JP2021112694A - Filter medium for air filter, and air filter unit using the same - Google Patents

Filter medium for air filter, and air filter unit using the same Download PDF

Info

Publication number
JP2021112694A
JP2021112694A JP2020005766A JP2020005766A JP2021112694A JP 2021112694 A JP2021112694 A JP 2021112694A JP 2020005766 A JP2020005766 A JP 2020005766A JP 2020005766 A JP2020005766 A JP 2020005766A JP 2021112694 A JP2021112694 A JP 2021112694A
Authority
JP
Japan
Prior art keywords
woven fabric
gas adsorbent
air filter
granular gas
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020005766A
Other languages
Japanese (ja)
Inventor
賢吾 三好
Kengo Miyoshi
賢吾 三好
康裕 浅田
Yasuhiro Asada
康裕 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020005766A priority Critical patent/JP2021112694A/en
Publication of JP2021112694A publication Critical patent/JP2021112694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)

Abstract

To provide a filter medium for air filter extremely superior in deodorizing speed and excellent in adsorption capacity under the kinetic condition in which air is circulated like an air filter.SOLUTION: A filter medium for air filter of this invention includes a layer including a granular gas adsorbent having an average particle diameter of 250 μm or less between two nonwoven fabric sheets. In the filter medium, a ratio of the average particle diameter of the granular gas adsorbent to the thickness of a layer including the granular gas adsorbent is 0.85 or more, and a pressure drop of the layer including the granular gas adsorbent at an air velocity of 6.5 m/min is 4.0 Pa or more.SELECTED DRAWING: None

Description

本発明は、エアフィルター用濾材とそれを用いたエアフィルターユニットに関する。 The present invention relates to a filter medium for an air filter and an air filter unit using the same.

近年、建材や内装材から放散されたVOC(Volatile Organic Compounds(揮発性有機化合物))、タバコ煙、大気汚染などによる人の健康への影響は深刻であることから、室内空気室への注目が集まっている。家庭や職場などでは、エアフィルターを搭載した空気清浄機を用いて塵埃や臭いを除去する方法が普及している。 In recent years, attention has been paid to indoor air chambers because the effects of VOCs (volatile organic compounds), tobacco smoke, air pollution, etc. emitted from building materials and interior materials on human health are serious. Gathering. At home and at work, a method of removing dust and odor by using an air purifier equipped with an air filter is widespread.

脱臭性能を有する除塵エアフィルターに用いられる濾材としては、2枚の基材シートの間に活性炭と熱接着パウダーもしくは熱接着シートとを挟み込んで、熱接着成分の融着作用によって、2枚の基剤シートと活性炭とを一体化した脱臭濾材等が広く普及している。(特許文献1、2)
また脱臭性能を高める目的で、不織布等の多孔質基材に粉末状の活性炭を接着し、吸着速度を高めた脱臭濾材が提案されている。(特許文献3)
As a filter medium used for a dust-removing air filter having deodorizing performance, activated carbon and a heat-bonding powder or a heat-bonding sheet are sandwiched between two base sheets, and the two bases are fused by the heat-bonding component. Deodorizing filter media that integrates an agent sheet and activated carbon are widely used. (Patent Documents 1 and 2)
Further, for the purpose of improving the deodorizing performance, a deodorizing filter medium in which powdered activated carbon is adhered to a porous base material such as a non-woven fabric to increase the adsorption rate has been proposed. (Patent Document 3)

特開2019−69405号公報JP-A-2019-69405 特開2006−192333号公報Japanese Unexamined Patent Publication No. 2006-192333 特開2014−113214号公報Japanese Unexamined Patent Publication No. 2014-113214

特許文献1、2に開示されているエアフィルター用の脱臭濾材は、2枚の不織布の間に粒状活性炭を封入する構成のため、脱臭処理速度(初期除去効率)や吸着容量などの脱臭性能を向上させるためには粒状活性炭の封入量を多くする必要がある。しかし、粒状活性炭の封入量を多くすると、粒状活性炭が濾材厚み方向に重なり合った状態で2枚の不織布に圧縮されるので、2枚の不織布の間の層の粒状活性炭の密度が上がる。そのため、脱臭濾材の圧力損失が粒状活性炭の量に比例した1次線形的な上昇だけにとどまらず、2次的関数的な圧力損失上昇挙動を取り、圧力損失が非常に大きくなる。 Since the deodorizing filter medium for an air filter disclosed in Patent Documents 1 and 2 has a structure in which granular activated carbon is sealed between two non-woven fabrics, deodorizing performance such as deodorizing treatment speed (initial removal efficiency) and adsorption capacity can be obtained. In order to improve it, it is necessary to increase the amount of granular activated carbon enclosed. However, when the encapsulation amount of the granular activated carbon is increased, the granular activated carbon is compressed into two non-woven fabrics in a state of being overlapped in the filter medium thickness direction, so that the density of the granular activated carbon in the layer between the two non-woven fabrics increases. Therefore, the pressure loss of the deodorizing filter medium is not limited to the linear increase in proportion to the amount of granular activated carbon, but also has a secondary functional pressure loss increase behavior, and the pressure loss becomes very large.

また、特許文献3には基材シートに粉末状の吸着剤を添着する技術が開示されている。この技術では、粉末状の微細な吸着剤を繊維表面に担持させ、対象ガスとの接触効率を上げて脱臭処理速度(初期除去効率)を向上させている。しかし実際には、粉末状の吸着剤をバインダーで繊維表面に固着する際、吸着剤がバインダーに被覆されるため、脱臭効果が発現しにくくなる。また、皮膜状に繊維表面に付着することで圧力損失が上がりやすくなるため、多くの吸着剤を付着できず、結果的に脱臭性能の寿命を長くできない。 Further, Patent Document 3 discloses a technique of adsorbing a powdery adsorbent on a base material sheet. In this technique, a fine powdery adsorbent is supported on the fiber surface to improve the contact efficiency with the target gas and improve the deodorizing treatment speed (initial removal efficiency). However, in reality, when the powdery adsorbent is fixed to the fiber surface with the binder, the adsorbent is coated on the binder, so that the deodorizing effect is less likely to be exhibited. Further, since the pressure loss tends to increase by adhering to the fiber surface in the form of a film, many adsorbents cannot be adhered, and as a result, the life of the deodorizing performance cannot be extended.

本発明は上記の課題を背景になされたものであり、エアフィルターのようなエアが流通している動的な条件下において圧力損失の大きな上昇なく、対象ガス成分の吸着処理速度(初期除去効率)に優れ、かつ、吸着容量にも優れるエアフィルター用濾材を提供する。 The present invention has been made in the background of the above problems, and the adsorption processing speed (initial removal efficiency) of the target gas component does not increase significantly under dynamic conditions such as an air filter in which air is flowing. ), And also provides a filter medium for an air filter having an excellent adsorption capacity.

上記課題を解決する本発明のエアフィルター用濾材は、2枚の不織布シートの間に粒状ガス吸着剤を含む層を有するエアフィルター用濾材であって、
上記粒状ガス吸着剤の平均粒径が250μm以下であり、
上記粒状ガス吸着剤の平均粒子径と上記粒状ガス吸着剤を含む層の厚みとの比(粒状ガス吸着剤の平均粒子径/粒状ガス吸着剤を含む層の厚み)が0.85以上であり、
上記粒状ガス吸着剤を含む層の圧力損失が風速6.5m/minで4.0Pa以上である。
The filter medium for an air filter of the present invention that solves the above problems is a filter medium for an air filter having a layer containing a granular gas adsorbent between two non-woven fabric sheets.
The average particle size of the granular gas adsorbent is 250 μm or less.
The ratio of the average particle size of the granular gas adsorbent to the thickness of the layer containing the granular gas adsorbent (average particle size of the granular gas adsorbent / thickness of the layer containing the granular gas adsorbent) is 0.85 or more. ,
The pressure loss of the layer containing the granular gas adsorbent is 4.0 Pa or more at a wind speed of 6.5 m / min.

本発明のエアフィルター用濾材は、以下の(1)〜(7)のいずれかの特徴を備えることが好ましい。
(1)上記粒状ガス吸着剤の平均粒子径と上記粒状ガス吸着剤の層の厚みとの比(粒状ガス吸着剤の平均粒子径/粒状ガス吸着剤を含む層の厚み)が1.35以下である。
(2)上記2枚の不織布シートのそれぞれの圧縮率が20%以下である。
(3)上記エアフィルター用濾材の全体の厚みが0.90mm以下である。
(4)上記粒状ガス吸着剤の量が40〜120g/mの範囲内である。
(5)上記粒状ガス吸着剤が比表面積1100m/g以上の粒状活性炭を含む。
(6)上記2枚の不織布シートの平均孔径が、それぞれ20μm〜200μmの範囲内である。
(7)上記2枚の不織布シートの少なくとも一方がエレクトレット不織布である。
The filter medium for an air filter of the present invention preferably has any of the following features (1) to (7).
(1) The ratio of the average particle size of the granular gas adsorbent to the thickness of the layer of the granular gas adsorbent (average particle size of the granular gas adsorbent / thickness of the layer containing the granular gas adsorbent) is 1.35 or less. Is.
(2) The compressibility of each of the two non-woven fabric sheets is 20% or less.
(3) The total thickness of the filter medium for the air filter is 0.90 mm or less.
(4) The amount of the granular gas adsorbent is in the range of 40 to 120 g / m 2.
(5) The granular gas adsorbent contains granular activated carbon having a specific surface area of 1100 m 2 / g or more.
(6) The average pore diameters of the two non-woven fabric sheets are in the range of 20 μm to 200 μm, respectively.
(7) At least one of the above two non-woven fabric sheets is an electret non-woven fabric.

本発明のエアフィルターユニットは、本発明のエアフィルター用濾材を用いてなるエアフィルターユニットである。 The air filter unit of the present invention is an air filter unit using the filter medium for the air filter of the present invention.

本発明によれば、エアフィルターのようなエアが流通している動的な条件下において脱臭処理速度が優れ、かつ吸着容量にも優れるエアフィルター用濾材が提供できる。 According to the present invention, it is possible to provide a filter medium for an air filter having an excellent deodorizing treatment speed and an excellent adsorption capacity under dynamic conditions such as an air filter in which air is flowing.

本発明のエアフィルター用濾材は、2枚の不織布シートの間に、粒状ガス吸着剤を含む層(以下、粒状ガス吸着剤層とする)を有しており、この粒状ガス吸着剤層は、粒状ガス吸着剤が単層で緻密に並べられた層になっている。 The filter medium for an air filter of the present invention has a layer containing a granular gas adsorbent (hereinafter referred to as a granular gas adsorbent layer) between two non-woven fabric sheets, and the granular gas adsorbent layer is a layer. The granular gas adsorbent is a single layer that is densely arranged.

粒状ガス吸着剤層に含まれる粒状ガス吸着剤は平均粒子径が250μm以下である。一般的にエアフィルター用脱臭濾材は、2枚の不織布シートの間に、粒子径や量を適宜設計した粒状活性炭を封入した構成になっている。粒状活性炭の封入量を多くすることで脱臭処理速度(初期除去効率)や吸着容量などの脱臭性能は向上する。一方で、封入量を多くし過ぎると、活性炭粒子が厚み方向に重なり合った状態で2枚の不織布シートで圧縮され、活性炭粒子が過剰に充填された構造となり、空気が非常にとおりにくくなる。脱臭濾材の圧力損失は活性炭の封入量に比例して1次関数的に上昇するのが一般的であるが、上記のように活性炭粒子が重なって密に充填されると2次的関数的に圧力損失が上昇する。そこで圧力損失を大きく上昇させずに脱臭性能を向上する検討を行った結果、粒状ガス吸着剤を単層で緻密に並べたうえで、粒状ガス吸着剤の平均粒子径を250μm以下にすることで、粒状ガス吸着剤と対象処理ガスの接触効率が上がり、脱臭性能を向上できることを見いだした。粒状ガス吸着剤の平均粒子径が250μmを越えると、粒状ガス吸着剤を不織布上に単層で緻密に並べたとしても、粒状ガス吸着剤が入れない隙間ができやすくなるために、対象ガスと粒状ガス吸着剤との接触効率が低下し、対象ガスの脱臭処理速度(初期除去効率)が低下する傾向が見られる。逆に、粒状ガス吸着剤の平均粒子径が小さいほど隙間ができにくくなるので、粒状ガス吸着剤と対象ガスとの接触効率が上がり、脱臭処理速度(初期除去効率)は上昇する。しかし、粒状ガス吸着剤の平均粒子径が小さ過ぎて、不織布のポアサイズよりも小さくなってしまうと、エアフィルター用濾材から粒状ガス吸着剤が脱落する傾向が見られる。そのため、粒状ガス吸着剤の平均粒子径は50μm以上が好ましい。 The granular gas adsorbent contained in the granular gas adsorbent layer has an average particle size of 250 μm or less. Generally, a deodorizing filter medium for an air filter has a structure in which granular activated carbon having an appropriately designed particle size and amount is sealed between two non-woven fabric sheets. By increasing the amount of granular activated carbon enclosed, deodorizing performance such as deodorizing treatment speed (initial removal efficiency) and adsorption capacity is improved. On the other hand, if the encapsulation amount is too large, the activated carbon particles are compressed by two non-woven fabric sheets in a state of being overlapped in the thickness direction, resulting in a structure in which the activated carbon particles are excessively filled, which makes it very difficult for air to pass through. The pressure loss of the deodorizing filter medium generally increases in a linear function in proportion to the amount of activated carbon enclosed, but as described above, when the activated carbon particles are overlapped and densely packed, the pressure loss becomes a quadratic function. Pressure loss rises. Therefore, as a result of studies to improve the deodorizing performance without significantly increasing the pressure loss, the granular gas adsorbents were densely arranged in a single layer, and the average particle size of the granular gas adsorbents was reduced to 250 μm or less. , It was found that the contact efficiency between the granular gas adsorbent and the target treatment gas is improved, and the deodorizing performance can be improved. When the average particle size of the granular gas adsorbent exceeds 250 μm, even if the granular gas adsorbents are densely arranged in a single layer on the non-woven fabric, a gap through which the granular gas adsorbent cannot enter is likely to be formed. The contact efficiency with the granular gas adsorbent decreases, and the deodorizing treatment rate (initial removal efficiency) of the target gas tends to decrease. On the contrary, the smaller the average particle size of the granular gas adsorbent, the more difficult it is to form a gap, so that the contact efficiency between the granular gas adsorbent and the target gas increases, and the deodorizing treatment speed (initial removal efficiency) increases. However, if the average particle size of the granular gas adsorbent is too small and becomes smaller than the pore size of the non-woven fabric, the granular gas adsorbent tends to fall off from the filter medium for the air filter. Therefore, the average particle size of the granular gas adsorbent is preferably 50 μm or more.

本願における粒状ガス吸着剤の平均粒子径は、JIS−Z−8815(1994)によって粒子径分布を測定し、粒状ガス吸着剤の総質量の50質量%が通過するふるい目の大きさに相当する粒子径とする。 The average particle size of the granular gas adsorbent in the present application corresponds to the size of a sieve through which 50% by mass of the total mass of the granular gas adsorbent is measured by measuring the particle size distribution by JIS-Z-8815 (1994). The particle size.

本発明のエアフィルター用濾材は、粒状ガス吸着剤の平均粒子径(μm)と粒状ガス吸着剤層の厚み(μm)との比(ガス吸着剤の平均粒子径/粒状ガス吸着剤を含む層の厚み)が0.85以上である。本発明のエアフィルター用濾材では、粒状ガス吸着剤が単層で緻密に並んでいることが重要であり、上記比が0.85以上であるとは、粒状ガス吸着剤の平均粒子径と粒状ガス吸着剤層の厚みの値が近いことを意味しており、粒状ガス吸着剤が単層で重なり合うことなく緻密に並んでいることを示している。粒状ガス吸着剤の平均粒子径と粒状ガス吸着剤層の厚みの比が0.85未満であると粒状ガス吸着剤が単層ではなく複数層が形成されている状態となり、上記説明したように2次関数的に圧力損失が上昇してしまう。 In the filter medium for an air filter of the present invention, the ratio of the average particle size (μm) of the granular gas adsorbent to the thickness (μm) of the granular gas adsorbent layer (average particle size of the gas adsorbent / layer containing the granular gas adsorbent). Thickness) is 0.85 or more. In the filter medium for an air filter of the present invention, it is important that the granular gas adsorbents are densely arranged in a single layer, and the above ratio of 0.85 or more is the average particle size and granularity of the granular gas adsorbent. This means that the thickness values of the gas adsorbent layers are close to each other, indicating that the granular gas adsorbents are densely arranged in a single layer without overlapping. If the ratio of the average particle size of the granular gas adsorbent to the thickness of the granular gas adsorbent layer is less than 0.85, the granular gas adsorbent is in a state of forming multiple layers instead of a single layer, as described above. The pressure loss increases quadratically.

一方、粒状ガス吸着剤の平均粒子径と粒状ガス吸着剤層の厚みの比の上限は1.35以下が好ましい。上記比が1.35より大きいとは、粒状ガス吸着剤の平均粒子径よりも粒状ガス吸着剤層の厚みが小さいことを意味しており、粒状ガス吸着剤が緻密に並んでおらず、2枚の不織布シート同士が直接接している部分があることを示している。そのため、対象ガスが粒状ガス吸着剤に接触せずに2枚の不織布シートを通過するので、脱臭処理速度(初期除去効率)が低下する傾向が見られる。 On the other hand, the upper limit of the ratio of the average particle size of the granular gas adsorbent to the thickness of the granular gas adsorbent layer is preferably 1.35 or less. When the above ratio is larger than 1.35, it means that the thickness of the granular gas adsorbent layer is smaller than the average particle size of the granular gas adsorbent, and the granular gas adsorbents are not closely arranged and 2 It shows that there is a part where the non-woven fabric sheets are in direct contact with each other. Therefore, since the target gas passes through the two non-woven fabric sheets without coming into contact with the granular gas adsorbent, the deodorizing treatment speed (initial removal efficiency) tends to decrease.

本願における粒状ガス吸着剤層の厚みは、エアフィルター用濾材の厚みから2枚の不織布シートの厚みを差し引いて算出した値とする。 The thickness of the granular gas adsorbent layer in the present application is a value calculated by subtracting the thickness of the two non-woven fabric sheets from the thickness of the filter medium for the air filter.

本発明のエアフィルター用濾材は、粒状ガス吸着剤層の風速6.5m/min時の圧力損失が4.0Pa以上である。粒状ガス吸着剤層中に粒状ガス吸着剤が単層で緻密に並んでいると、当然ながら圧力損失がある程度大きくなるので、粒状ガス吸着剤層の風速6.5m/min時の圧力損失が4.0Pa以上であるとは、粒状ガス吸着剤が単層で2枚の不織布シートの間に緻密に並んでいることを示している。風速6.5m/min時の粒状ガス吸着剤層の圧力損失は、風速6.5m/min時のエアフィルター用濾材全体の圧力損失から2枚の不織布シートの風速6.5m/min時の圧力損失を差し引いて計算される値である。 In the filter medium for an air filter of the present invention, the pressure loss of the granular gas adsorbent layer at a wind speed of 6.5 m / min is 4.0 Pa or more. If the granular gas adsorbents are densely arranged in a single layer in the granular gas adsorbent layer, the pressure loss naturally increases to some extent. Therefore, the pressure loss of the granular gas adsorbent layer at a wind speed of 6.5 m / min is 4. When it is 0.0 Pa or more, it means that the granular gas adsorbent is densely arranged between two non-woven sheets in a single layer. The pressure loss of the granular gas adsorbent layer at a wind speed of 6.5 m / min is the pressure of the two non-woven fabric sheets at a wind speed of 6.5 m / min from the pressure loss of the entire air filter filter medium at a wind speed of 6.5 m / min. It is a value calculated by subtracting the loss.

粒状ガス吸着剤としては、具体的に活性炭、二酸化ケイ素、ゼオライト、シリカゲル、活性アルミナ、活性白土、ケイ酸アルミニウム、ケイ酸マグネシウム、イオン交換樹脂、多孔性粘土鉱物、およびこれらの粒子に後述する薬剤が添着されたもの等を挙げることができる。そして、これらの粒状ガス吸着剤は単独で用いられてもよいし、併用されてもよい。またこれらの粒子は多孔質体であることが脱臭性能をより優れたものとするとの理由から好ましい。中でも活性炭は優れた物理吸着能を有し、広範囲に渡るガスを除去できる点で好ましい。 Specific examples of the granular gas adsorbent include activated carbon, silicon dioxide, zeolite, silica gel, activated alumina, activated clay, aluminum silicate, magnesium silicate, ion exchange resin, porous clay minerals, and chemicals described below for these particles. Can be mentioned, such as those attached with. Then, these granular gas adsorbents may be used alone or in combination. Further, it is preferable that these particles are porous bodies because they have better deodorizing performance. Of these, activated carbon is preferable because it has excellent physical adsorption ability and can remove gas over a wide range.

粒状活性炭の原料としては、ヤシ殻、木質系、石炭系、ピッチ系などが知られているが、ヤシ殻であることが好ましい。ヤシ殻活性炭の細孔は他の原料と比較して小さい細孔の比率が多く、不純物である灰分も少ない。つまり、ヤシ殻活性炭は細孔が小さいために吸着した臭気分子に対して効果的に細孔壁との分子間力が働き、吸着した臭気分子を脱離させにくい、すなわち二次発臭の発生を抑制できる特徴がある。また、他の原料に比べ高い硬度を有するため破砕することなく不織布シートの間に担持できる。 As a raw material for granular activated carbon, coconut shells, wood-based, coal-based, pitch-based and the like are known, but coconut shells are preferable. The pores of coconut shell activated carbon have a large proportion of small pores as compared with other raw materials, and the ash content, which is an impurity, is also small. That is, since the coconut shell activated carbon has small pores, an intermolecular force with the pore wall effectively acts on the adsorbed odor molecules, and it is difficult to desorb the adsorbed odor molecules, that is, secondary odor is generated. There is a feature that can suppress. Moreover, since it has a higher hardness than other raw materials, it can be supported between non-woven fabric sheets without being crushed.

粒状活性炭の77K窒素吸着法によるBET比表面積は、BET比表面積で1100m/g以上であることが好ましく、1200m/g以上がより好ましい。粒状活性炭の比表面積を1100m/g以上とすることで、対象ガスとの反応場として実効的な面積が向上することで、対象ガスとの反応速度がより向上し、本発明の粒状ガス吸着剤の動的吸着性能は優れたものとなる。また、BET比表面積の上限は特に限定しないが、3000m/g以下であることが好ましい。この範囲を超えると製造が困難になるという不都合が生じるとともに、機械的強度の低下による取り扱い性が低下するためである。 The BET specific surface area of the granular activated carbon by the 77K nitrogen adsorption method is preferably 1100 m 2 / g or more, and more preferably 1200 m 2 / g or more in terms of BET specific surface area. By setting the specific surface area of the granular activated carbon to 1100 m 2 / g or more, the effective area as a reaction field with the target gas is improved, so that the reaction rate with the target gas is further improved, and the granular gas adsorption of the present invention is performed. The dynamic adsorption performance of the agent is excellent. The upper limit of the BET specific surface area is not particularly limited, but is preferably 3000 m 2 / g or less. This is because if it exceeds this range, there is an inconvenience that manufacturing becomes difficult, and the handleability is lowered due to a decrease in mechanical strength.

粒状活性炭の平均細孔径は詳しくは77ケルビン(液体窒素温度)における窒素吸着法により得られる吸着側等温線を用いて求められるが、好ましい粒状活性炭の平均細孔径の範囲は1.0〜5.0nmであり、より好ましくは1.5〜4.0nmである。平均細孔径が1.0nm以上であることで対象ガスが粒状活性炭の細孔内部に浸透しやすくなり、粒状ガス吸着剤の動的吸着性能がより優れたものとなる。一方で、活性炭の平均細孔径が5.0nm以下であることで物理吸着機構の背反事項である二次発臭(蓄積したガスの再放出)を抑えられる。 The average pore size of the granular activated carbon is specifically determined by using the adsorption-side isotherm obtained by the nitrogen adsorption method at 77 Kelvin (liquid nitrogen temperature), and the preferred average pore size range of the granular activated carbon is 1.0 to 5. It is 0 nm, more preferably 1.5 to 4.0 nm. When the average pore diameter is 1.0 nm or more, the target gas easily permeates into the pores of the granular activated carbon, and the dynamic adsorption performance of the granular gas adsorbent becomes more excellent. On the other hand, when the average pore diameter of the activated carbon is 5.0 nm or less, secondary odor (re-release of accumulated gas), which is a contradictory matter of the physical adsorption mechanism, can be suppressed.

次に粒状活性炭のJISK1474による硬度は95%以上であることが好ましい。硬度が95%以上であることで2枚の不織布間に挟み込み、固着のための強い圧力を受けた際にも破砕せず従来の粒子径を維持できる。 Next, the hardness of the granular activated carbon according to JISK1474 is preferably 95% or more. When the hardness is 95% or more, it can be sandwiched between two non-woven fabrics and can maintain the conventional particle size without being crushed even when a strong pressure for fixing is applied.

粒状ガス吸着剤の一形態として、粒状活性炭や二酸化ケイ素粒子などの薬剤が添着されていてもよい。以下、薬剤について説明する。 As one form of the granular gas adsorbent, a chemical such as granular activated carbon or silicon dioxide particles may be impregnated. Hereinafter, the drug will be described.

粒状ガス吸着剤への物理吸着による除去が困難なガスに対しては、活性炭や二酸化ケイ素などの多孔質体に薬剤を担持させることで、化学的に除去することもできる。薬剤として、例えばアルデヒドガスを除去することを目的とする場合にはアミン系化合物が好適であり、中でもアミノ基を有する第1級アミン系化合物が好ましく、さらに酸ヒドラジド化合物がより好ましい。 Gases that are difficult to remove by physical adsorption to a granular gas adsorbent can be chemically removed by supporting the drug on a porous body such as activated carbon or silicon dioxide. As the drug, for example, when the purpose is to remove aldehyde gas, an amine compound is preferable, among which a primary amine compound having an amino group is preferable, and an acid hydrazide compound is more preferable.

酸ヒドラジド化合物としては例えば、ホルムヒドラジド、アセトヒドラジド、プロピオン酸ヒドラジド、安息香酸ヒドラジド島、分子内に1個の酸ヒドラジド基を有する酸モノヒドラジドやシュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フマル酸ジヒドラジド、マレイン酸ジヒドラジド、テレフタル酸ジヒドラジド等、分子内に2個の酸ヒドラジド基を有する酸ジヒドラジド、さらにはポリアクリル酸ヒドラジド等、分子内に3個以上の酸ヒドラジド基を有する酸ポリヒドラジドが挙げられる。中でもジヒドラジド類が好ましく、とりわけアジピン酸ジヒドラジドがアルデヒド類の吸着性能の点で好ましい。 Examples of the acid hydrazide compound include form hydrazide, acetohydrazide, propionate hydrazide, benzoate hydrazide island, acid monohydrazide having one acid hydrazide group in the molecule, dihydrazide oxalate, dihydrazide malonate, dihydrazide succinate, and adipine. Acid hydrazide having two acid hydrazide groups in the molecule, such as acid dihydrazide, fumaric acid dihydrazide, maleic acid dihydrazide, terephthalic acid dihydrazide, etc., and polyacrylic acid hydrazide, etc., having three or more acid hydrazide groups in the molecule. Acid polyhydrazide can be mentioned. Of these, dihydrazides are preferable, and adipic acid dihydrazide is particularly preferable in terms of adsorption performance of aldehydes.

酸ヒドラジド化合物はカルボン酸とヒドラジンとから誘導される−CO−NHNHで表される酸ヒドラジド基を有する化合物であり、ヒドラジド末端のα位に、さらに非共有電子対を有する窒素原子が結合しており、これにより求核反応性が著しく向上している。この非共有電子対がアルデヒド類のカルボニル炭素原子を求核的に攻撃して反応し、アルデヒド類をヒドラジン誘導体として固定化することにより、アルデヒド類の吸着性能を発現できると考えられる。アルデヒド類の中でもアセトアルデヒドは、カルボニル炭素のα位に電子供与性のアルキル基を有するために、カルボニル炭素の求電子性が低く化学吸着されにくいが、酸ヒドラジド化合物は前述のとおり求核反応性が高いため、アセトアルデヒドに対しても良好な化学吸着性能を発現する。 The acid hydrazide compound is a compound having an acid hydrazide group represented by -CO-NHNH 2 derived from a carboxylic acid and hydrazine, and a nitrogen atom having an unshared electron pair is further bonded to the α position at the hydrazide terminal. As a result, the nucleophilic reactivity is significantly improved. It is considered that this unshared electron pair nucleophilically attacks the carbonyl carbon atom of the aldehydes and reacts to immobilize the aldehydes as a hydrazine derivative, whereby the adsorption performance of the aldehydes can be exhibited. Among the aldehydes, acetaldehyde has an electron-donating alkyl group at the α-position of the carbonyl carbon, so that the electrophilicity of the carbonyl carbon is low and it is difficult to be chemically adsorbed. However, the acid hydrazide compound has a nucleophilic reactivity as described above. Due to its high value, it exhibits good chemical adsorption performance even for acetaldehyde.

酸ヒドラジド化合物の担持量は粒状ガス吸着剤100質量部に対して1〜50質量部であることが好ましく、さらには3〜30質量部であることがより好ましい。担持量が1質量部以上であると、アルデヒド類の除去効率および吸着容量の実効を得ることができる。担持量が50質量部以下であると、粒状ガス吸着剤上で酸ヒドラジド化合物が結晶化するのを抑制し、粒状ガス吸着剤のガス吸着速度の低下を抑制することができる。さらに、粒状ガス吸着剤からの薬剤の脱落も抑制できる。 The amount of the acid hydrazide compound supported is preferably 1 to 50 parts by mass, more preferably 3 to 30 parts by mass with respect to 100 parts by mass of the granular gas adsorbent. When the supported amount is 1 part by mass or more, the removal efficiency of aldehydes and the effective adsorption capacity can be obtained. When the supported amount is 50 parts by mass or less, it is possible to suppress the crystallization of the acid hydrazide compound on the granular gas adsorbent and suppress the decrease in the gas adsorption rate of the granular gas adsorbent. Further, it is possible to suppress the dropping of the drug from the granular gas adsorbent.

また、上記アルデヒド類以外の酸性ガス除去を目的とする場合には、金属炭酸塩、具体的には炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩が好適に用いられる。塩基性ガス除去を目的とする場合には酸性化合物が好適であり、例としてリン酸、硫酸、硝酸、リンゴ酸、アスコルビン酸等が好適に用いられる。 Further, when the purpose is to remove acidic gases other than the above aldehydes, metal carbonates, specifically alkali metal carbonates such as potassium carbonate, potassium hydrogencarbonate, sodium carbonate and sodium hydrogencarbonate are preferably used. .. Acidic compounds are suitable for the purpose of removing basic gas, and phosphoric acid, sulfuric acid, nitric acid, malic acid, ascorbic acid and the like are preferably used as examples.

金属炭酸塩の担持量は粒状ガス吸着剤100質量部に対して1〜20質量部であることが好ましい。担持量が1質量部以上であると、粒状ガス吸着剤による酸性ガスの除去効率および吸着容量がより優れたものとなる。担持量が20質量部以下であると、金属炭酸塩で粒状ガス吸着剤の細孔を塞いでしまうことがないので、吸着速度の低下を抑制できる。さらに、粒状ガス吸着剤からの薬剤の脱落も抑制できる。 The amount of the metal carbonate supported is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the granular gas adsorbent. When the amount supported is 1 part by mass or more, the efficiency of removing acid gas by the granular gas adsorbent and the adsorption capacity become more excellent. When the amount supported is 20 parts by mass or less, the pores of the granular gas adsorbent are not blocked by the metal carbonate, so that a decrease in the adsorption rate can be suppressed. Further, it is possible to suppress the dropping of the drug from the granular gas adsorbent.

酸性化合物の担持量は粒状ガス吸着剤100質量部に対して1〜20質量部であることが好ましい。担持量が1質量部以上であると、粒状ガス吸着剤による塩基性ガスの除去効率および吸着容量がより優れたものとなる。担持量が20質量部以下であると、酸性化合物で粒状ガス吸着剤の細孔を塞いでしまうことがないので、吸着速度の低下を抑制できる。さらに、粒状ガス吸着剤からの薬剤の脱落も抑制できる。 The amount of the acidic compound supported is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the granular gas adsorbent. When the supported amount is 1 part by mass or more, the efficiency of removing the basic gas by the granular gas adsorbent and the adsorbing capacity become more excellent. When the amount supported is 20 parts by mass or less, the pores of the granular gas adsorbent are not blocked by the acidic compound, so that a decrease in the adsorption rate can be suppressed. Further, it is possible to suppress the dropping of the drug from the granular gas adsorbent.

次に本発明のエアフィルター用濾材の製造方法を説明する。エアフィルター用濾材は、2枚の不織布シートの間に粒状ガス吸着剤および熱可塑性樹脂(バインダー)を配置して、熱処理して溶融した熱可塑性樹脂(バインダー)により、2枚の不織布シートと粒状ガス吸着剤とを熱接着で一体化して得られる。先ず、一方の不織布シートの上に充分に混合攪拌した粒状ガス吸着剤および熱可塑性樹脂(バインダー)を散布し、熱処理して熱可塑性樹脂(バインダー)を溶融する。加熱方法としては加熱炉などが利用できる。次いで、熱処理された粒状ガス吸着剤と熱可塑性樹脂(バインダー)の上に、もう一方の不織布シートを被せ合わせ、2枚の不織布シートを加圧して、一体化する。 Next, a method for manufacturing the filter medium for an air filter of the present invention will be described. In the filter medium for an air filter, a granular gas adsorbent and a thermoplastic resin (binder) are arranged between two non-woven fabric sheets, and the two non-woven fabric sheets and granules are formed by the thermoplastic resin (binder) melted by heat treatment. It is obtained by integrating with a gas adsorbent by thermal adhesion. First, the granular gas adsorbent and the thermoplastic resin (binder) that have been sufficiently mixed and stirred are sprayed on one of the non-woven fabric sheets and heat-treated to melt the thermoplastic resin (binder). As a heating method, a heating furnace or the like can be used. Next, the other non-woven fabric sheet is put on the heat-treated granular gas adsorbent and the thermoplastic resin (binder), and the two non-woven fabric sheets are pressurized to be integrated.

具体的な加圧方法はロール間熱プレス法、あるいは上下ともフラットな熱ベルトコンベヤー間にはさみこむフラットベッドラミネート法等が挙げられる。 Specific examples of the pressurizing method include a heat pressing method between rolls, a flat bed laminating method in which the heat belt conveyors are flat on both the top and bottom, and the like.

熱可塑性樹脂(バインダー)の材料としては、ポリエステル、ポリオレフィン、ポリアミド、ポリウレタン、エチレン−アクリル共重合体、ポリアクリレート、ポリアクリル、ポリジエン、エチレン−酢酸ビニル、ポリ塩化ビニル、ポリスチレン等の熱可塑性樹脂(バインダー)が挙げられ、中でも加熱時の臭気発生が少ない材料としてポリエステルやポリオレフィンが好ましい。 As the material of the thermoplastic resin (binder), a thermoplastic resin such as polyester, polyolefin, polyamide, polyurethane, ethylene-acrylic copolymer, polyacrylate, polyacrylic, polydiene, ethylene-vinyl acetate, polyvinyl chloride, polystyrene, etc. ( Binder), and among them, polyester and polyolefin are preferable as materials that generate less odor during heating.

熱可塑性樹脂(バインダー)は粉末状であれば形状は特に規定しないが、球状、破砕状、繊維状等が挙げられる。 The shape of the thermoplastic resin (binder) is not particularly specified as long as it is in the form of powder, but examples thereof include spherical, crushed, and fibrous forms.

また熱可塑性樹脂(バインダー)の含有量は、粒状ガス吸着剤100質量部に対して10〜40質量部であることが好ましい。この範囲内であれば、不織布との接着力がより向上し、さらにエアフィルター用濾材の通気抵抗、脱臭性能もより向上する。含有量は15〜35質量部がより好ましい。 The content of the thermoplastic resin (binder) is preferably 10 to 40 parts by mass with respect to 100 parts by mass of the granular gas adsorbent. Within this range, the adhesive force with the non-woven fabric is further improved, and the ventilation resistance and deodorizing performance of the filter medium for the air filter are further improved. The content is more preferably 15 to 35 parts by mass.

不織布シートを形成する繊維としては、天然繊維、合成繊維、ガラス繊維や金属繊維等の無機繊維が使用でき、中でも溶融紡糸ができる熱可塑性樹脂の合成繊維が好ましい。合成繊維を形成する熱可塑性樹脂の例としては、ポリエステル、ポリアミド、ポリオレフィン、アクリル、ビニロン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ乳酸等を挙げることができ、用途等に応じて選択できる。また、複数種を組み合わせて使用してもよい。 As the fibers forming the non-woven sheet, natural fibers, synthetic fibers, inorganic fibers such as glass fibers and metal fibers can be used, and among them, synthetic fibers of thermoplastic resin capable of melt spinning are preferable. Examples of the thermoplastic resin forming the synthetic fiber include polyester, polyamide, polyolefin, acrylic, vinylon, polystyrene, polyvinyl chloride, polyvinylidene chloride, polylactic acid, and the like, which can be selected according to the intended use. Further, a plurality of types may be used in combination.

不織布シートの製造方法としては乾式法、湿式法、スパンボンド法、サーマルボンド法、ケミカルボンド法、スパンレース法(水流絡合法)、スパンボンド不織布、メルトブロー不織布が使用できる。2枚の不織布シートのうち少なくとも1枚の不織布シートは、目付けや厚みが均一にでき、粒状ガス吸着剤を緻密に並べることができる抄紙法による湿式不織布が好ましい。 As a method for producing the non-woven fabric sheet, a dry method, a wet method, a spunbond method, a thermal bond method, a chemical bond method, a spunlace method (water flow entanglement method), a spunbonded non-woven fabric, and a melt-blown non-woven fabric can be used. Of the two non-woven fabric sheets, at least one non-woven fabric sheet is preferably a wet non-woven fabric produced by a papermaking method, which can have a uniform basis weight and a uniform thickness and can arrange granular gas adsorbents precisely.

不織布シートを構成する繊維の繊維径は、エアフィルター用濾材として使用する用途において目標とする通気性や集塵性能に応じて選択すればよいが、好ましくは1〜2000μmである。繊維径が1μm以上であると、ガス吸着剤が繊維構造物表面で目詰まりするのを防ぎ、通気性の低化を防ぐことができる。より好ましくは2μm以上である。また、繊維径が2000μm以下であると、繊維表面積の減少による粒状ガス吸着剤の担持能力の低下を防ぐことができる。より好ましくは100μm以下である。 The fiber diameter of the fibers constituting the non-woven fabric sheet may be selected according to the target air permeability and dust collection performance in the application used as a filter medium for an air filter, but is preferably 1 to 2000 μm. When the fiber diameter is 1 μm or more, it is possible to prevent the gas adsorbent from clogging the surface of the fiber structure and prevent the air permeability from being lowered. More preferably, it is 2 μm or more. Further, when the fiber diameter is 2000 μm or less, it is possible to prevent a decrease in the carrying capacity of the granular gas adsorbent due to a decrease in the fiber surface area. More preferably, it is 100 μm or less.

不織布シートの目付は、10〜200g/mが好ましい。目付けが10g/m以上であると、粒状ガス吸着剤を担持するための加工に耐える十分な強度が得られ、エアを通気させた際にフィルター構造を維持するのに必要な剛性が得られる。目付けが200g/m以下であると、高い通気性を有することができ、また、エアフィルター用濾材をプリーツ形状やハニカム形状に二次加工する際の取扱い性にも優れる。より好ましくは150g/m以下である。 The basis weight of the non-woven fabric sheet is preferably 10 to 200 g / m 2. When the basis weight is 10 g / m 2 or more, sufficient strength is obtained to withstand the processing for supporting the granular gas adsorbent, and the rigidity required to maintain the filter structure when air is aerated is obtained. .. When the basis weight is 200 g / m 2 or less, it is possible to have high air permeability, and it is also excellent in handleability when the filter medium for an air filter is secondarily processed into a pleated shape or a honeycomb shape. More preferably, it is 150 g / m 2 or less.

不織布シートの厚みは0.10mm〜0.60mmが好ましい。厚みが0.10mm以上であると、不織布シートが破れて粒状ガス吸着剤粒子が飛び出してしまうことがない。厚みが0.60mm以下であると、取り扱いし易くなることに加え、フィルターユニットにした際に、構造が起因となって圧損が上昇することがない。 The thickness of the non-woven fabric sheet is preferably 0.10 mm to 0.60 mm. When the thickness is 0.10 mm or more, the non-woven fabric sheet is not torn and the granular gas adsorbent particles do not pop out. When the thickness is 0.60 mm or less, in addition to being easy to handle, the pressure loss does not increase due to the structure when the filter unit is used.

不織布シートの圧縮率は20%以下が好ましい。圧縮率が20%以下であると、粒状ガス吸着剤を2枚の不織布シートの間に散布して一体化のために圧力をかけた際に、単層で緻密に並んでいた粒状ガス吸着剤の層が崩れることがない。粒状ガス吸着剤の層が崩れると、粒状ガス吸着剤が厚み方向に分散してしまい、対象ガスとの接触効率が低下して、脱臭初期効率が低下する懸念がある。 The compressibility of the non-woven fabric sheet is preferably 20% or less. When the compression rate is 20% or less, when the granular gas adsorbent is sprayed between two non-woven fabric sheets and pressure is applied for integration, the granular gas adsorbent is densely arranged in a single layer. Layer does not collapse. If the layer of the granular gas adsorbent collapses, the granular gas adsorbent is dispersed in the thickness direction, and there is a concern that the contact efficiency with the target gas is lowered and the initial deodorizing efficiency is lowered.

不織布シートの平均孔径は20〜200μmが好ましく、より好ましくは30〜180μmである。不織布シートの平均孔径が20μm以上であると、エアフィルター用濾材として高い通気性を確保できる。平均孔径が200μm以下であると、粒状ガス吸着剤の不織布からの脱落を抑制できる。エアフィルターとして使用する際は上流側に配置される不織布シートの平均孔径を大きくし、下流側に配置される不織布シートの平均孔径を小さくすることで、塵や埃がフィルターに目詰まりする際の圧力損失の上昇を抑えられる。 The average pore size of the non-woven fabric sheet is preferably 20 to 200 μm, more preferably 30 to 180 μm. When the average pore size of the non-woven fabric sheet is 20 μm or more, high air permeability can be ensured as a filter medium for an air filter. When the average pore size is 200 μm or less, the granular gas adsorbent can be suppressed from falling off from the non-woven fabric. When used as an air filter, the average pore size of the non-woven fabric sheet placed on the upstream side is increased, and the average pore size of the non-woven fabric sheet placed on the downstream side is reduced to prevent dust and dirt from clogging the filter. The increase in pressure loss can be suppressed.

本願における平均孔径は、バブルポイント法(ASTMF−316−86に基づく)によって算出した値である。バブルポイント法としては例えば、「多孔質材料自動細孔測定システム Perm−Porometer」(PMI社製)を用いることができる。このPerm−Porometerによる測定は、不織布シートを液体で浸漬させ、不織布シートの上側から気体の圧力を増加させながら供給し、この圧力と不織布シート表面の液体表面張力の関係からポアサイズを測定する方法である。 The average pore diameter in the present application is a value calculated by the bubble point method (based on ASTMF-316-86). As the bubble point method, for example, "Perm-Porometer, a porous material automatic pore measurement system" (manufactured by PMI) can be used. The measurement by this Perm-Porometer is a method in which the non-woven fabric sheet is immersed in a liquid and supplied while increasing the gas pressure from the upper side of the non-woven fabric sheet, and the pore size is measured from the relationship between this pressure and the liquid surface tension on the surface of the non-woven fabric sheet. be.

また2枚の不織布シートは異なる繊維構成のシートとすることが好ましい。例えば直行流型フィルターとしての使用において、上流側に嵩高で目の粗い不織布シートを用いれば、ダスト保持量が向上し、フィルターの寿命を長くできる。また下流側に極細繊維からなる不織布シートを積層すれば、捕集効率を高くできる。 Further, it is preferable that the two non-woven fabric sheets have different fiber configurations. For example, in use as a direct flow type filter, if a bulky and coarse non-woven fabric sheet is used on the upstream side, the amount of dust retained can be improved and the life of the filter can be extended. Further, if a non-woven fabric sheet made of ultrafine fibers is laminated on the downstream side, the collection efficiency can be increased.

不織布シートの少なくとも1枚はエレクトレット処理されていることが好ましい。エレクトレット処理がされていることにより、通常では除去しにくいサブミクロンサイズやナノサイズの微細塵を静電気力により捕集することができる。 It is preferable that at least one non-woven fabric sheet is electret-treated. Due to the electret treatment, submicron size and nano size fine dust, which is normally difficult to remove, can be collected by electrostatic force.

エレクトレット処理を施された不織布シート(エレクトレット不織布シート)を構成する材料としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリブチレンテレフタレート、ポリテトラフルオロエチレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート等の芳香族ポリエステル系樹脂、ポリカーボネート樹脂等の高い電気抵抗率を有する材料が好ましい。 Materials constituting the electlet-treated non-woven sheet (electlet non-woven sheet) include polypropylene-based resins such as polypropylene, polyethylene, polystyrene, polybutylene terephthalate, and polytetrafluoroethylene, and aromatic polyester-based resins such as polyethylene terephthalate. A material having a high electrical resistance such as a polycarbonate resin is preferable.

不織布シートは、抗菌剤、防カビ剤、抗アレルゲン剤、抗ウイルス剤、ビタミン剤、難燃剤等の付随的機能を有する成分等を含めて構成してもよい。これらの成分は繊維類や不織布シート中に練りこんでも、後加工で付着および担持して付与してもよい。例えば、任意の方法により不織布シートを作製後、難燃剤と樹脂バインダーを含む水溶液を作製し、含浸乾燥し、難燃剤を固着することで不織布シートが得られる。 The non-woven fabric sheet may be composed of components having ancillary functions such as an antibacterial agent, an antifungal agent, an antiallergen agent, an antiviral agent, a vitamin agent, and a flame retardant. These components may be kneaded into fibers or a non-woven fabric sheet, or may be attached and supported by post-processing. For example, a non-woven fabric sheet is obtained by preparing a non-woven fabric sheet by an arbitrary method, preparing an aqueous solution containing a flame retardant and a resin binder, impregnating and drying the non-woven fabric sheet, and fixing the flame retardant.

粒状ガス吸着剤の量は40〜120g/mの範囲内が好ましい。この範囲とすることで濾材から得られたフィルターユニットを空気清浄機等に搭載した際、対象ガス成分との接触効率が上がり、脱臭処理速度(初期除去効率)が上がるので、空間の匂いの改善効果を顕著に感じられる。 The amount of the granular gas adsorbent is preferably in the range of 40 to 120 g / m 2. Within this range, when the filter unit obtained from the filter medium is mounted on an air purifier, etc., the contact efficiency with the target gas component increases and the deodorization processing speed (initial removal efficiency) increases, so the odor of the space is improved. The effect is noticeable.

エアフィルター用濾材全体の厚みは0.40〜0.90mmが好ましい。厚みがこの範囲内であれば、曲げに対する強度を有し、プリーツ折り加工をした際に一定容積に収容できる面積を増やせる。 The total thickness of the air filter filter medium is preferably 0.40 to 0.90 mm. When the thickness is within this range, it has strength against bending and can increase the area that can be accommodated in a certain volume when pleated.

本発明のエアフィルターユニットは、本発明のエアフィルター用濾材を用いて構成されている。エアフィルターユニットにおけるエアフィルター用濾材の形状としては、そのまま平面状で使用してもよいが、限られた寸法内により多くのエアフィルター用濾材を入れるためにプリ−ツ型やハニカム型を採用することが好ましい。プリーツ型は直行流型エアフィルターとしての使用において、またハニカム型は平行流型フィルターとしての使用において、処理エアの接触面積を大きくして捕集効率を向上させるとともに、低圧損化を同時に図ることができる。 The air filter unit of the present invention is configured by using the filter medium for the air filter of the present invention. As the shape of the filter medium for the air filter in the air filter unit, it may be used as it is in a flat shape, but a pleated type or a honeycomb type is adopted in order to put more filter media for the air filter within the limited dimensions. Is preferable. When the pleated type is used as a direct flow type air filter and the honeycomb type is used as a parallel flow type filter, the contact area of the treated air is increased to improve the collection efficiency and reduce the low voltage at the same time. Can be done.

プリーツ加工の方法としては、レシプロ方式やロータリー方式などがあり、山谷状に加工する方法であればいずれの方法でもよい。また、プリーツ形状を保持するためセパレータ加工を行うことも好ましく、生産効率の観点からビード加工やリボン加工のような熱可塑性樹脂を溶融加工する方式が望ましい。 The pleating method includes a reciprocating method and a rotary method, and any method may be used as long as it is processed in a mountain valley shape. Further, it is also preferable to perform separator processing in order to maintain the pleated shape, and from the viewpoint of production efficiency, a method of melting a thermoplastic resin such as bead processing or ribbon processing is desirable.

本発明のエアフィルター用濾材を用いたエアフィルターユニットのひだ山頂点間隔は、2〜30mmが好ましい。ひだ山頂点間隔が2mm以上であると、ひだ山間が密着し過ぎず、デッドスペースが少なくなり、効率的にエアフィルター用濾材を活用できる。ひだ山頂点間隔が30mm以下であると、エアフィルター用濾材の折り込み面積が十分であり、狙った除去効果が得られる。 The distance between the pleats of the air filter unit using the filter medium for the air filter of the present invention is preferably 2 to 30 mm. When the distance between the fold peaks is 2 mm or more, the folds do not come into close contact with each other, the dead space is reduced, and the filter medium for the air filter can be used efficiently. When the distance between the fold peaks is 30 mm or less, the folding area of the filter medium for the air filter is sufficient, and the desired removal effect can be obtained.

また本発明のエアフィルターは、枠体に納めて使用することが、エアの処理効率や取扱い性の点で好ましい。 Further, it is preferable that the air filter of the present invention is used by being housed in a frame from the viewpoint of air processing efficiency and handleability.

以下、実施例を用いて本発明を具体的に説明する。なお、本実施例における濾材の各特性の評価方法を下記する。 Hereinafter, the present invention will be specifically described with reference to Examples. The evaluation method of each characteristic of the filter medium in this example is described below.

[測定方法]
(1)平均粒子径(μm)
粒状ガス吸着剤の平均粒子径は、JIS−Z−8815(1994)によって粒子径分布を測定し、粒状ガス吸着剤の総質量の50質量%が通過するふるい目の大きさに相当する粒子径とした。
[Measuring method]
(1) Average particle size (μm)
The average particle size of the granular gas adsorbent is measured by JIS-Z-8815 (1994), and the particle size corresponds to the size of the sieve through which 50% by mass of the total mass of the granular gas adsorbent passes. And said.

(2)目付(g/m
不織布とエアフィルター用濾材の目付は、次のようにして測定した。25cm×25cmにカットした測定試料の質量を、質量計(エー・アンド・ディ社製FY−300)を用いて4枚分計測して平均値を求めた。その平均値を1mあたりの質量に換算し、小数点以下第2位を四捨五入し、目付とした。
(2) Metsuke (g / m 2 )
The basis weight of the non-woven fabric and the filter medium for the air filter was measured as follows. The mass of the measurement sample cut into 25 cm × 25 cm was measured for four sheets using a mass meter (FY-300 manufactured by A & D Co., Ltd.), and the average value was calculated. The average value was converted into mass per 1 m 2 , and the second decimal place was rounded off to obtain a basis weight.

(3)厚み(mm)
不織布とエアフィルター用濾材の厚みは、次のようにして測定した。10cm×10cmにカットした測定試料を、厚み計(大栄科学精機社製、型式FS−60DS、測定子面積2500mm、測定荷重0.5KPa)を使用してランダムに10点測定し、平均値を算出して厚みとした。なお、粒状ガス吸着剤層の厚みは、エアフィルター用濾材の厚みから2枚の不織布の厚みを差し引いて計算した。
(3) Thickness (mm)
The thickness of the non-woven fabric and the filter medium for the air filter was measured as follows. A measurement sample cut into 10 cm x 10 cm was randomly measured at 10 points using a thickness gauge (manufactured by Daiei Kagaku Seiki Co., Ltd., model FS-60DS, stylus area 2500 mm 2 , measurement load 0.5 KPa), and the average value was measured. Calculated and used as the thickness. The thickness of the granular gas adsorbent layer was calculated by subtracting the thickness of the two non-woven fabrics from the thickness of the filter medium for the air filter.

(4)圧縮率
不織布の圧縮率は、圧縮弾性試験機を使用して次のようにして測定した。約5cm×5cmの試験片を採取し、0.5KPaの荷重下で厚さ(T)を測定後、5.0KPaの荷重下で厚さ(T)を測定しこの結果を以下の計算式にあてはめ、圧縮率を算出した。
圧縮率% =(T−T)/T ×100。
(4) Compressibility The compressibility of the non-woven fabric was measured as follows using a compressive elasticity tester. A test piece of about 5 cm x 5 cm was collected, the thickness (T 0 ) was measured under a load of 0.5 KPa, and then the thickness (T 1 ) was measured under a load of 5.0 KPa, and the results were calculated as follows. The compression ratio was calculated by applying it to the formula.
Compressibility% = (T 0- T 1 ) / T 0 x 100.

(5)BET比表面積
粒状ガス吸着剤の比表面積は、ユアサアイオニクス社製NOVA2200eを用い、JIS R 1626−1996に規定のBET多点法に従って測定した。試料は100mgを採取し100℃で4時間真空脱気し、Nを吸着質とし、定容法にて測定した。
(5) Specific Surface Area of BET The specific surface area of the granular gas adsorbent was measured using NOVA2200e manufactured by Yuasa Ionics Co., Ltd. according to the BET multipoint method specified in JIS R 1626-1996. As a sample, 100 mg was sampled and evacuated at 100 ° C. for 4 hours, N 2 was used as an adsorbent, and the sample was measured by a constant volume method.

(6)平均細孔径
粒状ガス吸着剤の細孔の形状を円筒状と仮定し、BET比表面積測定の際に得られた比表面積(S)、細孔容積(V)から平均細孔径(D)を算出した。
(6) Average Pore Diameter The average pore diameter (D) from the specific surface area (S) and pore volume (V) obtained during the BET specific surface area measurement, assuming that the shape of the pores of the granular gas adsorbent is cylindrical. ) Was calculated.

(7)添着薬剤の含有量
薬剤を分散もしくは溶解させた液に粒状ガス吸着剤を含浸させて、粒状ガス吸着剤を乾燥させた後の重量と、上記の含浸処理前の粒状ガス吸着剤の重量との差から算出した。
(8)平均孔径(μm)
「多孔質材料自動細孔測定システム Perm−Porometer」(PMI社製)を用いて、バブルポイント法(ASTMF−316−86に基づく)によって平均孔径を算出した。測定サンプル径を25mmとし、測定液としては180μm以下の孔径を有する不織布については、Galwickを使用し、180μmを超える孔径を有する不織布については純水を用いて、細孔径分布測定を行った。
(7) Content of impregnating agent The weight after impregnating the liquid in which the agent is dispersed or dissolved with the granular gas adsorbent and drying the granular gas adsorbent, and the weight of the granular gas adsorbent before the impregnation treatment described above. Calculated from the difference from the weight.
(8) Average pore size (μm)
The average pore size was calculated by the bubble point method (based on ASTMF-316-86) using the "porous material automatic pore measurement system Perm-Porometer" (manufactured by PMI). The pore size distribution was measured using a measurement sample diameter of 25 mm, using Galwick for the non-woven fabric having a pore diameter of 180 μm or less as the measurement liquid, and using pure water for the non-woven fabric having a pore diameter of more than 180 μm.

上記条件の下に測定器によって自動計算して得られた結果のミーン・フロー・ポア・ダイアメータ(MEAN FLOW PORE DIAMETER)を平均孔径とした。測定は1検体から任意に5箇所をサンプリングして行い、その平均値を求めた。 The mean flow pore diammeter (MEAN FLOW PORE DIAMETER) obtained by automatic calculation by a measuring instrument under the above conditions was used as the average pore diameter. The measurement was carried out by arbitrarily sampling 5 points from one sample, and the average value was obtained.

(9)粒状ガス吸着剤や熱可塑性樹脂(バインダー)の含有量(g/m
粒状ガス吸着剤及び熱可塑性樹脂(バインダー)を混合攪拌した混合粉体を不織布に散布した後、さらに他の不織布を重ね合わせて熱プレスを行い一体化し、その総目付を測定した。この総目付から2枚の不織布の目付を差し引いた値に、粒状ガス吸着剤および熱可塑性樹脂(バインダー)の仕込み量比を掛けて、粒状ガス吸着剤や熱可塑性樹脂(バインダー)の含有量を算出した。
(9) Content of granular gas adsorbent and thermoplastic resin (binder) (g / m 2 )
A mixed powder obtained by mixing and stirring a granular gas adsorbent and a thermoplastic resin (binder) was sprayed on a non-woven fabric, and then another non-woven fabric was further laminated and heat-pressed to integrate them, and the total texture was measured. The content of the granular gas adsorbent and the thermoplastic resin (binder) is calculated by multiplying the value obtained by subtracting the grain of the two non-woven fabrics from this total grain by the charge amount ratio of the granular gas adsorbent and the thermoplastic resin (binder). Calculated.

(10)圧力損失(Pa)
平面状のエアフィルター用濾材を有効間口面積0.1mのホルダーにセットし、面風速6.5m/minで、上流側不織布から下流側不織布に向けて鉛直方向に空気を通過させ、フィルター上下流の圧力差をMODUS社製デジタルマノメータMA2−04P差圧計で測定した。測定は1検体から任意に5箇所をサンプリングして行い、その平均値をエアフィルター用濾材の圧力損失とした。また、粒状ガス吸着剤層の圧力損失は、風速6.5m/min時のエアフィルター用濾材全体の圧力損失から2枚の不織布シートの風速6.5m/min時の圧力損失を差し引いて計算した。尚、2枚の不織布シートの圧力損失は1検体から任意に5箇所をサンプリングし、その平均値を用いた。
(10) Pressure loss (Pa)
A flat filter medium for an air filter is set in a holder with an effective frontage area of 0.1 m 2 , and air is passed vertically from the upstream non-woven fabric to the downstream non-woven fabric at a surface wind speed of 6.5 m / min on the filter. The downstream pressure difference was measured with a MODUS digital manometer MA2-04P differential pressure gauge. The measurement was performed by arbitrarily sampling 5 points from one sample, and the average value was taken as the pressure loss of the filter medium for the air filter. The pressure loss of the granular gas adsorbent layer was calculated by subtracting the pressure loss of the two non-woven fabric sheets at a wind speed of 6.5 m / min from the pressure loss of the entire air filter filter medium at a wind speed of 6.5 m / min. .. The pressure loss of the two non-woven fabric sheets was arbitrarily sampled from one sample at five locations, and the average value was used.

(11)動的吸着性能(トルエン)
トルエンの初期除去効率と吸着容量は次のようにして測定した。平板状のエアフィルター用濾材を実験用のカラムに取り付け、カラムに温度23℃、湿度50%RHの空気を、上流側不織布から下流側不織布に向けて0.2m/secの速度で送風した。さらに上流側から、パーミエーターによりトルエンを揮発させ上流濃度80ppmとなるように添加し、エアフィルター用濾材の上流側と下流側とにおいてエアをサンプリングし、赤外吸光式連続モニターを使用してそれぞれのトルエン濃度を経時的に測定し、次式にて除去効率を算出した。
・トルエン除去効率(%)=[(C−C)/C]×100
:上流側の濃度(=80ppm)
C :下流側のトルエン濃度(ppm)
トルエン添加開始から2分後の除去効率を初期除去効率とした。さらに、2分後以降の除去効率を経時的に測定した。吸着量は上流側濃度(=80ppm)と2分後以降の各測定時間における除去効率から計算により算出し、上流側の濃度と下流側の濃度との差が5%になるまでの吸着量を積算し、吸着容量とした。
(11) Dynamic adsorption performance (toluene)
The initial removal efficiency and adsorption capacity of toluene were measured as follows. A flat plate-shaped filter medium for an air filter was attached to an experimental column, and air having a temperature of 23 ° C. and a humidity of 50% RH was blown from the upstream non-woven fabric to the downstream non-woven fabric at a speed of 0.2 m / sec. Further, from the upstream side, toluene is volatilized by a permeator and added so that the upstream concentration becomes 80 ppm, air is sampled on the upstream side and the downstream side of the filter medium for the air filter, and each is used by an infrared absorption type continuous monitor. Toluene concentration was measured over time, and the removal efficiency was calculated by the following formula.
-Toluene removal efficiency (%) = [(C 0- C) / C 0 ] x 100
C 0 : Concentration on the upstream side (= 80 ppm)
C: Toluene concentration on the downstream side (ppm)
The removal efficiency 2 minutes after the start of toluene addition was defined as the initial removal efficiency. Furthermore, the removal efficiency after 2 minutes was measured over time. The adsorption amount is calculated from the upstream concentration (= 80 ppm) and the removal efficiency at each measurement time after 2 minutes, and the adsorption amount until the difference between the upstream concentration and the downstream concentration becomes 5%. It was integrated and used as the adsorption capacity.

(12)動的吸着性能(アセトアルデヒド)
アセトアルデヒドの初期除去効率と吸着容量は次のようにして測定した。12cm角サイズの平板状のエアフィルター用濾材を10cm角サイズの実験用のダクトに取り付け、ダクトに温度23℃、湿度50%RHの空気を、上流側不織布から下流側不織布に向けて0.2m/secの速度で送風する。さらに上流側から、標準ガスボンベによりアセトアルデヒドを上流濃度10ppmとなるように添加し、エアフィルター用濾材の上流側と下流側とにおいてエアをサンプリングし、赤外吸光式連続モニターを使用してそれぞれのアセトアルデヒド濃度を経時的に測定し、次式にて除去効率を算出した。
・アセトアルデヒド除去効率(%)=[(C−C)/C]×100
:上流側のアセトアルデヒド濃度(=10ppm)
C:下流側のアセトアルデヒド濃度(ppm)
アセトアルデヒドの添加開始から100秒後の除去効率を初期除去効率とした。さらに100秒後以降の除去効率を経時的に測定した。吸着量は上流側濃度(=10ppm)と100秒後以降の各測定時間における除去効率から計算により算出し、上流側の濃度と下流側の濃度との差が5%になるまでの吸着量を積算し、吸着容量とした。
(12) Dynamic adsorption performance (acetaldehyde)
The initial removal efficiency and adsorption capacity of acetaldehyde were measured as follows. A 12 cm square flat air filter filter medium is attached to a 10 cm square experimental duct, and air with a temperature of 23 ° C and a humidity of 50% RH is blown into the duct 0.2 m from the upstream non-woven fabric to the downstream non-woven fabric. Blow at a speed of / sec. Further, from the upstream side, acetaldehyde is added to an upstream concentration of 10 ppm using a standard gas cylinder, air is sampled on the upstream side and the downstream side of the filter medium for an air filter, and each acetaldehyde is sampled using an infrared absorption type continuous monitor. The concentration was measured over time, and the removal efficiency was calculated by the following formula.
-Acetaldehyde removal efficiency (%) = [(C 0- C) / C 0 ] x 100
C 0 : Acetaldehyde concentration on the upstream side (= 10 ppm)
C: Downstream acetaldehyde concentration (ppm)
The removal efficiency 100 seconds after the start of addition of acetaldehyde was defined as the initial removal efficiency. Further, the removal efficiency after 100 seconds was measured over time. The adsorption amount is calculated from the upstream concentration (= 10 ppm) and the removal efficiency at each measurement time after 100 seconds, and the adsorption amount until the difference between the upstream concentration and the downstream concentration becomes 5%. It was integrated and used as the adsorption capacity.

(13)動的吸着性能(アンモニア)
アンモニアの初期除去効率と吸着容量は次のようにして測定した。12cm角サイズの平板状のエアフィルター用濾材を10cm角サイズの実験用のダクトに取り付け、ダクトに温度23℃、湿度50%RHの空気を、上流側不織布から下流側不織布に向けて0.2m/secの速度で送風した。さらに上流側から、標準ガスボンベによりアンモニアを上流濃度30ppmとなるように添加し、エアフィルター用濾材の上流側と下流側とにおいてエアをサンプリングし、赤外吸光式連続モニターを使用してそれぞれのアンモニア濃度を経時的に測定し、次式にて除去効率を算出した。
・アンモニア除去効率(%)=[(C−C)/C]×100
:上流側のアンモニア濃度(=30ppm)
C:下流側のアンモニア濃度(ppm)
アンモニアの添加開始から100秒後の除去効率を初期除去効率とした。さらに100秒後以降の除去効率を経時的に測定した。吸着量は上流側濃度(=30ppm)と100秒後以降の各測定時間における除去効率から計算により算出し、上流側の濃度と下流側の濃度との差が5%になるまでの吸着量を積算し、吸着容量とした。
(13) Dynamic adsorption performance (ammonia)
The initial removal efficiency and adsorption capacity of ammonia were measured as follows. A 12 cm square flat air filter filter medium is attached to a 10 cm square experimental duct, and air with a temperature of 23 ° C and a humidity of 50% RH is blown into the duct 0.2 m from the upstream non-woven fabric to the downstream non-woven fabric. The air was blown at a speed of / sec. Further, from the upstream side, ammonia is added to an upstream concentration of 30 ppm using a standard gas cylinder, air is sampled on the upstream side and the downstream side of the filter medium for an air filter, and each ammonia is sampled using an infrared absorption type continuous monitor. The concentration was measured over time, and the removal efficiency was calculated by the following formula.
-Ammonia removal efficiency (%) = [(C 0- C) / C 0 ] x 100
C 0 : Ammonia concentration on the upstream side (= 30 ppm)
C: Ammonia concentration on the downstream side (ppm)
The removal efficiency 100 seconds after the start of addition of ammonia was defined as the initial removal efficiency. Further, the removal efficiency after 100 seconds was measured over time. The adsorption amount is calculated from the upstream concentration (= 30 ppm) and the removal efficiency at each measurement time after 100 seconds, and the adsorption amount until the difference between the upstream concentration and the downstream concentration becomes 5%. It was integrated and used as the adsorption capacity.

(14)動的吸着性能((酢酸))
平板状のエアフィルター用濾材を実験用のカラムに取り付け、カラムに温度23℃、湿度50%RHの空気を、上流側不織布から下流側不織布に向けて0.2m/secの速度で送風した。さらに上流側から、パーミエーターにより酢酸を揮発させ上流濃度80ppmとなるように添加し、エアフィルター用濾材の上流側と下流側とにおいてエアをサンプリングし、赤外吸光式連続モニターを使用してそれぞれの酢酸濃度を経時的に測定し、次式にて除去効率を算出した。
・酢酸除去効率(%)=[(C−C)/C0]×100
:上流側の濃度(=80ppm)
C :下流側の酢酸濃度(ppm)
酢酸添加開始から4分後の除去効率を初期除去効率とした。さらに4分後以降の除去効率を経時的に測定した。吸着量は上流側濃度(=80ppm)と4分後以降の各測定時間における除去効率から計算により算出し、上流側の濃度と下流側の濃度との差が5%になるまでの吸着量を積算し、吸着容量とした。
(14) Dynamic adsorption performance ((acetic acid))
A flat plate-shaped filter medium for an air filter was attached to an experimental column, and air having a temperature of 23 ° C. and a humidity of 50% RH was blown from the upstream non-woven fabric to the downstream non-woven fabric at a speed of 0.2 m / sec. Further, from the upstream side, acetic acid is volatilized by a permeator and added so as to have an upstream concentration of 80 ppm, air is sampled on the upstream side and the downstream side of the filter medium for an air filter, and an infrared absorption type continuous monitor is used for each. The acetic acid concentration was measured over time, and the removal efficiency was calculated by the following formula.
Acetate removal efficiency (%) = [(C 0 -C) / C0] × 100
C 0 : Concentration on the upstream side (= 80 ppm)
C: Acetic acid concentration on the downstream side (ppm)
The removal efficiency 4 minutes after the start of acetic acid addition was defined as the initial removal efficiency. Further, the removal efficiency after 4 minutes was measured over time. The adsorption amount is calculated from the upstream concentration (= 80 ppm) and the removal efficiency at each measurement time after 4 minutes, and the adsorption amount until the difference between the upstream concentration and the downstream concentration becomes 5%. It was integrated and used as the adsorption capacity.

[総合判定]
エアフィルター用濾材としての評価は以下のようにして判定した。
◎(非常に優れている):以下の「○」の基準を満たし、かつ次の(i)または(ii)を満たす。(i)、(ii)は、活性炭では除去しづらい極性ガス成分であるアセトアルデヒド、アンモニアの除去能力を示している
(i):アセトアルデヒドの初期除去効率が40%以上かつ吸着容量が0.30g/m以上
(ii):アンモニアの初期除去効率が50%以上かつ吸着容量が0.50g/m以上
○(優れている):圧力損失が20Pa未満、
×(劣っている):圧力損失が20Pa未満、トルエン初期除去効率が75%以上、トルエン吸着容量が20g/m以上、のいずれかを満たさない。
[Comprehensive judgment]
The evaluation as a filter medium for an air filter was judged as follows.
◎ (Very excellent): Satisfy the following criteria of “○” and satisfy the following (i) or (ii). (I) and (ii) show the ability to remove acetaldehyde and ammonia, which are polar gas components that are difficult to remove with activated carbon. (I): The initial removal efficiency of acetaldehyde is 40% or more and the adsorption capacity is 0.30 g / m 2 or more (ii): Initial removal efficiency of ammonia is 50% or more and adsorption capacity is 0.50 g / m 2 or more ○ (excellent): Pressure loss is less than 20 Pa,
X (inferior): The pressure loss is less than 20 Pa, the initial toluene removal efficiency is 75% or more, and the toluene adsorption capacity is 20 g / m 2 or more.

[不織布]
各実施例、比較例に使用した不織布は、以下のようにして作製した。
[Non-woven fabric]
The non-woven fabrics used in each Example and Comparative Example were produced as follows.

(不織布a)
湿式抄紙方法により、ポリエステル繊維とビニロン繊維から構成された目付35g/mの繊維集積体を作製した。この繊維集積体をスチレンアクリル重合体と難燃剤(リン酸メラミン)の分散液に含浸後、乾燥熱処理して目付け50g/m、厚み0.38mmの不織布aを作製した。作製した不織布aの平均孔径は152.5μm、圧縮率は5.3%、風速6.5m/min時の圧力損失は1.0Paであった。
(Non-woven fabric a)
A fiber aggregate having a basis weight of 35 g / m 2 composed of polyester fibers and vinylon fibers was produced by a wet papermaking method. This fiber aggregate was impregnated with a dispersion of a styrene-acrylic polymer and a flame retardant (melamine phosphate) and then subjected to a dry heat treatment to prepare a non-woven fabric a having a texture of 50 g / m 2 and a thickness of 0.38 mm. The produced nonwoven fabric a had an average pore diameter of 152.5 μm, a compressibility of 5.3%, and a pressure loss at a wind speed of 6.5 m / min of 1.0 Pa.

(不織布b)
熱可塑性樹脂として融点163℃のポリプロピレン樹脂を用い、帯電安定剤を添加したポリプロピレン樹脂組成物を原料とした。このポリプロピレン樹脂組成物から、押出機およびギヤポンプ、メルトブロー口金、圧縮空気発生装置および空気加熱機、捕集コンベア、および巻取機からなる装置を用いて、メルトブロー不織布を製造した。
メルトブロー繊維流を捕集ドラムに対し、シート進行方向側に傾けて捕集するように噴射流量を調整しシート化した後、純水サクション法によってエレクトレット加工を行い、目付けが25g/m、平均繊維径が8.2μm、厚みが0.20mmの不織布bを得た。作製した不織布bの平均孔径は85.0μm、圧縮率は10.0%、風速6.5m/min時の圧力損失は5.0Paであった。
(Non-woven fabric b)
A polypropylene resin having a melting point of 163 ° C. was used as the thermoplastic resin, and a polypropylene resin composition to which a charge stabilizer was added was used as a raw material. From this polypropylene resin composition, a melt blow nonwoven fabric was produced using an apparatus including an extruder and a gear pump, a melt blow mouthpiece, a compressed air generator and an air heater, a collection conveyor, and a winder.
After adjusting the injection flow rate so that the melt blow fiber flow is tilted toward the sheet traveling direction to collect the melt blow fiber flow to form a sheet, electret processing is performed by the pure water suction method, and the grain size is 25 g / m 2 , average. A non-woven fabric b having a fiber diameter of 8.2 μm and a thickness of 0.20 mm was obtained. The produced nonwoven fabric b had an average pore diameter of 85.0 μm, a compressibility of 10.0%, and a pressure loss at a wind speed of 6.5 m / min of 5.0 Pa.

(不織布c)
湿式抄紙方法により、ポリエステル繊維とビニロン繊維から構成された目付40g/mの繊維集積体を作製した。この繊維集積体をスチレンアクリル重合体と難燃剤(リン酸メラミン)の分散液に含浸後、乾燥熱処理して目付け55g/m、厚み0.42mmの不織布aを作製した。作製した不織布aの平均孔径は125.5μm、圧縮率は7.1%、風速6.5m/min時の圧力損失は2.0Paであった。
(Non-woven fabric c)
A fiber aggregate having a basis weight of 40 g / m 2 composed of polyester fibers and vinylon fibers was produced by a wet papermaking method. This fiber aggregate was impregnated with a dispersion of a styrene-acrylic polymer and a flame retardant (melamine phosphate) and then subjected to a dry heat treatment to prepare a non-woven fabric a having a grain size of 55 g / m 2 and a thickness of 0.42 mm. The produced nonwoven fabric a had an average pore diameter of 125.5 μm, a compressibility of 7.1%, and a pressure loss at a wind speed of 6.5 m / min of 2.0 Pa.

(不織布d)
熱可塑性樹脂として、融点163℃のポリプロピレン樹脂を用い、帯電安定剤を添加したポリプロピレン樹脂組成物を原料とした。このポリプロピレン樹脂組成物から、押出機およびギヤポンプ、メルトブロー口金、圧縮空気発生装置および空気加熱機、捕集コンベア、および巻取機からなる装置を用いて、メルトブロー不織布を製造した。
メルトブロー繊維流を捕集ドラムに対し、シート進行方向側に傾けて捕集するように噴射流量を調整しシート化した後、純水サクション法によってエレクトレット加工を行い、目付けが20g/m、平均繊維径が4.2μm、厚みが0.17mmの不織布dを得た。作製した不織布dの平均孔径は35.5μm、圧縮率は11.8%、風速6.5m/min時の圧力損失は8.0Paであった。
(Non-woven fabric d)
A polypropylene resin having a melting point of 163 ° C. was used as the thermoplastic resin, and a polypropylene resin composition to which a charge stabilizer was added was used as a raw material. From this polypropylene resin composition, a melt blow nonwoven fabric was produced using an apparatus including an extruder and a gear pump, a melt blow mouthpiece, a compressed air generator and an air heater, a collection conveyor, and a winder.
After adjusting the injection flow rate so that the melt blow fiber flow is tilted toward the sheet traveling direction to collect the melt blow fiber flow to form a sheet, electret processing is performed by the pure water suction method, and the grain size is 20 g / m 2 , average. A non-woven fabric d having a fiber diameter of 4.2 μm and a thickness of 0.17 mm was obtained. The produced nonwoven fabric d had an average pore diameter of 35.5 μm, a compressibility of 11.8%, and a pressure loss at a wind speed of 6.5 m / min at 8.0 Pa.

(不織布e)
75g/m目付のPETスパンボンド不織布を、比表面積1200m/gの粉末状の活性炭、難燃剤のリン酸メラミンおよびスチレンアクリルバインダーを53.6:28.6:17.8の質量比となるよう純水に均一分散した水溶液中に含浸させた後に、乾燥することで目付78g/mの不織布シートeを作製した。作製した不織布eの平均孔径は125.5μm、圧縮率は6.8%、風速6.5m/min時の圧力損失は3.5Paであった。
(Non-woven fabric e)
A PET spunbonded non-woven fabric with a 75 g / m 2 grain, a powdered activated carbon with a specific surface area of 1200 m 2 / g, a flame retardant melamine phosphate and a styrene acrylic binder with a mass ratio of 53.6: 28.6: 17.8. A non-woven fabric sheet e having a specific surface area of 78 g / m 2 was prepared by impregnating it in an aqueous solution uniformly dispersed in pure water and then drying it. The produced nonwoven fabric e had an average pore diameter of 125.5 μm, a compressibility of 6.8%, and a pressure loss at a wind speed of 6.5 m / min of 3.5 Pa.

作製した不織布の特性を表1にまとめた。 The characteristics of the prepared non-woven fabric are summarized in Table 1.

[粒状ガス吸着剤]
各実施例、比較例に使用した粒状ガス吸着剤は、以下のようにして作製した。
[Granular gas adsorbent]
The granular gas adsorbent used in each Example and Comparative Example was prepared as follows.

[活性炭A]
JISZ8815法 による平均粒子径190μm、比表面積1650m/g(BET法)、平均細孔径1.8nm、硬度97.8%(JISK1474法)、pH10.2のヤシ殻活性炭を活性炭Aとした。
[Activated carbon A]
Activated carbon A was a coconut shell activated carbon having an average particle size of 190 μm, a specific surface area of 1650 m 2 / g (BET method), an average pore size of 1.8 nm, a hardness of 97.8% (JISK1474 method), and a pH of 10.2 according to the JISZ8815 method.

[活性炭B]
(活性炭)
JISZ8815法 による平均粒子径220μm、比表面積1200m/g(BET法)、平均細孔径1.7nm、硬度98.0%(JISK1474法)、pH9.8のヤシ殻活性炭を用いた。
(付着薬剤)
塩基性ガス吸着用にナカライテスク社製のリン酸を用いた。
(活性炭Bの作製)
上記リン酸を用い薬液濃度40%に調整したリン酸溶液30.0質量部を活性炭100.0質量部に対しスプレーにて噴霧して付着した後に110℃で20時間乾燥し、活性炭100.0質量部に対し、リン酸が12.0質量部付着した活性炭Bを得た。
[Activated carbon B]
(Activated carbon)
A coconut shell activated carbon having an average particle size of 220 μm, a specific surface area of 1200 m 2 / g (BET method), an average pore size of 1.7 nm, a hardness of 98.0% (JISK1474 method), and a pH of 9.8 according to the JISZ8815 method was used.
(Adhesive drug)
Phosphoric acid manufactured by Nacalai Tesque was used for adsorbing basic gas.
(Preparation of activated carbon B)
30.0 parts by mass of a phosphoric acid solution adjusted to a chemical concentration of 40% using the above phosphoric acid was sprayed onto 100.0 parts by mass of activated carbon to adhere, and then dried at 110 ° C. for 20 hours to obtain 100.0 parts of activated carbon. Activated carbon B to which 12.0 parts by mass of phosphoric acid was attached was obtained with respect to parts by mass.

[活性炭C]
(活性炭)
JISZ8815法 による平均粒子径190μm、比表面積1200m/g(BET法)、平均細孔径1.7nm、硬度98.0%(JISK1474法)、pH9.8のヤシ殻活性炭を用いた。
(付着薬剤)
酸性ガス吸着用にナカライテスク社製の炭酸水素ナトリウムを用いた。
(活性炭Cの作製)
記炭酸水素ナトリウム8.0質量部を純水92.0質量部に完全に溶解した水溶液を調整した。その後、この水溶液50.0質量部を上記活性炭100.0質量部に対しスプレーにて噴霧して付着した後に110℃で5時間乾燥し、活性炭100.0質量部に対し、炭酸水素ナトリウムが4.0質量部付着した活性炭Cを得た。
[Activated carbon C]
(Activated carbon)
A coconut shell activated carbon having an average particle size of 190 μm, a specific surface area of 1200 m 2 / g (BET method), an average pore size of 1.7 nm, a hardness of 98.0% (JISK1474 method), and a pH of 9.8 according to the JISZ8815 method was used.
(Adhesive drug)
Sodium hydrogen carbonate manufactured by Nacalai Tesque was used for acid gas adsorption.
(Preparation of activated carbon C)
An aqueous solution was prepared in which 8.0 parts by mass of sodium hydrogen carbonate was completely dissolved in 92.0 parts by mass of pure water. Then, 50.0 parts by mass of this aqueous solution was sprayed onto 100.0 parts by mass of the activated carbon and adhered, and then dried at 110 ° C. for 5 hours. Sodium hydrogen carbonate was added to 100.0 parts by mass of the activated carbon. Activated carbon C adhering to 0.0 parts by mass was obtained.

[活性炭D]
JISZ8815法 による平均粒子径170μm、比表面積1650m/g(BET法)、平均細孔径1.8nm、硬度97.8%(JISK1474法)、pH10.0のヤシ殻活性炭を活性炭Dとした。
[Activated carbon D]
Activated carbon D was a coconut shell activated carbon having an average particle size of 170 μm, a specific surface area of 1650 m 2 / g (BET method), an average pore size of 1.8 nm, a hardness of 97.8% (JISK1474 method), and a pH of 10.0 according to the JISZ8815 method.

[活性炭E]
JISZ8815法 による平均粒子径220μm、比表面積1200m/g(BET法)、平均細孔径1.7nm、硬度98.0%(JISK1474法)、pH9.4のヤシ殻活性炭を活性炭Eとした。
[Activated carbon E]
Activated carbon E was a coconut shell activated carbon having an average particle size of 220 μm, a specific surface area of 1200 m 2 / g (BET method), an average pore size of 1.7 nm, a hardness of 98.0% (JISK1474 method), and a pH of 9.4 according to the JISZ8815 method.

[活性炭F]
JISZ8815法 による平均粒子径400μm、比表面積1100m/g(BET法)、平均細孔径1.6nm、硬度97.2%(JISK1474法)、pH9.4のヤシ殻活性炭を活性炭Fとした。
[Activated carbon F]
Activated carbon F was a coconut shell activated carbon having an average particle size of 400 μm, a specific surface area of 1100 m 2 / g (BET method), an average pore size of 1.6 nm, a hardness of 97.2% (JISK1474 method), and a pH of 9.4 according to the JISZ8815 method.

[アルデヒド吸着剤G]
(多孔質シリカ)
JISZ8815法 による平均粒子径200μm、比表面積480m/g(BET法)、平均細孔径12.0nmの富士シリシア社製の多孔質シリカを用いた。
(付着薬剤)
日本ファインケム社製のアジピン酸ジヒドラジドを用いた。
(アルデヒド吸着剤Gの作製)
上記アジピン酸ジヒドラジド8.0質量部を純水92.0質量「部」に完全に溶解したアジピン酸ジヒドラジド8.0%濃度水溶液を調整した。その後、この水溶液80.0質量部を上記多孔質シリカ100.0質量部に対しスプレーにて噴霧して付着した後に110℃で4時間乾燥し、多孔質シリカ100.0質量部に対し、アジピン酸ジヒドラジドが6.4質量部付着したアルデヒド吸着剤Gを得た。
[Aldehyde Adsorbent G]
(Porous silica)
Porous silica manufactured by Fuji Silysia Chemical Ltd. with an average particle size of 200 μm, a specific surface area of 480 m 2 / g (BET method), and an average pore size of 12.0 nm according to the JISZ8815 method was used.
(Adhesive drug)
Adipic acid dihydrazide manufactured by Japan Finechem Company, Inc. was used.
(Preparation of aldehyde adsorbent G)
An 8.0% aqueous solution of adipic acid dihydrazide was prepared by completely dissolving 8.0 parts by mass of the above adipic acid dihydrazide in 92.0 mass "parts" of pure water. Then, 80.0 parts by mass of this aqueous solution was sprayed onto 100.0 parts by mass of the porous silica to adhere, and then dried at 110 ° C. for 4 hours. An aldehyde adsorbent G to which 6.4 parts by mass of acid dihydrazide was attached was obtained.

作製した粒状ガス吸着剤の特性を表2にまとめた。 The characteristics of the prepared granular gas adsorbent are summarized in Table 2.

[実施例1]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭Aと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを75:30(活性炭A:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量105g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Example 1]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Activated carbon A and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) as a hot melt adhesive are weighed at a mass ratio of 75:30 (activated carbon A: low density polyethylene) and put into a shaker. After stirring, the mixture was uniformly sprayed on the non-woven fabric a so as to have a total amount of 105 g / m 2. With the hot melt adhesive melted in a drying oven at 150 ° C. A filter medium for a filter was prepared.

[実施例2]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭Aおよびアルデヒド吸着剤Gを含む粒状ガス吸着剤と、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを75:15:35(活性炭A:アルデヒド吸着剤G:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量125g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Example 2]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Granular gas adsorbent containing activated carbon A and aldehyde adsorbent G and low-density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) as a hot melt adhesive were used at 75:15:35 (activated carbon A: aldehyde). Weighed by the mass ratio of adsorbent G: low density polyethylene), stirred with a shaker, and then uniformly sprayed on the non-woven fabric a so as to have a total amount of 125 g / m 2. Hot melt adhesive in a drying oven at 150 ° C. A filter medium for an air filter was prepared by covering the non-woven fabric b with the non-woven fabric b in a melted state and heat-pressing.

[実施例3]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭A、活性炭Bおよびアルデヒド吸着剤Gを含む粒状ガス吸着剤と、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))と、を55:10:10:30(活性炭A:活性炭B:アルデヒド吸着剤G:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量105g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Example 3]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Granular gas adsorbent containing activated carbon A, activated carbon B and aldehyde adsorbent G, and low-density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive at 55:10:10: 30 (activated carbon A: activated carbon B: aldehyde adsorbent G: low-density polyethylene) was weighed, stirred with a shaker, and then uniformly sprayed on the non-woven fabric a so as to have a total amount of 105 g / m 2. In a state where the hot melt adhesive was melted in a drying oven at 150 ° C., a non-woven fabric b was placed over the melted hot melt adhesive and heat pressed to prepare a filter medium for an air filter.

[実施例4]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭Aと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを55:30(活性炭A:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量85g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Example 4]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Activated carbon A and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) as a hot melt adhesive are weighed at a mass ratio of 55:30 (activated carbon A: low density polyethylene) and put into a shaker. After stirring, the mixture was uniformly sprayed on the non-woven fabric a so as to have a total amount of 85 g / m 2. With the hot melt adhesive melted in a drying oven at 150 ° C. A filter medium for a filter was prepared.

[実施例5]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭Aとおよび活性炭Bを含む粒状ガス吸着剤と、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを80:20:30(活性炭A:活性炭B:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量130g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Example 5]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Granular gas adsorbent containing activated carbon A and activated carbon B, and low-density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive at 80:30 (activated carbon A: activated carbon B). : Low density polyethylene) was weighed, stirred with a shaker, and then uniformly sprayed on the non-woven fabric a so as to have a total amount of 130 g / m 2. The hot melt adhesive was melted in a drying oven at 150 ° C. A filter medium for an air filter was prepared by covering it with a non-woven fabric b and heat-pressing it.

[実施例6]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭Aとおよび活性炭Cを含む粒状ガス吸着剤と、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを60:15:30(活性炭A:活性炭C:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量105g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Example 6]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Granular gas adsorbent containing activated carbon A and activated carbon C, and low-density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive at 60:15:30 (activated carbon A: activated carbon C) : Low density polyethylene) was weighed, stirred with a shaker, and then uniformly sprayed on the non-woven fabric a so as to have a total amount of 105 g / m 2. The hot melt adhesive was melted in a drying oven at 150 ° C. A filter medium for an air filter was prepared by covering it with a non-woven fabric b and heat-pressing it.

[実施例7]
不織布cを上流側不織布、不織布dを下流側不織布に用いた。活性炭Dと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを100:30(活性炭D:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布cの上に総量130g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布dをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Example 7]
The non-woven fabric c was used as the upstream non-woven fabric, and the non-woven fabric d was used as the downstream non-woven fabric. Activated carbon D and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) as a hot melt adhesive are weighed at a mass ratio of 100:30 (activated carbon D: low density polyethylene) and put into a shaker. After stirring, the mixture was uniformly sprayed on the non-woven fabric c so as to have a total amount of 130 g / m 2. With the hot melt adhesive melted in a drying oven at 150 ° C. A filter medium for a filter was prepared.

[比較例1]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭Eと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを150:50(活性炭E:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量200g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Comparative Example 1]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Activated carbon E and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) as a hot melt adhesive are weighed at a mass ratio of 150:50 (activated carbon E: low density polyethylene) and put into a shaker. After stirring, the mixture was uniformly sprayed on the non-woven fabric a so as to have a total amount of 200 g / m 2. With the hot melt adhesive melted in a drying oven at 150 ° C. A filter medium for a filter was prepared.

[比較例2]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭Eと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを200:65(活性炭E:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量265g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布をかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Comparative Example 2]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Activated carbon E and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) as a hot melt adhesive are weighed at a mass ratio of 200:65 (activated carbon E: low density polyethylene) and put into a shaker. After stirring, the mixture was uniformly sprayed on the non-woven fabric a so as to have a total amount of 265 g / m 2. With the hot melt adhesive melted in a drying oven at 150 ° C. A filter medium for use was prepared.

[比較例3]
不織布aを上流側不織布、不織布bを下流側不織布に用いた。活性炭Fと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを55:25(活性炭F:低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、不織布aの上に総量80g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布をかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Comparative Example 3]
The non-woven fabric a was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Activated carbon F and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) as a hot melt adhesive are weighed at a mass ratio of 55:25 (activated carbon F: low density polyethylene) and put into a shaker. After stirring, the mixture was uniformly sprayed on the non-woven fabric a so as to have a total amount of 80 g / m 2. With the hot melt adhesive melted in a drying oven at 150 ° C. A filter medium for use was prepared.

[比較例4]
不織布eを上流側不織布、不織布bを下流側不織布に用いた。不織布eの上に低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))を7g/mとなるように均一に散布した。130℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスしてエアフィルター用濾材を作製した。
[Comparative Example 4]
The non-woven fabric e was used as the upstream non-woven fabric, and the non-woven fabric b was used as the downstream non-woven fabric. Low-density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) was uniformly sprayed on the non-woven fabric e so as to have a concentration of 7 g / m 2. The hot melt adhesive was melted in a drying oven at 130 ° C. In this state, a non-woven fabric b was placed over the fabric and heat-pressed to prepare a filter medium for an air filter.

各実施例、比較例で作製したエアフィルター用濾材の構成、物性、性能を表3、4に示す。なお、表3、4中の「吸着剤平均粒子径/吸着剤層厚み」の項目は、「粒状ガス吸着剤の平均粒子径/粒状ガス吸着剤を含む層の厚み」のことである。 Tables 3 and 4 show the configurations, physical characteristics, and performance of the filter media for air filters produced in each Example and Comparative Example. The item of "average particle size of adsorbent / thickness of adsorbent layer" in Tables 3 and 4 is "average particle size of granular gas adsorbent / thickness of layer containing granular gas adsorbent".

[各実施例、比較例の評価]
実施例1〜7のエアフィルター用濾材は、いずれも粒状ガス吸着剤の平均粒子径と粒状ガス吸着剤層の厚みとの比が0.85以上であり、粒状ガス吸着剤層中で粒状ガス吸着剤が重なり合うことなく並んでいることを示していた。また、いずれも粒状ガス吸着剤層の圧力損失が4.0Pa以上であり、粒状ガス吸着剤層中で粒状ガス吸着剤が緻密に並んでいることを示していた。一方で、いずれの実施例も、粒状ガス吸着剤層の圧力損失は4.0Pa以上ではあるものの、過度に高くはないので、エアフィルター用濾材全体の圧力損失は20Pa未満で低くなった。さらに、いずれの実施例も、粒状ガス吸着剤の平均粒子径が250μm以下であるので、対象ガスとの接触効率が高くなり、有機ガスの代表成分であるトルエンについて、初期除去効率が75%以上、吸着容量が20g/m以上で優れていた。
[Evaluation of each example and comparative example]
In each of the filter media for air filters of Examples 1 to 7, the ratio of the average particle size of the granular gas adsorbent to the thickness of the granular gas adsorbent layer is 0.85 or more, and the granular gas in the granular gas adsorbent layer It was shown that the adsorbents were lined up without overlapping. Further, in each case, the pressure loss of the granular gas adsorbent layer was 4.0 Pa or more, indicating that the granular gas adsorbents were densely arranged in the granular gas adsorbent layer. On the other hand, in each of the examples, although the pressure loss of the granular gas adsorbent layer was 4.0 Pa or more, it was not excessively high, so that the pressure loss of the entire filter medium for the air filter was low at less than 20 Pa. Further, in each of the examples, since the average particle size of the granular gas adsorbent is 250 μm or less, the contact efficiency with the target gas is high, and the initial removal efficiency of toluene, which is a representative component of the organic gas, is 75% or more. The adsorption capacity was 20 g / m 2 or more, which was excellent.

上記に加え、実施例7のエアフィルター用濾材は、粒状ガス吸着剤の平均粒子径が170μmと非常に細かいので、粒状ガス吸着剤層の圧力損失は7.0Paとやや高くなったが、対象ガスとの接触効率が高くなり、トルエンの初期除去効率は90%を超え、吸着容量も優れていた。 In addition to the above, in the filter medium for the air filter of Example 7, the average particle size of the granular gas adsorbent was as fine as 170 μm, so that the pressure loss of the granular gas adsorbent layer was slightly high at 7.0 Pa. The contact efficiency with the gas was high, the initial removal efficiency of toluene exceeded 90%, and the adsorption capacity was also excellent.

実施例2のエアフィルター用濾材は、粒状ガス吸着剤として、活性炭に加えてアルデヒド吸着剤を併用していたので、アセトアルデヒドの初期除去効率と吸着容量がともに優れていた。 In the filter medium for an air filter of Example 2, since an aldehyde adsorbent was used in combination with activated carbon as a granular gas adsorbent, both the initial removal efficiency of acetaldehyde and the adsorption capacity were excellent.

実施例3のエアフィルター用濾材は、粒状ガス吸着剤として、活性炭に加えてアルデヒド吸着剤、リン酸を添着した活性炭を併用していたので、アセトアルデヒドおよびアンモニアの初期除去効率と吸着容量がともに優れていた。 In the filter medium for the air filter of Example 3, since activated carbon impregnated with an aldehyde adsorbent and phosphoric acid was used in combination as the granular gas adsorbent, both the initial removal efficiency of acetaldehyde and ammonia and the adsorption capacity were excellent. Was there.

実施例5のエアフィルター用濾材は、粒状ガス吸着剤として、活性炭に加えて塩基性ガスを除去する目的でリン酸を添着した活性炭を併用していたので、アンモニアの初期除去効率と吸着容量がともに優れていた。 In the filter medium for an air filter of Example 5, activated carbon impregnated with phosphoric acid was used in combination as a granular gas adsorbent for the purpose of removing basic gas in addition to activated carbon, so that the initial removal efficiency and adsorption capacity of ammonia were improved. Both were excellent.

実施例6のエアフィルター用濾材は、粒状ガス吸着剤として、活性炭に加えて酸性ガスを除去する目的で炭酸水素ナトリウムを添着した活性炭を併用していたので、酢酸の初期除去効率と吸着容量がともに優れていた。 In the filter medium for the air filter of Example 6, activated carbon impregnated with sodium hydrogencarbonate was used as the granular gas adsorbent in addition to activated carbon for the purpose of removing acid gas, so that the initial removal efficiency and adsorption capacity of acetic acid were improved. Both were excellent.

比較例1と比較例2のエアフィルター用濾材は、粒状ガス吸着剤である活性炭の含有量が、それぞれ150g/m、200g/mと多いため、トルエンの初期除去効率と吸着容量はともに優れていた。しかし、粒状ガス吸着剤の平均粒子径と粒状ガス吸着剤層の厚みとの比が、それぞれ0.79、0.71であり、粒状ガス吸着剤が重なっていたためか、粒状ガス吸着剤層の圧力損失が、それぞれ19.0Pa、25.0Paと高く、エアフィルター用濾材の圧力損失も高くなった。 Air filter for medium of Comparative Example 1 and Comparative Example 2, the content of the activated carbon is particulate gas adsorbent, for each lot and 150g / m 2, 200g / m 2, an initial removal efficiency and adsorption capacity of toluene together It was excellent. However, the ratios of the average particle size of the granular gas adsorbent to the thickness of the granular gas adsorbent layer were 0.79 and 0.71, respectively, and probably because the granular gas adsorbents overlapped, the granular gas adsorbent layer The pressure loss was as high as 19.0 Pa and 25.0 Pa, respectively, and the pressure loss of the filter medium for the air filter was also high.

比較例3のエアフィルター用濾材は、粒状ガス吸着剤として平均粒子径が400μmと大きい活性炭を使用しているため、対象ガスと粒状ガス吸着剤との接触効率が低くなり、ガス吸着剤の含有量は実施例4と同じであるが、トルエンの初期除去効率と吸着容量が低くなった。 Since the filter medium for the air filter of Comparative Example 3 uses activated carbon having a large average particle diameter of 400 μm as the granular gas adsorbent, the contact efficiency between the target gas and the granular gas adsorbent becomes low, and the gas adsorbent is contained. The amount was the same as in Example 4, but the initial removal efficiency and adsorption capacity of toluene were lower.

比較例4のエアフィルター用濾材は、粉末状の活性炭をバインダーで固着した構成であるが、圧力損失との兼ね合いから多くの活性炭を添着することはできず、いずれのガスについても初期除去効率と吸着容量が低くなった。 The filter medium for an air filter of Comparative Example 4 has a structure in which powdered activated carbon is fixed with a binder, but a large amount of activated carbon cannot be impregnated in consideration of pressure loss, and the initial removal efficiency of any gas is improved. The adsorption capacity became low.

Figure 2021112694
Figure 2021112694

Figure 2021112694
Figure 2021112694

Figure 2021112694
Figure 2021112694

Figure 2021112694
Figure 2021112694

本発明によるエアフィルター用濾材およびエアフィルターはエアフィルターのようなエアが流通している動的な条件下において脱臭処理速度が飛躍的に優れ、かつ吸着容量にも優れるため、特に家庭用空気清浄機や自動車および鉄道車両等空気を清浄化するためのエアフィルターとして好ましく使用される。 The filter medium for an air filter and the air filter according to the present invention have a dramatically excellent deodorizing treatment speed and an excellent adsorption capacity under dynamic conditions such as an air filter in which air is flowing. It is preferably used as an air filter for purifying air in aircraft, automobiles, railroad vehicles, etc.

Claims (9)

2枚の不織布シートの間に粒状ガス吸着剤を含む層を有するエアフィルター用濾材であって、
前記粒状ガス吸着剤の平均粒子径が250μm以下であり、
前記粒状ガス吸着剤の平均粒子径(μm)と前記粒状ガス吸着剤を含む層の厚み(μm)との比(粒状ガス吸着剤の平均粒子径/粒状ガス吸着剤を含む層の厚み)が0.85以上であり、
前記粒状ガス吸着剤を含む層の圧力損失が風速6.5m/minで4.0Pa以上である、エアフィルター用濾材。
A filter medium for an air filter having a layer containing a granular gas adsorbent between two non-woven fabric sheets.
The average particle size of the granular gas adsorbent is 250 μm or less, and the particle size is 250 μm or less.
The ratio of the average particle size (μm) of the granular gas adsorbent to the thickness (μm) of the layer containing the granular gas adsorbent (average particle size of the granular gas adsorbent / thickness of the layer containing the granular gas adsorbent) 0.85 or more,
A filter medium for an air filter, wherein the pressure loss of the layer containing the granular gas adsorbent is 4.0 Pa or more at a wind speed of 6.5 m / min.
前記粒状ガス吸着剤の平均粒子径(μm)と前記粒状ガス吸着剤を含む層の厚み(μm)との比(粒状ガス吸着剤の平均粒子径/粒状ガス吸着剤を含む層の厚み)が1.35以下である、請求項1のエアフィルター用濾材。 The ratio of the average particle size (μm) of the granular gas adsorbent to the thickness (μm) of the layer containing the granular gas adsorbent (average particle size of the granular gas adsorbent / thickness of the layer containing the granular gas adsorbent) The filter medium for an air filter according to claim 1, which is 1.35 or less. 前記2枚の不織布シートの圧縮率が、それぞれ20%以下である、請求項1または2のエアフィルター用濾材。 The filter medium for an air filter according to claim 1 or 2, wherein the compressibility of the two non-woven fabric sheets is 20% or less, respectively. 前記エアフィルター用濾材の全体の厚みが0.90mm以下である、請求項1〜3のいずれかのエアフィルター用濾材。 The air filter filter medium according to any one of claims 1 to 3, wherein the total thickness of the air filter filter medium is 0.90 mm or less. 前記粒状ガス吸着剤の量が40〜120g/mの範囲内である、請求項1〜4のいずれかのエアフィルター用濾材。 The filter medium for an air filter according to any one of claims 1 to 4, wherein the amount of the granular gas adsorbent is in the range of 40 to 120 g / m 2. 前記粒状ガス吸着剤が比表面積1100m/g以上の粒状活性炭を含む、請求項1〜5のいずれかのエアフィルター用濾材。 The filter medium for an air filter according to any one of claims 1 to 5, wherein the granular gas adsorbent contains granular activated carbon having a specific surface area of 1100 m 2 / g or more. 前記2枚の不織布シートの平均孔径が、それぞれ20μm〜200μmの範囲内である、請求項1〜6のいずれかのエアフィルター用濾材。 The filter medium for an air filter according to any one of claims 1 to 6, wherein the average pore diameters of the two non-woven fabric sheets are in the range of 20 μm to 200 μm, respectively. 前記2枚の不織布シートの少なくとも一方がエレクトレット不織布である、請求項1〜7のいずれかのエアフィルター用濾材。 The filter medium for an air filter according to any one of claims 1 to 7, wherein at least one of the two non-woven fabric sheets is an electret non-woven fabric. 請求項1〜8のいずれかのエアフィルター用濾材を用いたエアフィルターユニット。 An air filter unit using the air filter filter medium according to any one of claims 1 to 8.
JP2020005766A 2020-01-17 2020-01-17 Filter medium for air filter, and air filter unit using the same Pending JP2021112694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020005766A JP2021112694A (en) 2020-01-17 2020-01-17 Filter medium for air filter, and air filter unit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020005766A JP2021112694A (en) 2020-01-17 2020-01-17 Filter medium for air filter, and air filter unit using the same

Publications (1)

Publication Number Publication Date
JP2021112694A true JP2021112694A (en) 2021-08-05

Family

ID=77076389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020005766A Pending JP2021112694A (en) 2020-01-17 2020-01-17 Filter medium for air filter, and air filter unit using the same

Country Status (1)

Country Link
JP (1) JP2021112694A (en)

Similar Documents

Publication Publication Date Title
JP5428857B2 (en) Deodorizing fiber structure and air filter
JP6988477B2 (en) Filter media for air purification
JP5277534B2 (en) Fiber sheet, method for producing the same, and air filter
KR102129457B1 (en) Gas adsorbent, gas adsorbing sheet, and air filter
WO2003026794A1 (en) Adsorptive sheet and filter for clarifying air
JP7188383B2 (en) Gas adsorbent, deodorant fiber sheet, and method for producing gas adsorbent
JP2008138300A (en) Fibrous sheet, method for producing the same, deodorant, and air filter
JP2013094367A (en) Air cleaning filter material
JP2015029770A (en) Air cleaning filter medium
JP2010253409A (en) Gas adsorbent, filter medium using the same and air filter
JP2018167155A (en) Adsorbent
JP2008206550A (en) Absorbent sheet
JP2004050151A (en) Gas purifying material
JP6194579B2 (en) Air cleaning media
WO2023054012A1 (en) Gas adsorbent and gas adsorption sheet, filter medium, and air filter using same
JP2013220375A (en) Filter medium
JP2014100654A (en) Filter material for air cleaning, and filter unit
JP2021112694A (en) Filter medium for air filter, and air filter unit using the same
JP2015044183A (en) Filter medium for deodorization filter
WO2020203508A1 (en) Gas adsorbent
JP7017026B2 (en) Deodorizing filter media and filters
JP4935177B2 (en) Adsorbent sheet
CN113795323A (en) Filter medium for filter and filter
JP2015164710A (en) air cleaning filter medium
JP2000157812A (en) Adsorptive sheet and air cleaning filter