JP2021110542A - Distance setting device among arrangements of measurement terminals and distance setting method among arrangements - Google Patents

Distance setting device among arrangements of measurement terminals and distance setting method among arrangements Download PDF

Info

Publication number
JP2021110542A
JP2021110542A JP2020000283A JP2020000283A JP2021110542A JP 2021110542 A JP2021110542 A JP 2021110542A JP 2020000283 A JP2020000283 A JP 2020000283A JP 2020000283 A JP2020000283 A JP 2020000283A JP 2021110542 A JP2021110542 A JP 2021110542A
Authority
JP
Japan
Prior art keywords
distance
arrangements
measurement terminals
measurement
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020000283A
Other languages
Japanese (ja)
Other versions
JP7319633B2 (en
Inventor
久征 大原
Hisamasa Ohara
久征 大原
拓也 絹村
Takuya Kinumura
拓也 絹村
秀行 瀧澤
Hideyuki Takizawa
秀行 瀧澤
和博 小林
Kazuhiro Kobayashi
和博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Saneisha Seisakusho KK
Original Assignee
Chugoku Electric Power Co Inc
Saneisha Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Saneisha Seisakusho KK filed Critical Chugoku Electric Power Co Inc
Priority to JP2020000283A priority Critical patent/JP7319633B2/en
Publication of JP2021110542A publication Critical patent/JP2021110542A/en
Application granted granted Critical
Publication of JP7319633B2 publication Critical patent/JP7319633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

To provide a method of setting the distance among the arrangements of a plurality of measurement terminals so that a locating error of the ground fault point is within a permissible range.SOLUTION: A method of setting distances among arrangements of measurement terminals comprises: when arranging first to third measurement terminals on distribution lines, that transmit zero-phase current and zero-phase voltage output from sensors detecting current and voltage of the distribution lines in association with information indicating current time points, to a ground fault point locating device for locating a ground fault point of the distribution line; inputting values representing a first distance from the first measurement terminal to a branch point, a second distance from the second measurement terminal to the branch point, a third distance from the third measurement terminal to the branch point, and a minimum value that can be set as a difference in distances among arrangements of the first to third measurement terminals; determining whether or not the input values satisfy a predetermined condition set in advance among the first to third distances and the minimum value; when the input values satisfy the predetermined condition, setting the distances among the first to third measurement terminals on the basis of the values indicating the first to third distances.SELECTED DRAWING: Figure 2

Description

本発明は、地絡点を標定するための複数の計測端末を、分岐路を含んで構成される配電系統に配置する場合において、複数の計測端末の配置間距離を設定する、計測端末の配置間距離設定装置及び配置間距離設定方法に関する。 In the present invention, when a plurality of measurement terminals for defining a ground fault point are arranged in a distribution system including a branch path, the arrangement of the measurement terminals for setting the distance between the arrangements of the plurality of measurement terminals is set. The present invention relates to an inter-distance setting device and an inter-arrangement distance setting method.

例えば、配電線路(例えば6kVの配電系統)に地絡事故が発生した場合に、配電線路のどの位置に地絡事故が発生したのかを標定する地絡点標定システムが知られている(例えば、特許文献1を参照)。 For example, when a ground fault occurs in a distribution line (for example, a 6 kV distribution system), a ground fault point positioning system is known that determines the position of the ground fault in the distribution line (for example,). See Patent Document 1).

この地絡点標定システムは、配電線路に沿って設置される複数の計測端末と、電力会社等に設置される地絡点標定装置と、を含んで構成されている。複数の計測端末は、配電線の電流及び電圧を検出するセンサから得られる零相電流及び零相電圧を示す情報を、GPS衛星から得られる現在時刻を示す情報に対応付けて、地絡点標定装置に送信する。一方、地絡点標定装置は、複数の計測端末から得られる零相電流及び零相電圧を示す情報及び現在時刻を示す情報に基づいて、所定の演算を行うことによって地絡点を標定する。 This ground fault point locating system includes a plurality of measuring terminals installed along the distribution line and a ground fault point locating device installed in an electric power company or the like. The plurality of measuring terminals map the information indicating the zero-phase current and the zero-phase voltage obtained from the sensor that detects the current and voltage of the distribution line with the information indicating the current time obtained from the GPS satellite to determine the ground fault point. Send to the device. On the other hand, the ground fault point locating device defines the ground fault point by performing a predetermined calculation based on the information indicating the zero-phase current and the zero-phase voltage and the information indicating the current time obtained from a plurality of measuring terminals.

特開2004−132762号公報Japanese Unexamined Patent Publication No. 2004-132762

一般に、配電系統は、配電線を架設する地域の環境に応じて、様々な分岐路を含んで構成されている。このような分岐路を含む配電系統に複数の計測端末を配置する場合、地絡点標定装置による地絡点の標定誤差が許容範囲に収まるように、複数の計測端末の配置間距離を調整する必要がある。しかし、複数の計測端末は配電線が架設されている既設の支柱に配置されるため、複数の計測端末の配置状況によっては、地絡点標定装置による地絡点の標定誤差が許容範囲から外れてしまう虞があった。 Generally, the distribution system is configured to include various branch paths depending on the environment of the area where the distribution line is erected. When arranging a plurality of measurement terminals in a distribution system including such a branch path, the distance between the arrangements of the plurality of measurement terminals is adjusted so that the terrestrial fault locating error by the terrestrial fault locating device is within the permissible range. There is a need. However, since the plurality of measurement terminals are arranged on the existing columns on which the distribution lines are erected, the ground fault point positioning error by the ground fault point locating device may be out of the permissible range depending on the arrangement status of the plurality of measurement terminals. There was a risk that it would end up.

そこで、本発明は、分岐路を含む配電系統に複数の計測端末を配置する場合に、地絡点の標定誤差が許容範囲に収まるように、複数の計測端末の配置間距離を設定することが可能な、計測端末の配置間距離設定装置及び配置間距離設定方法を提供することを目的とする。 Therefore, in the present invention, when a plurality of measurement terminals are arranged in a distribution system including a branch path, the distance between the arrangements of the plurality of measurement terminals can be set so that the localization error of the ground fault point falls within an allowable range. It is an object of the present invention to provide an inter-arrangement distance setting device and an inter-arrangement distance setting method for measuring terminals.

前述した課題を解決する主たる本発明は、配電線に地絡事故が発生したとき、前記配電線の電流及び電圧を検出するセンサから出力される零相電流及び零相電圧を示す情報を、現在時刻を示す情報に対応付けて、前記配電線の地絡点を標定する地絡点標定装置に送信する第1乃至第3計測端末を、それぞれ、前記配電線の第1及び第2位置、前記第1及び第2位置の間の分岐点から分岐する前記配電線の第3位置に配置する場合に、前記第1乃至第3計測端末の配置間距離を設定する、計測端末の配置間距離設定装置であって、前記第1計測端末から前記分岐点までの第1距離と、前記第2計測端末から前記分岐点までの第2距離と、前記第3計測端末から前記分岐点までの第3距離と、前記第1乃至第3計測端末の配置間距離の差として設定可能な最小値と、を示す値が入力される入力部と、前記入力部に入力された前記値が、前記第1乃至第3距離と前記最小値との間に予め設定された所定の条件を満足する値であるか否かを判定する距離判定部と、前記入力部に入力された前記値が前記所定の条件を満足する場合、前記第1乃至第3距離を示す値に基づいて、前記第1乃至第3計測端末の配置間距離を設定する設定部と、を備える。
本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。
The main invention that solves the above-mentioned problems currently provides information indicating the zero-phase current and the zero-phase voltage output from the sensor that detects the current and voltage of the distribution line when a ground fault occurs in the distribution line. The first and third measurement terminals that transmit to the ground fault point locating device that defines the ground fault point of the distribution line in association with the information indicating the time are the first and second positions of the distribution line, respectively. Setting the distance between the arrangements of the measurement terminals, which sets the distance between the arrangements of the first to third measurement terminals when arranging at the third position of the distribution wire branching from the branch point between the first and second positions. In the device, the first distance from the first measurement terminal to the branch point, the second distance from the second measurement terminal to the branch point, and the third from the third measurement terminal to the branch point. An input unit for inputting a value indicating a distance and a minimum value that can be set as a difference between the arrangements of the first to third measurement terminals, and the value input to the input unit are the first. A distance determination unit that determines whether or not a value satisfies a predetermined condition preset between the third distance and the minimum value, and the value input to the input unit is the predetermined condition. When the above is satisfied, a setting unit for setting the distance between the arrangements of the first to third measurement terminals based on the value indicating the first to third distances is provided.
Other features of the invention will become apparent with reference to the accompanying drawings and the description herein.

本発明によれば、分岐路を含む配電系統に複数の計測端末を配置する場合に、地絡点の標定誤差が許容範囲に収まるように、複数の計測端末の配置間距離を設定することが可能となる。 According to the present invention, when a plurality of measurement terminals are arranged in a distribution system including a branch path, the distance between the arrangements of the plurality of measurement terminals can be set so that the localization error of the ground fault point falls within an allowable range. It will be possible.

地絡点標定システムを示すブロック図である。It is a block diagram which shows the ground fault point setting system. 本実施形態に係る配置間距離設定装置の一例を示すブロック図である。It is a block diagram which shows an example of the distance setting apparatus between arrangements which concerns on this Embodiment. 3つの計測端末がT字型の分岐路を含む配電系統に配置された場合の一例を示す模式図である。It is a schematic diagram which shows an example of the case where three measurement terminals are arranged in a distribution system including a T-shaped branch path. 標定xとサージ伝搬速度vとの関係を示すグラフである。It is a graph which shows the relationship between the orientation x and the surge propagation velocity v. 地絡点を標定したときのばらつきが最小となるサージ伝搬速度vεを示す表である。It is a table showing the surge propagation velocity v ε that minimizes the variation when the ground fault point is defined. 地絡点を標定したときのばらつきが最小となるサージ伝搬速度vεを示す他の表である。It is another table showing the surge propagation velocity v ε that minimizes the variation when the ground fault point is defined. 4つの計測端末が十字型の分岐路を含む配電系統に配置された場合の一例を示す模式図である。It is a schematic diagram which shows an example of the case where four measurement terminals are arranged in a distribution system including a cross-shaped branch path. サージ到達時刻に誤差が含まれるときの標定xとサージ伝搬速度vとの関係を示すグラフである。It is a graph which shows the relationship between the orientation x and the surge propagation velocity v when an error is included in the surge arrival time. 本実施形態に係る配置間距離設定装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the distance setting apparatus between arrangements which concerns on this Embodiment.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
===地絡点標定システム===
The description of this specification and the accompanying drawings will clarify at least the following matters.
=== Ground fault point positioning system ===

図1は、地絡点標定システムを示すブロック図である。尚、図1では、地絡点標定システムの基本的な構成及び動作を説明するため、配電系統には分岐路は含まれていないこととする。 FIG. 1 is a block diagram showing a ground fault point determination system. In addition, in FIG. 1, in order to explain the basic configuration and operation of the ground fault point positioning system, it is assumed that the distribution system does not include a branch path.

地絡点標定システム100は、配電線路200に地絡事故が発生した場合に、配電線路200のどの位置に地絡事故が発生したのかを標定するシステムである。 The ground fault point locating system 100 is a system for locating the position of the distribution line 200 where the ground fault has occurred when the distribution line 200 has a ground fault.

地絡点標定システム100は、地絡点を標定するための手段として、複数のセンサ300、複数の計測端末400、地絡点標定装置500、及び、配置間距離設定装置800を含んで構成されている。 The ground fault point locating system 100 includes a plurality of sensors 300, a plurality of measuring terminals 400, a ground fault point locating device 500, and an inter-arrangement distance setting device 800 as means for locating a ground fault point. ing.

複数のセンサ300は、それぞれ支柱600ごとに設置されている。そして、センサ300は、配電線路200に地絡事故が発生した場合に、支柱600上における配電線路200の零相電流及び零相電圧を検出する。尚、センサ300は、センサ300を保護するために、配電線路200を接続又は遮断する開閉器が収納される収納箱(不図示)内に収納されていてもよい。 A plurality of sensors 300 are installed for each support column 600. Then, the sensor 300 detects the zero-phase current and the zero-phase voltage of the distribution line 200 on the support column 600 when a ground fault occurs in the distribution line 200. The sensor 300 may be housed in a storage box (not shown) in which a switch for connecting or disconnecting the distribution line 200 is housed in order to protect the sensor 300.

複数の計測端末400は、それぞれ支柱600ごとに設置され、例えば無線通信を介して地絡点標定装置500と接続されている。そして、計測端末400は、センサ300から得られる零相電流及び零相電圧を示す情報を、GPS衛星700から得られる現在時刻を示す情報に対応付けて、地絡点標定装置500に送信する。尚、計測端末400は、有線の通信線を介して地絡点標定装置500と接続されていてもよい。 Each of the plurality of measurement terminals 400 is installed for each support column 600, and is connected to the ground fault point locating device 500 via, for example, wireless communication. Then, the measuring terminal 400 transmits the information indicating the zero-phase current and the zero-phase voltage obtained from the sensor 300 to the ground fault point determining device 500 in association with the information indicating the current time obtained from the GPS satellite 700. The measuring terminal 400 may be connected to the ground fault point locating device 500 via a wired communication line.

地絡点標定装置500は、地絡点を標定することができるように、無線通信を介して複数の計測端末400を統括的に管理している。地絡点標定装置500は、地絡点を挟む2つの計測端末400のn通りの組合せのうち、i番目の組合せ(例えば設置間距離が最短となる2つの計測端末400の組合せ)から得られる零相電流及び零相電圧を示す情報と現在時刻を示す情報とに基づいて、所定の演算を行うことによって地絡点を標定する。 The ground fault point locating device 500 comprehensively manages a plurality of measurement terminals 400 via wireless communication so that the ground fault point can be categorized. The ground fault point locating device 500 is obtained from the i-th combination (for example, the combination of the two measurement terminals 400 having the shortest distance between installations) among the n combinations of the two measurement terminals 400 sandwiching the ground fault point. The ground fault point is defined by performing a predetermined calculation based on the information indicating the zero-phase current and the zero-phase voltage and the information indicating the current time.

地絡点標定装置500は、以下の式(1)に従って地絡点を標定する。

Figure 2021110542
但し、地絡点を挟む2つの計測端末400のi番目の組合せにおいて、
:地絡点から一方の計測端末400までの距離(以下、標定とも言う)
:2つの計測端末400間の配電線路200上の距離
Δt:地絡点から2つの計測端末400までのサージ到達時刻の差
v:サージ伝搬速度
である。 The ground fault point locating device 500 positions the ground fault point according to the following equation (1).
Figure 2021110542
However, in the i-th combination of the two measurement terminals 400 that sandwich the ground fault point,
x i : Distance from the ground fault point to one of the measurement terminals 400 (hereinafter, also referred to as orientation)
L i: two measurement distance Delta] t i on distribution line 200 between the terminal 400: The difference of the surge arrival time from the earth絡点to two measurement terminals 400 v: a surge propagation velocity.

ここで、地絡点から一方の計測端末400までのサージ到達時刻をtとし、地絡点から他方の計測端末400までのサージ到達時刻をtとした場合、上記のサージ到達時刻の差Δtは、Δt=t−tとなる。 Here, when the surge arrival time from the ground fault point to one measurement terminal 400 is t 1, and the surge arrival time from the ground fault point to the other measurement terminal 400 is t 2 , the difference between the above surge arrival times. Δt i is a Δt i = t 2 -t 1.

尚、地絡点の標定手法については例えば特許文献1に開示されているため、その詳細については説明を省略する。 Since the method for determining the ground fault point is disclosed in Patent Document 1, for example, the details thereof will be omitted.

又、地絡点標定装置500は、地絡点を挟む2つの計測端末400のn通りの組合せから出力される情報に基づいて算出されるn個の地絡点の標定のばらつき(標準偏差)が最小となるように、以下の式(2)に従って、地絡点を算出する際に用いるサージ伝搬速度vを算出する。

Figure 2021110542
Further, the ground fault point locating device 500 has a variation (standard deviation) in the positioning of n ground fault points calculated based on information output from n combinations of two measurement terminals 400 sandwiching the ground fault point. The surge propagation velocity v used when calculating the ground fault point is calculated according to the following equation (2) so that
Figure 2021110542

図2は、本実施形態に係る配置間距離設定装置の一例を示すブロック図である。
配置間距離設定装置800は、T字分岐の配電線路200において、地絡点の標定精度が良好となるように、計測端末400A〜400Cを配置するべき第1〜第3位置(図3)を設定する装置である。又、配置間距離設定装置800は、十字分岐の配電線路200において、地絡点の標定精度が良好となるように、計測端末400A〜400Dを配置するべき第1〜第4位置(図7)を設定する装置でもある。配置間距離設定装置800は、上記の機能を実現するための手段として、入力部810、距離判定部820、設定部830を含んで構成されている。尚、配置間距離設定装置800はマイクロコンピュータを含んで構成され、入力部810、距離判定部820、設定部830の機能は、マイクロコンピュータがプログラムを実行するソフトウエア処理によって実現される。尚、配置間距離設定装置800が実行する機能は、地絡点標定装置500に実装されていてもよい。
===計測端末の配置間距離の設定===
FIG. 2 is a block diagram showing an example of the inter-arrangement distance setting device according to the present embodiment.
The inter-arrangement distance setting device 800 sets the first to third positions (FIG. 3) in which the measurement terminals 400A to 400C should be arranged so that the ground fault point positioning accuracy is good in the T-branch distribution line 200. It is a device to set. Further, the inter-arrangement distance setting device 800 arranges the measurement terminals 400A to 400D in the first to fourth positions (FIG. 7) so that the measurement accuracy of the ground fault point is improved in the cross-branch distribution line 200. It is also a device to set. The inter-arrangement distance setting device 800 includes an input unit 810, a distance determination unit 820, and a setting unit 830 as means for realizing the above functions. The inter-arrangement distance setting device 800 is configured to include a microcomputer, and the functions of the input unit 810, the distance determination unit 820, and the setting unit 830 are realized by software processing in which the microcomputer executes a program. The function executed by the inter-arrangement distance setting device 800 may be mounted on the ground fault point locating device 500.
=== Setting the distance between the arrangements of the measurement terminals ===

<<T字分岐>>
図3は、3つの計測端末がT字型の分岐路を含む配電系統に配置された場合の一例を示す模式図である。
<< T-shaped branch >>
FIG. 3 is a schematic diagram showing an example of a case where three measurement terminals are arranged in a distribution system including a T-shaped branch path.

図3において、配電線路200は、第1配電線210及び第2配電線220を含んで構成されている。第1配電線210は、変電所から負荷(需要家)に向かって延びるように支柱600に架設される主線である。第2配電線220は、第1配電線210の後述する第1及び第2位置の間の所定位置から分岐し、分岐点から他の負荷(需要家)に向かって延びるように支柱600に架設される分岐線である。計測端末400A(第1計測端末)は、第1配電線210の上流側(変電所側)の第1位置に配置されている。計測端末400B(第2計測端末)は、第1配電線210の下流側(負荷側)の第2位置に配置されている。計測端末400C(第3計測端末)は、第2配電線220の分岐点よりも下流側(他の負荷側)の第3位置に設置されている。例えば、第1配電線210における第1位置と分岐点との間の所定位置に地絡点が存在する場合、地絡点を挟む2つの計測端末400の組合せは、計測端末400A、400B及び計測端末400A、400Cの2通り(n=2)となる。 In FIG. 3, the distribution line 200 includes a first distribution line 210 and a second distribution line 220. The first distribution line 210 is a main line erected on the support column 600 so as to extend from the substation toward the load (customer). The second distribution line 220 branches from a predetermined position between the first and second positions of the first distribution line 210, which will be described later, and is erected on the support column 600 so as to extend from the branch point toward another load (customer). It is a branch line to be made. The measuring terminal 400A (first measuring terminal) is arranged at the first position on the upstream side (substation side) of the first distribution line 210. The measurement terminal 400B (second measurement terminal) is arranged at a second position on the downstream side (load side) of the first distribution line 210. The measurement terminal 400C (third measurement terminal) is installed at a third position on the downstream side (other load side) of the branch point of the second distribution line 220. For example, when a ground fault point exists at a predetermined position between the first position and the branch point on the first distribution line 210, the combination of the two measurement terminals 400 sandwiching the ground fault point is the measurement terminals 400A and 400B and the measurement. There are two types of terminals 400A and 400C (n = 2).

ここで、
:計測端末400A、400B間の配電線路200上の距離
:計測端末400A、400C間の配電線路200上の距離
:地絡点から計測端末400Aまでのサージ到達時刻
:地絡点から計測端末400Bまでのサージ到達時刻
:地絡点から計測端末400Cまでのサージ到達時刻
Δt:サージ到達時刻t、tの差t−t
Δt:サージ到達時刻t、tの差t−t
とした場合、サージ伝搬速度vは、式(2)を用いて式(3)のように示される。

Figure 2021110542
here,
L 1 : Distance on the distribution line 200 between the measurement terminals 400A and 400B L 2 : Distance on the distribution line 200 between the measurement terminals 400A and 400C t a : Surge arrival time from the ground fault point to the measurement terminal 400A t b : surge arrival time t c from the earth絡点to the measurement terminal 400B: surge arrival time from the earth絡点to the measurement terminal 400C Delta] t 1: surge arrival time t a, the difference t b t b -t a
Delta] t 2: the difference between the surge arrival time t a, t c t c -t a
Then, the surge propagation velocity v is expressed by the equation (3) using the equation (2).
Figure 2021110542

更に、サージ伝搬速度vは、式(3)を整理して式(4)のように示される。

Figure 2021110542
Further, the surge propagation velocity v is expressed as the equation (4) by rearranging the equation (3).
Figure 2021110542

=Lの場合、式(4)の分子が0となるため、サージ伝搬速度vは0となる。このとき、計測端末400A、400B間及び計測端末400A、400C間に存在する配電線路200のインピーダンスが等しいものとすると、t=tとなって、式(4)の分子及び分母がともに0となるため、サージ伝搬速度vは発散してしまい、地絡点を標定することはできなくなる。 When L 1 = L 2 , the numerator of the formula (4) is 0, so the surge propagation velocity v is 0. At this time, assuming that the impedances of the distribution lines 200 existing between the measuring terminals 400A and 400B and between the measuring terminals 400A and 400C are equal, t b = t c and the numerator and denominator of the formula (4) are both 0. Therefore, the surge propagation velocity v diverges, and the ground fault point cannot be defined.

式(1)は、標定x及びサージ伝搬速度vを変数とする1次関数である。そこで、計測端末400A、400B及び計測端末400A、400Cからの情報に基づいて式(1)から算出される2つの標定をそれぞれx、xとした場合、2つの標定x、xのばらつきが最小となるときのサージ伝搬速度vは、L≠L、x=xとなるときの値に決定される。このように、計測端末400A〜400Cの配置間距離を設定するに際して、L≠Lの条件を満足すればよいこととなるが、実際にはサージ到達時刻t、tに含まれる誤差を考慮する必要がある。 Equation (1) is a linear function with the orientation x and the surge propagation velocity v as variables. Therefore, the measurement terminals 400A, 400B and the measurement terminal 400A, if the two orientation respectively calculated from equation (1) was x 1, x 2 on the basis of information from 400C, the two orientation x 1, x 2 The surge propagation velocity v when the variation is minimized is determined by the value when L 1 ≠ L 2 and x 1 = x 2. In this way, when setting the distance between the arrangements of the measurement terminals 400A to 400C, it is sufficient to satisfy the condition L 1 ≠ L 2 , but in reality, the errors included in the surge arrival times t b and t c. Need to be considered.

図4(A)及び図4(B)は、標定xとサージ伝搬速度vとの関係を示すグラフである。
図4(A)及び図4(B)において、縦軸は標定xを示し、横軸はサージ伝搬速度vを示し、標定x、xを示す実線の勾配は、サージ到達時刻の差Δt、Δtに応じた傾きを有するが、サージ到達時刻t、t、tの誤差を含んでいないことを前提とする。
4 (A) and 4 (B) are graphs showing the relationship between the orientation x and the surge propagation velocity v.
In FIGS. 4 (A) and 4 (B), the vertical axis indicates the standard x, the horizontal axis indicates the surge propagation velocity v, and the slope of the solid line indicating the standards x 1 and x 2 is the difference Δt of the surge arrival time. 1. It is assumed that the slope has a slope corresponding to Δt 2 , but does not include errors of surge arrival times t a , t b , and t c.

図4(A)は、|L−L|が大きいとき、つまり|Δt−Δt|が大きいとき、例えばt<t<tとなるときの標定xとサージ伝搬速度vとの関係を示すグラフの一例であり、標定xを示す実線は正の勾配(Δt(=t−t)<0))を有するとともに、標定xを示す実線は負の勾配(Δt(=t−t)>0))を有する。例えば、この場合、サージ到達時刻tの誤差を含むことになると、標定xを示す実線は、Δtの値の変化に伴って、一点鎖線に示す位置までずれる。しかし、|L−L|(|Δt−Δt|)が大きいため、x=xとなるときのサージ伝搬速度vへの影響は小さくなる。 FIG. 4 (A), | is large, i.e. | | L 1 -L 2 Δt 1 -Δt 2 | is large, for example, t b <t a <orientation when the t c x surge propagation velocity v It is an example of a graph showing the relationship with, and the solid line showing the standard x 1 has a positive gradient (Δt 1 (= t b −t a ) <0)), and the solid line showing the standard x 2 has a negative gradient. It has (Δt 2 (= t c − t a )> 0)). For example, in this case, if an error of the surge arrival time t c is included, the solid line indicating the orientation x 2 shifts to the position indicated by the alternate long and short dash line as the value of Δt 2 changes. However, since | L 1 − L 2 | (| Δt 1 − Δt 2 |) is large, the influence on the surge propagation velocity v when x 1 = x 2 is small.

図4(B)は、|L−L|が小さいとき、つまり|Δt−Δt|が小さいとき、例えばt<t<tとなるときの標定xとサージ伝搬速度vとの関係を示すグラフの一例であり、標定xを示す実線は正の勾配(Δt(=t−t)<0))を有するとともに、標定xを示す実線は標定xを示す実線よりも緩やかな正の勾配(Δt(=t−t)<0))を有する。例えば、この場合、サージ到達時刻tの誤差を含むことになると、標定xを示す実線は、Δtの値の変化に伴って、一点鎖線に示す位置までずれる。そして、|L−L|(|Δt−Δt|)が小さいため、x=xとなるときのサージ伝搬速度vへの影響が大きくなって標定精度が低下する。 FIG. 4 (B), | when small, ie | | L 1 -L 2 Δt 1 -Δt 2 | time is small, for example, t b <t c <orientation x when the t a and the surge propagation velocity v It is an example of a graph showing the relationship with, and the solid line showing the orientation x 1 has a positive gradient (Δt 1 (= t b −t a ) <0)), and the solid line showing the orientation x 2 is the orientation x 1. It has a positive gradient (Δt 2 (= t c − t a ) <0)) that is gentler than the solid line indicating. For example, in this case, if an error of the surge arrival time t c is included, the solid line indicating the orientation x 2 shifts to the position indicated by the alternate long and short dash line as the value of Δt 2 changes. Since | L 1 − L 2 | (| Δt 1 − Δt 2 |) is small, the influence on the surge propagation velocity v when x 1 = x 2 is large, and the localization accuracy is lowered.

このように、|L−L|の大きさに応じて、x=xとなるときのサージ伝搬速度vへの影響が変わるため、|L−L|としてどの程度の値が妥当であるのかを、サージ到達時刻t、tの誤差を考慮して検討する。例えば、サージ到達時刻t、tの誤差要因として、GPS衛星700から得られる現在時刻を示す情報に含まれる誤差(例えば、±350[ns])を考慮することとする。 Thus, | L 1 -L 2 |, depending on the size, since the impact of the surge propagation velocity v at which the x 1 = x 2 is changed, | L 1 -L 2 | how much value as Is appropriate in consideration of the errors of surge arrival times t b and t c. For example, as an error factor of the surge arrival times t b and t c , an error (for example, ± 350 [ns]) included in the information indicating the current time obtained from the GPS satellite 700 is considered.

サージ到達時刻の差t−tに含まれる誤差をtεとしたときのサージ伝搬速度vεは、式(4)を変形して式(5)のように示される。

Figure 2021110542
Surge propagation velocity v epsilon when the error included in the difference t b -t c of the surge arrival time was t epsilon, represented by modifying the equation (4) as in equation (5).
Figure 2021110542

誤差tεはサージ到達時刻t、tの各誤差を含むため、誤差tεの範囲は、
−700[ns]≦tε≦+700[ns]
と考えることができる。
Since the error t ε includes the errors of the surge arrival times t b and t c , the range of the error t ε is
-700 [ns] ≤ t ε ≤ + 700 [ns]
Can be thought of.

そこで、誤差tεが−700[ns](最大の遅れ誤差)、+700[ns](最大の進み誤差)のそれぞれの場合において、L−Lとして予め用意された複数の値と、サージ伝搬速度v(誤差tεが考慮されていない第1サージ伝搬速度)として予め用意された複数の値とを用いて、式(5)からサージ伝搬速度vε(誤差tεが考慮された第2サージ伝搬速度)を算出する。尚、L−Lの値は、50[m]〜400[m]の範囲に含まれる複数の値であることとし、サージ伝搬速度vの値は、地絡点の標定が可能とされる50[m/μs]〜350[m/μs]の範囲に含まれる、300[m/μs]を最大値とする複数の値であることとする。 Therefore, when the error t ε is −700 [ns] (maximum delay error) and +700 [ns] (maximum lead error), a plurality of values prepared in advance as L 1 − L 2 and a surge Using a plurality of values prepared in advance as the propagation velocity v (the first surge propagation velocity in which the error t ε is not considered ), the surge propagation velocity v ε (the first surge propagation velocity in which the error t ε is considered) is used from the equation (5). 2 Surge propagation speed) is calculated. It should be noted that the values of L 1 to L 2 are a plurality of values included in the range of 50 [m] to 400 [m], and the value of the surge propagation velocity v can be used to determine the ground fault point. It is assumed that there are a plurality of values having a maximum value of 300 [m / μs] included in the range of 50 [m / μs] to 350 [m / μs].

図5は、誤差tεが−700[ns]であるときに算出されたサージ伝搬速度vεを示す表である。図6は、誤差tεが+700[ns]であるときに算出されたサージ伝搬速度vεを示す表である。尚、地絡点の標定が可能とされる50[m/μs]〜350[m/μs]の範囲に含まれるサージ伝搬速度vεを太枠で囲っている。サージ伝搬速度vとして例えば150[m/μs]を選択すると、図5に示すように、誤差tεが−700[ns]であるときに、L−Lを最小とすべき値は190[m]であり、図6に示すように、誤差tεが+700[ns]であるときに、L−Lを最小とすべき値は100[m]である。この場合において、L−Lを最小とすべき値は190[m]となるが、本実施形態において、設定部830は、L−Lを最小とすべき値を、マージンをとって200[m]に設定する。つまり、計測端末400A、400Bと計測端末400A、400Cとの配置間距離の差は200m以上必要であることが分かる。 FIG. 5 is a table showing the surge propagation velocity v ε calculated when the error t ε is −700 [ns]. FIG. 6 is a table showing the surge propagation velocity v ε calculated when the error t ε is +700 [ns]. The surge propagation velocity v ε included in the range of 50 [m / μs] to 350 [m / μs], which enables the localization of the ground fault point, is surrounded by a thick frame. When, for example, 150 [m / μs] is selected as the surge propagation velocity v, as shown in FIG. 5, when the error t ε is −700 [ns], the value at which L 1 − L 2 should be minimized is 190. It is [m], and as shown in FIG. 6, when the error t ε is +700 [ns], the value at which L 1 − L 2 should be minimized is 100 [m]. In this case, the value at which L 1- L 2 should be minimized is 190 [m], but in the present embodiment, the setting unit 830 takes a margin for the value at which L 1- L 2 should be minimized. Set to 200 [m]. That is, it can be seen that the difference in the distance between the arrangements of the measurement terminals 400A and 400B and the measurement terminals 400A and 400C needs to be 200 m or more.

配電線路200の分岐点から計測端末400A〜400Cまでのそれぞれの距離をL、L、L(但し、L>L>L)とした場合、良好な標定精度を得ることができるように計測端末400A〜400Cを配置する際に、Lを基準として、
≧L+200[m]・・・(6)
≧L+200[m]・・・(7)
の2式を同時に満足することが条件となる。従って、上記の条件を満足するように、配電線路200上における第1〜第3位置を決定し、計測端末400A〜400Cを第1〜第3位置に配置すればよい。但し、上記の条件における配置間距離の差200mは、GPS衛星700の誤差を±350[ns]とした場合の例であり、その他の誤差要因も考慮に入れ、実際の計測端末400A、400B、計測端末400A、400Cの配置間距離の差として設定すべき距離をY[m]とすると、良好な標定精度を得ることができるように計測端末400A〜400Cを配置する際には、以下の2式を同時に満足することが条件となる。
≧L+Y[m]・・・(8)
≧L+Y[m]・・・(9)
尚、第1〜第3位置としては、配電線路200が架設される支柱600のうち、上記の条件を満足する支柱600の位置とすることができる。
Each distance L a from the branch point of the distribution line 200 to the measurement terminal 400A~400C, L b, L c (where, L a> L b> L c) when the, to obtain good orientation accuracy When arranging the measurement terminals 400A to 400C so as to be possible, with L c as a reference,
L b ≧ L c + 200 [m] ・ ・ ・ (6)
L a ≧ L b +200 [m ] ··· (7)
It is a condition that the two equations of the above are satisfied at the same time. Therefore, the first to third positions on the distribution line 200 may be determined and the measurement terminals 400A to 400C may be arranged at the first to third positions so as to satisfy the above conditions. However, the difference of 200 m in the distance between the arrangements under the above conditions is an example when the error of the GPS satellite 700 is ± 350 [ns], and the actual measurement terminals 400A, 400B, taking other error factors into consideration. Assuming that the distance to be set as the difference between the arrangements of the measurement terminals 400A and 400C is Y [m], when the measurement terminals 400A to 400C are arranged so that good positioning accuracy can be obtained, the following 2 The condition is that the equations are satisfied at the same time.
L b ≧ L c + Y [m] ・ ・ ・ (8)
L a ≧ L b + Y [ m] ··· (9)
The first to third positions can be the positions of the columns 600 that satisfy the above conditions among the columns 600 on which the distribution line 200 is erected.

<<十字分岐>>
図7は、4つの計測端末が十字型の分岐路を含む配電系統に配置された場合の一例を示す模式図である。尚、図7に示される構成のうち、図3に示される構成と同一の構成については、同一の番号を記すとともにその説明を省略する。
<< Cross branch >>
FIG. 7 is a schematic diagram showing an example of a case where four measurement terminals are arranged in a distribution system including a cross-shaped branch path. Of the configurations shown in FIG. 7, the same configurations as those shown in FIG. 3 are designated by the same numbers and the description thereof will be omitted.

図7において、配電線路200は、第1配電線210、第2配電線220、第3配電線230を含んで構成されている。第3配電線230は、第1配電線210の第1及び第2位置の間の所定位置から分岐し、分岐点からもう1つの他の負荷(需要家)に向かって延びるように支柱600に架設される分岐線である。尚、本実施形態において、第2配電線220及び第3配電線230の分岐点は、説明の便宜上、同一であることとする。計測端末400D(第4計測端末)は、第3配電線230の分岐点よりも下流側(もう1つの他の負荷側)の第4位置に設置されている。例えば、第1配電線210における第1位置と分岐点との間の所定位置に地絡点が存在する場合、地絡点を挟む2つの計測端末400の組合せは、計測端末400A、400B、計測端末400A、400C、計測端末400A、400Dの3通り(n=3)となる。 In FIG. 7, the distribution line 200 includes a first distribution line 210, a second distribution line 220, and a third distribution line 230. The third distribution line 230 branches from a predetermined position between the first and second positions of the first distribution line 210, and extends from the branch point toward another load (customer) on the support column 600. It is a branch line to be erected. In the present embodiment, the branch points of the second distribution line 220 and the third distribution line 230 are the same for convenience of explanation. The measuring terminal 400D (fourth measuring terminal) is installed at a fourth position on the downstream side (another other load side) of the branch point of the third distribution line 230. For example, when a ground fault point exists at a predetermined position between the first position and the branch point on the first distribution line 210, the combination of the two measurement terminals 400 sandwiching the ground fault point is the measurement terminals 400A, 400B, and measurement. There are three types (n = 3) of terminals 400A and 400C and measurement terminals 400A and 400D.

ここで、
:計測端末400A、400D間の配電線路200上の距離
:地絡点から計測端末400Dまでのサージ到達時刻
Δt:サージ到達時刻t、tの差t−t
とした場合、サージ伝搬速度vは、式(2)を用いて式(10)のように示される。

Figure 2021110542
here,
L 3: Measurement terminal 400A, the distance on the distribution line 200 between 400D t d: surge from the earth絡点to the measurement terminal 400D arrival time Delta] t 3: Surge arrival time t a, the difference t d t d -t a
Then, the surge propagation velocity v is expressed by the equation (10) using the equation (2).
Figure 2021110542

計測端末400A、400B、計測端末400A、400C、計測端末400A、400Dからの情報に基づいて式(1)から算出される標定をそれぞれx、x、xとした場合、サージ伝搬速度vは、式(10)に従って、標定x、x、xが等しくなるときの値(標定x、x、xの交点の値)として算出される。しかし、実際には、サージ到達時刻t、t、t、tに誤差tεが含まれているため、サージ伝搬速度vは、標定x、x、xのばらつきが最小となるときの値として算出される。 Measurement terminals 400A, 400B, the measurement terminals 400A, 400C, measurement terminal 400A, if based on information from 400D the orientation calculated from equation (1) was x 1, x 2, x 3, respectively, surge propagation velocity v is according to equation (10), is calculated as orientation x 1, x 2, the value when x 3 are equal (the value at the intersection of orientation x 1, x 2, x 3). However, in reality, since the surge arrival times t a , t b , t c , and t d include an error t ε , the surge propagation velocity v has the smallest variation in the indications x 1 , x 2 , and x 3. It is calculated as the value when.

図8は、サージ到達時刻t、t、t、tに誤差tεが含まれるときの標定xとサージ伝搬速度vとの関係を示すグラフである。図8において、縦軸は標定xを示し、横軸はサージ伝搬速度vを示している。サージ到達時刻t、t、t、tに誤差tεが含まれている場合、標定x、x、xの交点が存在しなくなるため、サージ伝搬速度vは、標定x、x、xのばらつきの範囲を最小化する値(破線の位置の値)として算出される。 FIG. 8 is a graph showing the relationship between the orientation x and the surge propagation velocity v when the surge arrival times t a , t b , t c , and t d include an error t ε. In FIG. 8, the vertical axis represents the orientation x and the horizontal axis represents the surge propagation velocity v. When the surge arrival times t a , t b , t c , and t d include an error t ε , the intersection of the orientations x 1 , x 2 , and x 3 does not exist, so that the surge propagation velocity v is the orientation x. It is calculated as a value (value at the position of the broken line) that minimizes the range of variation of 1 , x 2 , and x 3.

=L=Lの場合、標定x、x、xが等しくなるため、サージ伝搬速度vは発散する。しかし、実際には、サージ到達時刻t、t、t、tに誤差tεが含まれているため、サージ伝搬速度vは、0[m/μs]となってサージ伝搬速度vの最小条件である50[m/μs]を逸脱してしまい、地絡点を標定することはできなくなる。 When L 1 = L 2 = L 3 , the surge propagation velocity v diverges because the orientations x 1 , x 2 , and x 3 are equal. However, in reality, since the surge arrival times t a , t b , t c , and t d include an error t ε , the surge propagation velocity v becomes 0 [m / μs] and the surge propagation velocity v. It deviates from the minimum condition of 50 [m / μs], and the ground fault point cannot be determined.

例えば、L≠L=Lの場合、サージ伝搬速度vは、T字分岐の場合と同様に、標定x、x(=x)が等しくなるときの値として算出され、地絡点を標定することが可能となる。しかし、実際には、サージ到達時刻t、t、t、tに誤差tεが含まれているため、サージ伝搬速度vは、標定x、x、xのばらつきの範囲を最小化する値として算出される。ところで、L≠L=Lの場合、標定x、x(又はx)に係る2つの情報を用いるのに対して、L≠L≠Lの場合、標定x、x、xに係る3つの情報を用いるため、L≠L≠Lの方が標定精度は向上する。よって、十字分岐の配電線路200において、計測端末400A〜400Dを配置するべき第1〜第4位置を設定する場合、L≠L≠Lである方が望ましい。 For example, when L 1 ≠ L 2 = L 3 , the surge propagation velocity v is calculated as a value when the orientations x 1 and x 2 (= x 3 ) are equal, as in the case of the T-shaped branch. It is possible to determine the entanglement point. However, in reality, since the surge arrival times t a , t b , t c , and t d include an error t ε , the surge propagation velocity v is within the range of variation of the indications x 1 , x 2 , and x 3. Is calculated as a value that minimizes. By the way, when L 1 ≠ L 2 = L 3 , two pieces of information related to the orientation x 1 and x 2 (or x 3 ) are used, whereas when L 1 ≠ L 2 ≠ L 3 , the orientation x 1 is used. , for using three pieces of information relating to x 2, x 3, the locating accuracy towards L 1L 2L 3 is improved. Therefore, when setting the first to fourth positions where the measuring terminals 400A to 400D should be arranged in the cross-branched distribution line 200, it is desirable that L 1 ≠ L 2 ≠ L 3.

図7において、第1、第2配電線210、220及び計測端末400A、400B、400Cは、図3に示すT字分岐の配電線路200であり、第1、第3配電線210、230及び計測端末400A、400B、400Dは、図3に示すT字分岐の配電線路200に相当する。つまり、図7に示す十字分岐の配電線路200は、図3に示すT字分岐の配電線路200を2つ組み合わせて構成されている。よって、計測端末400A、400B、計測端末400A、400C、計測端末400A、400Dの配置間距離の差は、T字分岐の配電線路200の場合と同様に、200m以上必要であることとなる。 In FIG. 7, the first and second distribution lines 210 and 220 and the measurement terminals 400A, 400B and 400C are the T-shaped branch distribution lines 200 shown in FIG. 3, and the first and third distribution lines 210 and 230 and the measurement terminals are measured. The terminals 400A, 400B, and 400D correspond to the T-shaped branch distribution line 200 shown in FIG. That is, the cross-branched distribution line 200 shown in FIG. 7 is configured by combining two T-shaped branch distribution lines 200 shown in FIG. Therefore, the difference in the distance between the arrangements of the measurement terminals 400A and 400B, the measurement terminals 400A and 400C, and the measurement terminals 400A and 400D is required to be 200 m or more as in the case of the T-shaped branch distribution line 200.

配電線路200の分岐点から計測端末400A〜400Dまでのそれぞれの距離をL、L、L、L(但し、L>L>L>L)とした場合、良好な標定精度を得ることができるように計測端末400A〜400Dを配置する際に、Lを基準として、
≧L+200[m]・・・(11)
≧L+200[m]・・・(12)
≦L−200[m]・・・(13)
の3式を同時に満足することが条件となる。従って、上記の条件を満足するように、配電線路200上における第1〜第4位置を決定し、計測端末400A〜400Dを第1〜第4位置に配置すればよい。但し、上記の条件における配置間距離の差200mは、GPS衛星700の誤差を±350[ns]とした場合の例であり、その他の誤差要因も考慮に入れ、実際の計測端末400A、400B、計測端末400A、400C、計測端末400A、400Dの配置間距離の差として設定すべき距離をY[m]とすると、良好な標定精度を得ることができるように計測端末400A〜400Dを配置する際には、Lを基準として以下の3式を同時に満足することが条件となる。
≧L+Y[m]・・・(14)
≧L+Y[m]・・・(15)
≦L−Y[m]・・・(16)
尚、第1〜第4位置としては、配電線路200が架設される支柱600のうち、上記の条件を満足する支柱600の位置とすることができる。
===配置間距離設定方法===
Each distance L a from the branch point of the distribution line 200 to the measurement terminal 400A~400D, L b, L c, L d ( where, L a> L b> L c> L d) If a, good When arranging the measurement terminals 400A to 400D so that the localization accuracy can be obtained, using L c as a reference.
L b ≧ L c + 200 [m] ... (11)
L a ≧ L b +200 [m ] ··· (12)
L d ≤ L c- 200 [m] ... (13)
The condition is that the above three equations are satisfied at the same time. Therefore, the first to fourth positions on the distribution line 200 may be determined and the measurement terminals 400A to 400D may be arranged at the first to fourth positions so as to satisfy the above conditions. However, the difference of 200 m between the arrangements under the above conditions is an example when the error of the GPS satellite 700 is ± 350 [ns], and taking other error factors into consideration, the actual measurement terminals 400A, 400B, When the distance to be set as the difference between the arrangements of the measurement terminals 400A and 400C and the measurement terminals 400A and 400D is Y [m], when the measurement terminals 400A to 400D are arranged so that good localization accuracy can be obtained. The condition is that the following three equations are satisfied at the same time with L c as a reference.
L b ≧ L c + Y [m] ・ ・ ・ (14)
L a ≧ L b + Y [ m] ··· (15)
L d ≤ L c −Y [m] ・ ・ ・ (16)
The first to fourth positions can be the positions of the columns 600 that satisfy the above conditions among the columns 600 on which the distribution line 200 is erected.
=== Distance setting method between arrangements ===

先ず、T字分岐の配電線路200に計測端末400A〜400Cを配置する場合について説明する。 First, a case where the measurement terminals 400A to 400C are arranged on the distribution line 200 of the T-shaped branch will be described.

入力部810には、計測端末400Aから分岐点までの距離L、計測端末400Bから分岐点までの距離L、計測端末400Cから分岐点までの距離Lを示す値が入力される。又、上記3つの値に加え、各計測端末400A〜400Cの配置間距離の差として設定可能な最小値を示す値Yが入力される。これら4つの値L、L、L、Yは、キーボード(不図示)から入力される情報であってもよいし、記録媒体(不図示)から読み出される情報であってもよい。 The input unit 810, a distance L a from the measuring terminal 400A to the branch point, the distance L b from the measuring terminal 400B to the branch point, a value indicating a distance L c from the measurement terminal 400C to the branch point is input. Further, in addition to the above three values, a value Y indicating a minimum value that can be set as a difference between the arrangements of the measurement terminals 400A to 400C is input. These four values L a, L b, L c , Y may be a information input from a keyboard (not shown) may be information that is read from the recording medium (not shown).

距離判定部820は、入力部810を介してL、L、L、Yが入力されると、入力された値が式(8)、(9)の条件を満たす値であるか判定を行う。L、L、Lが距離判定部820にて上記の条件を満たした場合には設定部830の処理に移行する。L、L、Lが距離判定部820にて上記の条件を満たさない場合、入力部810にて再度L、L、L、Yの値を入力する。 Distance determining section 820, via the input unit 810 L a, L b, L c, when Y is input, the input value is the formula (8), determines whether the value satisfying the condition of (9) I do. When L a , L b , and L c satisfy the above conditions in the distance determination unit 820, the process proceeds to the processing of the setting unit 830. L a, L b, it is determined by the L c is the distance determination unit 820 does not satisfy the above conditions, again L a at the input unit 810, L b, L c, and inputs the value of Y.

設定部830では、距離判定部820にて式(8)、(9)の条件を満たしたL、L、Lをもとに、計測端末400A、400B、400C間の距離が設定される。 The setting unit 830, equation (8) at a distance determination unit 820, based on the L a, L b, L c of conditions satisfying the (9), the measurement terminals 400A, 400B, the distance between 400C is set NS.

これによって、T字分岐の配電線路200において、地絡点の標定精度が良好となるように、計測端末400A〜400Cを配置するべき第1〜第3位置を設定することが可能となる。 This makes it possible to set the first to third positions where the measurement terminals 400A to 400C should be arranged so that the ground fault point positioning accuracy is improved in the T-shaped branch distribution line 200.

次に、十字分岐の配電線路200に計測端末400A〜400Dを配置する場合について説明する。 Next, a case where the measurement terminals 400A to 400D are arranged on the cross-branch distribution line 200 will be described.

この場合、入力部810には、計測端末400Aから分岐点までの距離L、計測端末400Bから分岐点までの距離L、計測端末400Cから分岐点までの距離L、計測端末400Dから分岐点までの距離Lを示す値が入力される。 In this case, the input unit 810, a distance L a from the measuring terminal 400A to the branch point, the distance L b from the measuring terminal 400B to the branch point, the distance L c from the measurement terminal 400C to the branch point, the branch from the measurement terminal 400D A value indicating the distance L d to the point is input.

距離判定部820は、T字分岐の配電線路200の場合と同様に、入力部810に入力されたL、L、L、L、Yが、式(14)、(15)、(16)の条件を満たす値であるか判定を行う。距離判定部820にて条件を満たした場合、設定部830の処理に移行し、満たさなかった場合は入力部810に戻りL、L、L、L、Yの再入力を行う。 Distance determining section 820, as in the case of distribution line 200 of the T-branch, L a input to the input unit 810, L b, L c, L d, Y is the formula (14), (15), It is determined whether or not the value satisfies the condition of (16). When the condition is satisfied by the distance determination unit 820, the process proceeds to the processing of the setting unit 830, and when the condition is not satisfied, the process returns to the input unit 810 and re-inputs La , L b , L c , L d, and Y.

設定部830では、距離判定部820にて式(14)、(15)、(16)の条件を満たしたL、L、L、Lをもとに、計測端末400A、400B、400C、400D間の距離が設定される。 The setting unit 830, the distance determining section 820 by a formula (14), (15), L a condition satisfying the (16), L b, L c, based on the L d, the measuring terminal 400A, 400B, The distance between 400C and 400D is set.

これによって、十字分岐の配電線路200において、地絡点の標定精度が良好となるように、計測端末400A〜400Dを配置するべき第1〜第4位置を設定することが可能となる。 This makes it possible to set the first to fourth positions where the measurement terminals 400A to 400D should be arranged so that the ground fault point positioning accuracy is improved in the cross-branch distribution line 200.

図9は、本実施形態に係る配置間距離設定装置の動作(配置間距離設定方法)の一例を示すフローチャートである。
先ず、配電線路200が分岐系統ではなく直線系統である場合(ステップS1:NO)、処理を終了する。一方、配電線路200が分岐系統である場合(ステップS1:YES)、その分岐系統がT字分岐であるのか、或いは、十字分岐であるのかを判定する(ステップS2)。
FIG. 9 is a flowchart showing an example of the operation (distance setting method between arrangements) of the distance setting device between arrangements according to the present embodiment.
First, when the distribution line 200 is not a branch system but a linear system (step S1: NO), the process ends. On the other hand, when the distribution line 200 is a branch system (step S1: YES), it is determined whether the branch system is a T-shaped branch or a cross branch (step S2).

次に、配電線路200がT字分岐の分岐系統であって、T字分岐の配電線路200に計測端末400A〜400Cを配置する場合(ステップS2:YES)、入力部810にL、L、L、Yを示す値が入力される(ステップS3)。 Next, the power distribution line 200 is a branch line of the T-branch, when arranging the measuring terminal 400A~400C the distribution line 200 of the T-branch (step S2: YES), the input unit 810 L a, L b , L c , and Y are input (step S3).

次に、距離判定部820は、L、L、L、Yが式(8)、(9)の条件を満たすか判定を行う(ステップS4)。判定を満たした場合は設定部830の処理に移行し(ステップS4:YES)、満たさなかった場合は入力部810にて再度L、L、L、Yを入力する(ステップS4:NO)。 Then, the distance determining section 820, L a, L b, L c, Y has the formula (8), the condition is satisfied or determination of (9) (step S4). If satisfies the determination shifts to the process of setting section 830 (step S4: YES), the re-L a if not satisfied by the input unit 810, L b, L c, and inputs the Y (step S4: NO ).

次に、設定部830は、距離判定部820で条件を満たしたL、L、Lをもとに、計測端末400A、400B、400C間の距離を設定する(ステップS5)。 Then, setting section 830, the distance determining unit 820 L a that satisfies the condition, L b, on the basis of L c, measurement terminals 400A, 400B, setting the distance between 400C (step S5).

一方、十字分岐の配電線路200に計測端末400A〜400Dを配置する場合(ステップS1:NO)、入力部810にL、L、L、L、Yを示す値が入力される(ステップS6)。 On the other hand, when arranging the measuring terminal 400A~400D the distribution line 200 of the cross branch (step S1: NO), L a, L b in the input section 810, L c, L d, a value indicating the Y is inputted ( Step S6).

次に、距離判定部820は、L、L、L、L、Yが式(14)、(15)、(16)の条件を満たす値であるか判定を行う(ステップS7)。判定を満たした場合は設定部830の処理に移行し(ステップS7:YES)、満たさなかった場合は入力部810にて再度L、L、L、L、Yを入力する(ステップS7:NO)。 Then, the distance determining section 820, L a, L b, L c, L d, Y has the formula (14), (15), it is determined whether a value satisfying the condition of (16) (step S7) .. If satisfies the determination shifts to the process of setting section 830 (Step S7: YES), again L a if not satisfied by the input unit 810, L b, L c, L d, and inputs the Y (step S7: NO).

次に、設定部830は、距離判定部820で条件を満たしたL、L、L、Lをもとに、計測端末400A、400B、400C、400D間の距離を設定する(ステップS8)。
===まとめ===
Then, setting section 830, L a satisfying the condition by the distance determination unit 820, L b, L c, based on the L d, the measuring terminal 400A, 400B, 400C, sets the distance between 400D (step S8).
=== Summary ===

以上説明したように、配電線路200に地絡事故が発生したとき、配電線路200の電流及び電圧を検出するセンサ300から出力される零相電流及び零相電圧を示す情報を、現在時刻を示す情報に対応付けて、配電線路200の地絡点を標定する地絡点標定装置500に送信する第1乃至第3計測端末400A〜400Cを、それぞれ、配電線路200(第1配電線210)の第1及び第2位置、第1及び第2位置の間の分岐点から分岐する配電線路200(第2配電線220)の第3位置に配置する場合に、第1乃至第3計測端末400A〜400Cの配置間距離を設定する、計測端末の配置間距離設定装置800であって、第1計測端末400Aから分岐点までの第1距離と、第2計測端末400Bから分岐点までの第2距離と、第3計測端末400Cから分岐点までの第3距離と、第1乃至第3計測端末400A〜400Cの配置間距離の差として設定可能な最小値と、を示す値が入力される入力部810と、入力部810に入力された上記の値が、第1乃至第3距離と上記の最小値との間に予め設定された所定の条件を満足する値であるか否かを判定する距離判定部820と、入力部810に入力された上記の値が上記の所定の条件を満足する場合、第1乃至第3距離を示す値に基づいて、第1乃至第3計測端末400A〜400Cの配置間距離を設定する設定部830と、を備えている。ここで、第1乃至第3距離をそれぞれL、L、L、上記の最小値をYとした場合、上記の所定の条件は、L≧L+Y[m]、L≧L+Y[m]で示される2つの条件式を含む。 As described above, when a ground fault occurs in the distribution line 200, the information indicating the zero-phase current and the zero-phase voltage output from the sensor 300 that detects the current and voltage of the distribution line 200 indicates the current time. The first to third measurement terminals 400A to 400C, which transmit to the ground fault point locating device 500 for locating the ground fault point of the distribution line 200 in association with the information, are respectively of the distribution line 200 (first distribution line 210). When the distribution line 200 (second distribution line 220) branching from the branch point between the first and second positions and the first and second positions is arranged at the third position, the first to third measurement terminals 400A to An inter-arrangement distance setting device 800 for measuring terminals that sets the inter-arrangement distance of 400C, the first distance from the first measurement terminal 400A to the branch point and the second distance from the second measurement terminal 400B to the branch point. An input unit in which a value indicating a value indicating the third distance from the third measurement terminal 400C to the branch point and the minimum value that can be set as the difference between the arrangements of the first to third measurement terminals 400A to 400C is input. Distance for determining whether or not the above-mentioned values input to the 810 and the input unit 810 satisfy a predetermined condition set in advance between the first to third distances and the above-mentioned minimum value. When the above values input to the determination unit 820 and the input unit 810 satisfy the above-mentioned predetermined conditions, the first to third measurement terminals 400A to 400C are based on the values indicating the first to third distances. It is provided with a setting unit 830 for setting the distance between arrangements. Here, the first to third distance each L a, if L b, L c, the minimum value of the set to Y, the predetermined condition described above, L b ≧ L c + Y [m], L a ≧ It contains two conditional expressions represented by L b + Y [m].

又、配電線路200に地絡事故が発生したとき、配電線路200の電流及び電圧を検出するセンサ300から出力される零相電流及び零相電圧を示す情報を、現在時刻を示す情報に対応付けて、配電線路200の地絡点を標定する地絡点標定装置500に送信する第1乃至第4計測端末400A〜400Dを、それぞれ、配電線路200(第1配電線210)の第1及び第2位置、第1及び第2位置の間の分岐点から分岐する配電線路200(第2配電線220)の第3位置、分岐点から第3位置とは反対側に分岐する配電線路200(第3配電線230)の第4位置に配置する場合に、第1乃至第4計測端末400A〜400Dの配置間距離を設定する、計測端末の配置間距離設定装置800であって、第1計測端末400Aから分岐点までの第1距離と、第2計測端末400Bから分岐点までの第2距離と、第3計測端末400Cから分岐点までの第3距離と、第4計測端末400Dから分岐点までの第4距離と、第1乃至第4計測端末400A〜400Dの配置間距離の差として設定可能な最小値と、を示す値が入力される入力部810と、入力部810に入力された上記の値が、第1乃至第4距離と上記の最小値との間に予め設定された所定の条件を満足する値であるか否かを判定する距離判定部820と、入力部810に入力された上記の値が上記の所定の条件を満足する場合、第1乃至第4距離を示す値に基づいて、第1乃至第4計測端末400A〜400Dの配置間距離を設定する設定部830と、を備えている。ここで、第1乃至第4距離をそれぞれL、L、L、L、上記の最小値をYとした場合、上記の所定の条件は、L≧L+Y[m]、L≧L+Y[m]、L≦L−Y[m]で示される3つの条件式を含む。 Further, when a ground fault occurs in the distribution line 200, the information indicating the zero-phase current and the zero-phase voltage output from the sensor 300 that detects the current and voltage of the distribution line 200 is associated with the information indicating the current time. The first to fourth measurement terminals 400A to 400D, which are transmitted to the ground fault point locating device 500 for locating the ground fault point of the distribution line 200, are transmitted to the first and first distribution line 200 (first distribution line 210), respectively. Distribution line 200 (second distribution line 220) branching from the branch point between the second position and the first and second positions to the third position of the distribution line 200 (second distribution wire 220), and branching from the branch point to the opposite side to the third position. The first measurement terminal, which is the distance setting device 800 between the arrangements of the measurement terminals, which sets the distance between the arrangements of the first to fourth measurement terminals 400A to 400D when the distribution wire 230) is arranged at the fourth position. The first distance from 400A to the branch point, the second distance from the second measurement terminal 400B to the branch point, the third distance from the third measurement terminal 400C to the branch point, and the fourth measurement terminal 400D to the branch point. A value indicating a fourth distance and a minimum value that can be set as a difference between the arrangements of the first to fourth measurement terminals 400A to 400D is input to the input unit 810 and the above input unit 810. Is input to the distance determination unit 820 and the input unit 810 for determining whether or not the value of is a value that satisfies a predetermined condition set in advance between the first to fourth distances and the above minimum value. When the above values satisfy the above-mentioned predetermined conditions, the setting unit 830 for setting the distance between the arrangements of the first to fourth measurement terminals 400A to 400D based on the values indicating the first to fourth distances, and the setting unit 830. It has. Here, the first through fourth distance, respectively L a, if L b, L c, L d , the minimum value of the set to Y, the predetermined condition described above, L b ≧ L c + Y [m], It contains three conditional expressions represented by L a ≧ L b + Y [m] and L d ≦ L c −Y [m].

又、上記の現在時刻を示す情報は、GPS衛星700から取得する情報であり、上記の最小値Yは、GPS衛星の現在時刻に係る誤差を考慮した値である。 Further, the above-mentioned information indicating the current time is information acquired from the GPS satellite 700, and the above-mentioned minimum value Y is a value in consideration of an error related to the current time of the GPS satellite.

そして、上記のような配置間距離設定装置800を採用することによって、T字分岐や十字分岐等の分岐路を含む配電線路200に複数の計測端末を配置する場合に、地絡点の標定誤差が許容範囲に確実に収まるように、複数の計測端末の配置間距離を設定することが可能となる。 Then, by adopting the inter-arrangement distance setting device 800 as described above, when a plurality of measurement terminals are arranged on the distribution line 200 including the branch path such as the T-shaped branch or the cross branch, the ground fault localization error It is possible to set the distance between the arrangements of a plurality of measurement terminals so that the distance is surely within the permissible range.

尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。 It should be noted that the above embodiment is for facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof.

100 地絡点標定システム
200 配電線路
210 第1配電線
220 第2配電線
230 第3配電線
300 センサ
400(400A〜400D) 計測端末
500 地絡点標定装置
600 支柱
700 GPS衛星
800 配置間距離設定装置
810 入力部
820 距離判定部
830 設定部
100 Ground fault point locating system 200 Distribution line 210 1st distribution line 220 2nd distribution line 230 3rd distribution line 300 Sensor 400 (400A to 400D) Measuring terminal 500 Ground fault point locator 600 Strut 700 GPS satellite 800 Distance setting between locations Device 810 Input unit 820 Distance determination unit 830 Setting unit

Claims (10)

配電線に地絡事故が発生したとき、前記配電線の電流及び電圧を検出するセンサから出力される零相電流及び零相電圧を示す情報を、現在時刻を示す情報に対応付けて、前記配電線の地絡点を標定する地絡点標定装置に送信する第1乃至第3計測端末を、それぞれ、前記配電線の第1及び第2位置、前記第1及び第2位置の間の分岐点から分岐する前記配電線の第3位置に配置する場合に、前記第1乃至第3計測端末の配置間距離を設定する、計測端末の配置間距離設定装置であって、
前記第1計測端末から前記分岐点までの第1距離と、前記第2計測端末から前記分岐点までの第2距離と、前記第3計測端末から前記分岐点までの第3距離と、前記第1乃至第3計測端末の配置間距離の差として設定可能な最小値と、を示す値が入力される入力部と、
前記入力部に入力された前記値が、前記第1乃至第3距離と前記最小値との間に予め設定された所定の条件を満足する値であるか否かを判定する距離判定部と、
前記入力部に入力された前記値が前記所定の条件を満足する場合、前記第1乃至第3距離を示す値に基づいて、前記第1乃至第3計測端末の配置間距離を設定する設定部と、
を備えたことを特徴とする計測端末の配置間距離設定装置。
When a ground fault occurs in a distribution line, the information indicating the zero-phase current and zero-phase voltage output from the sensor that detects the current and voltage of the distribution line is associated with the information indicating the current time, and the distribution is described. The first to third measurement terminals that transmit to the ground fault point locating device that defines the ground fault point of the electric wire are the branch points between the first and second positions of the distribution line and the first and second positions, respectively. An inter-arrangement distance setting device for measuring terminals that sets the inter-arrangement distance of the first to third measurement terminals when the distribution line is arranged at the third position of the distribution line branched from the above.
The first distance from the first measurement terminal to the branch point, the second distance from the second measurement terminal to the branch point, the third distance from the third measurement terminal to the branch point, and the first. An input unit in which a value indicating a minimum value that can be set as a difference in distance between the arrangements of the first to third measurement terminals and a value indicating the input unit is input.
A distance determination unit that determines whether or not the value input to the input unit satisfies a predetermined condition preset between the first to third distances and the minimum value.
When the value input to the input unit satisfies the predetermined condition, the setting unit for setting the distance between the arrangements of the first to third measurement terminals based on the value indicating the first to third distances. When,
A distance setting device between arrangements of measurement terminals, which is characterized by being equipped with.
前記所定の条件は、前記第1乃至第3距離をそれぞれL、L、L、前記最小値をYとした場合、
≧L+Y[m]
≧L+Y[m]
で示される2つの条件式を含む
ことを特徴とする請求項1に記載の計測端末の配置間距離設定装置。
The predetermined condition is that the first to third distance each L a, if L b, L c, the minimum value was Y,
L b ≧ L c + Y [m]
L a ≧ L b + Y [m]
The inter-arrangement distance setting device for measuring terminals according to claim 1, further comprising two conditional expressions represented by.
配電線に地絡事故が発生したとき、前記配電線の電流及び電圧を検出するセンサから出力される零相電流及び零相電圧を示す情報を、現在時刻を示す情報に対応付けて、前記配電線の地絡点を標定する地絡点標定装置に送信する第1乃至第4計測端末を、それぞれ、前記配電線の第1及び第2位置、前記第1及び第2位置の間の分岐点から分岐する前記配電線の第3位置、前記分岐点から前記第3位置とは反対側に分岐する前記配電線の第4位置に配置する場合に、前記第1乃至第4計測端末の配置間距離を設定する、計測端末の配置間距離設定装置であって、
前記第1計測端末から前記分岐点までの第1距離と、前記第2計測端末から前記分岐点までの第2距離と、前記第3計測端末から前記分岐点までの第3距離と、前記第4計測端末から前記分岐点までの第4距離と、前記第1乃至第4計測端末の配置間距離の差として設定可能な最小値と、を示す値が入力される入力部と、
前記入力部に入力された前記値が、前記第1乃至第4距離と前記最小値との間に予め設定された所定の条件を満足する値であるか否かを判定する距離判定部と、
前記入力部に入力された前記値が前記所定の条件を満足する場合、前記第1乃至第4距離を示す値に基づいて、前記第1乃至第4計測端末の配置間距離を設定する設定部と、
を備えたことを特徴とする計測端末の配置間距離設定装置。
When a ground fault occurs in a distribution line, the information indicating the zero-phase current and the zero-phase voltage output from the sensor that detects the current and voltage of the distribution line is associated with the information indicating the current time, and the distribution is described. The first to fourth measurement terminals that transmit to the ground fault point locating device that defines the ground fault point of the electric line are the branch points between the first and second positions of the distribution line and the first and second positions, respectively. When arranging at the third position of the distribution line branching from, and at the fourth position of the distribution line branching from the branch point to the side opposite to the third position, between the arrangements of the first to fourth measurement terminals. It is a distance setting device between the arrangements of measurement terminals that sets the distance.
The first distance from the first measurement terminal to the branch point, the second distance from the second measurement terminal to the branch point, the third distance from the third measurement terminal to the branch point, and the first. 4 An input unit for inputting a value indicating a fourth distance from the measurement terminal to the branch point and a minimum value that can be set as a difference between the arrangements of the first to fourth measurement terminals.
A distance determination unit that determines whether or not the value input to the input unit satisfies a predetermined condition preset between the first to fourth distances and the minimum value.
When the value input to the input unit satisfies the predetermined condition, the setting unit for setting the distance between the arrangements of the first to fourth measurement terminals based on the value indicating the first to fourth distances. When,
A distance setting device between arrangements of measurement terminals, which is characterized by being equipped with.
前記所定の条件は、前記第1乃至第4距離をそれぞれL、L、L、L、前記最小値をYとした場合、
≧L+Y[m]
≧L+Y[m]
≦L−Y[m]
で示される3つの条件式を含む
ことを特徴とする請求項3に記載の計測端末の配置間距離設定装置。
Wherein the predetermined condition, when the first to fourth distances, respectively L a, L b, L c , L d, the minimum value was Y,
L b ≧ L c + Y [m]
L a ≧ L b + Y [m]
L d ≤ L c −Y [m]
The inter-arrangement distance setting device for measuring terminals according to claim 3, further comprising three conditional expressions represented by.
前記現在時刻を示す情報は、GPS衛星から取得する情報であり、
前記最小値は、GPS衛星の現在時刻に係る誤差を考慮した値である
ことを特徴とする請求項1〜4の何れか一項に記載の計測端末の配置間距離設定装置。
The information indicating the current time is information acquired from GPS satellites.
The inter-arrangement distance setting device for measuring terminals according to any one of claims 1 to 4, wherein the minimum value is a value in consideration of an error related to the current time of the GPS satellite.
配電線に地絡事故が発生したとき、前記配電線の電流及び電圧を検出するセンサから出力される零相電流及び零相電圧を示す情報を、現在時刻を示す情報に対応付けて、前記配電線の地絡点を標定する地絡点標定装置に送信する第1乃至第3計測端末を、それぞれ、前記配電線の第1及び第2位置、前記第1及び第2位置の間の分岐点から分岐する前記配電線の第3位置に配置する場合に、前記第1乃至第3計測端末の配置間距離を設定する、計測端末の配置間距離設定方法であって、
前記第1計測端末から前記分岐点までの第1距離と、前記第2計測端末から前記分岐点までの第2距離と、前記第3計測端末から前記分岐点までの第3距離と、前記第1乃至第3計測端末の配置間距離の差として設定可能な最小値と、を示す値が、前記第1乃至第3距離と前記最小値との間に予め設定された所定の条件を満足する値であるか否かを判定する距離判定ステップと、
前記値が前記所定の条件を満足する場合、前記第1乃至第3距離を示す値に基づいて、前記第1乃至第3計測端末の配置間距離を設定する設定ステップと、
を含むことを特徴とする計測端末の配置間距離設定方法。
When a ground fault occurs in a distribution line, the information indicating the zero-phase current and zero-phase voltage output from the sensor that detects the current and voltage of the distribution line is associated with the information indicating the current time, and the distribution is described. The first to third measurement terminals that transmit to the ground fault point locating device that defines the ground fault point of the electric wire are the branch points between the first and second positions of the distribution line and the first and second positions, respectively. It is a method of setting the distance between arrangements of the measurement terminals, which sets the distance between the arrangements of the first to third measurement terminals when the distribution line is arranged at the third position of the distribution line branched from the above.
The first distance from the first measurement terminal to the branch point, the second distance from the second measurement terminal to the branch point, the third distance from the third measurement terminal to the branch point, and the first. The minimum value that can be set as the difference between the arrangements of the first to third measurement terminals and the value indicating the value satisfy a predetermined condition preset between the first to third distances and the minimum value. A distance determination step to determine whether it is a value and
When the value satisfies the predetermined condition, the setting step of setting the distance between the arrangements of the first to third measurement terminals based on the value indicating the first to third distances, and the setting step.
A method of setting the distance between arrangements of measurement terminals, which comprises.
前記所定の条件は、前記第1乃至第3距離をそれぞれL、L、L、前記最小値をYとした場合、
≧L+Y[m]
≧L+Y[m]
で示される2つの条件式を含む
ことを特徴とする請求項6に記載の計測端末の配置間距離設定方法。
The predetermined condition is that the first to third distance each L a, if L b, L c, the minimum value was Y,
L b ≧ L c + Y [m]
L a ≧ L b + Y [m]
The method for setting a distance between arrangements of measurement terminals according to claim 6, wherein the method includes two conditional expressions represented by.
配電線に地絡事故が発生したとき、前記配電線の電流及び電圧を検出するセンサから出力される零相電流及び零相電圧を示す情報を、現在時刻を示す情報に対応付けて、前記配電線の地絡点を標定する地絡点標定装置に送信する第1乃至第4計測端末を、それぞれ、前記配電線の第1及び第2位置、前記第1及び第2位置の間の分岐点から分岐する前記配電線の第3位置、前記分岐点から前記第3位置とは反対側に分岐する前記配電線の第4位置に配置する場合に、前記第1乃至第4計測端末の配置間距離を設定する、計測端末の配置間距離設定方法であって、
前記第1計測端末から前記分岐点までの第1距離と、前記第2計測端末から前記分岐点までの第2距離と、前記第3計測端末から前記分岐点までの第3距離と、前記第4計測端末から前記分岐点までの第4距離と、前記第1乃至第4計測端末の配置間距離の差として設定可能な最小値と、を示す値が、前記第1乃至第4距離と前記最小値との間に予め設定された所定の条件を満足する値であるか否かを判定する距離判定ステップと、
前記値が前記所定の条件を満足する場合、前記第1乃至第4距離を示す値に基づいて、前記第1乃至第4計測端末の配置間距離を設定する設定ステップと、
を含むことを特徴とする計測端末の配置間距離設定方法。
When a ground fault occurs in a distribution line, the information indicating the zero-phase current and the zero-phase voltage output from the sensor that detects the current and voltage of the distribution line is associated with the information indicating the current time, and the distribution is described. The first to fourth measurement terminals that transmit to the ground fault point locating device that defines the ground fault point of the electric line are the branch points between the first and second positions of the distribution line and the first and second positions, respectively. When arranging at the third position of the distribution line branching from, and at the fourth position of the distribution line branching from the branch point to the side opposite to the third position, between the arrangements of the first to fourth measurement terminals. It is a method of setting the distance between arrangements of measurement terminals that sets the distance.
The first distance from the first measurement terminal to the branch point, the second distance from the second measurement terminal to the branch point, the third distance from the third measurement terminal to the branch point, and the first. The values indicating the fourth distance from the 4 measurement terminals to the branch point and the minimum value that can be set as the difference between the arrangements of the first to fourth measurement terminals are the first to fourth distances and the above. A distance determination step for determining whether or not the value satisfies a predetermined condition set in advance with the minimum value, and
When the value satisfies the predetermined condition, the setting step of setting the distance between the arrangements of the first to fourth measurement terminals based on the value indicating the first to fourth distances, and the setting step.
A method of setting the distance between arrangements of measurement terminals, which comprises.
前記所定の条件は、前記第1乃至第4距離をそれぞれL、L、L、L、前記最小値をYとした場合、
≧L+Y[m]
≧L+Y[m]
≦L−Y[m]
で示される3つの条件式を含む
ことを特徴とする請求項8に記載の計測端末の配置間距離設定方法。
Wherein the predetermined condition, when the first to fourth distances, respectively L a, L b, L c , L d, the minimum value was Y,
L b ≧ L c + Y [m]
L a ≧ L b + Y [m]
L d ≤ L c −Y [m]
The method for setting a distance between arrangements of measurement terminals according to claim 8, wherein the method includes three conditional expressions shown in.
前記現在時刻を示す情報は、GPS衛星から取得する情報であり、
前記最小値は、GPS衛星の現在時刻に係る誤差を考慮した値である
ことを特徴とする請求項6〜9の何れか一項に記載の計測端末の配置間距離設定方法。
The information indicating the current time is information acquired from GPS satellites.
The method for setting a distance between arrangements of measurement terminals according to any one of claims 6 to 9, wherein the minimum value is a value in consideration of an error related to the current time of the GPS satellite.
JP2020000283A 2020-01-06 2020-01-06 Arrangement distance setting device and arrangement distance setting method for measuring terminals Active JP7319633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020000283A JP7319633B2 (en) 2020-01-06 2020-01-06 Arrangement distance setting device and arrangement distance setting method for measuring terminals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020000283A JP7319633B2 (en) 2020-01-06 2020-01-06 Arrangement distance setting device and arrangement distance setting method for measuring terminals

Publications (2)

Publication Number Publication Date
JP2021110542A true JP2021110542A (en) 2021-08-02
JP7319633B2 JP7319633B2 (en) 2023-08-02

Family

ID=77059585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020000283A Active JP7319633B2 (en) 2020-01-06 2020-01-06 Arrangement distance setting device and arrangement distance setting method for measuring terminals

Country Status (1)

Country Link
JP (1) JP7319633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848428A (en) * 2021-09-29 2021-12-28 华南理工大学 Power transmission line double-end fault distance measurement method, system, device and medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115133A (en) * 1974-07-30 1976-02-06 Denryoku Chuo Kenkyujo TATANSHISODENSENRONO KOSHOTENHYOTEI HOSHIKI
JPH01161165A (en) * 1987-12-16 1989-06-23 Nissin Electric Co Ltd Locating method for power transmission line accident point
JPH07287045A (en) * 1994-04-18 1995-10-31 Hitachi Cable Ltd Outage point rating method for power system
JP2002199580A (en) * 2001-12-18 2002-07-12 Nishimu Electronics Industries Co Ltd Power transmission line fault monitor
JP2005121434A (en) * 2003-10-15 2005-05-12 Nishimu Electronics Industries Co Ltd Transmission cable fault location system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287045B2 (en) 2019-03-26 2023-06-06 コベルコ建機株式会社 remote control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115133A (en) * 1974-07-30 1976-02-06 Denryoku Chuo Kenkyujo TATANSHISODENSENRONO KOSHOTENHYOTEI HOSHIKI
JPH01161165A (en) * 1987-12-16 1989-06-23 Nissin Electric Co Ltd Locating method for power transmission line accident point
JPH07287045A (en) * 1994-04-18 1995-10-31 Hitachi Cable Ltd Outage point rating method for power system
JP2002199580A (en) * 2001-12-18 2002-07-12 Nishimu Electronics Industries Co Ltd Power transmission line fault monitor
JP2005121434A (en) * 2003-10-15 2005-05-12 Nishimu Electronics Industries Co Ltd Transmission cable fault location system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848428A (en) * 2021-09-29 2021-12-28 华南理工大学 Power transmission line double-end fault distance measurement method, system, device and medium
CN113848428B (en) * 2021-09-29 2022-06-14 华南理工大学 Power transmission line double-end fault distance measurement method, system, device and medium

Also Published As

Publication number Publication date
JP7319633B2 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
EP1992954B1 (en) Method for determining location of phase-to-earth fault
EP2194623B1 (en) Power transmission line dip measurement method
EP1739441B1 (en) Method and system for determining location of phase-to-earth fault
JP2617269B2 (en) Device for measuring current in overhead high-voltage lines
US10557952B2 (en) Accelerometer device
JP2021110542A (en) Distance setting device among arrangements of measurement terminals and distance setting method among arrangements
CN101657729A (en) Device including a contact detector
EP0464662B1 (en) Method and means for fault location in a multi-terminal network
US3234459A (en) Method and apparatus for locating faults in electrical cable lines by comparing the impedance of the entire faulted line to the impedance of a section of the line
JPWO2019092850A1 (en) Ground fault location system, ground fault location method
JP5566991B2 (en) Ultrasonic flow meter and method for calibration of ultrasonic flow meter
JP4733987B2 (en) FAILURE LOCATION METHOD, DEVICE, PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM
CN117220772A (en) Method, device, equipment and storage medium for positioning optical cable fault point
EP3588107A1 (en) Method and device for calculating winding currents at delta side for a transformer
KR20020080329A (en) Method and Apparatus for Generating Measurement Data
JP4039576B2 (en) Calculation method of surge propagation speed in fault location system
JP2009017680A (en) Protective relay system
Ghoshal et al. Development of FPGA-based multi-sensor excitation low voltage (MSELV) chassis at Jefferson Lab
KR101707964B1 (en) Electrical power distribution board system
CN116545529B (en) Fault data processing method based on optical cable operation and maintenance path
JP5642959B2 (en) Weighing device, load detector, weighing system, and method of detecting deterioration of lightning protection element
Kumai et al. Field trial of optical current transformer using optical fiber as Faraday sensor
US20230324450A1 (en) Method for locating a fault point on a high-voltage three-phase ac cable, and system for locating a fault point
JPH08289456A (en) Setting calculation system for power system protective relay
JPH0470527A (en) Laying structure of detecting optical fiber in detecting system of accident point of power cable line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230712

R150 Certificate of patent or registration of utility model

Ref document number: 7319633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150