JP2021114861A - Method for manufacturing field magneton - Google Patents

Method for manufacturing field magneton Download PDF

Info

Publication number
JP2021114861A
JP2021114861A JP2020007055A JP2020007055A JP2021114861A JP 2021114861 A JP2021114861 A JP 2021114861A JP 2020007055 A JP2020007055 A JP 2020007055A JP 2020007055 A JP2020007055 A JP 2020007055A JP 2021114861 A JP2021114861 A JP 2021114861A
Authority
JP
Japan
Prior art keywords
magnet
field
powder
bond magnet
binder resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020007055A
Other languages
Japanese (ja)
Other versions
JP7477745B2 (en
Inventor
勇輝 柘植
Yuki Tsuge
勇輝 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2020007055A priority Critical patent/JP7477745B2/en
Publication of JP2021114861A publication Critical patent/JP2021114861A/en
Application granted granted Critical
Publication of JP7477745B2 publication Critical patent/JP7477745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a manufacturing method by which a field magneton capable of suppressing the detachment of a compressed bond magnet which makes a field flux source can be obtained without adding another member, etc.SOLUTION: The present invention is a method for manufacturing a field magneton having a housing composed of a laminate of steel plates, and a field flux source attached to a lamination plane extending in a lamination direction of the steel plates. The field flux source comprises a compressed bond magnet in which a binder resin binds magnet powder. The compressed bond magnet can be obtained through a shaping step of heating and compressing a bond magnet material containing magnet powder and a binder resin. The shaping step is performed in the condition that a pressure ratio (f/p), which is the ratio of a holding force (f) of pressing a laminate in the lamination direction to a compressive force (p) of the bond magnet material is set to 0.05-0.4. The resin having exuded among the steel plates laminated forms protrusions integrated with the compressed bond magnet. The protrusions each function as a piece for engagement with the steel plate, whereby the detachment of the compressed bond magnet is prevented.SELECTED DRAWING: Figure 1B

Description

本発明は、界磁子の製造方法等に関する。 The present invention relates to a method for producing a field magnet and the like.

高性能化や省エネルギー化等を図るため、希土類磁石を用いた電磁機器(電動機等)が多く用いられる。希土類磁石には、希土類磁石粉末を焼結させた焼結磁石と、希土類磁石粉末をバインダ樹脂で結着させたボンド磁石がある。ボンド磁石は焼結磁石よりも、成形性に優れ、形状自由度が大きい。 Electromagnetic devices (motors, etc.) that use rare earth magnets are often used in order to improve performance and save energy. Rare earth magnets include sintered magnets obtained by sintering rare earth magnet powder and bonded magnets obtained by binding rare earth magnet powder with a binder resin. Bonded magnets are superior to sintered magnets in formability and have a greater degree of freedom in shape.

ボンド磁石には、主に、磁石粉末と熱可塑性樹脂の溶融混合物を筐体等のキャビティ(ロータコアのスロット等)へ射出して一体成形した射出ボンド磁石と、磁石粉末と熱硬化性樹脂の混合物または混練物を、金型や筐体等のキャビティ内で圧縮して成形した圧縮ボンド磁石とがある。圧縮ボンド磁石は、通常、バインダ樹脂に熱硬化性樹脂が用いられるため、射出ボンド磁石よりも耐熱性に優れる。このような圧縮ボンド磁石を起磁源(界磁源)としたロータ(界磁子)に関連する記載が下記の特許文献1にある。 Bond magnets are mainly injection-bonded magnets that are integrally molded by injecting a molten mixture of magnet powder and thermoplastic resin into a cavity (rotor core slot, etc.) such as a housing, and a mixture of magnet powder and thermosetting resin. Alternatively, there is a compression bond magnet formed by compressing a kneaded product in a cavity such as a mold or a housing. Since a thermosetting resin is usually used as the binder resin, the compression bond magnet is superior in heat resistance to the injection bond magnet. Patent Document 1 below describes a rotor (field magnet) using such a compression bond magnet as a magnetic source (field source).

特許第2537636号公報Japanese Patent No. 2537636 特許第6025683号公報Japanese Patent No. 6025683

特許文献1は、磁性板(電磁鋼板)の積層体からなるロータコアのスロットに、圧縮ボンド磁石を成形したロータ(界磁子)を提案している。その圧縮ボンド磁石は、NdFeB系磁石粉末とエポキシ樹脂(2wt%)を、126トン/cm2(=約1235MPa)で圧縮して成形されている。 Patent Document 1 proposes a rotor (field magnet) in which a compression bond magnet is formed in a slot of a rotor core made of a laminated body of magnetic plates (electromagnetic steel sheets). The compression bond magnet is formed by compressing NdFeB magnet powder and epoxy resin (2 wt%) at 126 tons / cm2 (= about 1235 MPa).

特許文献1に記載はないが、通常、スロットにボンド磁石を成形する場合、そのボンド磁石がスロットから脱着しないように、種々の抜止対策がなされる。例えば、スロットの開口を閉塞するカバーを設けたり、積層鋼板やボンド磁石の一部を特殊な係止形状にしたりされる。なお、特許文献2には、圧縮ボンド磁石ではなく射出ボンド磁石を対象とした抜止対策に関する記載がある。 Although not described in Patent Document 1, when a bond magnet is usually formed in a slot, various retaining measures are taken so that the bond magnet does not detach from the slot. For example, a cover for closing the opening of the slot is provided, or a part of the laminated steel plate or the bond magnet is formed into a special locking shape. In addition, Patent Document 2 describes a retaining measure for an injection bond magnet instead of a compression bond magnet.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法により、界磁源となる圧縮ボンド磁石の脱着等が抑止される界磁子等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a field magnet or the like in which attachment / detachment of a compression bond magnet as a field source is suppressed by a method different from the conventional method. do.

本発明者は鋭意研究した結果、圧縮ボンド磁石を構成するバインダ樹脂を成形時に鋼板の積層間へ滲出させて固化させることを着想した。そして滲出して固化した層状の樹脂部(突出部)が、圧縮ボンド磁石の積層方向への脱着等を抑止し得ることを実際に確認した。このような成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research, the present inventor has conceived that the binder resin constituting the compression bond magnet is exuded between the laminated steel sheets and solidified during molding. Then, it was actually confirmed that the layered resin portion (protruding portion) that had exuded and solidified could suppress the attachment / detachment of the compression bond magnet in the stacking direction. By developing such results, the present invention described below has been completed.

《界磁子の製造方法》
(1)本発明は、鋼板の積層体からなる筐体と該鋼板の積層方向に延在する積層面に着接した界磁源とを有する界磁子の製造方法であって、該界磁源は、磁石粉末がバインダ樹脂で結着された圧縮ボンド磁石からなり、該圧縮ボンド磁石は、該磁石粉末と該バインダ樹脂からなるボンド磁石原料を加熱しつつ圧縮する成形工程を経て得られ、該成形工程は、該ボンド磁石原料の圧縮力(p)に対する該積層体を該積層方向へ押圧する保持力(f)の比率である圧力比(f/p)を0.05〜0.4としてなされる界磁子の製造方法である。
<< Manufacturing method of field magnet >>
(1) The present invention is a method for manufacturing a field magnet having a housing made of a laminated body of steel plates and a field source in contact with a laminated surface extending in the stacking direction of the steel plates. The source consists of a compression-bonded magnet in which magnet powder is bound with a binder resin, and the compression-bonded magnet is obtained through a molding step of compressing a bonded magnet raw material composed of the magnet powder and the binder resin while heating. In the molding step, the pressure ratio (f / p), which is the ratio of the holding force (f) for pressing the laminated body in the laminated direction to the compressive force (p) of the bonded magnet raw material, is 0.05 to 0.4. It is a manufacturing method of a field magnet made as.

(2)本発明の製造方法では、圧縮ボンド磁石(単に「ボンド磁石」ともいう。)の成形時に、加熱されたボンド磁石原料(単に「原料」ともいう。)へ印加される圧縮力(p)と、積層した鋼板を積層方向へ押圧する保持力(f)とを、所定範囲内で調整している。これにより、成形時に加熱されて溶融または軟化しているバインダ樹脂(単に「樹脂」ともいう。)は、ボンド磁石が着接される積層面(鋼板端面の集合面)側から、鋼板の積層間にできる僅かな隙間へ滲出し得る。滲出した樹脂は、その後、冷却または熱硬化により固化して突出部となる。 (2) In the manufacturing method of the present invention, the compressive force (p) applied to the heated bond magnet raw material (also simply referred to as “raw material”) when the compression bond magnet (also simply referred to as “bond magnet”) is formed. ) And the holding force (f) that presses the laminated steel plates in the laminating direction are adjusted within a predetermined range. As a result, the binder resin (also simply referred to as "resin") that is heated and melted or softened during molding is placed between the laminated surfaces of the steel sheets (the gathering surface of the end faces of the steel sheets) to which the bond magnets are attached. Can seep into the slightest gaps that can be made. The exuded resin is then solidified by cooling or thermosetting to form a protruding portion.

突出部は、界磁源となるボンド磁石の本体部分と一体化しており、積層された鋼板に対する多数の係止片として機能する。その結果、ボンド磁石は、単に積層面に着接しているのみならず、多数の突出部により積層方向への移動が積極的に拘束される。こうして本発明によれば、別部材を設けたり、筐体やボンド磁石の一部を特別な形状にしたりするまでもなく、ボンド磁石の積層方向への移動、脱着、脱落等を抑止できる界磁子が得られる。 The protruding portion is integrated with the main body portion of the bond magnet that serves as a field source, and functions as a large number of locking pieces for the laminated steel plates. As a result, the bond magnet is not only in contact with the laminated surface, but is positively restrained from moving in the laminated direction by a large number of protrusions. In this way, according to the present invention, there is no need to provide a separate member or to make a part of the housing or the bond magnet into a special shape. A child is obtained.

《界磁子》
本発明は、製造方法に留まらず、界磁子としても把握される。例えば、本発明は、鋼板の積層体からなる筐体と該鋼板の積層方向に延在する積層面に着接した界磁源とを有する界磁子であって、該界磁源は、磁石粉末がバインダ樹脂で結着された圧縮ボンド磁石からなり、該圧縮ボンド磁石は、該バインダ樹脂が該鋼板の積層間へ滲出してできた突出部を有する界磁子でもよい。
《Field magnet》
The present invention is grasped not only as a manufacturing method but also as a field magnet. For example, the present invention is a field magnet having a housing made of a laminated body of steel plates and a field source in contact with a laminated surface extending in the stacking direction of the steel plates, and the field source is a magnet. The compression bond magnet comprises a compression bond magnet in which the powder is bound with a binder resin, and the compression bond magnet may be a field magnet having a protrusion formed by exuding the binder resin between the laminated steel sheets.

界磁子は、例えば、電動機の回転子(ロータ)または固定子(ステータ)である。電動機には、モータのみならず、ジェネレータが含まれる。電動機は、直流電動機でも交流電動機でもよい。界磁子がロータの場合、例えば、筐体はロータコアである。ロータは、インナーロータでもアウターロータでもよい。 The field magnet is, for example, a rotor (rotor) or a stator (stator) of an electric motor. The electric motor includes not only a motor but also a generator. The motor may be a DC motor or an AC motor. When the field magnet is a rotor, for example, the housing is a rotor core. The rotor may be an inner rotor or an outer rotor.

《その他》
(1)ボンド磁石は、界磁子(筐体)に応じて、種々の形態をとり得る。例えば、ボンド磁石は、埋込型磁石(IPM:Interior permanent Magnet)でも、表面型磁石(SPM:Surface Permanent Magnet)でもよい。ボンド磁石が着接し得るキャビティの構成面(端部開口を除く)は、その全部が筐体の積層面でもよいし、その一部だけが筐体の積層面でもよい。後者の場合、例えば、キャビティの周側面(例えば外周側面または内周側面)の一部は筐体の積層面で構成され、他部は金型の成形面等で構成される。このようなキャビティにより、例えば、リング状の表面型ボンド磁石(SPM)が形成される。
"others"
(1) The bond magnet can take various forms depending on the field magnet (housing). For example, the bond magnet may be an embedded magnet (IPM: Interior permanent Magnet) or a surface magnet (SPM: Surface Permanent Magnet). All of the constituent surfaces (excluding the end openings) of the cavity to which the bond magnet can be attached may be the laminated surface of the housing, or only a part thereof may be the laminated surface of the housing. In the latter case, for example, a part of the peripheral side surface (for example, the outer peripheral side surface or the inner peripheral side surface) of the cavity is formed of a laminated surface of the housing, and the other part is formed of a molding surface of a mold or the like. Such a cavity forms, for example, a ring-shaped surface bond magnet (SPM).

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。また、特に断らない限り、本明細書でいう「x〜yMPa」はxMPa〜yMPaを意味する。他の単位系(μm等)についても同様である。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "ab" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value. Further, unless otherwise specified, "x to yMPa" in the present specification means xMPa to yMPa. The same applies to other unit systems (μm, etc.).

ロータコアへ圧縮ボンド磁石を成形する様子を示す模式断面図である。It is a schematic cross-sectional view which shows the state of forming a compression bond magnet on a rotor core. 圧縮ボンド磁石が一体成形されたロータを示す模式断面図である。It is a schematic cross-sectional view which shows the rotor in which a compression bond magnet was integrally formed. 圧縮ボンド磁石の周縁近傍にある鋼板表面(図1BのA視)の一部を示す平面図である。It is a top view which shows a part of the steel plate surface (A view of FIG. 1B) in the vicinity of the peripheral edge of a compression bond magnet. 圧縮ボンド磁石を一体成形したIPM型モータ用ロータの外観写真である。It is an external photograph of a rotor for an IPM type motor in which a compression bond magnet is integrally molded. そのカットモデルの外観写真である。It is an external photograph of the cut model.

本明細書中に記載した事項から任意に選択した一つまたは二つ以上の構成要素を上述した本発明の構成に付加し得る。製造方法に関する構成要素も物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the matters described herein may be added to the configurations of the invention described above. A component related to a manufacturing method can also be a component related to a product. Which embodiment is the best depends on the target, required performance, and the like.

《成形工程》
ボンド磁石原料の圧縮力(p)に対する積層体の保持力(f)の比率である圧力比(f/p)は、例えば、0.05〜0.4、0.1〜0.35さらには0.15〜0.3である。圧力比が過大では、鋼板間へ樹脂が滲出し難くなる。圧力比が過小では、樹脂が積層体外へ漏出し得る。
<< Molding process >>
The pressure ratio (f / p), which is the ratio of the holding force (f) of the laminated body to the compressive force (p) of the bonded magnet raw material, is, for example, 0.05 to 0.4, 0.1 to 0.35, and further. It is 0.15 to 0.3. If the pressure ratio is excessive, it becomes difficult for the resin to seep between the steel plates. If the pressure ratio is too small, the resin can leak out of the laminate.

圧縮力(p)と保持力(f)は、印加荷重を受圧面積で除して算出される平均圧力として求まる。圧縮力なら、原料へ印加する圧縮荷重(成形推力)を、キャビティの横断面積(通常、キャビティの端部にある開口面積)で除して求まる。保持力なら、鋼板の積層体へ印加する押圧荷重(型締め力等)を、その積層体の横断面積(積層体の端部にある鋼板の表側面積)で除して求まる。 The compressive force (p) and the holding force (f) are obtained as the average pressure calculated by dividing the applied load by the pressure receiving area. The compressive force is obtained by dividing the compressive load (molding thrust) applied to the raw material by the cross-sectional area of the cavity (usually the opening area at the end of the cavity). The holding force is obtained by dividing the pressing load (molding force, etc.) applied to the laminated body of the steel sheets by the cross-sectional area of the laminated body (the front side area of the steel sheet at the end of the laminated body).

保持力は、その加圧方向に交差(直交)する方向に関して、変化(分布)していてもよい。例えば、キャビティの外周縁から所定距離離れた積層体の領域を集中的に押圧すると、その押圧する荷重点付近の面圧は大きく、キャビティの外周縁付近の面圧は小さくなり得る。この場合、溶融等した樹脂は、積層面から滲出し易くなると共に、その滲出範囲が積層面近傍域に制限され得る。なお、樹脂の滲出は、各鋼板に係止した突出部が形成され得る程度で足る。つまり、鋼板間の奥深い領域にまで、樹脂は滲出する必要がない。 The holding force may change (distribute) with respect to the direction intersecting (orthogonal) with the pressurizing direction. For example, when the region of the laminated body separated from the outer peripheral edge of the cavity by a predetermined distance is intensively pressed, the surface pressure near the pressing load point may be large and the surface pressure near the outer peripheral edge of the cavity may be small. In this case, the melted resin or the like can easily exude from the laminated surface, and the exuding range can be limited to the region near the laminated surface. It should be noted that the exudation of the resin is sufficient to the extent that a protruding portion locked to each steel plate can be formed. That is, the resin does not need to seep into the deep region between the steel plates.

ちなみに、圧縮力は、溶融等した樹脂を介して積層面に作用する。このため、原料への圧縮荷重の印加形態に拘わらず、圧縮力は積層面(鋼板の積層間)へ略均一的に作用し得る。 Incidentally, the compressive force acts on the laminated surface via the molten resin or the like. Therefore, regardless of the form in which the compressive load is applied to the raw material, the compressive force can act substantially uniformly on the laminated surface (between the laminated steel plates).

圧縮力は、従来のように高圧でもよいし、例えば、5〜50MPaさらには10〜40MPa程度の低圧でもよい。圧縮力の低減により、磁石粒子の割れ、キャビティを構成する筐体の変形等が抑制され得る。 The compressive force may be a high pressure as in the conventional case, or may be a low pressure of, for example, 5 to 50 MPa or even 10 to 40 MPa. By reducing the compressive force, cracking of magnet particles, deformation of the housing constituting the cavity, and the like can be suppressed.

圧縮力は成形中に変化してもよい。その場合、少なくとも樹脂の粘度が極小となる付近で、圧力比が上述した範囲内となればよい。 The compressive force may change during molding. In that case, the pressure ratio may be within the above-mentioned range, at least in the vicinity where the viscosity of the resin becomes extremely small.

成形工程中の加熱温度は、バインダ樹脂の特性に応じて調整される。加熱温度が過小では、樹脂の軟化または溶融が不十分となり、樹脂は鋼板間へ滲出し難くなる。加熱温度が過大では、磁石粒子の酸化劣化等を招く。バインダ樹脂が熱硬化性樹脂(例えばエポキシ樹脂)の場合なら、加熱温度は、例えば、120〜200℃さらには130〜170℃とするとよい。 The heating temperature during the molding process is adjusted according to the characteristics of the binder resin. If the heating temperature is too low, the softening or melting of the resin will be insufficient, and the resin will not easily seep between the steel sheets. Excessive heating temperature causes oxidative deterioration of magnet particles. When the binder resin is a thermosetting resin (for example, an epoxy resin), the heating temperature may be, for example, 120 to 200 ° C. or 130 to 170 ° C.

成形工程に配向磁場が印加されてもよい。配向磁場の起磁源として、電磁石の他、希土類永久磁石を用いてもよい。配向磁場の大きさは、例えば、0.5〜3Tさらには1〜2Tである。配向磁場は、例えば、ボンド磁石原料の圧縮方向に交差(さらには直交)する方向に印加される。なお、配向磁場は、ボンド磁石が成形されるキャビティの内周面における磁束密度である。 An orientation magnetic field may be applied to the molding process. In addition to the electric magnet, a rare earth permanent magnet may be used as the source of the orientation magnetic field. The magnitude of the orientation magnetic field is, for example, 0.5 to 3T or even 1 to 2T. The orientation magnetic field is applied, for example, in a direction that intersects (and is orthogonal to) the compression direction of the bonded magnet raw material. The orientation magnetic field is the magnetic flux density on the inner peripheral surface of the cavity in which the bond magnet is formed.

《ボンド磁石原料》
ボンド磁石原料は、コンパウンドでも、コンパウンドの予成形体でもよい。
<< Bond magnet raw material >>
The bond magnet raw material may be a compound or a preformed body of the compound.

コンパウンドは、磁石粉末とバインダ樹脂を、混合または混練(「混合等」という。)した顆粒からなる。混合等は、少なくともバインダ樹脂が軟化する温度(軟化点)以上でなされるとよい。バインダ樹脂に熱硬化性樹脂が含まれるとき、その熱硬化性樹脂が急激に硬化する温度未満の温度で混合等がなされるとよい。バインダ樹脂(特に熱硬化性樹脂)の種類や配合にも依るが、その温度は、例えば、40〜120℃さらには80〜100℃である。 The compound consists of granules obtained by mixing or kneading magnet powder and binder resin (referred to as "mixing, etc."). Mixing and the like should be performed at least above the temperature at which the binder resin softens (softening point). When the binder resin contains a thermosetting resin, it is preferable that the binder resin is mixed at a temperature lower than the temperature at which the thermosetting resin is rapidly cured. Although it depends on the type and composition of the binder resin (particularly the thermosetting resin), the temperature thereof is, for example, 40 to 120 ° C. and further 80 to 100 ° C.

ボンド磁石原料は、磁石粒子にクラック等の損傷が生じ難い条件下で、混合されるとよい。具体的にいうと、磁石粉末とバインダ樹脂は、加圧力(せん断応力)があまり作用しない状況で混合されるとよい。例えば、バッチ式の混練機を用いる場合、先ず、その処理槽への原料(磁石粉末とバインダ樹脂)の投入量を、その処理容積全体に対して10〜75%さらには30〜65%とする。次に、その原料を加圧しない状態でブレードを回転させて加熱混合するとよい。 The bonded magnet raw material is preferably mixed under conditions in which damage such as cracks is unlikely to occur in the magnet particles. Specifically, the magnet powder and the binder resin should be mixed in a situation where the pressing force (shear stress) does not act so much. For example, when a batch type kneader is used, first, the amount of raw materials (magnet powder and binder resin) charged into the processing tank is set to 10 to 75% or 30 to 65% with respect to the entire processing volume. .. Next, the blade may be rotated and heated and mixed without pressurizing the raw material.

予成形体は、上述したコンパウンドを所定の形態(形状、大きさ)にしたブロックからなる。予成形体は、ボンド磁石に類似した形態であると、キャビティへ効率的に収容(投入)できる。予成形体は、ボンド磁石に非類似な形態でもよい。例えば、キャビティに充填、装填等できる範囲内で、細分化された分割体(ペレット等)でもよい。この場合、ボンド磁石毎に専用の予成形体を用意する必要がなく、予成形体の汎用性が高まる。 The preformed body is composed of blocks in which the above-mentioned compound is formed into a predetermined form (shape, size). If the preformed body has a form similar to a bond magnet, it can be efficiently accommodated (loaded) into the cavity. The preformed body may have a form dissimilar to the bond magnet. For example, a subdivided body (pellet or the like) may be used as long as the cavity can be filled or loaded. In this case, it is not necessary to prepare a dedicated preformed body for each bond magnet, and the versatility of the preformed body is enhanced.

予成形(工程)も、磁石粒子にクラック等の損傷が生じ難い条件下でなされるとよい。例えば、コンパウンドを2MPa以下さらには0.5MPa以下で加圧して予成形体を得るとよい。理論密度(ρ)に対する実密度(ρ)の比である予成形体の相対密度(ρ/ρ)は、例えば、40〜75%さらには55〜70%である。理論密度は、磁石粉末とバインダ樹脂に係る各真密度と配合量から求まる。 The preforming (process) is also preferably performed under conditions in which damage such as cracks is unlikely to occur in the magnet particles. For example, it is preferable to pressurize the compound at 2 MPa or less and further at 0.5 MPa or less to obtain a preformed product. The relative density (ρ / ρ 0 ) of the preformed body, which is the ratio of the actual density (ρ) to the theoretical density (ρ 0 ), is, for example, 40 to 75% and further 55 to 70%. The theoretical density can be obtained from each true density and blending amount of the magnet powder and the binder resin.

予成形は、通常、ボンド磁石を圧縮成形するキャビティとは別に設けたキャビティへ、充填したコンパウンドを加圧してなされる。このときの温度(予成形温度)は、常温でもよいし、例えば、40〜100℃さらには60〜90℃程度に加熱してなされてもよい。なお、本明細書でいう温度(混合温度、予成形温度、成形温度等)は、原料が接するキャビティまたは容体の壁面(近傍)温度である。 Preforming is usually performed by pressurizing the filled compound into a cavity provided separately from the cavity in which the bond magnet is compression molded. The temperature (preformation temperature) at this time may be room temperature, or may be heated to, for example, 40 to 100 ° C. or even 60 to 90 ° C. The temperature (mixing temperature, preforming temperature, molding temperature, etc.) referred to in the present specification is the wall surface (nearby) temperature of the cavity or body in contact with the raw material.

《磁石粉末》
磁石粉末は、例えば、ボンド磁石原料(ボンド磁石)の全体(磁石粉末とバインダ樹脂の合計)に対して、例えば、60〜80体積%、65〜75体積%さらには68〜73体積%含まれるとよい。磁石粉末が過少ではボンド磁石の磁気特性が低下し、磁石粉末が過多になると、配向度または密度が低下し得る。
《Magnet powder》
The magnet powder is contained, for example, in an amount of 60 to 80% by volume, 65 to 75% by volume, and further 68 to 73% by volume based on the entire bonded magnet raw material (bonded magnet) (total of magnet powder and binder resin). It is good. Too much magnet powder can reduce the magnetic properties of the bonded magnet, and too much magnet powder can reduce orientation or density.

磁石粉末は、単種の粉末でも、複数種の粉末の混合粉末でもよい。混合粉末は、例えば、形態(特に粒径)、成分組成または磁気特性(不可逆減磁性を含む)の少なくともいずれかが異なる粉末からなるとよい。磁石粉末は、等方性磁石粉末でも、異方性磁石粉末(粒子)でも、それらの混合粉末でもよい。磁石粉末が異方性磁石粉末を含む場合、配向磁場中で成形されると、高磁気特性なボンド磁石、ひいては高性能な界磁子が得られる。 The magnet powder may be a single powder or a mixed powder of a plurality of powders. The mixed powder may consist of, for example, a powder that differs in at least one of form (particularly particle size), component composition or magnetic properties (including irreversible demagnetization). The magnet powder may be an isotropic magnet powder, an anisotropic magnet powder (particles), or a mixed powder thereof. When the magnet powder contains anisotropic magnet powder, when it is molded in an orientation magnetic field, a bond magnet having high magnetic properties and thus a high-performance field magnet can be obtained.

磁石粉末の一例として、平均粒径の異なる粗粉末と微粉末を含む混合粉末がある。粗粉末の平均粒径は、例えば、40〜200μmさらには80〜160μmである。微粉末の平均粒径は、例えば、1〜10μmさらには2〜6μmである。本明細書でいう平均粒径はレーザー回折式粒度分布測定装置(日本レーザー製 HELOS)で測定して定まる。 As an example of magnet powder, there is a mixed powder containing coarse powder and fine powder having different average particle sizes. The average particle size of the crude powder is, for example, 40 to 200 μm and further 80 to 160 μm. The average particle size of the fine powder is, for example, 1 to 10 μm and further 2 to 6 μm. The average particle size referred to in the present specification is determined by measuring with a laser diffraction type particle size distribution measuring device (HELOS manufactured by Japan Laser).

粗粉末と微粉末の合計(または磁石粉末全体)に対する粗粉末の体積割合は、例えば、60〜90体積%さらには75〜85体積%である。換言すると、その合計に対する微粉末の体積割合は、例えば、10〜40体積%さらには15〜25体積%である。 The volume ratio of the crude powder to the total of the crude powder and the fine powder (or the entire magnet powder) is, for example, 60 to 90% by volume and further 75 to 85% by volume. In other words, the volume ratio of the fine powder to the total is, for example, 10 to 40% by volume, further 15 to 25% by volume.

粗粉末と微粉末の各粒径や割合、ボンド磁石原料(ボンド磁石)全体に対する磁石量(樹脂量)を所定範囲内とすると、低圧成形したときでも、高密度なボンド磁石が得られる。 When the particle size and ratio of the coarse powder and the fine powder and the amount of magnet (resin amount) with respect to the entire bond magnet raw material (bond magnet) are within a predetermined range, a high-density bond magnet can be obtained even when low-pressure molding is performed.

磁石粉末には、例えば、水素処理された希土類異方性磁石粉末が用いられる。水素処理は、主に、吸水素による不均化反応(Hydrogenation-Disproportionation/単に「HD反応」ともいう。)と、脱水素による再結合反応(Desorption-Recombination/単に「DR反応」ともいう。)を伴う。HD反応とDR反応を併せて単に「HDDR反応」という。また、HDDR反応を生じる水素処理を、単に「HDDR(処理)」という。 As the magnet powder, for example, hydrogen-treated rare earth anisotropic magnet powder is used. Hydrogenation is mainly a disproportionation reaction by hydrogen absorption (Hydrogenation-Disproportionation / simply referred to as "HD reaction") and a recombination reaction by dehydrogenation (also referred to as "DR reaction"). Accompanied by. The HD reaction and the DR reaction are collectively referred to as "HDDR reaction". Further, the hydrogen treatment that causes the HDDR reaction is simply referred to as "HDDR (treatment)".

なお、本明細書でいうHDDRには、特に断らない限り、改良型であるd―HDDR(dynamic-Hydrogenation-Disproportionation-Desorption-Recombination)も含まれる。d―HDDRについては、例えば、国際公開公報(WO2004/064085)等で詳述されている。 Unless otherwise specified, the HDDR referred to in the present specification also includes an improved d-HDDR (dynamic-Hydrogenation-Disproportionation-Desorption-Recombination). The d-HDDR is described in detail in, for example, the International Publication (WO2004 / 064085).

粗粉末の一例として、NdとFeとBを基成分とするNdFeB系異方性磁石粉末がある。微粉末の一例として、SmとFeとNを基成分とするSmFeN系異方性磁石粉末またはSmとCoを基成分とするSmCo系異方性磁石粉末がある。微粉末(一部)として、粒度調整がされたNdFeB系異方性磁石粉末を用いてもよい。 As an example of the crude powder, there is an NdFeB-based anisotropic magnet powder containing Nd, Fe, and B as base components. As an example of the fine powder, there are SmFeN-based anisotropic magnet powder containing Sm, Fe and N as base components or SmCo-based anisotropic magnet powder containing Sm and Co as base components. As the fine powder (part), NdFeB-based anisotropic magnet powder whose particle size has been adjusted may be used.

磁石粉末は、希土類異方性磁石粉末と共に、希土類等方性磁石粉末やフェライト磁石粉末等を磁石粉末の一部として含んでもよい。なお、本明細書でいう基成分は、必須成分または主成分と換言できる。基成分となる元素の合計量は、通常、対象物(磁石粒子)全体に対して80原子%以上さらには90原子%以上である。なお、希土類磁石粉末は、その保磁力や耐熱性等を高める元素(Dy、Tb等の重希土類元素、Cu、Al、Co、Nb等)を含んでもよい。 The magnet powder may contain a rare earth isotropic magnet powder, a ferrite magnet powder, or the like as a part of the magnet powder together with the rare earth anisotropic magnet powder. The basic component referred to in the present specification can be paraphrased as an essential component or a main component. The total amount of the elements as the basic component is usually 80 atomic% or more and 90 atomic% or more with respect to the entire object (magnet particles). The rare earth magnet powder may contain elements that enhance its coercive force, heat resistance, and the like (heavy rare earth elements such as Dy and Tb, Cu, Al, Co, Nb, and the like).

《バインダ樹脂》
バインダ樹脂は、熱可塑性樹脂でも、熱硬化性樹脂でも、それら両方の樹脂を含んでもよい。圧縮ボンド磁石には、通常、バインダ樹脂(少なくとも一部)として熱硬化性樹脂が用いられる。
《Binder resin》
The binder resin may contain a thermoplastic resin, a thermosetting resin, or both of them. A thermosetting resin is usually used as the binder resin (at least a part) of the compression bond magnet.

熱硬化性樹脂には、エポキシ樹脂、フェノール樹脂 、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂等がある。代表的なエポキシ樹脂は、通常、プレポリマーと硬化剤の混合物であり、エポキシ基による架橋ネットワーク化により硬化する。エポキシ樹脂のプレポリマーとして、例えば、ノボラック型、ビスフェノールA型、ビスフェノールF型、ビフェニル型、ナフタレン型、脂肪族型、グリシジルアミン型等が用いられる。エポキシ樹脂の硬化剤として、例えば、アミン系、フェノール系、酸無水物系が用いられる。 Thermosetting resins include epoxy resins, phenol resins, melamine resins, urea resins, unsaturated polyester resins and the like. A typical epoxy resin is usually a mixture of a prepolymer and a curing agent, and is cured by cross-linking networking with epoxy groups. As the prepolymer of the epoxy resin, for example, novolak type, bisphenol A type, bisphenol F type, biphenyl type, naphthalene type, aliphatic type, glycidylamine type and the like are used. As the curing agent for the epoxy resin, for example, amine-based, phenol-based, and acid anhydride-based are used.

一液性エポキシ樹脂を用いると、熱硬化時期をキュア処理(熱硬化工程)により調整でき、効率的なバッチ処理等が可能となる。キュア処理は、例えば、成形工程後のボンド磁石を130〜250℃さらには150〜230℃に加熱してなされる。 When a one-component epoxy resin is used, the thermosetting time can be adjusted by a curing process (thermosetting step), and efficient batch processing or the like becomes possible. The curing treatment is performed, for example, by heating the bonded magnet after the molding step to 130 to 250 ° C. and further to 150 to 230 ° C.

ちなみに、各磁石粒子は、使用する樹脂に適した界面活性剤で被覆処理されているとよい。これにより、軟化または溶融した樹脂中における磁石粒子の姿勢変動性、磁石粒子と樹脂との結合性等が向上し得る。この傾向は、配向磁場中で成形する際に顕著である。エポキシ樹脂を用いる場合なら、界面活性剤として、例えば、チタネート系カップリング剤やシラン系カップリング剤を用いるとよい。なお、界面活性剤層の厚さは0.1〜2μm程度でよい。 Incidentally, it is preferable that each magnet particle is coated with a surfactant suitable for the resin to be used. As a result, the posture variability of the magnet particles in the softened or melted resin, the bondability between the magnet particles and the resin, and the like can be improved. This tendency is remarkable when molding in an orientation magnetic field. When an epoxy resin is used, for example, a titanate-based coupling agent or a silane-based coupling agent may be used as the surfactant. The thickness of the surfactant layer may be about 0.1 to 2 μm.

《ボンド磁石》
ボンド磁石は、例えば、相対密度が90%以上、95%以上さらには98%以上であるとよい。相対密度の上限値は、99%さらには100%である。なお、相対密度(ρ/ρ)は、理論密度(ρ)に対する実密度(ρ)の比(百分率)である。理論密度(ρ)は、ボンド磁石を構成する磁石粉末とバインダ樹脂の各真密度とそれらの配合量から求まる。実密度(ρ)は、成形(さらにはキュア処理)したボンド磁石を測定して得られた質量と体積から求まる。体積は、アルキメデス法により求めても、成形体の形状(寸法)から算出してもよい。
《Bond magnet》
The bond magnet may have, for example, a relative density of 90% or more, 95% or more, and further 98% or more. The upper limit of the relative density is 99% or even 100%. The relative density (ρ / ρ 0 ) is the ratio (percentage) of the actual density (ρ) to the theoretical density (ρ 0). The theoretical density (ρ 0 ) can be obtained from the true densities of the magnet powder and the binder resin constituting the bonded magnet and their blending amounts. The actual density (ρ) can be obtained from the mass and volume obtained by measuring the molded (further cured) bonded magnet. The volume may be obtained by the Archimedes method or may be calculated from the shape (dimensions) of the molded product.

ボンド磁石は、キュア処理前またはキュア処理後に、着磁(着磁磁場:2〜6T)がなされてもよい。ボンド磁石は、例えば、0.7T以上、0.75T以上さらには0.8T以上という高い残留磁束密度(Br)を発揮し得る。ボンド磁石は、耐熱性または耐久性の指標となる不可逆減磁率(100℃×1000時間後)が、例えば、−3%以内、−2%以内さらには−1.5%以内であるとよい。 The bonded magnet may be magnetized (magnetized magnetic field: 2 to 6T) before or after the curing treatment. The bond magnet can exhibit a high residual magnetic flux density (Br) of, for example, 0.7 T or more, 0.75 T or more, and further 0.8 T or more. The bonded magnet may have an irreversible demagnetization rate (100 ° C. x 1000 hours), which is an index of heat resistance or durability,, for example, within -3%, within -2%, and further within -1.5%.

《筐体》
筐体は、界磁子の仕様に応じて、所望形状に加工(打抜き等)された鋼板が積層された積層体からなる。各鋼板の固定(積層体の形状維持)は、カシメ、溶着、締結具(例えばネジ)等を用いてなされる。
《Case》
The housing is made of a laminated body in which steel plates processed (punched or the like) into a desired shape are laminated according to the specifications of the field magnet. Each steel plate is fixed (maintaining the shape of the laminated body) by caulking, welding, a fastener (for example, a screw) or the like.

なお、成形工程は、通常、カシメ等により所定形態を維持した積層体に対してなされる。但し、鋼板の暫定的な積層体に対して成形工程を行った後、鋼板のカシメ等がなされてもよい。 The molding step is usually performed on a laminated body that maintains a predetermined form by caulking or the like. However, the steel sheet may be crimped or the like after the forming step is performed on the provisional laminated body of the steel sheet.

鋼板は軟磁性材からなる。鋼板は、少なくとも一方の表面が絶縁被覆された電磁鋼板であるとよい。軟磁性材は、例えば、ケイ素鋼、合金鋼、純鉄等の鉄基材である。特に、ケイ素鋼からなる電磁鋼板を用いると、鉄損(渦電流損やヒステリシス損)の低減を図れる。 The steel plate is made of soft magnetic material. The steel sheet is preferably an electromagnetic steel sheet whose at least one surface is insulatingly coated. The soft magnetic material is, for example, an iron base material such as silicon steel, alloy steel, and pure iron. In particular, when an electromagnetic steel plate made of silicon steel is used, iron loss (eddy current loss and hysteresis loss) can be reduced.

鋼板の厚さは問わないが、通常、0.1〜5mmさらには0.3〜3mmである。積層枚数も問わないが、通常、5〜300枚さらには10〜150枚である。 The thickness of the steel sheet is not limited, but is usually 0.1 to 5 mm and further 0.3 to 3 mm. The number of laminated sheets is not limited, but is usually 5 to 300 sheets or even 10 to 150 sheets.

《界磁子》
ボンド磁石を低圧成形すると、キャビティを構成する筐体の変形を抑制できる。これにより、界磁子(筐体)の設計自由度の増大や精度の向上が図られる。このような界磁子の代表例として、電動機(車両駆動用モータ、エアコン、家電製品用モータ等)のロータがある。
《Field magnet》
When the bond magnet is low-pressure molded, deformation of the housing constituting the cavity can be suppressed. As a result, the degree of freedom in designing the field magnet (housing) can be increased and the accuracy can be improved. A typical example of such a field magnet is a rotor of an electric motor (motor for driving a vehicle, an air conditioner, a motor for home appliances, etc.).

[概要]
成形工程と、それにより得られる界磁子の概要を、図1A〜図1C(これらを併せて単に「図1」という。)を用いて説明する。なお、本実施例では、電磁鋼板を積層したロータコア(筐体)のスロット(キャビティ)に、圧縮ボンド磁石(界磁源)を成形したIPM型モータ用のロータ(界磁子)を例示しつつ説明する。
[overview]
The molding process and the outline of the field magnet obtained by the molding process will be described with reference to FIGS. 1A to 1C (collectively referred to as “FIG. 1”). In this embodiment, a rotor (field magnet) for an IPM type motor in which a compression bond magnet (field magnetic source) is formed in a slot (cavity) of a rotor core (housing) in which electromagnetic steel sheets are laminated is illustrated. explain.

図1Aに示すように、所望形状に予め打ち抜かれている多数の電磁鋼板1(単に「鋼板1」という。)を積層し、両端面をかしめて固定した積層体Lを成形型(図略)にセットする。 As shown in FIG. 1A, a large number of electromagnetic steel sheets 1 (simply referred to as “steel sheet 1”) punched into a desired shape in advance are laminated, and a laminated body L fixed by crimping both end faces is formed into a molding die (not shown). Set to.

積層体Lの上端面に押圧荷重Fを印加して、積層体Lに保持力fを作用させる。この積層体Lを、バインダ樹脂の溶融温度まで十分に加熱する。 A pressing load F is applied to the upper end surface of the laminated body L to apply a holding force f to the laminated body L. The laminate L is sufficiently heated to the melting temperature of the binder resin.

加熱された積層体LのキャビティCに、ボンド磁石原料M(単に「原料M」という。)を充填する。原料Mは、磁石粉末とバインダ樹脂(熱硬化性樹脂)からなるコンパウンドまたはその予成形体である。その後、配向磁場を印加したキャビティC内の原料Mへ圧縮荷重Pを付与する。こうしてキャビティC内で溶融した原料Mに圧縮力pが作用する。 The cavity C of the heated laminate L is filled with the bond magnet raw material M (simply referred to as “raw material M”). The raw material M is a compound composed of magnet powder and a binder resin (thermosetting resin) or a preformed body thereof. After that, a compressive load P is applied to the raw material M in the cavity C to which the orientation magnetic field is applied. The compressive force p acts on the raw material M melted in the cavity C in this way.

バインダ樹脂が固化(硬化)すると、キャビティCに圧縮ボンド磁石B(単に「ボンド磁石B」という。)が形成されたロータRが得られる。ロータRは、図1Bに示すように、圧縮ボンド磁石Bの本体から各鋼板1間に延出した層状(薄膜状)の突出部2を有する。突出部2は、キャビティC内で溶融していた樹脂が、キャビティCの内壁1c(積層面)から積層されていた鋼板1間の隙間へ滲出して、固化(または硬化)して形成される。このような樹脂の滲出は、保持力fと圧縮力pが所定の圧力比(f/p)を満たすときに生じる。 When the binder resin is solidified (cured), a rotor R in which a compression bond magnet B (simply referred to as “bond magnet B”) is formed in the cavity C is obtained. As shown in FIG. 1B, the rotor R has a layered (thin film) protruding portion 2 extending from the main body of the compression bond magnet B between the steel plates 1. The protruding portion 2 is formed by solidifying (or curing) the resin melted in the cavity C by exuding from the inner wall 1c (laminated surface) of the cavity C into the gap between the laminated steel plates 1. .. Such resin oozing occurs when the holding force f and the compressive force p satisfy a predetermined pressure ratio (f / p).

ロータRの一部をカットした断面(図1BのA視)を観ると、突出部2は図1Cに示すようになっている。つまり、突出部2は、キャビティCの外周縁に沿った近傍領域に、ボンド磁石Bと一体化して形成されている。 Looking at the cross section of the rotor R cut out (viewed in A in FIG. 1B), the protruding portion 2 is as shown in FIG. 1C. That is, the protruding portion 2 is formed integrally with the bond magnet B in the vicinity region along the outer peripheral edge of the cavity C.

[実験]
ボンド磁石の軸方向への抜出力に及ぼす突出部の影響を評価するため、次のような成形工程と測定を行った。
[experiment]
In order to evaluate the effect of the protruding portion on the axial extraction output of the bond magnet, the following molding process and measurement were performed.

《成形》
(1)積層体(筐体)とキャビティ
環状(外径:φ85mm×内径:φ75mm)に打ち抜いた電磁鋼板(JFEスチール株式会社製35H440/板厚:0.5mm)を同心円状に40枚積層した。こうして円筒状の積層体(高さ:20.1mm)を形成した。その積層体の中心部に円柱状の金型(外径:φ69mm)を配設して、環状のキャビティ(外径:φ75mm×内径:φ69mm)を形成した。
<< Molding >>
(1) 40 sheets of electromagnetic steel sheets (35H440 manufactured by JFE Steel Co., Ltd./plate thickness: 0.5 mm) punched into a laminated body (housing) and an annular cavity (outer diameter: φ85 mm × inner diameter: φ75 mm) are laminated concentrically. .. In this way, a cylindrical laminate (height: 20.1 mm) was formed. A columnar mold (outer diameter: φ69 mm) was arranged in the center of the laminated body to form an annular cavity (outer diameter: φ75 mm × inner diameter: φ69 mm).

(2)ボンド磁石原料
磁石粉末として、水素処理(d−HDDR)して製造された粗粉末である市販のNdFeB系異方性磁石粉末(愛知製鋼株式会社製マグファイン/Br:1.28T、iHc:1313kA/m、平均粒径:125μm)と、微粉末である市販のSmFeN系異方性磁石粉末(住友金属鉱山株式会社製SmFeN合金微粉D /Br:1.35T、iHc:875kA/m、平均粒径:3μm)を用意した。
(2) Bond magnet raw material Commercially available NdFeB-based anisotropic magnet powder (Magfine / Br: 1.28T, manufactured by Aichi Steel Co., Ltd.), which is a crude powder produced by hydrogen treatment (d-HDDR) as a magnet powder. iHc: 1313 kA / m, average particle size: 125 μm) and commercially available SmFeN-based anisotropic magnet powder (SmFeN alloy fine powder manufactured by Sumitomo Metal Mining Co., Ltd. D / Br: 1.35T, iHc: 875 kA / m) , Average particle size: 3 μm) was prepared.

バインダ樹脂として、熱硬化性樹脂であるエポキシ樹脂(日本化薬株式会社製NC−3000L)を用意した。この樹脂の軟化点は60℃であった。 As the binder resin, an epoxy resin (NC-3000L manufactured by Nippon Kayaku Co., Ltd.), which is a thermosetting resin, was prepared. The softening point of this resin was 60 ° C.

粗粉末と微粉末を8:2(質量割合/体積割合でもほぼ同様)に秤量した磁石粉末と、バインダ樹脂とを混合したボンド磁石原料を調製した。磁石粉末(粗粉末および微粉末)は、バインダ樹脂との混合物(ボンド磁石原料)全体に対して70体積%(バインダ樹脂:30体積%)とした。 A bonded magnet raw material was prepared by mixing a magnet powder obtained by weighing coarse powder and fine powder at a ratio of 8: 2 (almost the same in terms of mass ratio / volume ratio) and binder resin. The magnet powder (coarse powder and fine powder) was 70% by volume (binder resin: 30% by volume) with respect to the entire mixture (bond magnet raw material) with the binder resin.

磁石粉末とバインダ樹脂の混合は、ニーダを低速回転(10rpm)させ、非加圧状態で5分間行った。このとき、ニーダの容体を90℃に保持した。こうして、磁石粉末とバインダ樹脂を溶融混合したコンパウンドを得た(溶融混合工程)。 The magnet powder and the binder resin were mixed by rotating the kneader at a low speed (10 rpm) and performing it in a non-pressurized state for 5 minutes. At this time, the body of Nida was maintained at 90 ° C. In this way, a compound in which magnet powder and binder resin were melt-mixed was obtained (melt-mixing step).

コンパウンドを別の金型のキャビティに充填して加圧し、円筒状(外径:φ74.9mm、内径:φ69.1mm、高さ:30mm)の予成形体を得た(予成形工程)。このとき、金型(キャビティ内壁面)の温度:70〜80℃、加圧力:0.1MPaとした。 The compound was filled in a cavity of another mold and pressed to obtain a cylindrical (outer diameter: φ74.9 mm, inner diameter: φ69.1 mm, height: 30 mm) preformed body (premolding step). At this time, the temperature of the mold (inner wall surface of the cavity) was 70 to 80 ° C., and the pressing force was 0.1 MPa.

(3)成形
予成形を既述したキャビティへ装填した(収容工程)。キャビティ内壁面の温度は、成形開始(充填前)から成形終了まで150℃(一定)に保持した。
(3) Molding Premolding was loaded into the above-mentioned cavity (accommodation step). The temperature of the inner wall surface of the cavity was maintained at 150 ° C. (constant) from the start of molding (before filling) to the end of molding.

キャビティ内の原料をパンチで加圧して圧縮成形した。このとき、積層体の保持力(f)とキャビティ内にある原料の圧縮力(p)は表1に示す通りとした。保持力(f)は、積層体の押圧荷重(F)を環状端面の面積で除して求めた。圧縮力(p)は、成形推力(P)をキャビティの環状面積(開口面積)で除して求めた。なお、圧縮成形は、圧縮方向(軸方向)に直交する方向(径方向)へ配向磁場(1.2T)を印加しつつ行った。^ The raw material in the cavity was pressed with a punch and compression molded. At this time, the holding force (f) of the laminated body and the compressive force (p) of the raw material in the cavity are as shown in Table 1. The holding force (f) was obtained by dividing the pressing load (F) of the laminated body by the area of the annular end face. The compressive force (p) was determined by dividing the molding thrust (P) by the annular area (opening area) of the cavity. The compression molding was performed while applying an orientation magnetic field (1.2 T) in a direction (diameter direction) orthogonal to the compression direction (axial direction). ^

(4)キュア処理
圧縮成形されたボンド磁石を積層体と共に、大気中で150℃×30分間加熱した。これによりバインダ樹脂をほぼ完全に熱硬化した。
(4) Cure Treatment The compression-molded bond magnet was heated in the air together with the laminate for 150 ° C. × 30 minutes. As a result, the binder resin was almost completely thermoset.

《抜出力の測定》
リング状のボンド磁石の軸方向一端面側を円柱状パンチで押圧した。ボンド磁石を積層体から抜き出す際に要した荷重(抜出荷重)を精密万能試験機(オートグラフ)により測定した。抜出最大荷重を積層体とボンド磁石の接触面積(せん断面積)で除して算出した抜出力を表1に併せて示した。
《Measurement of output output》
The one end surface side of the ring-shaped bond magnet in the axial direction was pressed with a columnar punch. The load (extraction load) required to extract the bond magnet from the laminate was measured with a precision universal testing machine (autograph). Table 1 also shows the extraction output calculated by dividing the maximum extraction load by the contact area (shear area) between the laminate and the bond magnet.

《評価》
表1に示す結果から明らかなように、圧力比(f/p)を所定範囲内として圧縮成形すると、ボンド磁石の抜出力を大幅に高められることがわかった(試料1・2)。なお、圧力比が過小では、溶融した樹脂が積層体の外周面から漏出した(試料C1)。逆に圧力比が過大では、樹脂が積層体の内周面(積層面)から滲出しなかった(試料C2)。
"evaluation"
As is clear from the results shown in Table 1, it was found that the extraction output of the bond magnet can be significantly increased by compression molding with the pressure ratio (f / p) within a predetermined range (Samples 1 and 2). If the pressure ratio was too small, the molten resin leaked from the outer peripheral surface of the laminate (Sample C1). On the contrary, when the pressure ratio was excessive, the resin did not exude from the inner peripheral surface (laminated surface) of the laminated body (Sample C2).

《ロータ》
上述した圧縮成形により、ロータコア(筐体)のスロット(キャビティ)にボンド磁石を一体成形した永久磁石内包型同期モータ(IPM型モータ)のロータ(界磁子)を製作した。その外観を図2Aに示した。
《Rotor》
By the compression molding described above, a rotor (field magnet) of a permanent magnet-encapsulating synchronous motor (IPM type motor) in which a bond magnet is integrally molded in a slot (cavity) of a rotor core (housing) was manufactured. Its appearance is shown in FIG. 2A.

また、そのロータのカットモデルを図2Bに示した。図2Bから明らかなように、鋼板表面上には、ボンド磁石(スロット)の外周縁に沿う約2mm程度の環状域に樹脂痕(突出部)が確認された。ちなみに、上述した圧縮力は比較的小さかったため、ロータの外周縁にある薄肉部でも、殆ど変形は生じていなかった。 A cut model of the rotor is shown in FIG. 2B. As is clear from FIG. 2B, resin marks (protruding portions) were confirmed on the surface of the steel sheet in an annular region of about 2 mm along the outer peripheral edge of the bond magnet (slot). By the way, since the above-mentioned compressive force was relatively small, almost no deformation occurred even in the thin portion on the outer peripheral edge of the rotor.

Figure 2021114861
Figure 2021114861

Claims (7)

鋼板の積層体からなる筐体と該鋼板の積層方向に延在する積層面に着接した界磁源とを有する界磁子の製造方法であって、
該界磁源は、磁石粉末がバインダ樹脂で結着された圧縮ボンド磁石からなり、
該圧縮ボンド磁石は、該磁石粉末と該バインダ樹脂からなるボンド磁石原料を加熱しつつ圧縮する成形工程を経て得られ、
該成形工程は、該ボンド磁石原料の圧縮力(p)に対する、該積層体を該積層方向へ押圧する保持力(f)の比率である圧力比(f/p)を0.05〜0.4としてなされる界磁子の製造方法。
A method for manufacturing a field magnet having a housing made of a laminated body of steel plates and a field source in contact with a laminated surface extending in the laminating direction of the steel plates.
The field source consists of a compression bond magnet in which magnet powder is bound with a binder resin.
The compression bond magnet is obtained through a molding step of compressing a bond magnet raw material composed of the magnet powder and the binder resin while heating.
In the molding step, the pressure ratio (f / p), which is the ratio of the holding force (f) for pressing the laminated body in the laminating direction to the compressive force (p) of the bonded magnet raw material, is set to 0.05 to 0. Method of manufacturing a field magnet made as 4.
前記圧縮力は、5〜50MPaである請求項1に記載の界磁子の製造方法。 The method for producing a field magnet according to claim 1, wherein the compressive force is 5 to 50 MPa. 前記ボンド磁石原料は、前記磁石粉末と前記バインダ樹脂の合計に対する該磁石粉末の体積割合が60〜75体積%である請求項1または2に記載の界磁子の製造方法。 The method for producing a field magnet according to claim 1 or 2, wherein the bonded magnet raw material has a volume ratio of the magnet powder of 60 to 75% by volume with respect to the total of the magnet powder and the binder resin. 前記磁石粉末は、異方性磁石粉末を含み、
前記成形工程は、前記ボンド磁石原料へ配向磁場を印可してなされる請求項1〜3のいずれかに記載の界磁子の製造方法。
The magnet powder contains anisotropic magnet powder and contains
The method for producing a field magnet according to any one of claims 1 to 3, wherein the molding step is performed by applying an orientation magnetic field to the bonded magnet raw material.
前記バインダ樹脂は、熱硬化性樹脂を含む請求項1〜4のいずれかに記載の界磁子の製造方法。 The method for producing a field magnet according to any one of claims 1 to 4, wherein the binder resin contains a thermosetting resin. 前記熱硬化性樹脂は、エポキシ樹脂である請求項5に記載の界磁子の製造方法。 The method for producing a field magnet according to claim 5, wherein the thermosetting resin is an epoxy resin. 鋼板の積層体からなる筐体と該鋼板の積層方向に延在する積層面に着接した界磁源とを有する界磁子であって、
該界磁源は、磁石粉末がバインダ樹脂で結着された圧縮ボンド磁石からなり、
該圧縮ボンド磁石は、該バインダ樹脂が該鋼板の積層間へ滲出してできた突出部を有する界磁子。
A field magnet having a housing made of a laminated body of steel plates and a field source in contact with a laminated surface extending in the laminating direction of the steel plates.
The field source consists of a compression bond magnet in which magnet powder is bound with a binder resin.
The compression bond magnet is a field magnet having a protruding portion formed by exuding the binder resin between the laminated steel plates.
JP2020007055A 2020-01-20 2020-01-20 Field element and its manufacturing method Active JP7477745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020007055A JP7477745B2 (en) 2020-01-20 2020-01-20 Field element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007055A JP7477745B2 (en) 2020-01-20 2020-01-20 Field element and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021114861A true JP2021114861A (en) 2021-08-05
JP7477745B2 JP7477745B2 (en) 2024-05-02

Family

ID=77077307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007055A Active JP7477745B2 (en) 2020-01-20 2020-01-20 Field element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7477745B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220419A (en) * 1988-02-29 1989-09-04 Matsushita Electric Ind Co Ltd Manufacture of resin magnet structure
JPH06215967A (en) * 1993-01-20 1994-08-05 Matsushita Electric Ind Co Ltd Manufacture of transferred integrally-molded magnetic circuit
JP2002134311A (en) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd Rare-earth resin bonded magnet composition and rare- earth resin bonded magnet embedded rotor
JP2006049554A (en) * 2004-08-04 2006-02-16 Matsushita Electric Ind Co Ltd Manufacturing method of polar anisotropy rare earth bond magnet and permanent magnet motor
JP2009044795A (en) * 2007-08-06 2009-02-26 Hitachi Ltd Permanent magnet embedded motor and method of manufacturing rotor for permanent magnet embedded motor
JP2016123143A (en) * 2014-12-24 2016-07-07 ダイキン工業株式会社 Rotor, manufacturing method thereof, and rotary electric machine with the same
JP2019013067A (en) * 2017-06-29 2019-01-24 日立金属株式会社 Production method of bond magnet embedded type rotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220419A (en) * 1988-02-29 1989-09-04 Matsushita Electric Ind Co Ltd Manufacture of resin magnet structure
JPH06215967A (en) * 1993-01-20 1994-08-05 Matsushita Electric Ind Co Ltd Manufacture of transferred integrally-molded magnetic circuit
JP2002134311A (en) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd Rare-earth resin bonded magnet composition and rare- earth resin bonded magnet embedded rotor
JP2006049554A (en) * 2004-08-04 2006-02-16 Matsushita Electric Ind Co Ltd Manufacturing method of polar anisotropy rare earth bond magnet and permanent magnet motor
JP2009044795A (en) * 2007-08-06 2009-02-26 Hitachi Ltd Permanent magnet embedded motor and method of manufacturing rotor for permanent magnet embedded motor
JP2016123143A (en) * 2014-12-24 2016-07-07 ダイキン工業株式会社 Rotor, manufacturing method thereof, and rotary electric machine with the same
JP2019013067A (en) * 2017-06-29 2019-01-24 日立金属株式会社 Production method of bond magnet embedded type rotor

Also Published As

Publication number Publication date
JP7477745B2 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
EP1830451A1 (en) Rotor for motor and method for producing the same
JP4835758B2 (en) Rare earth magnet manufacturing method
US20150097643A1 (en) RFeB-BASED MAGNET AND METHOD FOR PRODUCING RFeB-BASED MAGNET
US8853908B2 (en) Magnet rotor assembly including a vacuum impregnated bonded magnet having increased crush strength at high temperatures
CN111886779B (en) Motor and excitation element
CN103021649A (en) System and method for manufacturing bonded magnet using rare earth powder
JP4816146B2 (en) Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same
KR102454806B1 (en) Anisotropic bonded magnet and preparation method thereof
US20170005554A1 (en) Manufacturing method of rotor and rotor
US20170005553A1 (en) Manufacturing method of rotor and rotor
JP3060104B2 (en) Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same
JP2021114861A (en) Method for manufacturing field magneton
JP2011216836A (en) Rare-earth bond magnet, method of manufacturing the same, and rotating machine
WO2021200517A1 (en) Compressed bonded magnet, manufacturing method therefor, and field coil
US20140170014A1 (en) Method for producing magnetic powder and magnet
CN116762147A (en) Nd-Fe-B laminated sintered magnet and method for producing same
CN103280311A (en) Method for preparing anisotropic bonded permanent magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
WO2023053307A1 (en) Rotor and electric motor
WO2024028989A1 (en) Preform, preforming method, and method of producing compression-bonded magnet
JP2022157625A (en) Method for manufacturing compressed bond magnet
JPH09232132A (en) Rare-earth bonded magnet, composition for rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JP2023005421A (en) Preform, preforming method, and method for manufacturing compressed bond magnet
KR102487771B1 (en) Anisotropic bonded magnet and preparation method thereof
JP2017103940A (en) Rotor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240401