JP2021117334A - Optical stack and display device - Google Patents

Optical stack and display device Download PDF

Info

Publication number
JP2021117334A
JP2021117334A JP2020010108A JP2020010108A JP2021117334A JP 2021117334 A JP2021117334 A JP 2021117334A JP 2020010108 A JP2020010108 A JP 2020010108A JP 2020010108 A JP2020010108 A JP 2020010108A JP 2021117334 A JP2021117334 A JP 2021117334A
Authority
JP
Japan
Prior art keywords
layer
thickness
film
optical
front plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020010108A
Other languages
Japanese (ja)
Inventor
大山 姜
Da Shan Jiang
大山 姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2020010108A priority Critical patent/JP2021117334A/en
Priority to KR1020227015299A priority patent/KR20220126711A/en
Priority to CN202080094185.0A priority patent/CN115003499A/en
Priority to PCT/JP2020/044457 priority patent/WO2021149359A1/en
Priority to TW109142464A priority patent/TW202129319A/en
Publication of JP2021117334A publication Critical patent/JP2021117334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Push-Button Switches (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Liquid Crystal (AREA)

Abstract

To provide an optical stack used by being disposed on the front surface of a display device and having excellent impact resistance.SOLUTION: The optical stack comprises a front surface plate containing a base material, and n optical members (n representing an integer of 2 or greater), which are layered in this order. An adhesive layer, having a thickness of 10 μm or larger, is layered on the surface of each of the n optical members on the front surface plate side thereof such that same contact each other. When an optical member at the x-th position (x representing an integer of between 1 and n inclusive) from the front surface plate side is defined as the x-th optical member, an evaluation value A satisfies 50≤A≤500 (2).SELECTED DRAWING: Figure 1

Description

本発明は、光学積層体及び表示装置に関する。 The present invention relates to an optical laminate and a display device.

韓国公開特許第2018−0012913号公報(特許文献1)には、耐久性に優れた表示装置用ウィンドウを提供することが記載されている。 Korean Publication No. 2018-0012913 (Patent Document 1) describes that a window for a display device having excellent durability is provided.

韓国公開特許第2018−0012913号公報Korean Publication No. 2018-0012913

本発明は、表示装置の前面に配置して用いられる光学積層体であって、優れた耐衝撃性を有する光学積層体、及び当該光学積層体を含む表示装置を提供することを目的とする。 An object of the present invention is to provide an optical laminate used by arranging it on the front surface of a display device, which has excellent impact resistance, and a display device including the optical laminate.

本発明は、以下に例示する光学積層体及び表示装置を提供する。
〔1〕 基材を含む前面板と、n個(nは2以上の整数)の光学部材と、がこの順に積層された光学積層体であって、
前記n個の光学部材の前記前面板側の表面には、それぞれ厚み10μm以上の粘着剤層が接して積層されており、
前記前面板に近い側からx番目(xは1以上n以下の整数)の光学部材を第x光学部材とすると、下記式(1)により算出される評価値Aが、下記式(2):
50≦A≦500 (2)
の関係を満たす、光学積層体。

Figure 2021117334

[式(1)中、T〔mJ/mm〕は前記前面板のタフネスであり、aは(前記基材の厚み〔μm〕)/(前記前面板の厚み〔μm〕)であり、T〔mJ/mm〕は前記第x光学部材のタフネスであり、aは(前記前面板の前記光学部材側とは反対側の表面から前記第x光学部材の前記前面板側の表面までの距離〔μm〕)/(前記第x光学部材の厚み〔μm〕)である。]
〔2〕 前記n個の光学部材の内の一つは偏光板である、〔1〕に記載の光学積層体。
〔3〕 前記n個の光学部材の内の一つはタッチセンサパネルである、〔1〕又は〔2〕に記載の光学積層体。
〔4〕 前記nは4以下の整数である、〔1〕〜〔3〕のいずれか1項に記載の光学積層体。
〔5〕 〔1〕〜〔4〕のいずれか1項に記載の光学積層体を含む表示装置。 The present invention provides an optical laminate and a display device illustrated below.
[1] An optical laminate in which a front plate including a base material and n (n is an integer of 2 or more) optical members are laminated in this order.
Adhesive layers having a thickness of 10 μm or more are in contact with each other and laminated on the surface of the n optical members on the front plate side.
Assuming that the xth optical member (x is an integer of 1 or more and n or less) from the side closer to the front plate is the xth optical member, the evaluation value A calculated by the following formula (1) is the following formula (2):
50 ≤ A ≤ 500 (2)
An optical laminate that satisfies the relationship.
Figure 2021117334

[In the formula (1), T 0 [mJ / mm 3 ] is the toughness of the front plate, and a 0 is (thickness of the base material [μm]) / (thickness of the front plate [μm]). , T x [mJ / mm 3 ] is the toughness of the xth optical member, and a x is (from the surface of the front plate opposite to the optical member side to the front plate side of the x optical member. Distance to the surface [μm]) / (thickness of the xth optical member [μm]). ]
[2] The optical laminate according to [1], wherein one of the n optical members is a polarizing plate.
[3] The optical laminate according to [1] or [2], wherein one of the n optical members is a touch sensor panel.
[4] The optical laminate according to any one of [1] to [3], wherein n is an integer of 4 or less.
[5] A display device including the optical laminate according to any one of [1] to [4].

本発明によれば、優れた耐衝撃性を有する光学積層体、及び当該光学積層体を含む表示装置を提供できる。 According to the present invention, it is possible to provide an optical laminate having excellent impact resistance and a display device including the optical laminate.

本発明に係る光学積層体の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the optical laminated body which concerns on this invention.

以下、図面を参照しつつ本発明に係る光学積層体の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下の全ての図面においては、各構成要素を理解し易くするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。 Hereinafter, embodiments of the optical laminate according to the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the scale is appropriately adjusted to make it easier to understand each component, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.

[光学積層体]
本発明に係る光学積層体は、基材を含む前面板と、n個(nは2以上の整数)の光学部材と、がこの順に積層された光学積層体であって、前記n個の光学部材の前記前面板側の表面には、それぞれ厚み10μm以上の粘着剤層が接して積層されている。本発明に係る光学積層体について、本明細書においては、前面板に近い側からx番目(xは1以上n以下の整数)の光学部材を第x光学部材とし、第x光学部材の前面板側の表面に接して積層されている厚み10μm以上の粘着剤層を第x粘着剤層とする。nは、好ましくは6以下の整数であり、さらに好ましくは4以下の整数である。
[Optical laminate]
The optical laminate according to the present invention is an optical laminate in which a front plate including a base material and n (n is an integer of 2 or more) optical members are laminated in this order, and the n optics are described. Adhesive layers having a thickness of 10 μm or more are in contact with each other and laminated on the surface of the member on the front plate side. Regarding the optical laminate according to the present invention, in the present specification, the x-th (x is an integer of 1 or more and n or less) optical member from the side closer to the front plate is defined as the x-th optical member, and the front plate of the x-optical member. The pressure-sensitive adhesive layer having a thickness of 10 μm or more and laminated in contact with the side surface is defined as the xth pressure-sensitive adhesive layer. n is preferably an integer of 6 or less, and more preferably an integer of 4 or less.

各光学部材は、一つの層から構成されるものであっても、複数の層から構成されるものであってもよい。本明細書において、複数の層からなる光学部材について、複数の光学部材とするか、一つの光学部材とするかは、厚み10μm以上の粘着剤層の有無に基づいて判断する。本明細書において、厚み10μm以上の粘着剤層によって分離される二つの部分は異なる光学部材とする。したがって、各光学部材は、厚み10μm未満の粘着剤層を含むものであってもよく、一方、厚み10μm以上の粘着剤層は含まないものである。 Each optical member may be composed of one layer or may be composed of a plurality of layers. In the present specification, whether an optical member composed of a plurality of layers is to be a plurality of optical members or one optical member is determined based on the presence or absence of an adhesive layer having a thickness of 10 μm or more. In the present specification, the two portions separated by the pressure-sensitive adhesive layer having a thickness of 10 μm or more are different optical members. Therefore, each optical member may include a pressure-sensitive adhesive layer having a thickness of less than 10 μm, while each optical member does not include a pressure-sensitive adhesive layer having a thickness of 10 μm or more.

本発明に係る光学積層体の厚みは、光学積層体に求められる機能及び光学積層体の用途等に応じて異なるため特に限定されないが、例えば50μm以上4000μm以下であり、好ましくは70μm以上2000μm以下であり、より好ましく100μm以上1000μm以下である。 The thickness of the optical laminate according to the present invention is not particularly limited because it varies depending on the function required for the optical laminate, the application of the optical laminate, etc., but is, for example, 50 μm or more and 4000 μm or less, preferably 70 μm or more and 2000 μm or less. Yes, more preferably 100 μm or more and 1000 μm or less.

光学積層体の平面視形状は、例えば方形形状であってよく、好ましくは長辺と短辺とを有する方形形状であり、より好ましくは長方形である。光学積層体100の面方向の形状が長方形である場合、長辺の長さは、例えば10mm以上1400mm以下であってよく、好ましくは50mm以上600mm以下である。短辺の長さは、例えば5mm以上800mm以下であり、好ましくは30mm以上500mm以下であり、より好ましくは50mm以上300mm以下である。光学積層体100を構成する各層は、角部がR加工されたり、端部が切り欠き加工されたり、穴あき加工されたりしていてもよい。 The plan view shape of the optical laminate may be, for example, a square shape, preferably a square shape having a long side and a short side, and more preferably a rectangle. When the shape of the optical laminate 100 in the plane direction is rectangular, the length of the long side may be, for example, 10 mm or more and 1400 mm or less, preferably 50 mm or more and 600 mm or less. The length of the short side is, for example, 5 mm or more and 800 mm or less, preferably 30 mm or more and 500 mm or less, and more preferably 50 mm or more and 300 mm or less. Each layer constituting the optical laminate 100 may have corners R-processed, end portions notched, or perforated.

光学積層体は、例えば表示装置等に用いることができる。表示装置は特に限定されず、例えば有機エレクトロルミネッセンス(有機EL)表示装置、無機エレクトロルミネッセンス(無機EL)表示装置、液晶表示装置、電界発光表示装置等が挙げられる。光学積層体100は、特に屈曲が可能な表示装置に好適である。 The optical laminate can be used, for example, in a display device or the like. The display device is not particularly limited, and examples thereof include an organic electroluminescence (organic EL) display device, an inorganic electroluminescence (inorganic EL) display device, a liquid crystal display device, and an electroluminescent display device. The optical laminate 100 is particularly suitable for a display device capable of bending.

図1は、本発明の一実施形態による光学積層体の概略断面図である。図1に示す光学積層体100は、前面板10と、3個(n=3)の光学部材と、がこの順に積層されて構成されている。3個の光学部材は、前面板10に近い側から、第1光学部材21、第2光学部材22、第3光学部材23である。光学積層体100において、第1光学部材21の前面板10側の表面には第1粘着剤層31が接して積層されており、第2光学部材22の前面板10側の表面には第2粘着剤層32が接して積層されており、第3光学部材23の前面板10側の表面には第3粘着剤層33が接して積層されている。第1〜3の粘着剤層31,32,33は、いずれも厚みが10μm以上である。 FIG. 1 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention. The optical laminate 100 shown in FIG. 1 is configured by laminating a front plate 10 and three (n = 3) optical members in this order. The three optical members are the first optical member 21, the second optical member 22, and the third optical member 23 from the side closer to the front plate 10. In the optical laminate 100, the first adhesive layer 31 is in contact with and laminated on the surface of the first optical member 21 on the front plate 10 side, and the second optical member 22 is laminated on the surface of the front plate 10 side. The pressure-sensitive adhesive layer 32 is in contact and laminated, and the third pressure-sensitive adhesive layer 33 is in contact and laminated on the surface of the third optical member 23 on the front plate 10 side. The first to third adhesive layers 31, 32, and 33 all have a thickness of 10 μm or more.

光学積層体100において、前面板10は、基材11を含み、基材11の第1光学部材21側とは反対側の表面に設けられたハードコート層12をさらに含む。例えば、光学積層体100において、第1光学部材21は保護板であり、第2光学部材22は偏光板であり、第3光学部材23はタッチセンサパネルである。 In the optical laminate 100, the front plate 10 includes the base material 11, and further includes a hard coat layer 12 provided on the surface of the base material 11 opposite to the first optical member 21 side. For example, in the optical laminate 100, the first optical member 21 is a protective plate, the second optical member 22 is a polarizing plate, and the third optical member 23 is a touch sensor panel.

<光学積層体の評価値A>
本発明に係る光学積層体は、評価値Aが下記式(2):
50≦A≦500 (2)
の関係を満たす。
<Evaluation value A of optical laminate>
The evaluation value A of the optical laminate according to the present invention is the following formula (2):
50 ≤ A ≤ 500 (2)
Satisfy the relationship.

評価値Aは、下記式(1):

Figure 2021117334

により算出される値である。 The evaluation value A is the following formula (1):
Figure 2021117334

It is a value calculated by.

式(1)中、T〔mJ/mm〕は前面板のタフネスであり、aは(前面板に含まれる基材の厚み〔μm〕)/(前面板の厚み〔μm〕)であり、T〔mJ/mm〕は第x光学部材のタフネスであり、aは(前面板の光学部材側とは反対側の表面から第x光学部材の前面板側の表面までの距離〔μm〕)/(前記第x光学部材の厚み〔μm〕)である。本明細書において、タフネスは、温度23℃、相対湿度55%の環境下で測定された値を意味する。タフネスは、後述の実施例に記載された方法により測定される。 In the formula (1), T 0 [mJ / mm 3 ] is the toughness of the front plate, and a 0 is (thickness of the base material contained in the front plate [μm]) / (thickness of the front plate [μm]). Yes, T x [mJ / mm 3 ] is the toughness of the xth optical member, and a x is (the distance from the surface of the front plate opposite to the optical member side to the surface of the front plate side of the xth optical member). [Μm]) / (thickness of the xth optical member [μm]). In the present specification, toughness means a value measured in an environment of a temperature of 23 ° C. and a relative humidity of 55%. Toughness is measured by the methods described in the Examples below.

図1に示す光学積層体において評価値Aは、式(1a):
A=T/a+T/a+T/a+T/a (1a)
により算出される値である。
In the optical laminate shown in FIG. 1, the evaluation value A is the formula (1a):
A = T 0 / a 0 + T 1 / a 1 + T 2 / a 2 + T 3 / a 3 (1a)
It is a value calculated by.

式(1a)中、
〔mJ/mm〕は前面板10のタフネスであり、
は(前面板10に含まれる基材11の厚みt01〔μm〕)/(前面板10の厚みt〔μm〕)であり、
〔mJ/mm〕は第1光学部材21のタフネスであり、
は(前面板10の光学部材側とは反対側の表面から第1光学部材21の前面板10側の表面までの距離d〔μm〕)/(第1光学部材21の厚みt〔μm〕)であり、
〔mJ/mm〕は第2光学部材22のタフネスであり、
は(前面板10の光学部材側とは反対側の表面から第2光学部材22の前面板10側の表面までの距離d〔μm〕)/(第2光学部材22の厚みt〔μm〕)であり、
〔mJ/mm〕は第3光学部材23のタフネスであり、
は(前面板10の光学部材側とは反対側の表面から第3光学部材23の前面板10側の表面までの距離d〔μm〕)/(第3光学部材23の厚みt〔μm〕)である。
In equation (1a),
T 0 [mJ / mm 3 ] is the toughness of the front plate 10.
a 0 is (thickness t 01 [μm] of the base material 11 contained in the front plate 10 ) / (thickness t 0 [μm] of the front plate 10).
T 1 [mJ / mm 3 ] is the toughness of the first optical member 21.
a 1 is (distance from the surface of the front plate 10 opposite to the optical member side to the surface of the first optical member 21 on the front plate 10 side d 1 [μm]) / (thickness of the first optical member 21 t 1). [Μm])
T 2 [mJ / mm 3 ] is the toughness of the second optical member 22.
a 2 is (distance from the surface of the front plate 10 opposite to the optical member side to the surface of the second optical member 22 on the front plate 10 side d 2 [μm]) / (thickness t 2 of the second optical member 22). [Μm])
T 3 [mJ / mm 3 ] is the toughness of the third optical member 23.
a 3 is (distance from the surface of the front plate 10 opposite to the optical member side to the surface of the third optical member 23 on the front plate 10 side d 3 [μm]) / (thickness of the third optical member 23 t 3). [Μm]).

評価値Aは、後述する予備試験の結果に基づいて導き出された式(1)により算出される値である。式(1)からわかるように、評価値Aは、前面板のタフネスが大きいほど、また前面板の厚みが厚いほど、大きな値となる。また、評価値Aは、第x光学部材のタフネスが大きいほど、また第x光学部材の厚みが厚いほど、大きな値となる。評価値Aへの、タフネス及び厚みの寄与は、前面板が最も大きく、第x光学部材については、前面板との距離が式(1)の分母に入っていることから、前面板に近い位置に配置されているほど、すなわちxの値が小さいほど大きくなる。したがって、評価値Aは、前面板のタフネス及び厚み、第x光学部材のタフネス及び厚み、光学部材の個数(nの値)、粘着剤層の厚み、等を適宜調整することにより調整することができる。前面板のタフネス、及び第x光学部材のタフネスは、これらの材料を調整することにより調整することができる。 The evaluation value A is a value calculated by the formula (1) derived based on the result of the preliminary test described later. As can be seen from the equation (1), the evaluation value A becomes larger as the toughness of the front plate is larger and as the thickness of the front plate is thicker. Further, the evaluation value A becomes larger as the toughness of the xth optical member is larger and as the thickness of the xth optical member is thicker. The contribution of toughness and thickness to the evaluation value A is greatest in the front plate, and for the xth optical member, the distance from the front plate is included in the denominator of equation (1), so the position is close to the front plate. The larger the value is, the larger the value of x is. Therefore, the evaluation value A can be adjusted by appropriately adjusting the toughness and thickness of the front plate, the toughness and thickness of the xth optical member, the number of optical members (value of n), the thickness of the adhesive layer, and the like. can. The toughness of the front plate and the toughness of the xth optical member can be adjusted by adjusting these materials.

本発明に係る光学積層体は、評価値Aが50以上であることにより耐衝撃性を向上させることができる。光学積層体の耐衝撃性は、後述する実施例に記載の方法により評価することができる。本発明に係る光学積層体は、耐衝撃性をさらに向上させることができる観点から、評価値Aが100以上であることが好ましい。 The optical laminate according to the present invention can improve the impact resistance when the evaluation value A is 50 or more. The impact resistance of the optical laminate can be evaluated by the method described in Examples described later. The optical laminate according to the present invention preferably has an evaluation value A of 100 or more from the viewpoint of further improving impact resistance.

また、本発明に係る光学積層体は、評価値Aが500以下であることにより耐屈曲性を向上させることができる。光学積層体は、前面板を内側にした方向に屈曲可能であることが好ましい。屈曲可能とは、前面板を内側にした方向に屈曲させ得ることを意味する。本明細書において、屈曲には、曲げ部分に曲面が形成される折り曲げの形態が含まれ、折り曲げた内面の屈曲半径は特に限定されない。また、屈曲には、内面の屈折角が0度より大きく180度未満である屈折、及び、内面の屈曲半径がゼロに近似、又は内面の屈折角が0度である折り畳みも含む。耐屈曲性は、屈曲を繰り返した際に、光学積層体のいずれかの層にクラックが生じるか否かにより評価することができる。本発明に係る光学積層体は、耐屈曲性をさらに向上させることができる観点から、評価値Aが300以下であることが好ましく、200以下であってもよい。 Further, the optical laminate according to the present invention can improve the bending resistance when the evaluation value A is 500 or less. It is preferable that the optical laminate can be bent in the direction in which the front plate is inward. Bendable means that the front plate can be bent inward. In the present specification, the bending includes a form of bending in which a curved surface is formed in the bent portion, and the bending radius of the bent inner surface is not particularly limited. Bending also includes refraction with an inner surface refraction angle greater than 0 degrees and less than 180 degrees, and folding with an inner surface bending radius close to zero or an inner surface refraction angle of 0 degrees. The bending resistance can be evaluated by whether or not cracks occur in any layer of the optical laminate when bending is repeated. The optical laminate according to the present invention preferably has an evaluation value A of 300 or less, and may be 200 or less, from the viewpoint of further improving bending resistance.

<前面板>
前面板は、表示装置の最表面を構成することができる。前面板は、光を透過可能な板状体であれば、材料及び厚みは限定されることはない。前面板は、基材を含むものであれば、基材のみから構成されていても、基材及び他の層から構成されていてもよい。基材及び他の層は、それぞれ1層のみから構成されてよく、2層以上から構成されてもよい。前面板に含まれる基材としては、樹脂製の板状体(例えば樹脂板、樹脂シート、樹脂フィルム等)、ガラス製の板状体(例えばガラス板、ガラスフィルム等)が挙げられる。
<Front plate>
The front plate can form the outermost surface of the display device. The material and thickness of the front plate are not limited as long as it is a plate-like body capable of transmitting light. The front plate may be composed of only the base material, or may be composed of the base material and other layers as long as it contains a base material. The base material and the other layers may each be composed of only one layer, or may be composed of two or more layers. Examples of the base material contained in the front plate include a resin plate-like body (for example, a resin plate, a resin sheet, a resin film, etc.) and a glass plate-like body (for example, a glass plate, a glass film, etc.).

前面板は、硬度の観点から、ハードコート層を備えた樹脂フィルムであってもよい。ハードコート層は、樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及びスクラッチ性を向上させることができる。ハードコート層は、例えば紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えばアクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。ハードコート層は、強度を向上させるために、添加剤を含んでいてもよい。添加剤は特に限定されることはなく、無機系微粒子、有機系微粒子、又はこれらの混合物が挙げられる。樹脂フィルムの両面にハードコート層を有する場合、各ハードコート層の組成や厚みは、互いに同じであってもよく、互いに異なっていてもよい。 The front plate may be a resin film provided with a hard coat layer from the viewpoint of hardness. The hard coat layer may be formed on one surface of the resin film or may be formed on both sides. By providing the hard coat layer, hardness and scratchability can be improved. The hard coat layer is, for example, a cured layer of an ultraviolet curable resin. Examples of the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, epoxy resin and the like. The hard coat layer may contain additives to improve strength. The additive is not particularly limited, and examples thereof include inorganic fine particles, organic fine particles, or a mixture thereof. When the hard coat layers are provided on both sides of the resin film, the composition and thickness of the hard coat layers may be the same as each other or different from each other.

前面板は、優れた耐衝撃性を有する光学積層体を構成しやすい観点から、タフネスが10mJ/mm以上であることが好ましく、30mJ/mm以上であることがさらに好ましく、40mJ/mm以上であることが最も好ましい。前面板のタフネスは、例えば100mJ/mm以下であり、60mJ/mm以下であってもよい。前面板の厚みは、例えば30μm以上500μm以下であってよく、好ましくは40μm以上200μm以下であり、より好ましくは50μm以上100μm以下である。前面板の厚みは、優れた耐衝撃性を有する光学積層体を構成しやすい観点から、40μm以上であることが好ましい。本発明において、光学積層体を構成する各層の厚みは、後述する実施例において説明する厚みの測定方法に従って測定することができる。 Front plate from easily form an optical laminate having excellent impact resistance standpoint, it is preferable that toughness is 10 mJ / mm 3 or more, still more preferably 30 mJ / mm 3 or more, 40 mJ / mm 3 The above is the most preferable. Toughness of the front plate, for example 100 mJ / mm 3 or less, may be 60 mJ / mm 3 or less. The thickness of the front plate may be, for example, 30 μm or more and 500 μm or less, preferably 40 μm or more and 200 μm or less, and more preferably 50 μm or more and 100 μm or less. The thickness of the front plate is preferably 40 μm or more from the viewpoint of easily forming an optical laminate having excellent impact resistance. In the present invention, the thickness of each layer constituting the optical laminate can be measured according to the thickness measuring method described in Examples described later.

前面板の基材が樹脂製の板状体である場合、樹脂製の板状体は、光を透過可能なものであれば限定されることはない。樹脂製の板状体を構成する樹脂としては、例えばトリアセチルセルロース、アセチルセルロースブチレート、エチレン−酢酸ビニル共重合体、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ポリエステル、ポリスチレン、ポリアミド、ポリエーテルイミド、ポリ(メタ)アクリル、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリメチルメタアクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアミドイミドなどの高分子が挙げられる。これらの高分子は、単独で又は2種以上混合して用いることができる。強度及び透明性向上の観点から、樹脂製の板状体は、好ましくはポリイミド、ポリアミド、ポリアミドイミド等の高分子で形成される樹脂フィルムである。樹脂製の板状体の厚みは、優れた耐衝撃性を有する光学積層体を構成しやすい観点から、30μm以上であることが好ましく、例えば200μm以下である。 When the base material of the front plate is a resin plate-like body, the resin plate-like body is not limited as long as it can transmit light. Examples of the resin constituting the resin plate-like body include triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, polystyrene, polyamide, and polyether. Iimide, poly (meth) acrylic, polyimide, polyethersulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyetherketone, polyetheretherketone, polyethersulfone , Polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyamideimide and other polymers. These polymers can be used alone or in combination of two or more. From the viewpoint of improving strength and transparency, the resin plate-like body is preferably a resin film formed of a polymer such as polyimide, polyamide, or polyamideimide. The thickness of the resin plate-like body is preferably 30 μm or more, for example, 200 μm or less, from the viewpoint of easily forming an optical laminate having excellent impact resistance.

前面板の基材がガラス板である場合、ガラス板は、ディスプレイ用強化ガラスが好ましく用いられる。ガラス板の厚みは、例えば20μm以上1000μm以下であってよい。ガラス板を用いることにより、優れた機械的強度及び表面硬度を有する前面板を構成することができる。 When the base material of the front plate is a glass plate, tempered glass for a display is preferably used as the glass plate. The thickness of the glass plate may be, for example, 20 μm or more and 1000 μm or less. By using a glass plate, a front plate having excellent mechanical strength and surface hardness can be constructed.

光学積層体が表示装置に用いられる場合、前面板は、表示装置の前面(画面)を保護する機能(ウィンドウフィルムとしての機能)を有するのみではなく、タッチセンサとしての機能、ブルーライトカット機能、視野角調整機能等を有するものであってもよい。 When the optical laminate is used in a display device, the front plate not only has a function of protecting the front surface (screen) of the display device (function as a window film), but also functions as a touch sensor, a blue light cut function, and so on. It may have a viewing angle adjusting function or the like.

<第x粘着剤層>
第1粘着剤層は、前面板と第1光学部材の間に介在して、これらを貼合する。第1粘着剤層を除く第x粘着剤層は、第x−1光学部材と、第x光学部材との間に介在して、これらを貼合する。第x粘着剤層は、厚みが10μm以上であれば、1層からなるものであってもよいし、2層以上からなるものであってもよいが、好ましくは1層からなるものである。第1〜n粘着剤層は、粘着剤組成物の組成及び配合成分、厚み等において、同じであってもよいし、異なっていてもよい。
<Xth adhesive layer>
The first pressure-sensitive adhesive layer is interposed between the front plate and the first optical member, and these are bonded together. The xth pressure-sensitive adhesive layer excluding the first pressure-sensitive adhesive layer is interposed between the x-1th optical member and the xth optical member, and these are bonded together. The xth pressure-sensitive adhesive layer may be composed of one layer or two or more layers as long as the thickness is 10 μm or more, but is preferably composed of one layer. The first to n pressure-sensitive adhesive layers may be the same or different in the composition, compounding components, thickness, etc. of the pressure-sensitive adhesive composition.

第x粘着剤層は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂を主成分(ベースポリマー)とする粘着剤組成物から構成することができる。第x粘着剤層を構成する粘着剤組成物としては、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。 The xth pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive composition containing (meth) acrylic resin, rubber-based resin, urethane-based resin, ester-based resin, silicone-based resin, and polyvinyl ether-based resin as main components (base polymer). be able to. As the pressure-sensitive adhesive composition constituting the x-th pressure-sensitive adhesive layer, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is suitable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.

粘着剤組成物に用いられる(メタ)アクリル系樹脂としては、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシル等の(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、(メタ)アクリル酸化合物、(メタ)アクリル酸2−ヒドロキシプロピル化合物、(メタ)アクリル酸ヒドロキシエチル化合物、(メタ)アクリルアミド化合物、N,N−ジメチルアミノエチル(メタ)アクリレート化合物、グリシジル(メタ)アクリレート化合物等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 Examples of the (meth) acrylic resin used in the pressure-sensitive adhesive composition include (meth) butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. A polymer or copolymer containing one or more acrylates as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylate compound, (meth) 2-hydroxypropyl acrylate compound, (meth) hydroxyethyl acrylate compound, (meth) acrylamide compound, and N, N-dimethylaminoethyl (meth) acrylate compound. , A monomer having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, etc., such as a glycidyl (meth) acrylate compound.

粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成する金属イオン、カルボキシル基との間でアミド結合を形成するポリアミン化合物、カルボキシル基との間でエステル結合を形成するポリエポキシ化合物又はポリオール、カルボキシル基との間でアミド結合を形成するポリイソシアネート化合物が例示される。架橋剤は、好ましくはポリイソシアネート化合物である。 The pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a metal ion having a divalent value or higher and forming a carboxylic acid metal salt with a carboxyl group, a polyamine compound forming an amide bond with the carboxyl group, and a carboxyl group. Examples thereof include a polyepoxy compound that forms an ester bond with, a polyol, and a polyisocyanate compound that forms an amide bond with a carboxyl group. The cross-linking agent is preferably a polyisocyanate compound.

活性エネルギー線硬化型粘着剤組成物は、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。必要に応じて、光重合開始剤、光増感剤等を含有させてもよい。 The active energy ray-curable pressure-sensitive adhesive composition has a property of being cured by being irradiated with active energy rays such as ultraviolet rays and electron beams, and has adhesiveness even before irradiation with active energy rays, such as a film. It has the property that it can be brought into close contact with the adherend of the above, and can be cured by irradiation with active energy rays to adjust the adhesion. The active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable type. The active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. If necessary, a photopolymerization initiator, a photosensitizer, or the like may be contained.

活性エネルギー線重合性化合物としては、例えば分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー;官能基含有化合物を2種以上反応させて得られ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマー等の(メタ)アクリロイルオキシ基含有化合物等の(メタ)アクリル系化合物、分子内に少なくとも2個のベンゾイルフェニルメタアクリロイル基を有する化合物が挙げられる。粘着剤組成物は、活性エネルギー線重合性化合物を、粘着剤組成物の固形分100質量部に対して0.1質量部以上含むことができ、10質量部以下、5質量部以下又は2質量部以下含むことができる。 The active energy ray-polymerizable compound is, for example, a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule; obtained by reacting two or more kinds of functional group-containing compounds, and at least 2 in the molecule. (Meta) acrylic compounds such as (meth) acryloyloxy group-containing compounds such as (meth) acrylate oligomers having one (meth) acryloyloxy group, and compounds having at least two benzoylphenylmethacryloyl groups in the molecule. Can be mentioned. The pressure-sensitive adhesive composition can contain 0.1 part by mass or more of the active energy ray-polymerizable compound with respect to 100 parts by mass of the solid content of the pressure-sensitive adhesive composition, and is 10 parts by mass or less, 5 parts by mass or less, or 2 parts by mass. Can include less than one copy.

ベンゾイルフェニルメタアクリロイル基は、以下の構造で表される基を意味する。*は結合手を表す。活性エネルギー線重合性化合物が分子内に有するベンゾイルフェニルメタアクリロイル基の数は、5以下であることができ、4以下であることができる。 The benzoylphenyl metaacryloyl group means a group represented by the following structure. * Represents a bond. The number of benzoylphenylmethacryloyl groups contained in the molecule of the active energy ray-polymerizable compound can be 5 or less, and can be 4 or less.

Figure 2021117334
Figure 2021117334

分子内に少なくとも2個のベンゾイルフェニルメタアクリロイル基を有する化合物としては、例えば次の化合物が挙げられる。 Examples of the compound having at least two benzoylphenyl metaacryloyl groups in the molecule include the following compounds.

Figure 2021117334
Figure 2021117334

光重合開始剤としては、例えばベンゾフェノン、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルケトン等が挙げられる。光重合開始剤は、1種又は2種以上を含むことができる。粘着剤組成物が光重合開始剤を含むとき、その全含有量は、例えば粘着剤組成物の固形分100質量部に対し0.01質量部以上3.0質量部以下であってよい。 Examples of the photopolymerization initiator include benzophenone, benzyl dimethyl ketal, 1-hydroxycyclohexyl ketone and the like. The photopolymerization initiator may contain one kind or two or more kinds. When the pressure-sensitive adhesive composition contains a photopolymerization initiator, the total content thereof may be, for example, 0.01 part by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the solid content of the pressure-sensitive adhesive composition.

粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含むことができる。 The pressure-sensitive adhesive composition includes fine particles for imparting light scattering, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, pressure-sensitive adhesives, fillers (metal powders and other inorganic powders). Etc.), antioxidants, UV absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators and other additives can be included.

第x粘着剤層は、上記粘着剤組成物の有機溶剤希釈液を基材上に塗布し、乾燥させることにより形成することができる。第x粘着剤層は、粘着剤組成物を用いて形成された粘着シートを用いて形成することもできる。活性エネルギー線硬化型粘着剤組成物を用いた場合は、形成された粘着剤層に、活性エネルギー線を照射することにより所望の硬化度を有する粘着剤層とすることができる。 The xth pressure-sensitive adhesive layer can be formed by applying an organic solvent diluted solution of the pressure-sensitive adhesive composition on a substrate and drying it. The xth pressure-sensitive adhesive layer can also be formed by using a pressure-sensitive adhesive sheet formed by using the pressure-sensitive adhesive composition. When the active energy ray-curable pressure-sensitive adhesive composition is used, the formed pressure-sensitive adhesive layer can be irradiated with active energy rays to obtain a pressure-sensitive adhesive layer having a desired degree of curing.

第x粘着剤層の厚みは、10μm以上であり、100μm以下であることが好ましく、50μm以下であることがより好ましい。 The thickness of the xth pressure-sensitive adhesive layer is 10 μm or more, preferably 100 μm or less, and more preferably 50 μm or less.

<光学部材>
光学積層体における光学部材としては、例えば、図1に示される光学積層体100に含まれるような、保護板、偏光板、タッチセンサパネル等、その他に、背面板等が例示される。背面板としては、タッチセンサパネル、有機EL表示素子等が挙げられる。光学部材が複数の層から構成される場合には、二つの層を貼合するための貼合層を含むことができる。光学積層体における光学部材の積層順序としては、前面板側から、例えば、保護板/偏光板/タッチセンサパネル(図1に示す積層順序)、保護板/偏光板/タッチセンサパネル/有機EL表示素子、保護板/タッチセンサパネル/偏光板、保護板/タッチセンサパネル/偏光板/有機EL表示素子、等が挙げられる。ここで示した積層順序における偏光板は、光学積層体に反射防止フィルムとしての機能を付与することができる点で、円偏光板であることが好ましい。ここで示した積層順序における保護板は、含まれていなくてもよく、評価値Aを所望の値に調整することが容易であるという観点からは含まれていることが好ましい。
<Optical member>
Examples of the optical member in the optical laminate include a protective plate, a polarizing plate, a touch sensor panel, and the like as included in the optical laminate 100 shown in FIG. 1, as well as a back plate and the like. Examples of the back plate include a touch sensor panel, an organic EL display element, and the like. When the optical member is composed of a plurality of layers, a bonding layer for bonding the two layers can be included. The stacking order of the optical members in the optical laminate is, for example, a protective plate / polarizing plate / touch sensor panel (lamination order shown in FIG. 1), a protective plate / polarizing plate / touch sensor panel / organic EL display from the front plate side. Elements, protective plates / touch sensor panels / polarizing plates, protective plates / touch sensor panels / polarizing plates / organic EL display elements, and the like can be mentioned. The polarizing plate in the stacking order shown here is preferably a circular polarizing plate in that it can impart a function as an antireflection film to the optical laminated body. The protective plate in the stacking order shown here may not be included, and is preferably included from the viewpoint that the evaluation value A can be easily adjusted to a desired value.

≪偏光板≫
偏光板は、例えば直線偏光板、円偏光板(楕円偏光板を含む)等であってもよい。円偏光板は、直線偏光板及び位相差層を備える。円偏光板は、画像表示装置中で反射された外光を吸収することができるため、光学積層体に反射防止フィルムとしての機能を付与することができる。
≪Polarizing plate≫
The polarizing plate may be, for example, a linear polarizing plate, a circular polarizing plate (including an elliptical polarizing plate), or the like. The circular polarizing plate includes a linear polarizing plate and a retardation layer. Since the circularly polarizing plate can absorb the external light reflected in the image display device, it is possible to impart a function as an antireflection film to the optical laminate.

偏光板は、優れた耐衝撃性を有する光学積層体を構成しやすい観点から、タフネスが1mJ/mm以上であることが好ましく、2mJ/mm以上であることがさらに好ましい。偏光板のタフネスは、例えば100mJ/mm以下であり、50mJ/mm以下であってもよく、10mJ/mm以下であってもよい。偏光板の厚みは、通常5μm以上であり、20μm以上であってもよく、25μm以上であってもよく、30μm以上であってもよい。また、偏光板の厚みは、80μm以下であることが好ましく、60μm以下であることがより好ましい。 Polarizing plate, the easier to form an optical laminate having excellent impact resistance standpoint, it is preferable that toughness is 1 mJ / mm 3 or more, and still more preferably 2 mJ / mm 3 or more. The toughness of the polarizing plate may be, for example, 100 mJ / mm 3 or less, 50 mJ / mm 3 or less, or 10 mJ / mm 3 or less. The thickness of the polarizing plate is usually 5 μm or more, may be 20 μm or more, 25 μm or more, or 30 μm or more. The thickness of the polarizing plate is preferably 80 μm or less, and more preferably 60 μm or less.

≪直線偏光板≫
直線偏光板は、自然光等の非偏光な光線からなる一方向の直線偏光を選択的に透過させる機能を有する。直線偏光板は、二色性色素を吸着させた延伸フィルム又は延伸層、重合性液晶化合物の硬化物及び二色性色素を含み、二色性色素が重合性液晶化合物の硬化物中に分散し、配向している液晶層等を偏光子層として備えることができる。二色性色素は、分子の長軸方向における吸光度と短軸方向における吸光度とが異なる性質を有する色素をいう。液晶層を偏光子層として用いた直線偏光板は、二色性色素を吸着させた延伸フィルム又は延伸層に比べて、屈曲方向に制限がないため好ましい。
≪Linear polarizing plate≫
The linear polarizing plate has a function of selectively transmitting unidirectional linearly polarized light composed of unpolarized light rays such as natural light. The linear polarizing plate contains a stretched film or stretched layer on which a dichroic dye is adsorbed, a cured product of a polymerizable liquid crystal compound, and a dichroic dye, and the dichroic dye is dispersed in the cured product of the polymerizable liquid crystal compound. , An oriented liquid crystal layer or the like can be provided as a polarizer layer. The dichroic dye refers to a dye having a property in which the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different. A linear polarizing plate using a liquid crystal layer as a polarizer layer is preferable because there is no limitation in the bending direction as compared with a stretched film or a stretched layer on which a dichroic dye is adsorbed.

(二色性色素を吸着させた延伸フィルム又は延伸層である偏光子層)
二色性色素を吸着させた延伸フィルムである偏光子層は、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムをヨウ素等の二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。
(Stretched film on which a dichroic dye is adsorbed or a polarizer layer which is a stretched layer)
The polarizer layer, which is a stretched film on which a bicolor dye is adsorbed, is usually obtained by dyeing the polyvinyl alcohol-based resin film with a bicolor dye such as iodine in a step of uniaxially stretching the polyvinyl alcohol-based resin film. It can be produced through a step of adsorbing a bicolor dye, a step of treating a polyvinyl alcohol-based resin film on which the bicolor dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.

偏光子層の厚みは、通常30μm以下であり、好ましくは18μm以下、より好ましくは15μm以下である。偏光子層の厚みを薄くすることは、偏光板103の薄膜化に有利である。偏光子層の厚みは、通常1μm以上であり、例えば5μm以上であってよい。 The thickness of the polarizer layer is usually 30 μm or less, preferably 18 μm or less, and more preferably 15 μm or less. Reducing the thickness of the polarizer layer is advantageous for thinning the polarizing plate 103. The thickness of the polarizer layer is usually 1 μm or more, and may be, for example, 5 μm or more.

ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば不飽和カルボン酸系化合物、オレフィン系化合物、ビニルエーテル系化合物、不飽和スルホン系化合物、アンモニウム基を有する(メタ)アクリルアミド系化合物が挙げられる。 The polyvinyl alcohol-based resin is obtained by saponifying the polyvinyl acetate-based resin. As the polyvinyl acetate-based resin, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acid compounds, olefin compounds, vinyl ether compounds, unsaturated sulfone compounds, and (meth) acrylamide compounds having an ammonium group. ..

ポリビニルアルコール系樹脂のケン化度は、通常85モル%以上100モル%以下程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール等も使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1000以上10000以下であり、好ましくは1500以上5000以下である。 The saponification degree of the polyvinyl alcohol-based resin is usually about 85 mol% or more and 100 mol% or less, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and polyvinyl formal, polyvinyl acetal, and the like modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.

二色性色素を吸着させた延伸層である偏光子層は、通常、上記ポリビニルアルコール系樹脂を含む塗布液を基材フィルム上に塗布する工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムのポリビニルアルコール系樹脂層を二色性色素で染色することにより、その二色性色素を吸着させて偏光子層とする工程、二色性色素が吸着されたフィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。偏光子層を形成するために用いる基材フィルムは、偏光子層の保護層として用いてもよい。必要に応じて、基材フィルムを偏光子層から剥離除去してもよい。基材フィルムの材料及び厚みは、後述する熱可塑性樹脂フィルムの材料及び厚みと同様であってよい。 The polarizer layer, which is a stretched layer on which a dichroic dye is adsorbed, is usually a step of applying a coating liquid containing the above-mentioned polyvinyl alcohol-based resin on a base film, a step of uniaxially stretching the obtained laminated film, and uniaxial. A step of dyeing the polyvinyl alcohol-based resin layer of the stretched laminated film with a dichroic dye to adsorb the dichroic dye to form a polarizer layer, and boric acid on the film on which the dichroic dye is adsorbed. It can be produced through a step of treating with an aqueous solution and a step of washing with water after treatment with an aqueous boric acid solution. The base film used for forming the polarizer layer may be used as a protective layer for the polarizer layer. If necessary, the base film may be peeled off from the polarizer layer. The material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film described later.

二色性色素を吸着させた延伸フィルム又は延伸層である偏光子層は、そのまま直線偏光板として用いてよく、その片面又は両面に保護層を形成して直線偏光板として用いてもよい。保護層としては、後述する熱可塑性樹脂フィルムを用いることができる。得られる直線偏光板の厚みは、好ましくは2μm以上40μm以下である。 The stretched film or the polarizing element layer which is the stretched layer on which the dichroic dye is adsorbed may be used as it is as a linear polarizing plate, or a protective layer may be formed on one or both sides thereof and used as a linear polarizing plate. As the protective layer, a thermoplastic resin film described later can be used. The thickness of the obtained linear polarizing plate is preferably 2 μm or more and 40 μm or less.

熱可塑性樹脂フィルムは、例えばシクロポリオレフィン系樹脂フィルム;トリアセチルセルロース、ジアセチルセルロース等の樹脂からなる酢酸セルロース系樹脂フィルム;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等の樹脂からなるポリエステル系樹脂フィルム;ポリカーボネート系樹脂フィルム;(メタ)アクリル系樹脂フィルム;ポリプロピレン系樹脂フィルム等、当分野において公知のフィルムを挙げることができる。偏光子層と保護層とは、後述する貼合層を介して積層することができる。 The thermoplastic resin film is, for example, a cyclopolyolefin resin film; a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose; a polyester resin film made of a resin such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate; Examples of films known in the art such as polycarbonate-based resin films; (meth) acrylic-based resin films; polypropylene-based resin films and the like can be mentioned. The polarizer layer and the protective layer can be laminated via a bonding layer described later.

熱可塑性樹脂フィルムの厚みは、薄型化の観点から、通常100μm以下であり、好ましくは80μm以下であり、より好ましくは60μm以下であり、さらに好ましくは40μm以下であり、なおさらに好ましくは30μm以下であり、また、通常5μm以上であり、好ましくは10μm以上である。 From the viewpoint of thinning, the thickness of the thermoplastic resin film is usually 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less, still more preferably 40 μm or less, still more preferably 30 μm or less. Yes, it is usually 5 μm or more, preferably 10 μm or more.

熱可塑性樹脂フィルム上にハードコート層が形成されていてもよい。ハードコート層は、熱可塑性樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及びスクラッチ性を向上させた熱可塑性樹脂フィルムとすることができる。ハードコート層は、上述の樹脂フィルムに形成されるハードコート層と同様にして形成することができる。 A hard coat layer may be formed on the thermoplastic resin film. The hard coat layer may be formed on one side of the thermoplastic resin film, or may be formed on both sides. By providing the hard coat layer, a thermoplastic resin film having improved hardness and scratchability can be obtained. The hard coat layer can be formed in the same manner as the hard coat layer formed on the resin film described above.

(液晶層である偏光子層)
液晶層を形成するために用いる重合性液晶化合物は、重合性反応基を有し、かつ、液晶性を示す化合物である。重合性反応基は、重合反応に関与する基であり、光重合性反応基であることが好ましい。光重合性反応基は、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1−クロロビニル基、イソプロペニル基、4−ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。重合性液晶化合物の液晶性は、液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよく、相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。
(Polarizer layer, which is a liquid crystal layer)
The polymerizable liquid crystal compound used for forming the liquid crystal layer is a compound having a polymerizable reactive group and exhibiting liquid crystallinity. The polymerizable reactive group is a group involved in the polymerization reaction, and is preferably a photopolymerizable reactive group. The photopolymerizable reactive group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from the photopolymerization initiator. Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The type of the polymerizable liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disk-shaped liquid crystal compound, and a mixture thereof can be used. The liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase-ordered structure may be a nematic liquid crystal or a smectic liquid crystal.

液晶層である偏光子層に用いられる二色性色素としては、300〜700nmの範囲に吸収極大波長(λMAX)を有するものが好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、及びアントラキノン色素等が挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、及びスチルベンアゾ色素等が挙げられ、好ましくはビスアゾ色素、及びトリスアゾ色素である。二色性色素は単独でも、2種以上を組み合わせてもよいが、3種以上を組み合わせることが好ましい。特に、3種以上のアゾ化合物を組み合わせることがより好ましい。二色性色素の一部が反応性基を有していてもよく、また液晶性を有していてもよい。 The dichroic dye used for the polarizing element layer, which is a liquid crystal layer, preferably has an absorption maximum wavelength (λMAX) in the range of 300 to 700 nm. Examples of such a dichroic dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye, and the like, and among them, the azo dye is preferable. Examples of the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stillbenazo dye and the like, and a bisazo dye and a trisazo dye are preferable. The dichroic dye may be used alone or in combination of two or more, but it is preferable to combine three or more. In particular, it is more preferable to combine three or more kinds of azo compounds. A part of the dichroic dye may have a reactive group or may have a liquid crystallinity.

液晶層である偏光子層は、例えば基材フィルム上に形成した配向膜上に、重合性液晶化合物及び二色性色素を含む偏光子層形成用組成物を塗布し、重合性液晶化合物を重合して硬化させることによって形成することができる。基材フィルム上に、偏光子層形成用組成物を塗布して塗膜を形成し、この塗膜を基材フィルムとともに延伸することによって、偏光子層を形成してもよい。偏光子層を形成するために用いる基材フィルムは、偏光子層の保護層として用いてもよい。基材フィルムの材料及び厚みは、上述した熱可塑性樹脂フィルムの材料及び厚みと同様であってよい。 In the polarizing layer, which is a liquid crystal layer, for example, a composition for forming a polarizing layer containing a polymerizable liquid crystal compound and a dichroic dye is applied onto an alignment film formed on a base film, and the polymerizable liquid crystal compound is polymerized. It can be formed by curing it. A polarizer layer may be formed by applying a composition for forming a polarizer layer on a substrate film to form a coating film, and then stretching the coating film together with the substrate film. The base film used for forming the polarizer layer may be used as a protective layer for the polarizer layer. The material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film described above.

重合性液晶化合物及び二色性色素を含む偏光子層形成用組成物、及びこの組成物を用いた偏光子層の製造方法としては、特開2013−37353号公報、特開2013−33249号公報、特開2017−83843号公報等に記載のものを例示することができる。偏光子層形成用組成物は、重合性液晶化合物及び二色性色素に加えて、溶媒、重合開始剤、架橋剤、レベリング剤、酸化防止剤、可塑剤、増感剤等の添加剤をさらに含んでいてもよい。これらの成分は、それぞれ1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of a composition for forming a polarizer layer containing a polymerizable liquid crystal compound and a dichroic dye, and a method for producing a polarizer layer using this composition are JP-A-2013-373353 and JP-A-2013-33249. , JP-A-2017-83843, etc. can be exemplified. In the composition for forming a polarizer layer, in addition to the polymerizable liquid crystal compound and the dichroic dye, additives such as a solvent, a polymerization initiator, a cross-linking agent, a leveling agent, an antioxidant, a plasticizer, and a sensitizer are further added. It may be included. Only one of these components may be used, or two or more of these components may be used in combination.

偏光子層形成用組成物が含有していてもよい重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物であり、より低温条件下で、重合反応を開始できる点で、光重合性開始剤が好ましい。具体的には、光の作用により活性ラジカル又は酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。重合開始剤の含有量は、重合性液晶化合物の総量100重量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは3質量部以上8質量部以下である。この範囲内であると、重合性基の反応が十分に進行し、かつ、液晶化合物の配向状態を安定化させやすい。 The polymerization initiator that may be contained in the composition for forming a polarizer layer is a compound that can initiate a polymerization reaction of a polymerizable liquid crystal compound, and is photopolymerized in that the polymerization reaction can be initiated under lower temperature conditions. Sex initiators are preferred. Specific examples thereof include photopolymerization initiators capable of generating active radicals or acids by the action of light, and among them, photopolymerization initiators that generate radicals by the action of light are preferable. The content of the polymerization initiator is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 3 parts by mass or more and 8 parts by mass or less, based on 100 parts by mass of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the orientation state of the liquid crystal compound is likely to be stabilized.

液晶層である偏光子層の厚みは、通常10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上5μm以下である。 The thickness of the polarizer layer, which is a liquid crystal layer, is usually 10 μm or less, preferably 0.5 μm or more and 8 μm or less, and more preferably 1 μm or more and 5 μm or less.

液晶層である偏光子層は、基材フィルムを剥離除去せずに直線偏光板として用いてもよく、基材フィルムを偏光子層から剥離除去して直線偏光板としてもよい。液晶層である偏光子層は、その片面又は両面に保護層を形成して直線偏光板として用いてもよい。保護層としては、上述する熱可塑性樹脂フィルムを用いることができる。 The polarizer layer, which is a liquid crystal layer, may be used as a linear polarizing plate without peeling and removing the base film, or may be used as a linear polarizing plate by peeling and removing the base film from the polarizer layer. The polarizing element layer, which is a liquid crystal layer, may be used as a linear polarizing plate by forming a protective layer on one side or both sides thereof. As the protective layer, the above-mentioned thermoplastic resin film can be used.

液晶層である偏光子層は、偏光子層の保護等を目的として、偏光子層の片面又は両面にオーバーコート層を有していてもよい。オーバーコート層は、例えば偏光子層上にオーバーコート層を形成するための材料(組成物)を塗布することによって形成することができる。オーバーコート層を構成する材料としては、例えば光硬化性樹脂、水溶性ポリマー等が挙げられる。オーバーコート層を構成する材料としては、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂等を用いることができる。 The polarizer layer, which is a liquid crystal layer, may have an overcoat layer on one side or both sides of the polarizer layer for the purpose of protecting the polarizer layer and the like. The overcoat layer can be formed, for example, by applying a material (composition) for forming the overcoat layer on the polarizer layer. Examples of the material constituting the overcoat layer include a photocurable resin and a water-soluble polymer. As a material constituting the overcoat layer, a (meth) acrylic resin, a polyvinyl alcohol-based resin, or the like can be used.

(位相差層)
偏光板に含まれる位相差層は、1層であってもよく2層以上であってもよい。位相差層は、偏光子層の前面板側とは反対側の表面上に積層されていることが好ましい。位相差層は、その表面を保護するオーバーコート層、位相差層を支持する基材フィルム等を有していてもよい。位相差層は、λ/4層を含み、さらにλ/2層又はポジティブC層の少なくともいずれかを含んでいてもよい。位相差層がλ/2層を含む場合、直線偏光板側から順にλ/2層及びλ/4層を積層する。位相差層がポジティブC層を含む場合、直線偏光板側から順にλ/4層及びポジティブC層を積層してもよく、直線偏光板側から順にポジティブC層及びλ/4層を積層してもよい。位相差層の厚みは、例えば0.1μm以上10μm以下であり、好ましくは0.5μm以上8μm以下であり、より好ましくは1μm以上6μm以下である。
(Phase difference layer)
The retardation layer included in the polarizing plate may be one layer or two or more layers. The retardation layer is preferably laminated on the surface of the polarizer layer opposite to the front plate side. The retardation layer may have an overcoat layer that protects the surface thereof, a base film that supports the retardation layer, and the like. The retardation layer includes a λ / 4 layer, and may further include at least one of a λ / 2 layer and a positive C layer. When the retardation layer includes a λ / 2 layer, the λ / 2 layer and the λ / 4 layer are laminated in order from the linear polarizing plate side. When the retardation layer contains a positive C layer, the λ / 4 layer and the positive C layer may be laminated in order from the linear polarizing plate side, or the positive C layer and the λ / 4 layer may be laminated in order from the linear polarizing plate side. May be good. The thickness of the retardation layer is, for example, 0.1 μm or more and 10 μm or less, preferably 0.5 μm or more and 8 μm or less, and more preferably 1 μm or more and 6 μm or less.

位相差層は、保護層の材料として例示した樹脂フィルムから形成してもよいし、重合性液晶化合物が硬化した層から形成してもよい。位相差層は、さらに配向膜を含んでもよい。位相差層は、λ/4層と、λ/2層及びポジティブC層とを貼合するための貼合層を有していてもよい。 The retardation layer may be formed from the resin film exemplified as the material of the protective layer, or may be formed from a layer in which the polymerizable liquid crystal compound is cured. The retardation layer may further include an alignment film. The retardation layer may have a bonding layer for bonding the λ / 4 layer, the λ / 2 layer, and the positive C layer.

重合性液晶化合物を硬化して位相差層を形成する場合、位相差層は、重合性液晶化合物を含む組成物を基材フィルムに塗布し硬化させることにより形成することができる。基材フィルムと塗布層との間に配向層を形成してもよい。基材フィルムの材料及び厚みは、上記熱可塑性樹脂フィルムの材料及び厚みと同じであってよい。重合性液晶化合物を硬化してなる層から位相差層を形成する場合、位相差層は、配向層及び基材フィルムを有する形態で光学積層体に組み込まれてもよい。位相差層は、貼合層を介して直線偏光板と貼合することができる。 When the polymerizable liquid crystal compound is cured to form a retardation layer, the retardation layer can be formed by applying a composition containing the polymerizable liquid crystal compound to a base film and curing it. An orientation layer may be formed between the base film and the coating layer. The material and thickness of the base film may be the same as the material and thickness of the thermoplastic resin film. When the retardation layer is formed from the layer obtained by curing the polymerizable liquid crystal compound, the retardation layer may be incorporated into the optical laminate in the form of having an alignment layer and a base film. The retardation layer can be bonded to the linear polarizing plate via the bonding layer.

≪タッチセンサパネル≫
タッチセンサパネルとしては、前面板でタッチされた位置を検出可能なセンサであり、かつ透明導電層を有する構成であることができる。タッチセンサパネルは、透明導電層に加え、これを支持する基材を有することができる。検出方式は限定されることはなく、抵抗膜方式、静電容量方式、光センサ方式、超音波方式、電磁誘導結合方式、表面弾性波方式等のタッチセンサパネルが例示される。その中でも、低コスト、早い反応速度、薄膜化の面で、静電容量方式のタッチセンサパネルが好適に用いられる。タッチセンサパネルは、透明導電層とこれを支持する基材との間に、接着層、分離層、保護層等を備えてもよい。接着層としては、接着剤層、粘着剤層が挙げられる。透明導電層を支持する基材として、一方の表面に透明導電層が蒸着形成されている基材、接着層を介して透明導電層が転写された基材等が挙げられる。
≪Touch sensor panel≫
The touch sensor panel can be a sensor capable of detecting the position touched by the front plate and can have a structure having a transparent conductive layer. The touch sensor panel can have a base material that supports the transparent conductive layer in addition to the transparent conductive layer. The detection method is not limited, and touch sensor panels such as a resistance film method, a capacitance method, an optical sensor method, an ultrasonic method, an electromagnetic induction coupling method, and a surface acoustic wave method are exemplified. Among them, the capacitance type touch sensor panel is preferably used in terms of low cost, fast reaction speed, and thin film formation. The touch sensor panel may include an adhesive layer, a separation layer, a protective layer, and the like between the transparent conductive layer and the base material that supports the transparent conductive layer. Examples of the adhesive layer include an adhesive layer and an adhesive layer. Examples of the base material that supports the transparent conductive layer include a base material in which the transparent conductive layer is vapor-deposited on one surface, and a base material in which the transparent conductive layer is transferred via the adhesive layer.

静電容量方式のタッチセンサパネルの一例は、基材と、基材の表面に設けられた位置検出用の透明導電層と、タッチ位置検知回路とにより構成されている。静電容量方式のタッチセンサパネルを有する光学積層体を設けた表示装置においては、前面板の表面がタッチされると、タッチされた点で人体の静電容量を介して透明導電層が接地される。タッチ位置検知回路が、透明導電層の接地を検知し、タッチされた位置が検出される。互いに離間した複数の透明導電層を有することにより、より詳細な位置の検出が可能となる。 An example of a capacitance type touch sensor panel is composed of a base material, a transparent conductive layer for position detection provided on the surface of the base material, and a touch position detection circuit. In a display device provided with an optical laminate having a capacitance type touch sensor panel, when the surface of the front plate is touched, the transparent conductive layer is grounded through the capacitance of the human body at the touched point. NS. The touch position detection circuit detects the grounding of the transparent conductive layer, and the touched position is detected. By having a plurality of transparent conductive layers separated from each other, more detailed position detection becomes possible.

透明導電層は、ITO等の金属酸化物からなる透明導電層であってもよく、アルミニウムや銅、銀、金、またはこれらの合金等の金属からなる金属層であってもよい。 The transparent conductive layer may be a transparent conductive layer made of a metal oxide such as ITO, or may be a metal layer made of a metal such as aluminum, copper, silver, gold, or an alloy thereof.

分離層は、ガラス等の基板上に形成されて、分離層上に形成された透明導電層を分離層とともに、基板から分離するための層であることができる。分離層は、無機物層又は有機物層であることが好ましい。無機物層を形成する材料としては、例えばシリコン酸化物が挙げられる。有機物層を形成する材料としては、例えば(メタ)アクリル系樹脂組成物、エポキシ系樹脂組成物、ポリイミド系樹脂組成物等を用いることができる。 The separation layer can be a layer formed on a substrate such as glass and for separating the transparent conductive layer formed on the separation layer from the substrate together with the separation layer. The separation layer is preferably an inorganic layer or an organic layer. Examples of the material forming the inorganic layer include silicon oxide. As the material for forming the organic material layer, for example, a (meth) acrylic resin composition, an epoxy resin composition, a polyimide resin composition, or the like can be used.

保護層は、透明導電層に接して導電層を保護するために設けることができる。保護層は有機絶縁膜及び無機絶縁膜のうちの少なくとも一つを含み、これらの膜は、スピンコート法、スパッタリング法、蒸着法等によって形成することができる。 The protective layer can be provided in contact with the transparent conductive layer to protect the conductive layer. The protective layer contains at least one of an organic insulating film and an inorganic insulating film, and these films can be formed by a spin coating method, a sputtering method, a vapor deposition method, or the like.

タッチセンサパネル30は例えば、以下のようにして製造することができる。第1の方法では、まずガラス基板へ接着層を介して基材を積層する。基材上に、フォトリソグラフィによりパターン化された透明導電層を形成する。熱を加えることにより、ガラス基板と基材とを分離して、透明導電層と基材とからなるタッチセンサパネルが得られる。 The touch sensor panel 30 can be manufactured, for example, as follows. In the first method, the base material is first laminated on the glass substrate via the adhesive layer. A transparent conductive layer patterned by photolithography is formed on the substrate. By applying heat, the glass substrate and the base material are separated, and a touch sensor panel composed of the transparent conductive layer and the base material can be obtained.

第2の方法では、まずガラス基板上に分離層を形成し、必要に応じて、分離層上に保護層を形成する。分離層(または保護層)上に、フォトリソグラフィによりパターン化された透明導電層を形成する。透明導電層上に、剥離可能な保護フィルムを積層し、透明導電層から分離層までを転写して、ガラス基板を分離する。接着層を介して基材と分離層とを貼合し、剥離可能な保護フィルムを剥離することで、透明導電層と分離層と接着層と基材とをこの順に有するタッチセンサパネルが得られる。 In the second method, a separation layer is first formed on the glass substrate, and if necessary, a protective layer is formed on the separation layer. A transparent conductive layer patterned by photolithography is formed on the separation layer (or protective layer). A peelable protective film is laminated on the transparent conductive layer, and the transparent conductive layer to the separation layer are transferred to separate the glass substrate. By adhering the base material and the separation layer via the adhesive layer and peeling off the peelable protective film, a touch sensor panel having the transparent conductive layer, the separation layer, the adhesive layer, and the base material in this order can be obtained. ..

タッチセンサパネルの基材としては、トリアセチルセルロース、ポリエチレンテレフタレート、シクロオレフィンポリマー、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ポリノルボルネンなどの樹脂フィルムが挙げられる。所望のタフネスを有する基材層を構成しやすい観点から、ポリエチレンテレフタレートが好ましく用いられる。 Resins such as triacetyl cellulose, polyethylene terephthalate, cycloolefin polymer, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene are used as the base material of the touch sensor panel. Film is mentioned. Polyethylene terephthalate is preferably used from the viewpoint of easily forming a base material layer having a desired toughness.

タッチセンサパネルは、優れた耐衝撃性を有する光学積層体を構成しやすい観点から、タフネスが2mJ/mm以上であることが好ましく、10mJ/mm以上であることがさらに好ましく、50mJ/mm以上であることが最も好ましい。タッチセンサパネルのタフネスは、例えば200mJ/mm以下である。 The touch sensor panel, the easily form an optical laminate having excellent impact resistance standpoint, it is preferable that toughness is 2 mJ / mm 3 or more, still more preferably 10 mJ / mm 3 or more, 50 mJ / mm Most preferably, it is 3 or more. The toughness of the touch sensor panel is, for example, 200 mJ / mm 3 or less.

タッチセンサパネルは、優れた耐衝撃性を有する光学積層体を構成しやすい観点から、厚みが30μm以上であることが好ましい。タッチセンサパネルの厚みは、例えば100μm以下である。 The touch sensor panel preferably has a thickness of 30 μm or more from the viewpoint of easily forming an optical laminate having excellent impact resistance. The thickness of the touch sensor panel is, for example, 100 μm or less.

≪背面板≫
背面板としては、光を透過可能な板状体や通常の表示装置に用いられる構成要素等を用いることができる。
≪Back plate≫
As the back plate, a plate-like body capable of transmitting light, a component used in a normal display device, or the like can be used.

背面板の厚みは、例えば5μm以上2000μm以下であってよく、好ましくは10μm以上1000μm以下であり、より好ましくは15μm以上500μm以下である。 The thickness of the back plate may be, for example, 5 μm or more and 2000 μm or less, preferably 10 μm or more and 1000 μm or less, and more preferably 15 μm or more and 500 μm or less.

背面板に用いられる板状体としては、1層のみから構成されてよく、2層以上から構成されたものであってよく、前面板において述べた板状態について例示したものを用いることができる。 The plate-like body used for the back plate may be composed of only one layer, may be composed of two or more layers, and an example of the plate state described in the front plate can be used.

背面板に用いる通常の表示装置に用いられる構成要素としては、例えば上述のタッチセンサパネル、有機EL表示素子等が挙げられる。 Examples of the components used in a normal display device used for the back plate include the above-mentioned touch sensor panel and organic EL display element.

≪保護板≫
保護板としては、光を透過可能な樹脂製の板状体や通常の表示装置に用いられる構成要素等を用いることができる。樹脂製の板状体は、1層のみから構成されてよく、2層以上から構成されたものであってよく、前面板において述べた樹脂製の板状体について例示したものを用いることができる。
≪Protective plate≫
As the protective plate, a resin plate-like body capable of transmitting light, a component used in a normal display device, or the like can be used. The resin plate-like body may be composed of only one layer, may be composed of two or more layers, and an example of the resin plate-like body described in the front plate can be used. ..

保護板は、優れた耐衝撃性を有する光学積層体を構成しやすい観点から、タフネスが1mJ/mm以上であることが好ましく、4mJ/mm以上であることがさらに好ましく、50mJ/mm以上であってもよい。保護板のタフネスは、例えば200mJ/mm以下であり、100mJ/mm以下であってもよい。保護板の厚みは、例えば5μm以上2000μm以下であってよく、好ましくは10μm以上1000μm以下であり、より好ましくは15μm以上500μm以下であり、さらに好ましくは30μm以上100μm以下である。 Protective plate from easily form an optical laminate having excellent impact resistance standpoint, it is preferable that toughness is 1 mJ / mm 3 or more, still more preferably 4 mJ / mm 3 or more, 50 mJ / mm 3 It may be the above. The toughness of the protective plate is, for example, 200 mJ / mm 3 or less, and may be 100 mJ / mm 3 or less. The thickness of the protective plate may be, for example, 5 μm or more and 2000 μm or less, preferably 10 μm or more and 1000 μm or less, more preferably 15 μm or more and 500 μm or less, and further preferably 30 μm or more and 100 μm or less.

(貼合層)
光学部材は、2つの層を接合するための貼合層を含むことができる。貼合層は、粘着剤又は接着剤から構成される層である。貼合層が粘着剤層である場合、その厚みは、10μm未満である。貼合層の材料となる粘着剤は、上述の第x粘着剤層で説明した粘着剤組成物を用いることができる。
(Lated layer)
The optical member can include a laminating layer for joining the two layers. The bonding layer is a layer composed of a pressure-sensitive adhesive or an adhesive. When the bonding layer is an adhesive layer, its thickness is less than 10 μm. As the pressure-sensitive adhesive used as the material of the bonding layer, the pressure-sensitive adhesive composition described in the above-mentioned xth pressure-sensitive adhesive layer can be used.

貼合層の材料となる接着剤としては、例えば水系接着剤、活性エネルギー線硬化型接着剤等のうち1種又は2種以上を組み合わせて形成することができる。水系接着剤としては、例えばポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤等を挙げることができる。活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含む接着剤、光反応性樹脂を含む接着剤、バインダー樹脂及び光反応性架橋剤を含む接着剤等を挙げることができる。上記重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマー、及びこれらモノマーに由来するオリゴマー等を挙げることができる。上記光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する物質を含む化合物を挙げることができる。 As the adhesive used as the material of the bonding layer, for example, one or a combination of two or more of water-based adhesives, active energy ray-curable adhesives, and the like can be formed. Examples of the water-based adhesive include a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like. The active energy ray-curable adhesive is an adhesive that cures by irradiating with active energy rays such as ultraviolet rays, and is, for example, an adhesive containing a polymerizable compound and a photopolymerizable initiator, and an adhesive containing a photoreactive resin. , Adhesives containing a binder resin and a photoreactive cross-linking agent, and the like. Examples of the polymerizable compound include photopolymerizable monomers such as a photocurable epoxy monomer, a photocurable acrylic monomer, and a photocurable urethane monomer, and oligomers derived from these monomers. Examples of the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cationic radicals by irradiating them with active energy rays such as ultraviolet rays.

貼合層の厚みは、例えば1μm以上であってよく、好ましくは1μm以上10μm未満、より好ましくは2μm以上10μm未満、さらに好ましくは2.5μm以上5μm以下である。 The thickness of the bonded layer may be, for example, 1 μm or more, preferably 1 μm or more and less than 10 μm, more preferably 2 μm or more and less than 10 μm, and further preferably 2.5 μm or more and 5 μm or less.

貼合層を介して貼合される対向する二つの表面は、予めコロナ処理、プラズマ処理、火炎処理等を行ってもよく、プライマー層等を有していてもよい。 The two opposing surfaces that are bonded via the bonding layer may be subjected to corona treatment, plasma treatment, flame treatment, or the like in advance, or may have a primer layer or the like.

[光学積層体の製造方法]
光学積層体は、粘着剤層を介して、前面板及び光学部材を貼合する工程を含む方法によって製造することができる。前面板及び光学部材の粘着剤層と接する表面は、密着力を調整する目的で、コロナ処理等の表面活性化処理を施すことが好ましい。コロナ処理の条件は適宜設定することができ、貼合面の一方の面と他の面とで条件が異なっていてもよい。なお、貼合面がタッチセンサパネルの透明導電層である場合には、コロナ処理は行わないことが好ましい。
[Manufacturing method of optical laminate]
The optical laminate can be manufactured by a method including a step of laminating the front plate and the optical member via the pressure-sensitive adhesive layer. The surface of the front plate and the surface of the optical member in contact with the pressure-sensitive adhesive layer is preferably subjected to a surface activation treatment such as a corona treatment for the purpose of adjusting the adhesive force. The conditions for corona treatment can be set as appropriate, and the conditions may differ between one surface of the bonded surface and the other surface. When the bonded surface is a transparent conductive layer of the touch sensor panel, it is preferable not to perform the corona treatment.

<表示装置>
本発明に係る表示装置は本発明に係る光学積層体を含む。表示装置は特に限定されず、例えば有機EL表示装置、無機EL表示装置、液晶表示装置、電界発光表示装置等の画像表示装置が挙げられる。本発明の光学積層体を含む表示装置は、優れた耐衝撃性を有し、屈曲又は巻回等が可能なフレキシブルディスプレイとして用いることもできる。
<Display device>
The display device according to the present invention includes an optical laminate according to the present invention. The display device is not particularly limited, and examples thereof include an image display device such as an organic EL display device, an inorganic EL display device, a liquid crystal display device, and an electroluminescent display device. The display device including the optical laminate of the present invention can also be used as a flexible display having excellent impact resistance and capable of bending or winding.

表示装置において、光学積層体は、前面板を外側(表示素子側とは反対側、すなわち視認側)に向けて表示装置が有する表示素子の視認側に配置される。表示装置は、前面板側を内側にして屈曲可能であることが好ましい。表示装置は、前面板側を外側にして屈曲可能であってもよい。 In the display device, the optical laminate is arranged on the visible side of the display element of the display device with the front plate facing the outside (the side opposite to the display element side, that is, the visual recognition side). It is preferable that the display device can be bent with the front plate side inside. The display device may be bendable with the front plate side facing outward.

本発明に係る表示装置は、スマートフォン、タブレット等のモバイル機器、テレビ、デジタルフォトフレーム、電子看板、測定器や計器類、事務用機器、医療機器、電算機器等として用いることができる。 The display device according to the present invention can be used as a mobile device such as a smartphone or tablet, a television, a digital photo frame, an electronic signboard, a measuring instrument or an instrument, an office device, a medical device, a computer device, or the like.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

<予備試験>
試験1〜5においてそれぞれ3つの試験片(例えば、試験1では試験片1−1,1−2,1−3)を準備した。各試験片は、図1に示す光学積層体100の構成を有し、前面板10、及び第1〜3光学部材21,22,23について表1に示す部材を用いて構成した。各試験片において、第1〜3粘着剤層31,32,33については、下記のようにして準備した粘着剤層(厚み25μm)を用いた。試験1では前面板の部材が3つの試験片間で異なり、試験2では第1光学部材の部材が3つの試験片間で異なり、試験3では第2光学部材の部材が3つの試験片間で異なり、試験4では第3光学部材が3つの試験片間で異なり、試験5では前面板及び第1〜3光学部材が3つの試験片間で異なる構成となるようにした。各試験片について、後述する方法によって耐衝撃性試験を行って打痕深さを測定した。表1に、測定結果を示す。
<Preliminary test>
Three test pieces (for example, test pieces 1-1, 1-2, 1-3 in Test 1) were prepared in each of Tests 1 to 5. Each test piece has the structure of the optical laminate 100 shown in FIG. 1, and is configured by using the members shown in Table 1 for the front plate 10 and the first to third optical members 21, 22 and 23. In each test piece, the pressure-sensitive adhesive layers (thickness 25 μm) prepared as follows were used for the first to third pressure-sensitive adhesive layers 31, 32, 33. In test 1, the member of the front plate differs between the three test pieces, in test 2, the member of the first optical member differs between the three test pieces, and in test 3, the member of the second optical member differs between the three test pieces. In Test 4, the third optical member was different among the three test pieces, and in Test 5, the front plate and the first to third optical members were configured differently among the three test pieces. Each test piece was subjected to an impact resistance test by a method described later to measure the dent depth. Table 1 shows the measurement results.

Figure 2021117334
Figure 2021117334

表1において、部材1,2,3は、表2に示す樹脂フィルムである。表2において、部材1,2,3のタフネス及び厚みは後述する方法によって測定した値である。 In Table 1, the members 1, 2, and 3 are the resin films shown in Table 2. In Table 2, the toughness and thickness of the members 1, 2 and 3 are values measured by the method described later.

Figure 2021117334
Figure 2021117334

[粘着剤層の準備]
粘着剤層を形成するための粘着剤に用いる(メタ)アクリル系樹脂を次の手順で調製した。窒素ガスを還流でき温度調節を行うための冷却装置が設けられた1Lの反応容器に、2−エチルヘキシルアクリレート95部、ドデシルアクリレート2部、及び、2−ヒドロキシプロピルアクリレート3部を仕込んだ。反応容器内の酸素を除去するために窒素ガスで1時間パージングして、内温を60℃に維持した。反応容器内に仕込んだ化合物を均一になるように混合した後、光重合開始剤としての1−ヒドロキシシクロヘキシルフェニルケトン0.5部を投入して撹拌し、UVランプ(10mW)を照射して、(メタ)アクリル系樹脂を得た。得られた(メタ)アクリル系樹脂の重量平均分子量Mwは61万であった。
[Preparation of adhesive layer]
A (meth) acrylic resin used as a pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer was prepared by the following procedure. 95 parts of 2-ethylhexyl acrylate, 2 parts of dodecyl acrylate, and 3 parts of 2-hydroxypropyl acrylate were charged in a 1 L reaction vessel provided with a cooling device capable of refluxing nitrogen gas and controlling the temperature. The internal temperature was maintained at 60 ° C. by parsing with nitrogen gas for 1 hour to remove oxygen in the reaction vessel. After mixing the compounds charged in the reaction vessel so as to be uniform, 0.5 part of 1-hydroxycyclohexylphenyl ketone as a photopolymerization initiator was added and stirred, and the mixture was irradiated with a UV lamp (10 mW). A (meth) acrylic resin was obtained. The weight average molecular weight Mw of the obtained (meth) acrylic resin was 610,000.

上記で得た(メタ)アクリル系樹脂(固形分換算値)100部と、光重合開始剤としての1−ヒドロキシシクロヘキシルフェニルケトン0.3部(固形分換算値)とを混合して粘着剤を得た。 100 parts of the (meth) acrylic resin (solid content conversion value) obtained above and 0.3 part of 1-hydroxycyclohexylphenyl ketone (solid content conversion value) as a photopolymerization initiator are mixed to prepare a pressure-sensitive adhesive. Obtained.

得られた粘着剤を、基材がPETフィルムである第1剥離フィルムのシリコーン離型処理面に厚みが25μmとなるように塗布し、この塗布層上に基材がPETフィルムである第2剥離フィルムを貼合した積層体とした。この積層体に、UV照射(積算光量400mJ/cm、照度1.8mW/cm、UVV基準)を行い、第1剥離フィルム、粘着剤層、第2剥離フィルムがこの順に積層された粘着シートを作製した。 The obtained pressure-sensitive adhesive is applied to the silicone release-treated surface of the first release film whose base material is a PET film so as to have a thickness of 25 μm, and the second release whose base material is a PET film is applied on this coating layer. A laminated body in which films were bonded was prepared. The laminated body is subjected to UV irradiation (integrated light intensity 400 mJ / cm 2 , illuminance 1.8 mW / cm 2 , UVV standard), and the first release film, the adhesive layer, and the second release film are laminated in this order. Was produced.

[タフネスの測定]
光学部材のタフネスは、JIS K7161に準拠して、次のように測定した。測定対象の光学部材から長辺110mm×短辺10mmの長方形の小片をスーパーカッターを用いて切り出した。次いで、引張試験機〔(株)島津製作所製 オートグラフ AG−Xplus試験機〕の上下つかみ具で、つかみ具の間隔が5cmとなるように上記小片の長辺方向両端を挟み、温度23℃、相対湿度55%の環境下、引張速度4mm/分で小片の長辺方向に引張った。タフネスは、初期から破断までの間における、応力−ひずみ曲線の積分値として算出した。
[Measurement of toughness]
The toughness of the optical member was measured as follows in accordance with JIS K7161. A rectangular small piece having a long side of 110 mm and a short side of 10 mm was cut out from the optical member to be measured using a super cutter. Next, the upper and lower grippers of the tensile tester [Autograph AG-Xplus tester manufactured by Shimadzu Corporation] sandwich both ends of the small piece in the long side direction so that the gap between the grippers is 5 cm, and the temperature is 23 ° C. In an environment of 55% relative humidity, the pieces were pulled in the long side direction at a tensile speed of 4 mm / min. The toughness was calculated as the integral value of the stress-strain curve from the initial stage to the fracture.

[耐衝撃性試験]
測定対象の光学積層体から、長辺150mm×短辺70mmの長方形の大きさの小片をスーパーカッターを用いて切り出し、小片の前面板側とは反対側の表面を粘着剤層を介してアクリル板に貼合した。そして、23℃、相対湿度55%の環境下で、小片に対して、評価用ペンを小片の前面板の最表面から10cmの高さにペン先が位置しかつペン先が下向きとなるように保持し、その位置から評価用ペンを落下させた。評価用ペンとして、重量が5.6gであり、ペン先の直径が0.75mmのペンを用いた。評価用ペンを落下させた後の小片について、干渉計顕微鏡(ContourGT-K3D Optical Microscope、Bruker社製)での画像を用いて打痕深さを測定した。
[Impact resistance test]
A rectangular piece of 150 mm long side x 70 mm short side is cut out from the optical laminate to be measured using a super cutter, and the surface of the piece opposite to the front plate side is an acrylic plate via an adhesive layer. It was pasted on. Then, in an environment of 23 ° C. and 55% relative humidity, the evaluation pen is placed at a height of 10 cm from the outermost surface of the front plate of the small piece so that the pen tip is positioned and the pen tip faces downward. It was held and the evaluation pen was dropped from that position. As the evaluation pen, a pen having a weight of 5.6 g and a pen tip diameter of 0.75 mm was used. The dent depth was measured using an image taken with an interferometer microscope (ContourGT-K3D Optical Microscope, manufactured by Bruker) for the small pieces after the evaluation pen was dropped.

[厚み測定]
試料の厚みは、接触式膜厚測定装置(株式会社ニコン製「MS−5C」)を用いて測定した。ただし、偏光子層および配向膜については、レーザー顕微鏡(オリンパス株式会社製「OLS3000」)を用いて測定した。
[Thickness measurement]
The thickness of the sample was measured using a contact-type film thickness measuring device (“MS-5C” manufactured by Nikon Corporation). However, the polarizer layer and the alignment film were measured using a laser microscope (“OLS3000” manufactured by Olympus Corporation).

[予備試験結果の考察]
表1に示す、試験1〜5の打痕深さの評価結果から、耐衝撃試験においてペンが衝突する面に近い光学部材ほど異なる種類(異なるタフネス)の基材を用いることにより打痕深さに与える影響が大きく、また、光学部材のタフネスが大きいほど打痕深さを小さくできることがわかった。
[Discussion of preliminary test results]
From the evaluation results of the dent depth in Tests 1 to 5 shown in Table 1, the dent depth is obtained by using a different type (different toughness) of the optical member closer to the surface on which the pen collides in the impact resistance test. It was found that the greater the toughness of the optical member, the smaller the dent depth.

<実施例1〜5、比較例1,2>
実施例1〜5、及び比較例1,2の光学積層体として、図1に示す光学積層体100を作製した。各光学積層体において、前面板10、第1光学部材(保護板)21、第2光学部材(偏光板)22、第3光学部材(タッチセンサパネル)23は、後述するものを用いて構成した。各光学積層体において、第1〜3粘着剤層31,32,33については、予備試験で用いたものと同じ粘着剤層(厚み25μm)を用いた。各光学積層体について、式(1a)に基づいて評価値Aを算出した。表3に、算出した評価値Aを示す。
<Examples 1 to 5, Comparative Examples 1 and 2>
As the optical laminates of Examples 1 to 5 and Comparative Examples 1 and 2, the optical laminate 100 shown in FIG. 1 was produced. In each optical laminate, the front plate 10, the first optical member (protective plate) 21, the second optical member (polarizing plate) 22, and the third optical member (touch sensor panel) 23 are configured by using those described later. .. In each optical laminate, the same pressure-sensitive adhesive layer (thickness 25 μm) as that used in the preliminary test was used for the first to third pressure-sensitive adhesive layers 31, 32, 33. For each optical laminate, the evaluation value A was calculated based on the formula (1a). Table 3 shows the calculated evaluation value A.

各光学積層体について、予備試験の項で示した方法によって耐衝撃性試験を行い、目視及び顕微鏡(Nikon社、MM-40/2U, X10倍率)での観察により以下の評価基準に基づいて打痕を評価した。表3に、評価結果を示す。
A:目視及び顕微鏡による観察で、打痕が観測されない。
B:目視による観察で、打痕が観測されない。顕微鏡による観察で、打痕が観測される。
C:目視による観察で、打痕が観測される。
Each optical laminate is subjected to an impact resistance test by the method shown in the preliminary test section, and is hit based on the following evaluation criteria by visual inspection and observation with a microscope (Nikon, MM-40 / 2U, X10 magnification). The scar was evaluated. Table 3 shows the evaluation results.
A: No dents are observed by visual observation or microscopic observation.
B: No dents are observed by visual observation. A dent is observed by microscopic observation.
C: A dent is observed by visual observation.

[前面板10]
透明の樹脂フィルム(基材11)上にハードコート層用組成物をコーティングした後、溶剤を乾燥させ、UV硬化することで片面にハードコート層12が形成された前面板(縦177mm×横105mm)を作製した。
[Front plate 10]
After coating the composition for the hard coat layer on the transparent resin film (base material 11), the solvent is dried and UV-cured to form the hard coat layer 12 on one side of the front plate (length 177 mm × width 105 mm). ) Was prepared.

ハードコート層用組成物は、多機能アクリレート(MIWONスペシャルティーケミカル(韓国)、MIRAMER M340)30重量部、プロピレングリコールモノメチルエーテルに分散したナノシリカゾル(平均粒径12nm、固形分40%)50重量部、エチルアセテート17重量部、光重合開始剤(Ciba社、I184)2.7重量部、フッ素系添加剤(信越化学工業株式会社、KY1203)0.3重量部を攪拌機を利用して配合し、ポリプロピレン(PP)材質のフィルターを用いて濾過することでハードコート層用組成物を製造した。
樹脂フィルム(基材11)には、表3に記載の以下製造例1〜7のいずれかのポリアミドイミド樹脂フィルムを用いた。
The composition for the hard coat layer is 30 parts by weight of multifunctional acrylate (MIWON Specialty Chemical (Korea), MIRAMER M340) and 50 parts by weight of nanosilica sol (average particle size 12 nm, solid content 40%) dispersed in propylene glycol monomethyl ether. , 17 parts by weight of ethyl acetate, 2.7 parts by weight of photopolymerization initiator (Ciba, I184), 0.3 parts by weight of fluorine-based additive (Shin-Etsu Chemical Co., Ltd., KY1203) were mixed using a stirrer. A composition for a hard coat layer was produced by filtering using a filter made of polypropylene (PP).
As the resin film (base material 11), any of the polyamide-imide resin films of Production Examples 1 to 7 shown in Table 3 below was used.

[製造例1]
窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)および水分量を500ppmに調整したN,N−ジメチルアセトアミド(DMAc)673.93gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)28.90g(65.05mmol)を添加し、室温で3時間撹拌した。その後、テレフタロイルクロリド(TPC)19.81g(97.57mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン7.49g(94.65mmol)と無水酢酸14.61g(143.11mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに5時間撹拌し、反応液を得た。
[Manufacturing Example 1]
52 g (162.38 mmol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide adjusted to 500 ppm in a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere. 673.93 g of (DMAc) was added and TFMB was dissolved in DMAc with stirring at room temperature. Next, 28.90 g (65.05 mmol) of 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride (6FDA) was added to the flask, and the mixture was stirred at room temperature for 3 hours. Then, 19.81 g (97.57 mmol) of terephthaloyl chloride (TPC) was added to the flask, and the mixture was stirred at room temperature for 1 hour. Next, 7.49 g (94.65 mmol) of pyridine and 14.61 g (143.11 mmol) of acetic anhydride were added to the flask, and the mixture was stirred at room temperature for 30 minutes, heated to 70 ° C. using an oil bath, and further 5 The mixture was stirred for a time to obtain a reaction solution.

得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。 The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of filaments, the precipitated precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamide-imide resin. DMAc was added to the obtained polyamide-imide resin so as to have a concentration of 15% by mass to prepare a polyamide-imide varnish.

得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で230℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。 The obtained polyamide-imide varnish was applied onto a smooth surface of a polyester base material (manufactured by Toyobo Co., Ltd., trade name "A4100") using an applicator so that the thickness of the free-standing film was 55 μm, and the temperature was 30 ° C. It was dried for 1 minute and then at 140 ° C. for 15 minutes to obtain a free-standing film. The free-standing film was fixed to a gold frame and further dried in the atmosphere at 230 ° C. for 30 minutes to obtain a polyamide-imide film having a film thickness of 50 μm.

[製造例2]
自立膜の膜厚が65μmとなるように塗工したこと以外は、製造例1と同様にして、膜厚60μmのポリアミドイミドフィルムを得た。
[Manufacturing Example 2]
A polyamide-imide film having a film thickness of 60 μm was obtained in the same manner as in Production Example 1 except that the self-standing film was coated so that the film thickness was 65 μm.

[製造例3]
窒素雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)52g(162.38mmol)および水分量を100ppmに調整したN,N−ジメチルアセトアミド(DMAc)693.8gを加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)28.90g(65.05mmol)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)9.57g(32.52mmol)を添加し、室温で3時間撹拌した。その後、テレフタロイルクロリド(TPC)13.21g(63.10mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコにピリジン4.99g(63.10mmol)と無水酢酸21.91g(214.66mmol)とを加え、室温で30分間撹拌した後、オイルバスを用いて70℃に昇温し、さらに1時間撹拌し、反応液を得た。
[Manufacturing Example 3]
52 g (162.38 mmol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and N, N-dimethylacetamide adjusted to 100 ppm in a 1 L separable flask equipped with a stirring blade under a nitrogen atmosphere. 693.8 g of (DMAc) was added, and TFMB was dissolved in DMAc with stirring at room temperature. Next, in a flask, 28.90 g (65.05 mmol) of 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride (6FDA) and 3,3', 4,4'-biphenyltetracarboxylic dianhydride 9.57 g (32.52 mmol) of (BPDA) was added, and the mixture was stirred at room temperature for 3 hours. Then, 13.21 g (63.10 mmol) of terephthaloyl chloride (TPC) was added to the flask, and the mixture was stirred at room temperature for 1 hour. Next, 4.99 g (63.10 mmol) of pyridine and 21.91 g (214.66 mmol) of acetic anhydride were added to the flask, and the mixture was stirred at room temperature for 30 minutes, heated to 70 ° C. using an oil bath, and further 1 The mixture was stirred for a time to obtain a reaction solution.

得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。 The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of filaments, the precipitated precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamide-imide resin. DMAc was added to the obtained polyamide-imide resin so as to have a concentration of 15% by mass to prepare a polyamide-imide varnish.

得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。 The obtained polyamide-imide varnish was applied onto a smooth surface of a polyester base material (manufactured by Toyobo Co., Ltd., trade name "A4100") using an applicator so that the thickness of the free-standing film was 55 μm, and the temperature was 30 ° C. It was dried for 1 minute and then at 140 ° C. for 15 minutes to obtain a free-standing film. The free-standing film was fixed to a gold frame and further dried in the atmosphere at 300 ° C. for 30 minutes to obtain a polyamide-imide film having a film thickness of 50 μm.

[製造例4]
自立膜の膜厚が65μmとなるように塗工したこと以外は、製造例3と同様にして、膜厚60μmのポリアミドイミドフィルムを得た。
[Manufacturing Example 4]
A polyamide-imide film having a film thickness of 60 μm was obtained in the same manner as in Production Example 3 except that the self-standing film was coated so that the film thickness was 65 μm.

[製造例5]
自立膜の膜厚が45μmとなるように塗工したこと以外は、製造例3と同様にして、膜厚40μmのポリアミドイミドフィルムを得た。
[Manufacturing Example 5]
A polyamide-imide film having a film thickness of 40 μm was obtained in the same manner as in Production Example 3 except that the self-standing film was coated so that the film thickness was 45 μm.

[製造例6]
窒素ガス雰囲気下、撹拌翼を備えた1Lセパラブルフラスコに、2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB)14.67g(45.8mmol)および水分量を200ppmに調製したN,N−ジメチルアセトアミド(DMAc)233.3gを加え、室温で撹拌しながらTFMBをDMAcに溶解させた。次に、フラスコに4,4’−オキシジフタル酸二無水物(OPDA)4.283g(13.8mmol)を加え、室温で16.5時間撹拌した。その後、4,4‘−オキシビス(ベンゾイルクロリド)(OBBC)1.359g(4.61mmol)およびテレフタロイルクロリド(TPC)5.609g(27.6mmol)をフラスコに加え、室温で1時間撹拌した。次いで、フラスコに無水酢酸4.937g(48.35mmol)と4−ピコリン1.501g(16.12mmol)とを加え、室温で30分間撹拌後、オイルバスを用いて70℃に昇温し、さらに3時間撹拌し、反応液を得た。 得られた反応液を室温まで冷却した後、メタノール360gおよびイオン交換水170gを加えてポリアミドイミドの沈殿を得た。それをメタノール中に12時間浸漬し、濾過で回収してメタノールで洗浄した。次に、100℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂を得た。得られたポリアミドイミド樹脂に、濃度が15質量%となるようにDMAcを加え、ポリアミドイミドワニスを作製した。得られたポリアミドイミドワニスをポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の膜厚が55μmとなるようにアプリケーターを用いて塗工し、50℃30分間、次いで140℃15分間で乾燥し、自立膜を得た。自立膜を金枠に固定し、さらに大気下で300℃30分間乾燥し、膜厚50μmのポリアミドイミドフィルムを得た。
[Manufacturing Example 6]
In a nitrogen gas atmosphere, 14.67 g (45.8 mmol) of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and a water content of 200 ppm were prepared in a 1 L separable flask equipped with a stirring blade. -233.3 g of dimethylacetamide (DMAc) was added, and TFMB was dissolved in DMAc with stirring at room temperature. Next, 4.283 g (13.8 mmol) of 4,4'-oxydiphthalic dianhydride (OPDA) was added to the flask, and the mixture was stirred at room temperature for 16.5 hours. Then, 1.359 g (4.61 mmol) of 4,4'-oxybis (benzoyl chloride) (OBBC) and 5.609 g (27.6 mmol) of terephthaloyl chloride (TPC) were added to the flask, and the mixture was stirred at room temperature for 1 hour. .. Next, 4.937 g (48.35 mmol) of acetic anhydride and 1.501 g (16.12 mmol) of 4-picoline were added to the flask, and the mixture was stirred at room temperature for 30 minutes, heated to 70 ° C. using an oil bath, and further. The mixture was stirred for 3 hours to obtain a reaction solution. After cooling the obtained reaction solution to room temperature, 360 g of methanol and 170 g of ion-exchanged water were added to obtain a precipitate of polyamide-imide. It was immersed in methanol for 12 hours, collected by filtration and washed with methanol. Next, the precipitate was dried under reduced pressure at 100 ° C. to obtain a polyamide-imide resin. DMAc was added to the obtained polyamide-imide resin so as to have a concentration of 15% by mass to prepare a polyamide-imide varnish. The obtained polyamide-imide varnish was applied onto a smooth surface of a polyester base material (manufactured by Toyobo Co., Ltd., trade name "A4100") using an applicator so that the thickness of the free-standing film was 55 μm, and the temperature was 30 ° C. It was dried for 1 minute and then at 140 ° C. for 15 minutes to obtain a free-standing film. The free-standing film was fixed to a gold frame and further dried in the atmosphere at 300 ° C. for 30 minutes to obtain a polyamide-imide film having a film thickness of 50 μm.

[製造例7]
自立膜の膜厚が65μmとなるように塗工したこと以外は、製造例6と同様にして、膜厚60μmのポリアミドイミドフィルムを得た。
[Manufacturing Example 7]
A polyamide-imide film having a film thickness of 60 μm was obtained in the same manner as in Production Example 6 except that the self-standing film was coated so that the film thickness was 65 μm.

ハードコート層12の厚みは、表3に記載されている通りとした。
前面板10のタフネスTを予備試験の項で示した方法によって測定した。表3に、測定結果を示す。前面板10のタフネスTは、基材11の種類、及びハードコート層12の厚みに応じて異なる値となった。
The thickness of the hard coat layer 12 was as shown in Table 3.
The toughness T 0 of the front plate 10 was measured by the method shown in the preliminary test section. Table 3 shows the measurement results. The toughness T 0 of the front plate 10 has a different value depending on the type of the base material 11 and the thickness of the hard coat layer 12.

[保護板21(第1光学部材)]
保護板21として、表3に記載の以下のいずれかの樹脂フィルムを用いた。
・PET80(商品名:SH82、SKC社製、ポリエチレンテレフタレートフィルム、厚み80μm)
・TAC60(商品名:KC6UAW、コニカミノルタ株式会社、トリアセチルセルロースフィルム、厚み60μm)
・TAC40(商品名:KC4UAW、コニカミノルタ株式会社、トリアセチルセルロースフィルム、厚み40μm)
・COP13(商品名:ZF14−013、日本ゼオン株式会社、シクロオレフィン系樹脂フィルム、厚み13μm)
保護板21のタフネスTを予備試験の項で示した方法によって測定した。表3に、測定結果を示す。保護板21のタフネスTは、樹脂フィルムの種類に応じて異なる値となった。
[Protective plate 21 (first optical member)]
As the protective plate 21, any of the following resin films shown in Table 3 was used.
-PET80 (trade name: SH82, manufactured by SKC, polyethylene terephthalate film, thickness 80 μm)
-TAC60 (trade name: KC6UAW, Konica Minolta Co., Ltd., triacetyl cellulose film, thickness 60 μm)
-TAC40 (trade name: KC4UAW, Konica Minolta Co., Ltd., triacetyl cellulose film, thickness 40 μm)
-COP13 (trade name: ZF14-013, Zeon Corporation, cycloolefin resin film, thickness 13 μm)
It was measured by the method shown toughness T 1 of the protection plate 21 in the section of the preliminary tests. Table 3 shows the measurement results. The toughness T 1 of the protective plate 21 had a different value depending on the type of the resin film.

[偏光板22(第2光学部材)]
平均重合度約2,400、ケン化度99.9モル%以上、厚み20μmのポリビニルアルコール(PVA)フィルムを準備した。PVAフィルムを30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の質量比が0.02/2/100の水溶液に30℃で浸漬してヨウ素染色を行った(ヨウ素染色工程)。ヨウ素染色工程を経たPVAフィルムを、ヨウ化カリウム/ホウ酸/水の質量比が12/5/100の水溶液に、56.5℃で浸漬してホウ酸処理を行った(ホウ酸処理工程)。ホウ酸処理工程を経たPVAフィルムを8℃の純水で洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向している偏光子を得た。PVAフィルムの延伸は、ヨウ素染色工程とホウ酸処理工程において行った。PVAフィルムの総延伸倍率は5.3倍であった。得られた偏光子の厚みは7μmであった。
[Polarizing plate 22 (second optical member)]
A polyvinyl alcohol (PVA) film having an average degree of polymerization of about 2,400, a saponification degree of 99.9 mol% or more, and a thickness of 20 μm was prepared. After immersing the PVA film in pure water at 30 ° C., it was immersed in an aqueous solution having a mass ratio of iodine / potassium iodide / water of 0.02 / 2/100 at 30 ° C. to perform iodine dyeing (iodine dyeing step). .. The PVA film that had undergone the iodine dyeing step was immersed in an aqueous solution having a mass ratio of potassium iodide / boric acid / water of 12/5/100 at 56.5 ° C. to perform boric acid treatment (boric acid treatment step). .. The PVA film that had undergone the boric acid treatment step was washed with pure water at 8 ° C. and then dried at 65 ° C. to obtain a polarizer in which iodine was adsorbed and oriented on polyvinyl alcohol. The PVA film was stretched in the iodine dyeing step and the boric acid treatment step. The total draw ratio of the PVA film was 5.3 times. The thickness of the obtained polarizer was 7 μm.

上記で得られた偏光子と、基材とを水系接着剤を介してニップロールで貼り合わせた。得られた貼合物の張力を430N/mに保ちながら、60℃で2分間乾燥して、片面に基材フィルムを有する直線偏光板を得た。なお、水系接着剤は水100部に、カルボキシル基変性ポリビニルアルコール(「クラレポバール KL318」、株式会社クラレ製)3部と、水溶性ポリアミドエポキシ樹脂(「スミレーズレジン650」(固形分濃度30%の水溶液)、田岡化学工業株式会社製)1.5部とを添加して調製した。
当該偏光子上に、厚さ5μmの粘着剤層を介して、液晶化合物が重合して硬化した層を含む位相差フィルム(厚さ5μm、層構成:液晶化合物が硬化した層及び配向膜からなるλ/2板(厚さ2μm)/接着剤層(厚さ2μm)/液晶化合物が硬化した層及び配向膜からなるλ/4板(厚さ1μm))を貼合した。このようにして、「基材/偏光子(厚さ7μm)/粘着剤層(厚さ5μm)/位相差フィルム(厚さ5μm)」の層構成を有する偏光板を作製した。
The polarizer obtained above and the base material were bonded to each other with a nip roll via an aqueous adhesive. While maintaining the tension of the obtained laminate at 430 N / m, it was dried at 60 ° C. for 2 minutes to obtain a linear polarizing plate having a base film on one side. The water-based adhesive is 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol ("Kuraray Poval KL318", manufactured by Kuraray Co., Ltd.) and water-soluble polyamide epoxy resin ("Smiley's resin 650" (solid content concentration 30%). (Aqueous solution) and 1.5 parts (manufactured by Taoka Chemical Industry Co., Ltd.) were added to prepare.
A retardation film (thickness 5 μm, layer structure: a layer obtained by curing the liquid crystal compound and an alignment film) containing a layer obtained by polymerizing and curing the liquid crystal compound on the polarizing element via an adhesive layer having a thickness of 5 μm. A λ / 2 plate (thickness 2 μm) / an adhesive layer (thickness 2 μm) / a λ / 4 plate (thickness 1 μm) composed of a layer in which a liquid crystal compound was cured and an alignment film) was bonded. In this way, a polarizing plate having a layer structure of "base material / polarizer (thickness 7 μm) / adhesive layer (thickness 5 μm) / retardation film (thickness 5 μm)" was produced.

偏光子に貼り合わせる基材には、表3に記載の以下のいずれかに記載の樹脂フィルムを用いた。
・TAC25(商品名:KC2UAW、コニカミノルタ株式会社、トリアセチルセルロースフィルム、厚み25μm)
・COP23(商品名:ZF14−023、日本ゼオン株式会社、シクロオレフィン系樹脂フィルム、厚み23μm)
偏光板22のタフネスTを予備試験の項で示した方法によって測定した。表3に、測定結果を示す。偏光板22のタフネスTは、基材の種類に応じて異なる値となった。
As the base material to be bonded to the polarizer, the resin film described in any of the following shown in Table 3 was used.
-TAC25 (trade name: KC2UAW, Konica Minolta Co., Ltd., triacetyl cellulose film, thickness 25 μm)
-COP23 (trade name: ZF14-023, ZEON CORPORATION, cycloolefin resin film, thickness 23 μm)
The toughness T 2 of the polarizing plate 22 was measured by the method shown in the preliminary test section. Table 3 shows the measurement results. The toughness T 2 of the polarizing plate 22 had a different value depending on the type of the base material.

[タッチセンサパネル23(第3光学部材)]
透明導電層、分離層、接着剤層、及び基材がこの順に積層された縦177mm×横105mmのタッチセンサパネルを準備した。透明導電層はITO層を含み、分離層はアクリル系樹脂組成物の硬化層を含むものであり、両者の厚みの合計は7μmであった。接着剤層は厚みが2μmであった。
基材には、表3に記載の以下のいずれかに記載の樹脂フィルムを用いた。
・PET80(商品名:SH82、SKC社製、ポリエチレンテレフタレートフィルム、厚み80μm)
・TAC25(商品名:KC2UAW、コニカミノルタ株式会社、トリアセチルセルロースフィルム、厚み25μm)
・COP23(商品名:ZF14−023、日本ゼオン株式会社、シクロオレフィン系樹脂フィルム、厚み23μm)
タッチセンサパネル23のタフネスTを予備試験の項で示した方法によって測定した。表3に、測定結果を示す。タッチセンサパネル23のタフネスTは、基材の種類に応じて異なる値となった。
[Touch sensor panel 23 (third optical member)]
A touch sensor panel having a length of 177 mm and a width of 105 mm was prepared in which a transparent conductive layer, a separation layer, an adhesive layer, and a base material were laminated in this order. The transparent conductive layer contained an ITO layer, and the separation layer contained a cured layer of an acrylic resin composition, and the total thickness of both was 7 μm. The adhesive layer had a thickness of 2 μm.
As the base material, the resin film described in any of the following shown in Table 3 was used.
-PET80 (trade name: SH82, manufactured by SKC, polyethylene terephthalate film, thickness 80 μm)
-TAC25 (trade name: KC2UAW, Konica Minolta Co., Ltd., triacetyl cellulose film, thickness 25 μm)
-COP23 (trade name: ZF14-023, ZEON CORPORATION, cycloolefin resin film, thickness 23 μm)
It was measured by the method shown toughness T 3 of the touch sensor panel 23 in the section of the preliminary tests. Table 3 shows the measurement results. The toughness T 3 of the touch sensor panel 23 had a different value depending on the type of the base material.

Figure 2021117334
Figure 2021117334

10 前面板、11 基材、12 ハードコート層、21 第1光学部材(保護板)、22 第2光学部材(偏光板)、23 第3光学部材(タッチセンサパネル)、31 第1粘着剤層、32 第2粘着剤層、33 第3粘着剤層。 10 Front plate, 11 base material, 12 hard coat layer, 21 first optical member (protective plate), 22 second optical member (polarizing plate), 23 third optical member (touch sensor panel), 31 first adhesive layer , 32 Second Adhesive Layer, 33 Third Adhesive Layer.

Claims (5)

基材を含む前面板と、n個(nは2以上の整数)の光学部材と、がこの順に積層された光学積層体であって、
前記n個の光学部材の前記前面板側の表面には、それぞれ厚み10μm以上の粘着剤層が接して積層されており、
前記前面板に近い側からx番目(xは1以上n以下の整数)の光学部材を第x光学部材とすると、下記式(1)により算出される評価値Aが、下記式(2):
50≦A≦500 (2)
の関係を満たす、光学積層体。
Figure 2021117334
[式(1)中、T〔mJ/mm〕は前記前面板のタフネスであり、aは(前記基材の厚み〔μm〕)/(前記前面板の厚み〔μm〕)であり、T〔mJ/mm〕は前記第x光学部材のタフネスであり、aは(前記前面板の前記光学部材側とは反対側の表面から前記第x光学部材の前記前面板側の表面までの距離〔μm〕)/(前記第x光学部材の厚み〔μm〕)である。]
An optical laminate in which a front plate including a base material and n (n is an integer of 2 or more) optical members are laminated in this order.
Adhesive layers having a thickness of 10 μm or more are in contact with each other and laminated on the surface of the n optical members on the front plate side.
Assuming that the xth optical member (x is an integer of 1 or more and n or less) from the side closer to the front plate is the xth optical member, the evaluation value A calculated by the following formula (1) is the following formula (2):
50 ≤ A ≤ 500 (2)
An optical laminate that satisfies the relationship.
Figure 2021117334
[In the formula (1), T 0 [mJ / mm 3 ] is the toughness of the front plate, and a 0 is (thickness of the base material [μm]) / (thickness of the front plate [μm]). , T x [mJ / mm 3 ] is the toughness of the xth optical member, and a x is (from the surface of the front plate opposite to the optical member side to the front plate side of the x optical member. Distance to the surface [μm]) / (thickness of the xth optical member [μm]). ]
前記n個の光学部材の内の一つは偏光板である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein one of the n optical members is a polarizing plate. 前記n個の光学部材の内の一つはタッチセンサパネルである、請求項1又は2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein one of the n optical members is a touch sensor panel. 前記nは4以下の整数である、請求項1〜3のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein n is an integer of 4 or less. 請求項1〜4のいずれか1項に記載の光学積層体を含む表示装置。 A display device including the optical laminate according to any one of claims 1 to 4.
JP2020010108A 2020-01-24 2020-01-24 Optical stack and display device Pending JP2021117334A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020010108A JP2021117334A (en) 2020-01-24 2020-01-24 Optical stack and display device
KR1020227015299A KR20220126711A (en) 2020-01-24 2020-11-30 Optical laminate and display device
CN202080094185.0A CN115003499A (en) 2020-01-24 2020-11-30 Optical laminate and display device
PCT/JP2020/044457 WO2021149359A1 (en) 2020-01-24 2020-11-30 Optical stack and display device
TW109142464A TW202129319A (en) 2020-01-24 2020-12-02 Optical stack and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020010108A JP2021117334A (en) 2020-01-24 2020-01-24 Optical stack and display device

Publications (1)

Publication Number Publication Date
JP2021117334A true JP2021117334A (en) 2021-08-10

Family

ID=76993304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020010108A Pending JP2021117334A (en) 2020-01-24 2020-01-24 Optical stack and display device

Country Status (5)

Country Link
JP (1) JP2021117334A (en)
KR (1) KR20220126711A (en)
CN (1) CN115003499A (en)
TW (1) TW202129319A (en)
WO (1) WO2021149359A1 (en)

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359083A (en) * 1965-06-14 1967-12-19 Herbert L Leichter Composite structural metal members with improved fracture toughness
GB8321555D0 (en) * 1983-08-10 1983-09-14 Post Office Security glazing
US4861649A (en) * 1987-11-02 1989-08-29 Browne James M Impact resistent composites
DE3853428T2 (en) * 1988-11-25 1995-07-27 Dexter Corp Impact-resistant composites.
JP4593994B2 (en) * 2004-07-23 2010-12-08 住友電工ハードメタル株式会社 Surface coated cutting tool
US7255940B2 (en) * 2004-07-26 2007-08-14 General Electric Company Thermal barrier coatings with high fracture toughness underlayer for improved impact resistance
JPWO2007026659A1 (en) * 2005-08-30 2009-03-05 日東電工株式会社 Polarizer protective film, polarizing plate, and image display device
EP2273476A4 (en) * 2008-04-24 2014-04-23 Nitto Denko Corp Transparent substrate
CN102917877B (en) * 2010-05-31 2016-03-09 住友电木株式会社 Multilayer film and package body
JP5808156B2 (en) * 2011-06-08 2015-11-10 株式会社石山製作所 Multilayer adsorption sheet
RU2014101485A (en) * 2011-06-20 2015-07-27 Асахи Гласс Компани, Лимитед METHOD FOR PRODUCING MULTI-LAYERED GLASS AND MULTI-LAYERED GLASS
JP2013020130A (en) * 2011-07-12 2013-01-31 Keiwa Inc Hard coat film and touch panel using the same
US20140307398A1 (en) * 2011-12-01 2014-10-16 Sumitomo Bakelite Company Limited Image display device
KR101629943B1 (en) * 2014-02-21 2016-06-13 주식회사 엘지화학 Electronic board
KR20160122262A (en) * 2014-03-24 2016-10-21 코니카 미놀타 가부시키가이샤 Optical film, method for producing same, polarizing plate and liquid crystal display device
JP6580315B2 (en) * 2014-10-15 2019-09-25 日東電工株式会社 Optical film with double-sided pressure-sensitive adhesive, method for producing image display device using the same, and curl suppression method for optical film with double-sided pressure-sensitive adhesive
DE112015005173T5 (en) * 2015-02-19 2017-08-17 Sumitomo Riko Company Limited Vibration-damping molded product of fiber-reinforced resin and motor vehicle component, in which this is used
JP6819156B2 (en) * 2015-11-11 2021-01-27 住友化学株式会社 Liquid crystal display device
JP2017111567A (en) * 2015-12-15 2017-06-22 コニカミノルタ株式会社 Touch panel device
US10696027B2 (en) * 2016-03-11 2020-06-30 Exxonmobil Chemical Patents, Inc. Multilayer films and methods of making the same
WO2017218705A1 (en) * 2016-06-17 2017-12-21 View, Inc. Mitigating defects in an electrochromic device under a bus bar
KR20180012913A (en) 2016-07-27 2018-02-07 삼성디스플레이 주식회사 Window for display device and flexible display device including the same
KR102057065B1 (en) * 2017-02-23 2019-12-18 동우 화인켐 주식회사 Optical stack structure integrated with polarizer and touch sensor and display device including the same
JP2019148734A (en) * 2018-02-28 2019-09-05 住友化学株式会社 Circularly polarizing plate
CN112313545B (en) * 2018-04-27 2022-07-05 大日本印刷株式会社 Optical film, polarizing plate and image display device
JP7390101B2 (en) * 2018-05-10 2023-12-01 住友化学株式会社 Optical laminates and display devices
WO2020022009A1 (en) * 2018-07-25 2020-01-30 住友化学株式会社 Laminate
CN209395376U (en) * 2018-12-25 2019-09-17 江西铁木真装饰材料有限公司 A kind of waterproof flame-retardant type composite board
JP7312013B2 (en) * 2019-05-15 2023-07-20 住友化学株式会社 Optical laminate and display device

Also Published As

Publication number Publication date
KR20220126711A (en) 2022-09-16
TW202129319A (en) 2021-08-01
CN115003499A (en) 2022-09-02
WO2021149359A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP6792736B1 (en) Optical laminate and display device
WO2021153098A1 (en) Optical laminate and method for manufacturing display device
JP7194041B2 (en) laminate
WO2021085000A1 (en) Optical laminate and display device
KR20210114869A (en) Optical laminate and display device
KR102393475B1 (en) Optical laminate and display device
WO2021176989A1 (en) Optical laminate and display device
WO2021176853A1 (en) Optical stack and flexible image display device
WO2021176870A1 (en) Optical laminate and flexible image display device
JP6792735B1 (en) Optical laminate and display device
CN115524771A (en) Optical laminate and display device
WO2021149359A1 (en) Optical stack and display device
JP7194042B2 (en) laminate
JP2021015275A (en) Optical laminate and display device
JP2021047394A (en) Optical laminate and display
JP2021152641A (en) Circularly polarizing plate and optical laminate
JP6739601B1 (en) Optical laminated body and display device
KR102345851B1 (en) Optical laminate and display device
WO2021166434A1 (en) Optical laminate and display device having same
WO2020162102A1 (en) Optical layered body and display device
JP2022145565A (en) Optical laminate and display device
JP2022059255A (en) Flexible laminate
JP2021140136A (en) Optical laminate and display device
JP2021140138A (en) Optical laminate and flexible image display device
KR20210114868A (en) Optical laminate and display device