出溝310(図4では330)から−X方向へ吐出され、印刷ヘッド300(図4では320)と、その下の基材(ここでは不図示)との相対位置がX方向へ移動することで基材上に立体印刷物が形成される。 The material supply device (not shown) and the print head 300 (320 in FIG. 4) are connected, and the material is sent from the material supply device into the print head 300 (320 in FIG. 4). Then, it is filled in a hangout called 321). Next, the printed matter is discharged in the −X direction from the discharge groove 310 (330 in FIG. 4) at the tip portion via the flow path 302 (322 in FIG. 4) branched into a plurality of lines, and is discharged in the −X direction to the print head 300 (320 in FIG. 4). And the relative position with the base material (not shown here) under it moves in the X direction, so that a three-dimensional printed matter is formed on the base material.

吐出溝の断面形状としては、第1例ではT型(符号310)、第2例では門型(符号330)の、矩形からなる2種類を図示しているが、本発明の立体印刷物の製造方法に用いる印刷ヘッドの吐出溝はT型、門型などの形状に限定されない。例えば、既述のように、本発明の立体印刷物では第1立体印刷物は1以上N数(整数)であればよく、商材に応じ適宜形状を選択すればよい。 As the cross-sectional shape of the discharge groove, two types consisting of a rectangle, a T type (reference numeral 310) in the first example and a portal type (reference numeral 330) in the second example, are shown. The discharge groove of the print head used in the method is not limited to a shape such as a T-shape or a portal shape. For example, as described above, in the three-dimensional printed matter of the present invention, the first three-dimensional printed matter may have an N number (integer) of 1 or more, and the shape may be appropriately selected according to the product.

本発明の立体印刷物の製造方法では、上記の印刷ヘッドを用い、第1立体印刷物及び前記第2立体印刷物からなる立体印刷物を1回の印刷工程によって形成する。そのためには、立体印刷物となる材料の粘弾性を好適に制御することが重要である。 In the method for producing a three-dimensional printed matter of the present invention, the above-mentioned print head is used to form a three-dimensional printed matter composed of the first three-dimensional printed matter and the second three-dimensional printed matter by one printing step. For that purpose, it is important to suitably control the viscoelasticity of the material to be a three-dimensional printed matter.

すなわち、高粘度の主剤だけでは本発明の印刷物を1回の印刷工程で得ることは困難であるため、溶媒を主剤に混錬して材料そのものに滑り性を付与することにより、吐出溝と同形状に材料が吐出され、所望の形状に印刷することが可能となる。 That is, since it is difficult to obtain the printed matter of the present invention in a single printing step using only the high-viscosity base material, the same as the discharge groove is obtained by kneading the solvent with the base material to impart slipperiness to the material itself. The material is ejected into a shape, and it becomes possible to print in a desired shape.

以上のように、本発明によれば、例えば高粘度の導電性エラストマーを主剤とした材料に溶媒を混錬し、印刷ヘッドの吐出溝の断面形状を所望の形状に加工することにより、1回の印刷工程で立体印刷物を連続的に形成することが可能となる。 As described above, according to the present invention, for example, by kneading a solvent with a material containing a high-viscosity conductive elastomer as a main component and processing the cross-sectional shape of the discharge groove of the print head into a desired shape, once. It is possible to continuously form a three-dimensional printed matter in the printing process of.

1回の印刷工程によって立体印刷物を形成する方法としては、モーノディスペンサーで吐出する方法によることが好ましい。具体的な方法については、後述の実施例で述べる。 As a method of forming a three-dimensional printed matter by one printing step, it is preferable to use a method of discharging with a MONO dispenser. A specific method will be described in Examples described later.

[配線パターン]
図5は、本発明の第三実施形態に係る、配線パターンの第1例を示す斜視図である。配線パターンの第1例400は、図1のT型立体印刷物100の、第2立体印刷物102の下面と基材10との間の間隙105が、金属ペースト150で充填されている。
[Wiring pattern]
FIG. 5 is a perspective view showing a first example of a wiring pattern according to a third embodiment of the present invention. In the first example 400 of the wiring pattern, the gap 105 between the lower surface of the second three-dimensional printed matter 102 and the base material 10 of the T-shaped three-dimensional printed matter 100 of FIG. 1 is filled with the metal paste 150.

図5は、本発明の第三実施形態に係る、配線パターンの第2例を示す斜視図である。配線パターンの第2例500は、図2の門型立体印刷物200の、第2立体印刷物202の下面と基材10との間の間隙205が、金属ペースト250で充填されている。 FIG. 5 is a perspective view showing a second example of the wiring pattern according to the third embodiment of the present invention. In the second example 500 of the wiring pattern, the gap 205 between the lower surface of the second three-dimensional printed matter 202 and the base material 10 of the gate-shaped three-dimensional printed matter 200 of FIG. 2 is filled with the metal paste 250.

本発明の配線パターンは、図5、図6のように、金属ペースト150、250に、立体印刷物100、200(図1、図2参照)が加わった形状となるので、全体としてアスペクト比が高くなるとともに、断面積が増えることにより配線に流れる電流をより多くすることが可能となる。特に印刷技術を利用することは、電子回路のような小スペースに密集した配線を形成する上で有利に作用する。 As shown in FIGS. 5 and 6, the wiring pattern of the present invention has a shape in which the three-dimensional printed matter 100 and 200 (see FIGS. 1 and 2) are added to the metal pastes 150 and 250, so that the aspect ratio is high as a whole. At the same time, it becomes possible to increase the current flowing through the wiring by increasing the cross-sectional area. In particular, the use of printing technology is advantageous in forming dense wiring in a small space such as an electronic circuit.

[配線パターンの製造方法]
本発明の配線パターンの製造方法には、本発明の第二実施形態である立体印刷物の製造方法を利用する。順序としては、第2立体印刷物と基材との間隙となる領域に低抵抗からなる金属ペーストを印刷しておき、その後当該立体印刷物を印刷する方法、或いは当該立体印刷物を印刷した後に金属ペーストを注入する方法、のいずれであってもよい。また、金属ペーストは2種類以上であってもよい。いずれにしても、好適に選択した組み合わせ
の配線パターンが従来の方法よりも簡易且つ安価に得られる。
[Manufacturing method of wiring pattern]
As the method for manufacturing the wiring pattern of the present invention, the method for manufacturing a three-dimensional printed matter according to the second embodiment of the present invention is used. The order is as follows: a method of printing a metal paste having a low resistance in a region forming a gap between the second three-dimensional printed matter and the base material, and then printing the three-dimensional printed matter, or a method of printing the three-dimensional printed matter and then applying the metal paste. It may be any of the injection methods. Further, the metal paste may be of two or more types. In any case, a wiring pattern of a preferably selected combination can be obtained more easily and cheaply than the conventional method.

以下、実施例及び比較例に基づいて、本発明の立体印刷物とその製造方法、及び配線パターンとその製造方法をより具体的に説明する。 Hereinafter, the three-dimensional printed matter of the present invention and its manufacturing method, and the wiring pattern and its manufacturing method will be described more specifically based on Examples and Comparative Examples.

立体印刷物を形成する材料としては、旭化成ワッカー社製の2液混合タイプの熱硬化型カーボンエラストマーELASTOSIL LR3162A(商品名)と、及びELASTOSIL LR3162B(商品名)とを1対1の比に配合して主剤とし、富士フィルム和光純薬社製のジエチレングリコールモノエチルエーテルアセテートを溶媒として、30WT%の割合で添加し、武蔵エンジニアリング社製のAWATARON(商品名)を用いて混錬した導電性ペースト材料を使用した。 As a material for forming a three-dimensional printed matter, a two-component mixed type thermosetting carbon elastomer ELASTOSIL LR3162A (trade name) manufactured by Asahi Kasei Wacker Co., Ltd. and ELASTOSIL LR3162B (trade name) are blended in a ratio of 1: 1. A conductive paste material made by adding diethylene glycol monoethyl ether acetate manufactured by Fuji Film Wako Pure Chemical Co., Ltd. as a main agent at a ratio of 30 WT% and kneading with AWATARON (trade name) manufactured by Musashi Engineering Co., Ltd. is used. did.

印刷ヘッド300(図3)または320(図4)内に設ける矩形からなる吐出溝310または330は切削加工により作製した。本発明で規定する数値範囲の有効性を検証するために、吐出溝310または330のサイズのみを後述のように変更した計10個の印刷ヘッド300または320を作製した。 The rectangular discharge groove 310 or 330 provided in the print head 300 (FIG. 3) or 320 (FIG. 4) was produced by cutting. In order to verify the effectiveness of the numerical range specified in the present invention, a total of 10 print heads 300 or 320 were produced in which only the size of the discharge groove 310 or 330 was changed as described later.

高粘度材料の供給が可能な武蔵エンジニアリング社製モーノディスペンサーを搭載する材料供給装置に、上記の当該材料、及び切削加工で形成した印刷ヘッド300または320を実装し、ガラスの基材10上に吐出を行った。 The above-mentioned material and the print head 300 or 320 formed by cutting are mounted on a material supply device equipped with a Morno dispenser manufactured by Musashi Engineering Co., Ltd., which can supply a high-viscosity material, and are mounted on a glass base material 10. Discharge was performed.

ガラスの基材10上に吐出した印刷物はYamato社製オーブンDKM400(商品名)にて100℃の状態で1時間焼成して印刷物を硬化させ、導電性と粘弾性を有する立体印刷物の印刷を完了した。尚、記載しない項目に関しては全て共通の条件である。 The printed matter discharged on the glass base material 10 is fired in an oven DKM400 (trade name) manufactured by Yamato Co., Ltd. at 100 ° C. for 1 hour to cure the printed matter, and the printing of the three-dimensional printed matter having conductivity and viscoelasticity is completed. did. All items not described are common conditions.

<実施例1>
吐出溝310または330の、断面形状がT型または門型からなる、下底幅103または203a及び203bが100μm、上底幅104または204が300μmからなる印刷ヘッド300または320を使用した。
<Example 1>
A print head 300 or 320 of the discharge groove 310 or 330 having a T-shaped or gate-shaped cross section, having a lower base width 103 or 203a and 203b of 100 μm and an upper base width of 104 or 204 of 300 μm was used.

<実施例2>
吐出溝310または330の、断面形状がT型または門型からなる、下底幅103または203a及び203bが100μm、上底幅104または204が500μmからなる印刷ヘッド300または320を使用した。
<Example 2>
A print head 300 or 320 of the discharge groove 310 or 330 having a T-shaped or portal-shaped cross section, having a lower base width 103 or 203a and 203b of 100 μm and an upper base width of 104 or 204 of 500 μm was used.

<実施例3>
吐出溝310または330の、断面形状がT型または門型からなる、下底幅103または203a及び203bが100μm、上底幅104または204が1000μmからなる印刷ヘッド300または320を使用した。
<Example 3>
A print head 300 or 320 of the discharge groove 310 or 330 having a cross-sectional shape of T-shaped or portal-shaped, having a lower base width 103 or 203a and 203b of 100 μm and an upper base width of 104 or 204 of 1000 μm was used.

<比較例1>
吐出溝310または330の、断面形状がT型または門型からなる、下底幅103または203a及び203bが100μm、上底幅104または204が2000μmからなる印刷ヘッド300または320を使用した。
<Comparative example 1>
A print head 300 or 320 of the discharge groove 310 or 330 having a cross-sectional shape of T-shaped or portal-shaped, having a lower base width 103 or 203a and 203b of 100 μm and an upper base width of 104 or 204 of 2000 μm was used.

<比較例2>
吐出溝310または330の、断面形状がT型または門型からなる、下底幅103または203a及び203bが50μm、上底幅104または204が1000μmからなる印刷ヘッド300または320を使用した。
<Comparative example 2>
A print head 300 or 320 of the discharge groove 310 or 330 having a cross-sectional shape of T-shaped or portal-shaped, having a lower base width 103 or 203a and 203b of 50 μm and an upper base width of 104 or 204 of 1000 μm was used.

[評価方法]
本発明の製造方法は1回の印刷で立体印刷物を得ることを特徴としており、断面形状の
中でも特に基材10上の第2立体印刷物の下面の形状維持が重要になる。そこで第1立体印刷物と第2立体印刷物の交差部のなす角が略直角であること、且つ24時間後の経時変化により第2立体印刷物の下面が下方(基材10の方向)に変形しないか、断面形状を、レーザ顕微鏡により計測し評価した。その結果、許容可能な所望の形状が得られた場合は○、レベリングや経時変化などにより所望の形状が得られなかった場合を×と評価した。評価結果を表1に示す。
[Evaluation method]
The manufacturing method of the present invention is characterized in that a three-dimensional printed matter is obtained by one printing, and it is particularly important to maintain the shape of the lower surface of the second three-dimensional printed matter on the base material 10 among the cross-sectional shapes. Therefore, whether the angle formed by the intersection of the first three-dimensional printed matter and the second three-dimensional printed matter is approximately a right angle, and whether the lower surface of the second three-dimensional printed matter is deformed downward (in the direction of the base material 10) due to a change over time after 24 hours. , The cross-sectional shape was measured and evaluated with a laser microscope. As a result, when an acceptable desired shape was obtained, it was evaluated as ◯, and when the desired shape was not obtained due to leveling, aging, etc., it was evaluated as x. The evaluation results are shown in Table 1.

Figure 2021118322
Figure 2021118322

[評価結果]
表1の評価結果に示すように、1<(第2立体印刷物の上底幅/第1立体印刷物の下底幅)≦10なる本発明の条件を満たす実施例1〜3は、全ての印刷ヘッド300、及び320を用いてT型、及び門型立体印刷物の所望の形状を得た。
[Evaluation results]
As shown in the evaluation results of Table 1, Examples 1 to 3 satisfying the condition of the present invention in which 1 <(upper base width of the second three-dimensional printed matter / lower base width of the first three-dimensional printed matter) ≤ 10 are all printed. The heads 300 and 320 were used to obtain the desired shapes of T-shaped and portal-shaped three-dimensional printed matter.

一方で、比較例1は第2立体印刷物の上底幅/第1立体印刷物の下底幅=20であり、2000μmと長い第2立体印刷物の両側に第1立体印刷物を形成する門型立体印刷物を良好に形成することができなかった。また、比較例2も第2立体印刷物の上底幅/第1立体印刷物の下底幅=20であり、上底幅の長さは1000μmであっても下底幅が50μmと短いために、門型に加えT型立体印刷物も良好に形成することができなかった。 On the other hand, in Comparative Example 1, the upper base width of the second three-dimensional printed matter / the lower base width of the first three-dimensional printed matter = 20, and the gate-shaped three-dimensional printed matter forming the first three-dimensional printed matter on both sides of the second three-dimensional printed matter as long as 2000 μm. Could not be formed well. Further, in Comparative Example 2, the upper base width of the second three-dimensional printed matter / the lower base width of the first three-dimensional printed matter = 20, and even if the length of the upper base width is 1000 μm, the lower base width is as short as 50 μm. In addition to the portal type, the T-type three-dimensional printed matter could not be formed well.

また、図6に示す本発明の配線パターンの第2例を作製し検証した。まず、モーノディスペンサーを用いて予め銀を主剤とした金属ペースト250をガラスの基材10に印刷しオーブンを用いて焼成し硬化した。その後、上記の導電エラストマーを主剤として、本発明の立体印刷物の第2例(図2)である門型の立体印刷物の印刷を行った。その結果、低抵抗の銀ペーストを覆うようにフレキシブル性を有する導電性エラストマーからなる配線パターンを得ることに成功した。 In addition, a second example of the wiring pattern of the present invention shown in FIG. 6 was prepared and verified. First, a metal paste 250 containing silver as a main component was printed on a glass base material 10 in advance using a MONO dispenser, and the paste was fired and cured using an oven. Then, using the above-mentioned conductive elastomer as a main component, the gate-shaped three-dimensional printed matter, which is the second example (FIG. 2) of the three-dimensional printed matter of the present invention, was printed. As a result, we succeeded in obtaining a wiring pattern made of a conductive elastomer having flexibility so as to cover the low resistance silver paste.

本実施例では、材料混錬、印刷ヘッド内に設ける吐出溝の形状、吐出装置及び使用した基材の一例を示したが、材料・装置は上記以外のメーカーでもよいし、本発明の主旨を逸脱しない範囲で、プロセス条件などを変更して作製することも可能であり、限定されるものではない。 In this embodiment, examples of material kneading, the shape of the discharge groove provided in the print head, the discharge device, and the base material used are shown, but the material / device may be a manufacturer other than the above, and the gist of the present invention may be used. It is also possible to change the process conditions and the like within a range that does not deviate, and the production is not limited.

例えば材料混錬方法は手動でもよいし、吐出溝の型成は切削機や研削機3Dプリンタなどでもよいし、印刷ヘッドは一般的な鉄や樹脂からなる材料からなっていてもよい。基材はガラス以外に、ポリイミドフィルムやPETフィルム、紙などでも良い。材料を硬化するための方法も熱硬化に限定されない。 For example, the material kneading method may be manual, the discharge groove may be formed by a cutting machine, a grinding machine 3D printer, or the like, and the print head may be made of a general material made of iron or resin. The base material may be a polyimide film, a PET film, paper, or the like, in addition to glass. The method for curing the material is also not limited to thermosetting.

本発明の立体印刷物とその製造方法は、プリンタブルエレクトロニクス技術分野などで、導電材料または絶縁材料を用いて、断面形状を矩形及び/または高アスペクト比にパターン形成する場合に応用できる。 The three-dimensional printed matter of the present invention and the method for producing the same can be applied in the field of printable electronics technology and the like when a conductive material or an insulating material is used to form a pattern having a rectangular cross-sectional shape and / or a high aspect ratio.

10・・・・基材
100・・・T型立体印刷物
200・・・門型立体印刷物
101、201a、201b・・・第1立体印刷物
102、202・・・・・・・・・第2立体印刷物
103、203a、203b・・・下底幅
104、204・・・上底幅
105、205・・・間隙
300、320・・・印刷ヘッド
301、321・・・マニホールド
302、322・・・流路
310、330・・・吐出溝
150、250・・・金属ペースト
400、500・・・配線パターン
10 ... Base material 100 ... T-type three-dimensional printed matter 200 ... Gate-type three-dimensional printed matter 101, 201a, 201b ... First three-dimensional printed matter 102, 202 ... Second three-dimensional Printed matter 103, 203a, 203b ... Lower bottom width 104, 204 ... Upper bottom width 105, 205 ... Gap 300, 320 ... Print head 301, 321 ... Manifold 302, 322 ... Flow Roads 310, 330 ... Discharge grooves 150, 250 ... Metal paste 400, 500 ... Wiring pattern

Claims (6)

1以上N数の第1立体印刷物と、前記第1立体印刷物の上面に接する第2立体印刷物と、からなり、
前記第1立体印刷物及び前記第2立体印刷物はいずれも略直方体形状であり、いずれも同じ方向へ延在し、
前記第1立体印刷物の、延在する方向と平面視で直交する方向の長さの1以上N数における平均値を下底幅とし、
前記第2立体印刷物の、延在する方向と平面視で直交する方向の長さを上底幅とするとき、
1<(前記第2立体印刷物の上底幅/前記第1立体印刷物の下底幅)≦10
であり、
前記第2立体印刷物の直下に、平面視で前記第1立体印刷物が存在しない領域が存在する、ことを特徴とする立体印刷物。
ここで、Nは整数とする。
It is composed of a first three-dimensional printed matter having an N number of 1 or more and a second three-dimensional printed matter in contact with the upper surface of the first three-dimensional printed matter.
Both the first three-dimensional printed matter and the second three-dimensional printed matter have a substantially rectangular parallelepiped shape, and both extend in the same direction.
The lower base width is defined as the average value of 1 or more N numbers of the lengths of the first three-dimensional printed matter in the direction orthogonal to the extending direction in a plan view.
When the length of the second three-dimensional printed matter in the direction orthogonal to the extending direction in a plan view is defined as the upper base width,
1 <(upper base width of the second three-dimensional printed matter / lower base width of the first three-dimensional printed matter) ≦ 10
And
A three-dimensional printed matter characterized in that a region in which the first three-dimensional printed matter does not exist exists immediately below the second three-dimensional printed matter.
Here, N is an integer.
前記立体印刷物は粘弾性を有する導電性エラストマーからなる、
ことを特徴とする請求項1に記載の立体印刷物。
The three-dimensional printed matter is made of a conductive elastomer having viscoelasticity.
The three-dimensional printed matter according to claim 1, wherein the three-dimensional printed matter is characterized by the above.
請求項1、または2に記載の前記立体印刷物を1回の印刷工程によって形成する、
ことを特徴とする立体印刷物の製造方法。
The three-dimensional printed matter according to claim 1 or 2 is formed by one printing step.
A method for manufacturing a three-dimensional printed matter.
前記1回の印刷工程によって前記立体印刷物を形成する方法は、モーノディスペンサーで吐出する方法による、
ことを特徴とする請求項3に記載の立体印刷物の製造方法。
The method of forming the three-dimensional printed matter by the one printing step is based on a method of discharging with a mono dispenser.
The method for manufacturing a three-dimensional printed matter according to claim 3.
請求項1または2に記載の立体印刷物を具備し、
前記第2立体印刷物の直下で、平面視で前記第1立体印刷物が存在しない領域に、少なくとも1種類以上の金属ペーストが充填されている、
ことを特徴とする配線パターン。
The three-dimensional printed matter according to claim 1 or 2 is provided, and the three-dimensional printed matter is provided.
Immediately below the second three-dimensional printed matter, a region in which the first three-dimensional printed matter does not exist in a plan view is filled with at least one kind of metal paste.
A wiring pattern characterized by that.
前記立体印刷物は、請求項3または4に記載の立体印刷物の製造方法により製造される、
ことを特徴とする請求項5に記載の配線パターンの製造方法。
The three-dimensional printed matter is manufactured by the method for manufacturing a three-dimensional printed matter according to claim 3 or 4.
The method for manufacturing a wiring pattern according to claim 5, wherein the wiring pattern is manufactured.
JP2020012362A 2020-01-29 Three-dimensional printed matter and its manufacturing method, and wiring pattern and its manufacturing method Active JP7472510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012362A JP7472510B2 (en) 2020-01-29 Three-dimensional printed matter and its manufacturing method, and wiring pattern and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012362A JP7472510B2 (en) 2020-01-29 Three-dimensional printed matter and its manufacturing method, and wiring pattern and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2021118322A true JP2021118322A (en) 2021-08-10
JP2021118322A5 JP2021118322A5 (en) 2021-12-16
JP7472510B2 JP7472510B2 (en) 2024-04-23

Family

ID=

Similar Documents

Publication Publication Date Title
US20060158497A1 (en) Ink-jet printing of compositionally non-uniform features
JP7397357B2 (en) Manufacturing method of anisotropically conductive film and anisotropically conductive film
JP7176550B2 (en) Anisotropic conductive film and connection structure
US7653990B2 (en) Manufacturing method of printed circuit board using an ink jet
US6171921B1 (en) Method for forming a thick-film resistor and thick-film resistor formed thereby
US20040207053A1 (en) Thermally conductive substrate, thermally conductive substrate manufacturing method and power module
CN103460308A (en) Resistive voltage divider made of a resistive film material on an insulating substrate
CN103493153A (en) Resistive voltage divider with high voltage ratio
KR20070051349A (en) Conductive paste and flexible printed wiring board obtained by using the conductive paste
US10449730B2 (en) Electronic device manufacturing device and manufacturing method thereof
JP2021118322A (en) Three-dimensional printed matter and manufacturing method thereof and wiring pattern and manufacturing method thereof
EP1278405A1 (en) Circuit board producing method and circuit board producing device
JP7472510B2 (en) Three-dimensional printed matter and its manufacturing method, and wiring pattern and its manufacturing method
JP2020027798A (en) Anisotropic conductive film
JP7175757B2 (en) Inkjet recording head and manufacturing method thereof
JP3818512B2 (en) Printed circuit board manufacturing method and printed circuit board
JP3252763B2 (en) Electronic component manufacturing equipment
KR101085487B1 (en) Conductive paste composite for screen printing and screen printing method using the same
CN108140619B (en) Circuit package
CN104411502A (en) Intaglio plate for offset gravure printing and printed wiring board
JP3818513B2 (en) Printed circuit board manufacturing method and printed circuit board
JP7169846B2 (en) Wiring sheet manufacturing method
CN111165079B (en) Printed circuit board and method for manufacturing the same
KR100776685B1 (en) Flat carbon resistor embedded printed circuit board and manufacturing method thereof
JP3193896B2 (en) Method of manufacturing resistor substrate for electronic component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312