JP2021110377A - Drive force distribution device for vehicle - Google Patents

Drive force distribution device for vehicle Download PDF

Info

Publication number
JP2021110377A
JP2021110377A JP2020002304A JP2020002304A JP2021110377A JP 2021110377 A JP2021110377 A JP 2021110377A JP 2020002304 A JP2020002304 A JP 2020002304A JP 2020002304 A JP2020002304 A JP 2020002304A JP 2021110377 A JP2021110377 A JP 2021110377A
Authority
JP
Japan
Prior art keywords
rotating member
bearing portion
driving force
distribution device
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020002304A
Other languages
Japanese (ja)
Inventor
亮 中嶋
Akira Nakajima
亮 中嶋
勇治 都築
Yuji Tsuzuki
勇治 都築
雅博 鈴木
Masahiro Suzuki
雅博 鈴木
ダオ ミンフォン
Ming Huong Dao
ダオ ミンフォン
佳秀 神谷
Yoshihide Kamiya
佳秀 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2020002304A priority Critical patent/JP2021110377A/en
Publication of JP2021110377A publication Critical patent/JP2021110377A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

To provide a drive force distribution device for a vehicle which can suppress a load in an axial direction which is received by a bearing arranged between relatively-rotatable rotating members.SOLUTION: A drive force distribution device 16 comprises: a first rotating member 4 relatively non-rotatably connected to one side gear 34 of a differential gear mechanism 3; a second rotating member 5 relatively rotatably arranged coaxially with the first rotating member 4; and an intermittent mechanism 6 which can intermit the connection between the first rotating member 4 and the second rotating member 5. A first bearing part 71 for supporting the first rotating member 4 includes an elastic member 8, and is energized in a direction in which the second rotating member 5 separates from the first rotating member 4 by a restoring force of the elastic member 8. In the second rotating member 5, a moving amount in an axial direction to the differential gear mechanism 3 side from an initial position is limited to a prescribed value or smaller at a second bearing part 72, and when the moving amount of the second rotating member 5 from the initial position is not limited, a distance in which the second rotating member 5 can move in the axial direction while compressing the elastic member 8 is longer than the prescribed value.SELECTED DRAWING: Figure 2

Description

本発明は、入力された駆動力を複数の車輪側に配分して出力する車両用駆動力配分装置に関する。 The present invention relates to a vehicle driving force distribution device that distributes and outputs the input driving force to a plurality of wheel sides.

従来、入力された駆動力を車両の左右輪に配分する駆動力配分装置には、一対の出力歯車としてのサイドギヤを有する差動歯車機構と、一対のサイドギヤのうち一方のサイドギヤに相対回転不能に連結された回転部材とドライブシャフトとの連結を断続可能な断続機構と、を備えたものがある(例えば、特許文献1参照)。 Conventionally, the driving force distribution device that distributes the input driving force to the left and right wheels of the vehicle has a differential gear mechanism having side gears as a pair of output gears and a side gear that cannot rotate relative to one of the pair of side gears. Some are provided with an intermittent mechanism capable of intermittently connecting the connected rotating member and the drive shaft (see, for example, Patent Document 1).

特許文献1に記載の駆動力配分装置は、前後輪を駆動する四輪駆動状態と前輪のみを駆動する二輪駆動状態とを切り替え可能な四輪駆動車の後輪側に搭載されており、差動歯車機構の一方のサイドギヤと一体に回転するインナシャフトと、左後輪のドライブシャフトと相対回転不能に連結される連結シャフトと、連結シャフトと一体に回転するクラッチドラム及びこのクラッチドラムとインナシャフトとの間に配置された摩擦クラッチを含むクラッチ機構と、を有している。インナシャフトには、連結シャフトの一端部を収容する収容孔が形成されており、連結シャフトの外周面と収容孔の内面との間には、インナシャフトと連結シャフトとの同心性を確保するための軸受(玉軸受)が配置されている。 The driving force distribution device described in Patent Document 1 is mounted on the rear wheel side of a four-wheel drive vehicle capable of switching between a four-wheel drive state in which the front and rear wheels are driven and a two-wheel drive state in which only the front wheels are driven. An inner shaft that rotates integrally with one side gear of the moving gear mechanism, a connecting shaft that is non-rotatably connected to the drive shaft of the left rear wheel, a clutch drum that rotates integrally with the connecting shaft, and the clutch drum and inner shaft. It has a clutch mechanism including a friction clutch arranged between and. The inner shaft is formed with an accommodating hole for accommodating one end of the connecting shaft, and in order to ensure the concentricity between the inner shaft and the connecting shaft between the outer peripheral surface of the connecting shaft and the inner surface of the accommodating hole. Bearings (ball bearings) are arranged.

差動歯車機構には、プロペラシャフトを介してエンジンの駆動力が伝達される。プロペラシャフトとエンジンとの間には、プロペラシャフトへの駆動力の伝達を遮断することが可能な噛み合いクラッチが配置されている。そして、二輪駆動状態での走行時には、噛み合いクラッチ及び摩擦クラッチを共に解放状態とすることで、プロペラシャフトを非回転にすることができ、プロペラシャフトの回転による動力損失が抑制されて燃費性能が向上する。 The driving force of the engine is transmitted to the differential gear mechanism via the propeller shaft. A meshing clutch capable of blocking the transmission of the driving force to the propeller shaft is arranged between the propeller shaft and the engine. When traveling in the two-wheel drive state, the propeller shaft can be made non-rotating by releasing both the meshing clutch and the friction clutch, and the power loss due to the rotation of the propeller shaft is suppressed to improve fuel efficiency. do.

特開2017−115930号公報JP-A-2017-115930

上記のように構成された四輪駆動車では、二輪駆動状態においてプロペラシャフトの回転が停止した状態で左右後輪が回転するので、連結シャフトには、右後輪のドライブシャフトの回転が差動歯車機構によって反転して伝達される。このため、インナシャフトと連結シャフトとが互いに逆方向に回転し、インナシャフトと連結シャフトとの間に配置された軸受の負担が大きくなる。特に、左後輪のドライブシャフトから走行に伴う軸方向の荷重が入力され、この荷重が連結シャフトを介して軸受に伝わると、軸受の負担がさらに大きくなり、摩耗等の損傷が発生しやすくなる。 In a four-wheel drive vehicle configured as described above, the left and right rear wheels rotate while the rotation of the propeller shaft is stopped in the two-wheel drive state, so the rotation of the drive shaft of the right rear wheel is differential to the connecting shaft. It is inverted and transmitted by the gear mechanism. Therefore, the inner shaft and the connecting shaft rotate in opposite directions, and the load on the bearing arranged between the inner shaft and the connecting shaft increases. In particular, when an axial load accompanying running is input from the drive shaft of the left rear wheel and this load is transmitted to the bearing via the connecting shaft, the load on the bearing becomes even greater and damage such as wear is likely to occur. ..

そこで、本発明は、相対回転可能な回転部材間に配置される軸受が受ける軸方向の荷重を抑制することが可能な車両用駆動力配分装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a vehicle driving force distribution device capable of suppressing an axial load received by a bearing arranged between relatively rotatable rotating members.

本発明は、上記の目的を達成するため、ハウジングと、入力された駆動力を一対の出力歯車に差動を許容して配分する差動歯車機構と、前記一対の出力歯車のうち一方の出力歯車に相対回転不能に連結された第1回転部材と、前記第1回転部材と同軸上で相対回転可能に配置された第2回転部材と、前記第1回転部材と前記第2回転部材との連結を断続可能な断続機構と、を備えた車両用駆動力配分装置であって、前記第1回転部材は、第1軸受部により前記ハウジングに対して回転可能に支持され、前記第2回転部材は、第2軸受部により前記ハウジングに対して回転可能に支持され、前記第1回転部材と前記第2回転部材との径方向の相対移動が、前記第1回転部材と前記第2回転部材との間に設けられた第3軸受部によって規制され、前記第1軸受部及び前記第3軸受部の少なくとも何れかは、軸方向に圧縮された状態で配置された弾性部材を含み、前記弾性部材の復元力によって前記第2回転部材が前記第1回転部材から離間する方向に付勢されており、前記第2回転部材は、前記復元力を受けて前記差動歯車機構から軸方向に最も離間した初期位置からの前記差動歯車機構側への軸方向の移動量が、前記第2軸受部において所定値以下に制限されており、前記初期位置からの前記第2回転部材の前記差動歯車機構側への軸方向の移動量が前記第2軸受部において制限されていないとした場合に前記第2回転部材が前記弾性部材を圧縮しながら前記初期位置から前記差動歯車機構側に軸方向移動可能な距離が、前記所定値よりも長い、車両用駆動力配分装置を提供する。 In order to achieve the above object, the present invention has a housing, a differential gear mechanism that allows and distributes an input driving force to a pair of output gears while allowing differential distribution, and an output of one of the pair of output gears. A first rotating member connected to a gear so as not to rotate relative to the gear, a second rotating member arranged so as to be relatively rotatable coaxially with the first rotating member, and the first rotating member and the second rotating member. A vehicle driving force distribution device including an intermittent mechanism capable of intermittently connecting the first rotating member, the first rotating member being rotatably supported by the first bearing portion with respect to the housing, and the second rotating member. Is rotatably supported with respect to the housing by the second bearing portion, and the relative movement of the first rotating member and the second rotating member in the radial direction is caused by the first rotating member and the second rotating member. At least one of the first bearing portion and the third bearing portion, which is regulated by a third bearing portion provided between the two bearing portions, includes an elastic member arranged in a state of being compressed in the axial direction, and the elastic member. The second rotating member is urged in a direction away from the first rotating member by the restoring force of the above, and the second rotating member receives the restoring force and is most separated from the differential gear mechanism in the axial direction. The amount of movement in the axial direction from the initial position to the differential gear mechanism side is limited to a predetermined value or less in the second bearing portion, and the differential gear of the second rotating member from the initial position. Assuming that the amount of axial movement toward the mechanism side is not limited by the second bearing portion, the second rotating member compresses the elastic member and axially moves from the initial position to the differential gear mechanism side. Provided is a vehicle driving force distribution device having a movable distance longer than the predetermined value.

本発明に係る車両用駆動力配分装置によれば、相対回転可能な回転部材間に配置される軸受が受ける軸方向の荷重を抑制することが可能となる。 According to the vehicle driving force distribution device according to the present invention, it is possible to suppress the axial load received by the bearings arranged between the relatively rotatable rotating members.

本発明の実施の形態に係る駆動力配分装置が搭載された四輪駆動車の構成例を示す概略構成図である。It is a schematic block diagram which shows the structural example of the four-wheel drive vehicle which mounted the driving force distribution device which concerns on embodiment of this invention. 駆動力配分装置の一部を示す断面図である。It is sectional drawing which shows a part of the driving force distribution device. (a)は、第2回転部材にドライブシャフトからの軸方向荷重が加わらない初期状態における第1軸受部及び第3軸受部の周辺部を示す拡大図である。(b)は、第2回転部材にドライブシャフトからの軸方向荷重が加わった負荷状態における第1軸受部及び第3軸受部の周辺部を示す拡大図である。(A) is an enlarged view showing the peripheral portions of the first bearing portion and the third bearing portion in the initial state in which the axial load from the drive shaft is not applied to the second rotating member. (B) is an enlarged view showing peripheral portions of the first bearing portion and the third bearing portion in a load state in which an axial load from a drive shaft is applied to the second rotating member. 弾性部材を示す斜視図である。It is a perspective view which shows the elastic member. (a)は、第2回転部材にドライブシャフトからの軸方向荷重が加わらない初期状態における第2軸受部の周辺部を示す拡大図である。(b)は、第2回転部材にドライブシャフトからの軸方向荷重が加わり、第2回転部材が差動歯車機構側に移動した負荷状態における第2軸受部の周辺部を示す拡大図である。(A) is an enlarged view showing a peripheral portion of a second bearing portion in an initial state in which an axial load from a drive shaft is not applied to the second rotating member. (B) is an enlarged view showing a peripheral portion of the second bearing portion in a load state in which an axial load from the drive shaft is applied to the second rotating member and the second rotating member moves to the differential gear mechanism side. ハウジングに対する第2回転部材の移動距離が第1の実施の形態よりも大きい場合の比較例について、第2回転部材がドライブシャフトから受ける荷重によって弾性部材が完全圧縮されるまで変形した状態を示す構成図である。Regarding a comparative example in which the moving distance of the second rotating member with respect to the housing is larger than that of the first embodiment, the configuration showing the state in which the second rotating member is deformed until the elastic member is completely compressed by the load received from the drive shaft. It is a figure. 第2の実施の形態に係る駆動力配分装置の一部を示す断面図である。It is sectional drawing which shows a part of the driving force distribution apparatus which concerns on 2nd Embodiment. 第3の実施の形態に係る駆動力配分装置の一部を示す断面図である。It is sectional drawing which shows a part of the driving force distribution apparatus which concerns on 3rd Embodiment. 第4の実施の形態に係る駆動力配分装置の一部を示す断面図である。It is sectional drawing which shows a part of the driving force distribution apparatus which concerns on 4th Embodiment. 第5の実施の形態に係る四輪駆動車及び駆動力配分装置の構成例を示す概略構成図である。It is a schematic block diagram which shows the structural example of the four-wheel drive vehicle and the driving force distribution device which concerns on 5th Embodiment.

[第1の実施の形態]
本発明の第1の実施の形態について、図1乃至図5を参照して説明する。なお、以下に説明する実施の形態は、本発明を実施する上での好適な具体例として示すものであり、技術的に好ましい種々の技術的事項を具体的に例示している部分もあるが、本発明の技術的範囲は、この具体的態様に限定されるものではない。
[First Embodiment]
The first embodiment of the present invention will be described with reference to FIGS. 1 to 5. It should be noted that the embodiments described below are shown as suitable specific examples for carrying out the present invention, and there are some parts that specifically exemplify various technically preferable technical matters. , The technical scope of the present invention is not limited to this specific aspect.

(四輪駆動車の全体構成)
図1は、本発明の第1の実施の形態に係る駆動力配分装置が搭載された四輪駆動車の構成例を示す概略構成図である。この四輪駆動車1は、左右の前輪181,182がエンジン11によって駆動され、左右の後輪183,184が電動モータ15によって駆動される。エンジン11の駆動力は、トランスミッション12で変速されて前輪側の差動歯車機構13に伝達される。差動歯車機構13は、デフケース131と、デフケース131に固定されたピニオンシャフト132と、ピニオンシャフト132に支持された一対のピニオンギヤ133,133と、一対のピニオンギヤ133,133にギヤ軸を直交させて噛み合う一対のサイドギヤ134,134とを有している。左右の前輪181,182には、一対のサイドギヤ134,134にそれぞれ連結された左右のドライブシャフト141,142を介して駆動力が伝達される。
(Overall configuration of four-wheel drive vehicle)
FIG. 1 is a schematic configuration diagram showing a configuration example of a four-wheel drive vehicle equipped with the driving force distribution device according to the first embodiment of the present invention. In the four-wheel drive vehicle 1, the left and right front wheels 181, 182 are driven by the engine 11, and the left and right rear wheels 183 and 184 are driven by the electric motor 15. The driving force of the engine 11 is changed by the transmission 12 and transmitted to the differential gear mechanism 13 on the front wheel side. The differential gear mechanism 13 has a gear axis orthogonal to the differential case 131, the pinion shaft 132 fixed to the differential case 131, the pair of pinion gears 133 and 133 supported by the pinion shaft 132, and the pair of pinion gears 133 and 133. It has a pair of side gears 134 and 134 that mesh with each other. The driving force is transmitted to the left and right front wheels 181, 182 via the left and right drive shafts 141 and 142 connected to the pair of side gears 134 and 134, respectively.

電動モータ15の駆動力は、駆動力配分装置16によって左右の後輪側のドライブシャフト171,172に配分され、左側のドライブシャフト171から左後輪183に、また右側のドライブシャフト172から右後輪184に、それぞれ伝達される。駆動力配分装置16の構成については後述する。 The driving force of the electric motor 15 is distributed to the left and right rear wheel side drive shafts 171 and 172 by the driving force distribution device 16, from the left drive shaft 171 to the left rear wheel 183, and from the right drive shaft 172 to the right rear. It is transmitted to the ring 184, respectively. The configuration of the driving force distribution device 16 will be described later.

電動モータ15及び駆動力配分装置16は、車載の制御装置10によって制御される。制御装置10は、左右の前輪181,182及び左右の後輪183,184の回転速度を検出する車輪速センサ101〜104の検出値、ステアリングホイール191の操舵角を検出する操舵角センサ105の検出値、及びアクセルペダル192の踏み込み量を検出するアクセルペダルセンサ106の検出値を取得可能であり、これらの検出値に基づいて、例えば前輪181,182のスリップ時や加速時等に電動モータ15にモータ電流を供給して左右の後輪183,184を駆動する。 The electric motor 15 and the driving force distribution device 16 are controlled by an in-vehicle control device 10. The control device 10 detects the detection values of the wheel speed sensors 101 to 104 that detect the rotational speeds of the left and right front wheels 181, 182 and the left and right rear wheels 183 and 184, and the steering angle sensor 105 that detects the steering angle of the steering wheel 191. It is possible to acquire the value and the detected value of the accelerator pedal sensor 106 that detects the amount of depression of the accelerator pedal 192, and based on these detected values, for example, when the front wheels 181, 182 are slipping or accelerating, the electric motor 15 is used. A motor current is supplied to drive the left and right rear wheels 183 and 184.

(駆動力配分装置16の構成)
駆動力配分装置16は、車体に対して非回転に取り付けられたハウジング2と、電動モータ15の出力軸151の回転を減速する減速機構161と、減速機構161を介して入力された電動モータ15の駆動力を一対の出力歯車としてのサイドギヤ34に差動を許容して配分する差動歯車機構3と、一対のサイドギヤ34のうち一方のサイドギヤ34に相対回転不能に連結された第1回転部材4と、第1回転部材4と同軸上で相対回転可能に配置された第2回転部材5と、第1回転部材4と第2回転部材5との連結を断続可能な断続機構6とを備えている。第2回転部材5には、右側のドライブシャフト172が相対回転不能に固定される。
(Structure of driving force distribution device 16)
The driving force distribution device 16 includes a housing 2 mounted non-rotatingly with respect to the vehicle body, a deceleration mechanism 161 for decelerating the rotation of the output shaft 151 of the electric motor 15, and an electric motor 15 input via the deceleration mechanism 161. A differential gear mechanism 3 that allows and distributes the driving force to the side gears 34 as a pair of output gears, and a first rotating member that is connected to one side gear 34 of the pair of side gears 34 so as not to rotate relative to each other. 4, a second rotating member 5 arranged so as to be rotatable relative to the first rotating member 4, and an intermittent mechanism 6 capable of intermittently connecting the first rotating member 4 and the second rotating member 5. ing. The drive shaft 172 on the right side is fixed to the second rotating member 5 so as not to rotate relative to each other.

差動歯車機構3は、デフケース31と、デフケース31に取り付けられたピニオンシャフト32と、ピニオンシャフト32に固定された一対のピニオンギヤ33,33と、一対のピニオンギヤ33,33にギヤ軸を直交させて噛み合う一対のサイドギヤ34,34とを有している。デフケース31には、その外周にリングギヤ30が固定されており、リングギヤ30から電動モータ15の駆動力が入力される。 In the differential gear mechanism 3, the gear axes are orthogonal to the differential case 31, the pinion shaft 32 attached to the differential case 31, the pair of pinion gears 33 and 33 fixed to the pinion shaft 32, and the pair of pinion gears 33 and 33. It has a pair of side gears 34, 34 that mesh with each other. A ring gear 30 is fixed to the outer periphery of the differential case 31, and the driving force of the electric motor 15 is input from the ring gear 30.

図2は、駆動力配分装置16の一部を示す断面図である。ハウジング2は、差動歯車機構3を収容するハウジング本体21と、断続機構6を収容するハウジング蓋体22とを有している。ハウジング蓋体22は、ハウジング本体21の車幅方向一側(右側)に配置され、ボルト23によってハウジング本体21に締結されている。ハウジング本体21には、ハウジング蓋体22側に向かって軸方向に開口する凹部210が形成されている。 FIG. 2 is a cross-sectional view showing a part of the driving force distribution device 16. The housing 2 has a housing main body 21 for accommodating the differential gear mechanism 3 and a housing lid 22 for accommodating the intermittent mechanism 6. The housing lid 22 is arranged on one side (right side) of the housing body 21 in the vehicle width direction, and is fastened to the housing body 21 by bolts 23. The housing body 21 is formed with a recess 210 that opens axially toward the housing lid 22 side.

ハウジング蓋体22は、大径円筒部221及び小径円筒部222と、大径円筒部221と小径円筒部222との間に設けられた円盤部223とを一体に有している。小径円筒部222には、第2回転部材5が挿通されており、第2回転部材5の外周面に弾接するシール部材24が小径円筒部222内に取り付けられている。 The housing lid 22 integrally includes a large-diameter cylindrical portion 221 and a small-diameter cylindrical portion 222, and a disk portion 223 provided between the large-diameter cylindrical portion 221 and the small-diameter cylindrical portion 222. A second rotating member 5 is inserted through the small-diameter cylindrical portion 222, and a seal member 24 that comes into contact with the outer peripheral surface of the second rotating member 5 is attached inside the small-diameter cylindrical portion 222.

デフケース31は、ハウジング本体21に一対の円錐ころ軸受70によって回転可能に支持されている。図2では、一方の円錐ころ軸受70を図示している。また、図2では、デフケース31、第1回転部材4、及び第2回転部材5の共通の回転軸線Oを一点鎖線で示している。以下、回転軸線Oに平行な方向を軸方向という。 The differential case 31 is rotatably supported by a pair of conical roller bearings 70 on the housing body 21. FIG. 2 illustrates one tapered roller bearing 70. Further, in FIG. 2, the common rotation axis O of the differential case 31, the first rotating member 4, and the second rotating member 5 is shown by a alternate long and short dash line. Hereinafter, the direction parallel to the rotation axis O is referred to as an axial direction.

断続機構6は、第2回転部材5に対して相対回転不能かつ軸方向移動可能にスプライン係合によって連結された噛み合い部材61と、噛み合い部材61を第1回転部材4から離間する方向に付勢するコイルばね62と、ボビン631にコイル巻線632を巻き回してなる電磁コイル63と、電磁コイル63を保持する環状のヨーク64と、ヨーク64と軸方向に並んで配置された円盤状のアーマチャ65と、噛み合い部材61とアーマチャ65との間に配置されたスラスト軸受66とを有している。ヨーク64は、ハウジング蓋体22の大径円筒部221内に固定部材25によって固定されている。電磁コイル63には、制御装置10から励磁電流が供給される。 The intermittent mechanism 6 urges the meshing member 61, which is connected to the second rotating member 5 by spline engagement so as not to rotate relative to the second rotating member 5 and is movable in the axial direction, in a direction in which the meshing member 61 is separated from the first rotating member 4. A disk-shaped armature arranged axially with the coil spring 62, the electromagnetic coil 63 formed by winding the coil winding 632 around the bobbin 631, the annular yoke 64 holding the electromagnetic coil 63, and the yoke 64. It has a 65 and a thrust bearing 66 arranged between the meshing member 61 and the armature 65. The yoke 64 is fixed by a fixing member 25 in the large-diameter cylindrical portion 221 of the housing lid 22. An exciting current is supplied to the electromagnetic coil 63 from the control device 10.

噛み合い部材61は、第2回転部材5を挿通させる円筒部611と、円筒部611の軸方向一端部から径方向外方に張り出して設けられた環状の鍔部612と、鍔部612の軸方向一側の端面に設けられた複数の噛み合い歯613とを一体に有している。円筒部611の内側には、コイルばね62を収容するボア610が形成されている。第2回転部材5における第1回転部材4側の端部には止め輪67が取り付けられており、この止め輪67によってコイルばね62の一端が当接する環状の当接部材68が係止されている。コイルばね62の他端は、ボア610の奥側の端面610aに当接している。止め輪67は、第2回転部材5の軸部52(後述)の外周面に形成された環状溝520に嵌着されている。 The meshing member 61 includes a cylindrical portion 611 through which the second rotating member 5 is inserted, an annular flange portion 612 provided so as to project radially outward from one end in the axial direction of the cylindrical portion 611, and an axial direction of the flange portion 612. It integrally has a plurality of meshing teeth 613 provided on one end surface. A bore 610 for accommodating the coil spring 62 is formed inside the cylindrical portion 611. A retaining ring 67 is attached to the end of the second rotating member 5 on the side of the first rotating member 4, and the annular contact member 68 to which one end of the coil spring 62 contacts is locked by the retaining ring 67. There is. The other end of the coil spring 62 is in contact with the end surface 610a on the inner side of the bore 610. The retaining ring 67 is fitted in an annular groove 520 formed on the outer peripheral surface of the shaft portion 52 (described later) of the second rotating member 5.

電磁コイル63に通電されていないとき、アーマチャ65は、コイルばね62の付勢力によってハウジング蓋体22の円盤部223に形成された受け面223aに当接する。電磁コイル63に通電されると、ヨーク64に発生する磁力によってアーマチャ65が軸方向に移動し、ヨーク64に当接する。この際、噛み合い部材61は、スラスト軸受66を介してアーマチャ65に押圧され、アーマチャ65と共に軸方向に移動する。 When the electromagnetic coil 63 is not energized, the armature 65 comes into contact with the receiving surface 223a formed on the disk portion 223 of the housing lid 22 by the urging force of the coil spring 62. When the electromagnetic coil 63 is energized, the armature 65 moves in the axial direction due to the magnetic force generated in the yoke 64 and comes into contact with the yoke 64. At this time, the meshing member 61 is pressed by the armature 65 via the thrust bearing 66 and moves in the axial direction together with the armature 65.

第1回転部材4は、差動歯車機構3のデフケース31内に配置されるステム部41と、ハウジング本体21の凹部210内に配置される胴部42と、胴部42における第2回転部材5側の端部から径方向外方に張り出して設けられた環状の鍔部43と、鍔部43の軸方向一側の端面に設けられた複数の噛み合い歯44とを一体に有している。ステム部41の端部は、差動歯車機構3の一方のサイドギヤ34に相対回転不能に連結されている。胴部42の中心部には、第2回転部材5側に向かって軸方向に開口する凹部40が形成されている。断続機構6は、噛み合い部材61が軸方向一側に移動したとき、噛み合い部材61の噛み合い歯613が第1回転部材4の噛み合い歯44と噛み合うように構成されている。 The first rotating member 4 includes a stem portion 41 arranged in the differential case 31 of the differential gear mechanism 3, a body portion 42 arranged in the recess 210 of the housing body 21, and a second rotating member 5 in the body portion 42. It integrally has an annular flange portion 43 provided so as to project outward in the radial direction from the side end portion, and a plurality of meshing teeth 44 provided on one end surface of the flange portion 43 in the axial direction. The end of the stem portion 41 is connected to one side gear 34 of the differential gear mechanism 3 so as not to rotate relative to each other. A recess 40 that opens in the axial direction toward the second rotating member 5 side is formed in the central portion of the body portion 42. The intermittent mechanism 6 is configured such that the meshing teeth 613 of the meshing member 61 mesh with the meshing teeth 44 of the first rotating member 4 when the meshing member 61 moves to one side in the axial direction.

第2回転部材5は、第1回転部材4の凹部40内に配置された円柱状のボス部51と、ボス部51よりも大径で噛み合い部材61に挿通された軸部52と、軸部52よりも大径の中径部53と、中径部よりも大径でシール部材24が弾接する大径部54と、大径部54よりも大径でハウジング2の外部に配置されるフランジ部55とを一体に有している。ボス部51は、軸部52の軸方向端面52aから軸方向に突出して設けられている。フランジ部55には、ドライブシャフト172が相対回転不能に取り付けられる。 The second rotating member 5 includes a columnar boss portion 51 arranged in the recess 40 of the first rotating member 4, a shaft portion 52 having a diameter larger than that of the boss portion 51 and being inserted into the meshing member 61, and a shaft portion. A medium diameter portion 53 having a diameter larger than 52, a large diameter portion 54 having a diameter larger than the medium diameter portion and having the sealing member 24 collide with each other, and a flange having a diameter larger than the large diameter portion 54 and arranged outside the housing 2. It has a part 55 integrally. The boss portion 51 is provided so as to project axially from the axial end surface 52a of the shaft portion 52. A drive shaft 172 is attached to the flange portion 55 so as not to rotate relative to each other.

四輪駆動車1の走行中に二輪駆動状態から四輪駆動状態に切り替えるとき、制御装置10は、電動モータ15を制御してデフケース31を左右後輪183,184と同じ速度で回転させる。これにより、第1回転部材4と第2回転部材5及び噛み合い部材61とが回転同期する。そして、この状態で電磁コイル63に励磁電流を供給し、噛み合い部材61の噛み合い歯613を第1回転部材4の噛み合い歯44に噛み合わせる。これにより、第1回転部材4と第2回転部材5とが噛み合い部材61によって相対回転不能に連結され、電動モータ15の駆動力が左右の後輪183,184に差動を許容して配分される。 When switching from the two-wheel drive state to the four-wheel drive state while the four-wheel drive vehicle 1 is traveling, the control device 10 controls the electric motor 15 to rotate the differential case 31 at the same speed as the left and right rear wheels 183 and 184. As a result, the first rotating member 4, the second rotating member 5, and the meshing member 61 are rotationally synchronized. Then, an exciting current is supplied to the electromagnetic coil 63 in this state, and the meshing teeth 613 of the meshing member 61 are meshed with the meshing teeth 44 of the first rotating member 4. As a result, the first rotating member 4 and the second rotating member 5 are connected by the meshing member 61 so as not to rotate relative to each other, and the driving force of the electric motor 15 is distributed to the left and right rear wheels 183 and 184 with differential tolerance. NS.

一方、四輪駆動車1を四輪駆動状態から二輪駆動状態にするときは、電磁コイル63への励磁電流の供給を停止し、コイルばね62によって第1回転部材4と噛み合い部材61との噛み合いが解除された後、電動モータ15への電流供給を停止する。第1回転部材4と噛み合い部材61との噛み合いが解除されることにより、第1回転部材4と第2回転部材5とが相対回転自在となり、デフケース31は回転停止する。この状態で、第2回転部材5は、車両走行に伴う右後輪184の回転力によって右後輪184と同速度で同方向に回転する。一方、第1回転部材4には、左後輪183の回転力が差動歯車機構3によって反転して伝達され、左後輪183と同速度で逆方向に回転する。すなわち、第1回転部材4と第2回転部材5とが互いに逆方向に回転する。 On the other hand, when the four-wheel drive vehicle 1 is changed from the four-wheel drive state to the two-wheel drive state, the supply of the exciting current to the electromagnetic coil 63 is stopped, and the first rotating member 4 and the meshing member 61 are engaged by the coil spring 62. Is released, the current supply to the electric motor 15 is stopped. When the meshing between the first rotating member 4 and the meshing member 61 is released, the first rotating member 4 and the second rotating member 5 become relatively rotatable, and the differential case 31 stops rotating. In this state, the second rotating member 5 rotates in the same direction as the right rear wheel 184 due to the rotational force of the right rear wheel 184 accompanying the traveling of the vehicle. On the other hand, the rotational force of the left rear wheel 183 is inverted and transmitted to the first rotating member 4 by the differential gear mechanism 3, and rotates in the opposite direction at the same speed as the left rear wheel 183. That is, the first rotating member 4 and the second rotating member 5 rotate in opposite directions to each other.

(第1回転部材4及び第2回転部材5の軸受構造)
駆動力配分装置16は、第1乃至第3軸受部71〜73によって第1回転部材4及び第2回転部材5を支持している。第1回転部材4は、第1軸受部71によりハウジング2のハウジング本体21に対して回転可能に支持され、第2回転部材5は、第2軸受部72によりハウジング2のハウジング蓋体22に対して回転可能に支持されている。第3軸受部73は、第1回転部材4と第2回転部材5との間に設けられており、第1回転部材4と第2回転部材5との径方向の相対移動が第3軸受部73によって規制されている。
(Bearing structure of the first rotating member 4 and the second rotating member 5)
The driving force distribution device 16 supports the first rotating member 4 and the second rotating member 5 by the first to third bearing portions 71 to 73. The first rotating member 4 is rotatably supported by the first bearing portion 71 with respect to the housing body 21 of the housing 2, and the second rotating member 5 is rotatably supported by the second bearing portion 72 with respect to the housing lid 22 of the housing 2. It is rotatably supported. The third bearing portion 73 is provided between the first rotating member 4 and the second rotating member 5, and the relative movement of the first rotating member 4 and the second rotating member 5 in the radial direction is the third bearing portion. It is regulated by 73.

図3(a)は、第2回転部材5にドライブシャフト172からの軸方向荷重が加わらない初期状態における第1軸受部71及び第3軸受部73の周辺部を示す拡大図である。図3(b)は、第2回転部材5にドライブシャフト172からの軸方向荷重が加わった負荷状態における第1軸受部71及び第3軸受部73の周辺部を示す拡大図である。 FIG. 3A is an enlarged view showing the peripheral portions of the first bearing portion 71 and the third bearing portion 73 in the initial state in which the axial load from the drive shaft 172 is not applied to the second rotating member 5. FIG. 3B is an enlarged view showing peripheral portions of the first bearing portion 71 and the third bearing portion 73 in a load state in which an axial load from the drive shaft 172 is applied to the second rotating member 5.

第1軸受部71は、外輪711と内輪712との間に複数の転動体713が保持された玉軸受710によって構成されている。複数の転動体713は、図略の保持器によって周方向等間隔に保持されている。玉軸受710は、ハウジング本体21の凹部210内に配置されており、外輪711が凹部210に内嵌され、内輪712が第1回転部材4の胴部42に外嵌されている。複数の転動体713は、球状であり、外輪711の内周面に形成された断面円弧状の軌道面711a及び内輪712の外周面に形成された断面円弧状の軌道面712aを転動する。 The first bearing portion 71 is composed of ball bearings 710 in which a plurality of rolling elements 713 are held between the outer ring 711 and the inner ring 712. The plurality of rolling elements 713 are held at equal intervals in the circumferential direction by a cage (not shown). The ball bearing 710 is arranged in the recess 210 of the housing body 21, the outer ring 711 is fitted in the recess 210, and the inner ring 712 is fitted in the body 42 of the first rotating member 4. The plurality of rolling elements 713 are spherical and roll on a raceway surface 711a having an arc-shaped cross section formed on the inner peripheral surface of the outer ring 711 and a raceway surface 712a having an arc-shaped cross section formed on the outer peripheral surface of the inner ring 712.

外輪711は、一方の側面711bが凹部210に形成された当接面210aに当接することにより、凹部210の奥側への軸方向移動が規制されている。内輪712は、一方の側面712bが第1回転部材4の鍔部43に当接している。これにより、第1回転部材4の差動歯車機構3側への軸方向移動が玉軸受710によって規制されている。 The outer ring 711 is restricted from moving in the axial direction toward the back side of the recess 210 by having one side surface 711b abut against the contact surface 210a formed in the recess 210. One side surface 712b of the inner ring 712 is in contact with the flange portion 43 of the first rotating member 4. As a result, the axial movement of the first rotating member 4 toward the differential gear mechanism 3 is regulated by the ball bearing 710.

玉軸受710は、固有のアキシャル内部すきまを有しており、外輪711と内輪712とは、このアキシャル内部すきまの範囲で軸方向に相対移動可能である。ここで、アキシャル内部すきまとは、外輪711又は内輪712の何れか一方の軌道輪を固定し、固定されていない他方の軌道輪を軸方向の一側及び他側に移動させたときの他方の軌道輪の最大移動量をいう。 The ball bearing 710 has a unique axial internal clearance, and the outer ring 711 and the inner ring 712 can move relative to each other in the axial direction within the range of this axial internal clearance. Here, the axial internal clearance is the other when the raceway ring of either the outer ring 711 or the inner ring 712 is fixed and the other raceway ring which is not fixed is moved to one side and the other side in the axial direction. The maximum amount of movement of the track ring.

第3軸受部73は、外輪731と内輪732との間に複数の転動体733が保持された玉軸受730と、玉軸受730の内輪732と軸方向に並んで配置された弾性部材8とによって構成されている。複数の転動体733は、球状であり、図略の保持器に保持されて外輪731の内周面に形成された軌道面731a及び内輪732の外周面に形成された軌道面732aを転動する。 The third bearing portion 73 is composed of a ball bearing 730 in which a plurality of rolling elements 733 are held between the outer ring 731 and the inner ring 732, and an elastic member 8 arranged alongside the inner ring 732 of the ball bearing 730 in the axial direction. It is configured. The plurality of rolling elements 733 are spherical and are held by a cage (not shown) to roll a raceway surface 731a formed on the inner peripheral surface of the outer ring 731 and a raceway surface 732a formed on the outer peripheral surface of the inner ring 732. ..

玉軸受730は、第1回転部材4の凹部40内に配置されており、外輪731が凹部40に内嵌されている。外輪731は、一方の側面731bが凹部40に形成された当接面40aに当接することにより、凹部40の奥側への軸方向移動が規制されている。内輪732は、第2回転部材5のボス部51の外周に遊嵌されており、第2回転部材5が内輪732に対して軸方向移動可能である。 The ball bearing 730 is arranged in the recess 40 of the first rotating member 4, and the outer ring 731 is fitted in the recess 40. The outer ring 731 is restricted from moving in the axial direction toward the back side of the recess 40 by having one side surface 731b abut against the contact surface 40a formed in the recess 40. The inner ring 732 is loosely fitted on the outer periphery of the boss portion 51 of the second rotating member 5, and the second rotating member 5 can move in the axial direction with respect to the inner ring 732.

図4は、弾性部材8を示す斜視図である。本実施の形態では、弾性部材8がウェーブワッシャであり、複数の山部81と複数の谷部82とを有している。弾性部材8は、内輪732と第2回転部材5における軸部52の軸方向端面52aとの間に、軸方向に圧縮された状態で配置されており、複数の山部81が内輪732の一方の側面732bに当接し、複数の谷部82が軸部52の軸方向端面52aに当接している。弾性部材8は、初期状態においても軸方向に圧縮されており、その復元力によって第2回転部材5が第1回転部材4から離間する方向に付勢され、また第1回転部材4が第2回転部材5及び噛み合い部材61から離間する方向に付勢されている。なお、弾性部材8としては、ウェーブワッシャに限らず、例えば単一もしくは複数の皿ばねを弾性部材8として用いてもよい。 FIG. 4 is a perspective view showing the elastic member 8. In the present embodiment, the elastic member 8 is a wave washer and has a plurality of peaks 81 and a plurality of valleys 82. The elastic member 8 is arranged between the inner ring 732 and the axial end surface 52a of the shaft portion 52 of the second rotating member 5 in a state of being compressed in the axial direction, and a plurality of mountain portions 81 are arranged on one side of the inner ring 732. A plurality of valley portions 82 are in contact with the axial end surface 52a of the shaft portion 52. The elastic member 8 is compressed in the axial direction even in the initial state, and the restoring force of the elastic member 8 urges the second rotating member 5 in a direction away from the first rotating member 4, and the first rotating member 4 is second. It is urged in a direction away from the rotating member 5 and the meshing member 61. The elastic member 8 is not limited to the wave washer, and for example, a single or a plurality of disc springs may be used as the elastic member 8.

図5(a)は、第2回転部材5にドライブシャフト172からの軸方向荷重が加わらない初期状態における第2軸受部72の周辺部を示す拡大図である。図5(b)は、第2回転部材5にドライブシャフト172からの軸方向荷重が加わり、第2回転部材5が差動歯車機構3側に移動した負荷状態における第2軸受部72の周辺部を示す拡大図である。図5(a)に示す初期状態では、第2回転部材5が、弾性部材8の復元力を受けて差動歯車機構3から軸方向に最も離間した初期位置にある。 FIG. 5A is an enlarged view showing a peripheral portion of the second bearing portion 72 in an initial state in which an axial load from the drive shaft 172 is not applied to the second rotating member 5. FIG. 5B shows a peripheral portion of the second bearing portion 72 in a load state in which an axial load from the drive shaft 172 is applied to the second rotating member 5 and the second rotating member 5 moves to the differential gear mechanism 3 side. It is an enlarged view which shows. In the initial state shown in FIG. 5A, the second rotating member 5 is in the initial position farthest in the axial direction from the differential gear mechanism 3 by receiving the restoring force of the elastic member 8.

第2軸受部72は、外輪721と内輪722との間に複数の転動体723が保持された玉軸受720と、ハウジング蓋体22における小径円筒部222の内周面に形成された環状溝220に嵌着された止め輪724と、第2回転部材5の中径部53の外周面に形成された環状溝530に嵌着された止め輪725とによって構成されている。止め輪724,725として具体的には、例えばスナップリングやCリングを用いることができる。 The second bearing portion 72 includes a ball bearing 720 in which a plurality of rolling elements 723 are held between the outer ring 721 and the inner ring 722, and an annular groove 220 formed on the inner peripheral surface of the small-diameter cylindrical portion 222 of the housing lid 22. The retaining ring 724 is fitted to the retaining ring 724, and the retaining ring 725 is fitted to the annular groove 530 formed on the outer peripheral surface of the middle diameter portion 53 of the second rotating member 5. Specifically, for example, a snap ring or a C ring can be used as the retaining rings 724 and 725.

複数の転動体723は、球状であり、図略の保持器に保持されて、外輪721の内周面に形成された軌道面721a及び内輪722の外周面に形成された軌道面722aを転動する。外輪721は、ハウジング蓋体22の小径円筒部222の内周に遊嵌されており、内輪722は、第2回転部材5の中径部53の外周に遊嵌されている。 The plurality of rolling elements 723 are spherical and are held by a cage (not shown) to roll a raceway surface 721a formed on the inner peripheral surface of the outer ring 721 and a raceway surface 722a formed on the outer peripheral surface of the inner ring 722. do. The outer ring 721 is loosely fitted on the inner circumference of the small-diameter cylindrical portion 222 of the housing lid 22, and the inner ring 722 is loosely fitted on the outer circumference of the middle-diameter portion 53 of the second rotating member 5.

外輪721は、一方の側面721bが止め輪724に対向し、他方の側面721cが小径円筒部222に設けられた対向面222aに対向している。内輪722は、一方の側面722bが止め輪725に対向し、他方の側面722cが第2回転部材5における中径部53と大径部54との間の段差面53aに対向している。 In the outer ring 721, one side surface 721b faces the retaining ring 724, and the other side surface 721c faces the facing surface 222a provided on the small-diameter cylindrical portion 222. In the inner ring 722, one side surface 722b faces the retaining ring 725, and the other side surface 722c faces the stepped surface 53a between the medium diameter portion 53 and the large diameter portion 54 of the second rotating member 5.

図5(a)に示す初期状態では、外輪721の一方の側面721bと止め輪724とが軸方向の隙間S1を介して対向し、外輪721の他方の側面721cが小径円筒部222の対向面222aに当接する。また、内輪722の一方の側面722bが止め輪725に当接し、内輪722の他方の側面722cと段差面53aとが軸方向の隙間S2を介して対向する。 In the initial state shown in FIG. 5A, one side surface 721b of the outer ring 721 and the retaining ring 724 face each other via the axial gap S1, and the other side surface 721c of the outer ring 721 faces the small diameter cylindrical portion 222. It abuts on 222a. Further, one side surface 722b of the inner ring 722 abuts on the retaining ring 725, and the other side surface 722c of the inner ring 722 and the stepped surface 53a face each other via the axial gap S2.

一方、図5(b)に示す負荷状態では、外輪721の一方の側面721bが止め輪724に当接し、外輪721の他方の側面721cと小径円筒部222の対向面222aとが軸方向の隙間S3を介して対向する。また、内輪722の一方の側面722bと止め輪725とが軸方向の隙間S4を介して対向し、内輪722の他方の側面722cが段差面53aに当接する。なお、図3(b)は、第2軸受部72が図5(b)に示す状態にあるときの第1軸受部71及び第3軸受部73の状態を示している。 On the other hand, in the load state shown in FIG. 5B, one side surface 721b of the outer ring 721 abuts on the retaining ring 724, and the other side surface 721c of the outer ring 721 and the facing surface 222a of the small diameter cylindrical portion 222 are in an axial gap. Opposing via S3. Further, one side surface 722b of the inner ring 722 and the retaining ring 725 face each other through the axial gap S4, and the other side surface 722c of the inner ring 722 abuts on the stepped surface 53a. Note that FIG. 3B shows the states of the first bearing portion 71 and the third bearing portion 73 when the second bearing portion 72 is in the state shown in FIG. 5B.

このように、第2回転部材5は、初期位置からの差動歯車機構3側への軸方向の移動量が、第2軸受部72において所定値以下に制限されている。この所定値は、隙間S1及び隙間S2の軸方向幅と玉軸受720のアキシャル内部すきまとの合計値であり、隙間S3及び隙間S4の軸方向幅と玉軸受720のアキシャル内部すきまとの合計値でもある。なお、図5(a)及び(b)では、説明の明確化のため、隙間S1〜S4及び玉軸受720のアキシャル内部すきまを誇張して図示している。 As described above, the amount of movement of the second rotating member 5 in the axial direction from the initial position toward the differential gear mechanism 3 side is limited to a predetermined value or less in the second bearing portion 72. This predetermined value is the total value of the axial width of the gap S1 and the gap S2 and the axial internal clearance of the ball bearing 720, and the total value of the axial width of the gap S3 and the gap S4 and the axial internal clearance of the ball bearing 720. But also. In addition, in FIGS.

具体的には、差動歯車機構3から離間する方向への第2回転部材5の軸方向移動が、外輪721の他方の側面721cが小径円筒部222の対向面222aに当接し、かつ内輪722の一方の側面722bが止め輪725に当接することにより規制される。また、差動歯車機構3側への第2回転部材5の軸方向移動は、外輪721の一方の側面721bが止め輪724に当接し、かつ内輪722の他方の側面722cが段差面53aに当接することにより規制される。 Specifically, the axial movement of the second rotating member 5 in the direction away from the differential gear mechanism 3 causes the other side surface 721c of the outer ring 721 to abut on the facing surface 222a of the small-diameter cylindrical portion 222, and the inner ring 722. One side surface 722b is regulated by abutting the retaining ring 725. Further, in the axial movement of the second rotating member 5 toward the differential gear mechanism 3, one side surface 721b of the outer ring 721 abuts on the retaining ring 724, and the other side surface 722c of the inner ring 722 hits the stepped surface 53a. It is regulated by contact.

ところで、四輪駆動車1が二輪駆動状態で走行する際には、前述のように第1回転部材4と第2回転部材5とが互いに逆方向に回転するので、この状態でドライブシャフト172からの軸方向荷重が第2回転部材5に加わり、この荷重がそのまま第3軸受部73の玉軸受730に負荷されると、玉軸受730の負担が大きくなり、摩耗等の損傷が発生しやすくなる。 By the way, when the four-wheel drive vehicle 1 travels in the two-wheel drive state, the first rotating member 4 and the second rotating member 5 rotate in opposite directions as described above, so that the drive shaft 172 is used in this state. When the axial load of the above is applied to the second rotating member 5 and this load is directly applied to the ball bearing 730 of the third bearing portion 73, the load on the ball bearing 730 becomes large and damage such as wear is likely to occur. ..

図6は、ハウジング2に対する第2回転部材5の軸方向への移動可能な距離が大きい場合の比較例について、第2回転部材5がドライブシャフト172から受ける荷重によって弾性部材8が完全圧縮されるまで変形した状態を図示している。この状態では、ドライブシャフト172からの軸方向荷重が直接的に第3軸受部73の玉軸受730に負荷され、複数の転動体733が高い接触荷重で外輪731の軌道面731a及び内輪732の軌道面732aに押し付けられながら転動し、転動体733や軌道面731a,732aに摩耗が発生しやすくなる。また、ドライブシャフト172から第2回転部材5に衝撃的な荷重が加わったときには、転動体733や軌道面731a,732aに打痕が発生しやすくなる。 FIG. 6 shows a comparative example in which the movable distance of the second rotating member 5 in the axial direction with respect to the housing 2 is large, and the elastic member 8 is completely compressed by the load received by the second rotating member 5 from the drive shaft 172. The deformed state is shown in the figure. In this state, the axial load from the drive shaft 172 is directly applied to the ball bearing 730 of the third bearing portion 73, and the plurality of rolling elements 733 have a high contact load on the raceway surface 731a of the outer ring 731 and the raceway of the inner ring 732. It rolls while being pressed against the surface 732a, and the rolling elements 733 and the raceway surfaces 731a and 732a are likely to be worn. Further, when an impact load is applied from the drive shaft 172 to the second rotating member 5, dents are likely to occur on the rolling elements 733 and the raceway surfaces 731a and 732a.

そこで、本実施の形態では、初期位置からの第2回転部材5の差動歯車機構3側への軸方向の移動量が第2軸受部72において制限されていないとした場合に第2回転部材5が弾性部材8を圧縮しながら初期位置から差動歯車機構3側に軸方向移動可能な距離が、上記の所定値よりも長くなるように各部の寸法が設定されている。換言すれば、第2軸受部72において、外輪721の一方の側面721bが止め輪724に当接し、かつ内輪722の他方の側面722cが段差面53aに当接したとき、弾性部材8が軸方向に完全圧縮されておらず、さらなる軸方向の弾性変形が可能な余地が残されている。 Therefore, in the present embodiment, assuming that the amount of movement of the second rotating member 5 in the axial direction from the initial position to the differential gear mechanism 3 side is not limited by the second bearing portion 72, the second rotating member The dimensions of each part are set so that the distance that 5 can move axially from the initial position to the differential gear mechanism 3 side while compressing the elastic member 8 is longer than the above-mentioned predetermined value. In other words, in the second bearing portion 72, when one side surface 721b of the outer ring 721 abuts on the retaining ring 724 and the other side surface 722c of the inner ring 722 abuts on the stepped surface 53a, the elastic member 8 abuts in the axial direction. It is not completely compressed, leaving room for further axial elastic deformation.

これにより、ドライブシャフト172から第2回転部材5に大きな荷重が加わったときには、この荷重が主としてハウジング蓋体22に嵌着された止め輪724によって受け止められ、第3軸受部73の玉軸受730に負荷される荷重は、弾性部材8の復元力の範囲に抑えられる。 As a result, when a large load is applied from the drive shaft 172 to the second rotating member 5, this load is mainly received by the retaining ring 724 fitted to the housing lid 22, and is received by the ball bearing 730 of the third bearing portion 73. The applied load is suppressed within the range of the restoring force of the elastic member 8.

(第1の実施の形態の効果)
以上説明した本発明の第1の実施の形態によれば、二輪駆動状態での走行時に外輪731と内輪732とが互いに逆転する第3軸受部73の玉軸受730が受ける軸方向の荷重を抑制することができ、これにより玉軸受730に摩耗等の損傷が発生することが抑えられ、駆動力配分装置16の耐久性が高められる。
(Effect of the first embodiment)
According to the first embodiment of the present invention described above, the axial load received by the ball bearing 730 of the third bearing portion 73 in which the outer ring 731 and the inner ring 732 are reversed with each other during traveling in the two-wheel drive state is suppressed. As a result, damage such as wear to the ball bearing 730 is suppressed, and the durability of the driving force distribution device 16 is enhanced.

また、弾性部材8は、初期状態においても軸方向に圧縮された状態にあるので、その復元力によって第1乃至第3軸受部71〜73の玉軸受710,720,730のアキシャル内部すきまがガタ詰めされ、第1乃至第3軸受部71〜73において発生する騒音や振動が抑制される。つまり、仮に弾性部材8に替えて厚みが調整されたシムを配置することにより各部の騒音や振動を抑制しようとすれば、駆動力配分装置16の製造時において、組立の途中段階で組立体の寸法を測定し、測定結果に応じた厚さのシムを選択して組み付けを行う必要があるが、本実施の形態によれば、このような作業が不要となり、組み立てに要する工数を減らすことができる。 Further, since the elastic member 8 is in a state of being compressed in the axial direction even in the initial state, the axial internal clearances of the ball bearings 710, 720, and 730 of the first to third bearing portions 71 to 73 are loosened due to the restoring force. It is packed and noise and vibration generated in the first to third bearing portions 71 to 73 are suppressed. That is, if it is attempted to suppress noise and vibration of each part by arranging a shim whose thickness is adjusted instead of the elastic member 8, at the time of manufacturing the driving force distribution device 16, the assembly is in the middle of assembly. It is necessary to measure the dimensions, select a shim with a thickness according to the measurement result, and assemble it. However, according to this embodiment, such work becomes unnecessary and the man-hours required for assembly can be reduced. can.

またさらに、本実施の形態によれば、弾性部材8の復元力によって第1回転部材4が噛み合い部材61から離間する方向に付勢されているので、例えば四輪駆動車1の走行に伴う振動等により、二輪駆動状態において第1回転部材4の噛み合い歯44が噛み合い部材61の噛み合い歯613に衝突してしまうことが抑止される。 Further, according to the present embodiment, since the first rotating member 4 is urged in the direction away from the meshing member 61 by the restoring force of the elastic member 8, for example, the vibration caused by the running of the four-wheel drive vehicle 1. As a result, it is possible to prevent the meshing teeth 44 of the first rotating member 4 from colliding with the meshing teeth 613 of the meshing member 61 in the two-wheel drive state.

[第2の実施の形態]
次に、本発明の第2の実施の形態について、図7を参照して説明する。図7は、本発明の第2の実施の形態に係る駆動力配分装置の一部を示す断面図である。第2の実施の形態は、弾性部材8の配置が第1の実施の形態と異なり、その他の構成は第1の実施の形態と同様である。このため、図7において、第1の実施の形態で説明したものと共通する構成要素については、図3(a)及び(b)に付したものと同一の符号を付して重複した説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view showing a part of the driving force distribution device according to the second embodiment of the present invention. In the second embodiment, the arrangement of the elastic member 8 is different from that in the first embodiment, and the other configurations are the same as those in the first embodiment. Therefore, in FIG. 7, the components common to those described in the first embodiment are designated by the same reference numerals as those attached to FIGS. 3A and 3B, and duplicated explanations are given. Omit.

なお、後述する第3及び第4の実施の形態についても同様に、第1の実施の形態で説明したものと共通する構成要素については、第1の実施の形態のものと同一の符号を付して重複した説明を省略する。また、第2乃至第4の実施の形態において、初期状態と負荷状態で弾性部材8が軸方向に圧縮される距離は、第1の実施の形態と同様である。 Similarly, with respect to the third and fourth embodiments described later, the same components as those described in the first embodiment are designated by the same reference numerals as those of the first embodiment. The duplicate explanation is omitted. Further, in the second to fourth embodiments, the distance at which the elastic member 8 is compressed in the axial direction in the initial state and the load state is the same as in the first embodiment.

第1の実施の形態では、弾性部材8が第3軸受部73において玉軸受730の内輪732と軸方向に並んで配置された場合について説明したが、本実施の形態では、弾性部材8が第3軸受部73において玉軸受730の外輪731と軸方向に並んで配置されている。弾性部材8は、外輪731の一方の側面731bと第1回転部材4の凹部40の当接面40aとの間に圧縮された状態で配置されている。内輪732の一方の側面732bは、第2回転部材5の軸部52の軸方向端面52aに当接している。外輪731は、凹部40の内周面に遊嵌されており、第1回転部材4が外輪731に対して軸方向に相対移動可能である。この第2の実施の形態によっても、第1の実施の形態と同様の効果が得られる。 In the first embodiment, the case where the elastic member 8 is arranged side by side with the inner ring 732 of the ball bearing 730 in the third bearing portion 73 has been described, but in the present embodiment, the elastic member 8 is the first. 3 In the bearing portion 73, the ball bearing 730 is arranged side by side with the outer ring 731 of the ball bearing 730 in the axial direction. The elastic member 8 is arranged in a compressed state between one side surface 731b of the outer ring 731 and the contact surface 40a of the recess 40 of the first rotating member 4. One side surface 732b of the inner ring 732 is in contact with the axial end surface 52a of the shaft portion 52 of the second rotating member 5. The outer ring 731 is loosely fitted on the inner peripheral surface of the recess 40, and the first rotating member 4 can move relative to the outer ring 731 in the axial direction. The same effect as that of the first embodiment can be obtained by this second embodiment.

[第3の実施の形態]
次に、本発明の第3の実施の形態について、図8を参照して説明する。図8は、本発明の第4の実施の形態に係る駆動力配分装置の一部を示す断面図である。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 8 is a cross-sectional view showing a part of the driving force distribution device according to the fourth embodiment of the present invention.

本実施の形態では、弾性部材8が、第1軸受部71の玉軸受710の内輪712と軸方向に並んで配置されている。すなわち、第1軸受部71が玉軸受710と弾性部材8とを含んで構成されている。弾性部材8は、内輪712の一方の側面712bと第1回転部材4の鍔部43との間に圧縮された状態で配置されている。内輪712は、第1回転部材4の胴部42の外周面に遊嵌されており、第1回転部材4が内輪712に対して軸方向に相対移動可能である。第2回転部材5は、第1回転部材4及び第3軸受部73の玉軸受730を介して弾性部材8の復元力を受け、差動歯車装置3から離間する軸方向に付勢されている。 In the present embodiment, the elastic member 8 is arranged side by side with the inner ring 712 of the ball bearing 710 of the first bearing portion 71 in the axial direction. That is, the first bearing portion 71 is configured to include the ball bearing 710 and the elastic member 8. The elastic member 8 is arranged in a compressed state between one side surface 712b of the inner ring 712 and the flange portion 43 of the first rotating member 4. The inner ring 712 is loosely fitted on the outer peripheral surface of the body portion 42 of the first rotating member 4, and the first rotating member 4 can move relative to the inner ring 712 in the axial direction. The second rotating member 5 receives the restoring force of the elastic member 8 via the ball bearing 730 of the first rotating member 4 and the third bearing portion 73, and is urged in the axial direction away from the differential gear device 3. ..

この第3の実施の形態によっても、第1の実施の形態と同様に、二輪駆動状態での走行時に第3軸受部73の玉軸受730が受ける軸方向の荷重を抑制することができる。 Also in this third embodiment, similarly to the first embodiment, it is possible to suppress the axial load received by the ball bearing 730 of the third bearing portion 73 when traveling in the two-wheel drive state.

[第4の実施の形態]
次に、本発明の第4の実施の形態について、図9を参照して説明する。図9は、本発明の第4の実施の形態に係る駆動力配分装置の一部を示す断面図である。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a cross-sectional view showing a part of the driving force distribution device according to the fourth embodiment of the present invention.

本実施の形態では、弾性部材8が、第1軸受部71の玉軸受710の外輪711と軸方向に並んで配置され、外輪711の一方の側面711bとハウジング本体21の凹部210の当接面210aとの間で軸方向に圧縮されている。外輪711は、凹部210の内周面に遊嵌されており、ハウジング本体21に対して軸方向に相対移動可能である。第2回転部材5は、第3の実施の形態と同様に、第1回転部材4及び第3軸受部73の玉軸受730を介して弾性部材8の復元力を受け、差動歯車装置3から離間する軸方向に付勢されている。 In the present embodiment, the elastic member 8 is arranged side by side with the outer ring 711 of the ball bearing 710 of the first bearing portion 71 in the axial direction, and the contact surface between one side surface 711b of the outer ring 711 and the recess 210 of the housing body 21. It is compressed in the axial direction with and from 210a. The outer ring 711 is loosely fitted on the inner peripheral surface of the recess 210, and can move relative to the housing body 21 in the axial direction. Similar to the third embodiment, the second rotating member 5 receives the restoring force of the elastic member 8 via the ball bearing 730 of the first rotating member 4 and the third bearing portion 73, and receives the restoring force from the differential gear device 3. It is urged in the axial direction to separate.

この第4の実施の形態によっても、第1の実施の形態と同様に、二輪駆動状態での走行時に第3軸受部73の玉軸受730が受ける軸方向の荷重を抑制することができる。 Also in this fourth embodiment, similarly to the first embodiment, it is possible to suppress the axial load received by the ball bearing 730 of the third bearing portion 73 when traveling in the two-wheel drive state.

[第5の実施の形態]
次に、本発明の第5の実施の形態について、図10を参照して説明する。本実施の形態は、四輪駆動車1A及び駆動力配分装置16Aの全体的な構成が第1の実施の形態とは異なる。図10において、第1の実施の形態について説明したものと共通する部材等については、第1の実施の形態のものと同一の符号を付して重複した説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the overall configuration of the four-wheel drive vehicle 1A and the driving force distribution device 16A is different from that of the first embodiment. In FIG. 10, members and the like that are common to those described in the first embodiment are designated by the same reference numerals as those in the first embodiment, and duplicated description will be omitted.

この四輪駆動車1Aは、トランスファクラッチ91と、トランスファクラッチ91を介してエンジン11の駆動力が伝達されるプロペラシャフト92を有しており、エンジン11の駆動力が左右の前輪181,182及び左右の後輪183,184に配分される。 The four-wheel drive vehicle 1A has a transfer clutch 91 and a propeller shaft 92 in which the driving force of the engine 11 is transmitted via the transfer clutch 91, and the driving force of the engine 11 is the left and right front wheels 181 and 182. It is distributed to the left and right rear wheels 183 and 184.

トランスファクラッチ91は、前輪側の差動歯車機構13のデフケース131と一体に回転する第1噛み合い部材911と、第1噛み合い部材911と同軸上で相対回転可能に支持された第2噛み合い部材912と、第1噛み合い部材911と第2噛み合い部材912とを連結可能な円筒状の連結部材913とを有している。連結部材913は、図略のアクチュエータによって進退移動し、連結部材913が軸方向一側に移動したときは第1噛み合い部材911及び第2噛み合い部材912が連結部材913に噛み合って相対回転不能に連結され、連結部材913が軸方向他側に移動したときには、第1噛み合い部材911と第2噛み合い部材912とが相対回転自在となる。 The transfer clutch 91 includes a first meshing member 911 that rotates integrally with the differential case 131 of the differential gear mechanism 13 on the front wheel side, and a second meshing member 912 that is supported coaxially with the first meshing member 911 so as to be relatively rotatable. , Has a cylindrical connecting member 913 capable of connecting the first meshing member 911 and the second meshing member 912. The connecting member 913 moves forward and backward by an actuator (not shown), and when the connecting member 913 moves to one side in the axial direction, the first meshing member 911 and the second meshing member 912 mesh with the connecting member 913 and are connected in a relative non-rotatable manner. When the connecting member 913 moves to the other side in the axial direction, the first meshing member 911 and the second meshing member 912 become relatively rotatable.

プロペラシャフト92には、車両前後方向の前端部にピニオンギヤ921が取り付けられており、このピニオンギヤ921が、第2噛み合い部材912と一体に回転するリングギヤ922に噛み合わされている。また、プロペラシャフト92には、車両前後方向の後端部にピニオンギヤ923が取り付けられており、このピニオンギヤ923が、駆動力配分装置16Aの差動歯車装置3のデフケース31に固定されたリングギヤ30に噛み合わされている。差動歯車装置3の一方のサイドギヤ34には、第1回転部材4が相対回転不能に連結されており、この第1回転部材4と同軸上で第2回転部材5が相対回転可能に配置されている。 A pinion gear 921 is attached to the front end of the propeller shaft 92 in the front-rear direction of the vehicle, and the pinion gear 921 is meshed with a ring gear 922 that rotates integrally with the second meshing member 912. A pinion gear 923 is attached to the propeller shaft 92 at the rear end in the front-rear direction of the vehicle, and the pinion gear 923 is attached to the ring gear 30 fixed to the differential case 31 of the differential gear device 3 of the driving force distribution device 16A. It is meshed. A first rotating member 4 is connected to one side gear 34 of the differential gear device 3 so as to be relatively non-rotatable, and a second rotating member 5 is arranged coaxially with the first rotating member 4 so as to be relatively rotatable. ing.

駆動力配分装置16Aには、第1回転部材4と第2回転部材5との連結を断続可能な断続機構として、摩擦クラッチ931と、この摩擦クラッチ931を押圧する押圧機構932と、摩擦クラッチ931を収容する有底円筒状のクラッチドラム933とを有するクラッチ機構93が用いられている。クラッチドラム933は、第2回転部材5と相対回転不能に連結されている。 The driving force distribution device 16A includes a friction clutch 931 as an intermittent mechanism capable of intermittently connecting the first rotating member 4 and the second rotating member 5, a pressing mechanism 932 for pressing the friction clutch 931, and a friction clutch 931. A clutch mechanism 93 having a bottomed cylindrical clutch drum 933 for accommodating the clutch mechanism 93 is used. The clutch drum 933 is connected to the second rotating member 5 so as not to rotate relative to each other.

摩擦クラッチ931は、第1回転部材4に噛み合わされた複数のインナクラッチプレート、及びクラッチドラム933に噛み合わされた複数のアウタクラッチプレートを有する多板クラッチであり、これらのクラッチプレートが押圧機構93に押圧されて摩擦接触する。押圧機構93は、例えば油圧によって摩擦クラッチ931を押圧し、摩擦クラッチ931は、押圧機構93の押圧力に応じた大きさの駆動力を第1回転部材4からクラッチドラム933に伝達する。制御装置10は、各センサ101〜106によって検出される車両状態に応じて押圧機構93を制御し、左右の後輪183,184に配分される駆動力を調節する。 The friction clutch 931 is a multi-plate clutch having a plurality of inner clutch plates meshed with the first rotating member 4 and a plurality of outer clutch plates meshed with the clutch drum 933, and these clutch plates are attached to the pressing mechanism 93. It is pressed and makes frictional contact. The pressing mechanism 93 presses the friction clutch 931 by, for example, hydraulic pressure, and the friction clutch 931 transmits a driving force of a magnitude corresponding to the pressing force of the pressing mechanism 93 from the first rotating member 4 to the clutch drum 933. The control device 10 controls the pressing mechanism 93 according to the vehicle state detected by the sensors 101 to 106, and adjusts the driving force distributed to the left and right rear wheels 183 and 184.

駆動力配分装置16Aの第1回転部材4及び第2回転部材5は、第1の実施の形態と同様の第1乃至第3軸受部71〜73によって支持される。この第5の実施の形態によっても、第1の実施の形態と同様の効果が得られる。なお、第2乃至第4の実施の形態に係る第1乃至第3軸受部71〜73を駆動力配分装置16Aにおける軸受支持構造として用いてもよい。 The first rotating member 4 and the second rotating member 5 of the driving force distribution device 16A are supported by the first to third bearing portions 71 to 73 similar to those in the first embodiment. The same effect as that of the first embodiment can be obtained by the fifth embodiment. The first to third bearing portions 71 to 73 according to the second to fourth embodiments may be used as the bearing support structure in the driving force distribution device 16A.

(付記)
以上、本発明を第1乃至第4の実施の形態に基づいて説明したが、これらの実施の形態は特許請求の範囲に係る発明を限定するものではない。また、各実施の形態の中で説明した特徴の組み合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。また、本発明は、第1乃至第5の実施の形態を適宜組み合わせて実施することも可能である。
(Additional note)
Although the present invention has been described above based on the first to fourth embodiments, these embodiments do not limit the invention according to the claims. It should also be noted that not all combinations of features described in each embodiment are essential to the means for solving the problems of the invention. Further, the present invention can be implemented by appropriately combining the first to fifth embodiments.

また、本発明は、その趣旨を逸脱しない範囲で、一部の構成を省略し、あるいは構成を追加もしくは置換して、適宜変形して実施することが可能である。例えば、上記の第1乃至第4の実施の形態では、弾性部材8を第1軸受部71又は第3軸受部73の一箇所に配置した場合について説明したが、これら各実施の形態を組み合わせ、第1軸受部71及び第3軸受部73の複数個所に弾性部材8を配置してもよい。また、本発明に係る駆動力配分装置が搭載される車両の構成は、図1及び図10に例示したものに限らず、様々な構成の車両に本発明に係る駆動力配分装置を用いることができる。 Further, the present invention can be carried out by appropriately modifying it by omitting a part of the configurations or adding or replacing the configurations without departing from the spirit of the present invention. For example, in the first to fourth embodiments described above, the case where the elastic member 8 is arranged at one location of the first bearing portion 71 or the third bearing portion 73 has been described. Elastic members 8 may be arranged at a plurality of positions of the first bearing portion 71 and the third bearing portion 73. Further, the configuration of the vehicle on which the driving force distribution device according to the present invention is mounted is not limited to those illustrated in FIGS. 1 and 10, and the driving force distribution device according to the present invention can be used for vehicles having various configurations. can.

16…駆動力配分装置 2…ハウジング
3…差動歯車機構 34,34…サイドギヤ(出力歯車)
4…第1回転部材 5…第2回転部材
6…断続機構 61…噛み合い部材
71…第1軸受部 72…第3軸受部
73…第3軸受部 730…玉軸受
731…外輪 732…内輪
733…転動体 8…弾性部材
16 ... Driving force distribution device 2 ... Housing 3 ... Differential gear mechanism 34, 34 ... Side gear (output gear)
4 ... 1st rotating member 5 ... 2nd rotating member 6 ... Intermittent mechanism 61 ... Meshing member 71 ... 1st bearing part 72 ... 3rd bearing part 73 ... 3rd bearing part 730 ... Ball bearing 731 ... Outer ring 732 ... Inner ring 733 ... Rolling body 8 ... Elastic member

Claims (3)

ハウジングと、入力された駆動力を一対の出力歯車に差動を許容して配分する差動歯車機構と、前記一対の出力歯車のうち一方の出力歯車に相対回転不能に連結された第1回転部材と、前記第1回転部材と同軸上で相対回転可能に配置された第2回転部材と、前記第1回転部材と前記第2回転部材との連結を断続可能な断続機構と、を備えた車両用駆動力配分装置であって、
前記第1回転部材は、第1軸受部により前記ハウジングに対して回転可能に支持され、
前記第2回転部材は、第2軸受部により前記ハウジングに対して回転可能に支持され、
前記第1回転部材と前記第2回転部材との径方向の相対移動が、前記第1回転部材と前記第2回転部材との間に設けられた第3軸受部によって規制され、
前記第1軸受部及び前記第3軸受部の少なくとも何れかは、軸方向に圧縮された状態で配置された弾性部材を含み、前記弾性部材の復元力によって前記第2回転部材が前記第1回転部材から離間する方向に付勢されており、
前記第2回転部材は、前記復元力を受けて前記差動歯車機構から軸方向に最も離間した初期位置からの前記差動歯車機構側への軸方向の移動量が、前記第2軸受部において所定値以下に制限されており、
前記初期位置からの前記第2回転部材の前記差動歯車機構側への軸方向の移動量が前記第2軸受部において制限されていないとした場合に前記第2回転部材が前記弾性部材を圧縮しながら前記初期位置から前記差動歯車機構側に軸方向移動可能な距離が、前記所定値よりも長い、
車両用駆動力配分装置。
A housing, a differential gear mechanism that allows and distributes the input driving force to a pair of output gears, and a first rotation that is non-rotatably connected to one of the pair of output gears. It is provided with a member, a second rotating member arranged coaxially with the first rotating member so as to be relatively rotatable, and an intermittent mechanism capable of intermittently connecting the first rotating member and the second rotating member. It is a driving force distribution device for vehicles.
The first rotating member is rotatably supported by the first bearing portion with respect to the housing.
The second rotating member is rotatably supported by the second bearing portion with respect to the housing.
The relative movement of the first rotating member and the second rotating member in the radial direction is regulated by a third bearing portion provided between the first rotating member and the second rotating member.
At least one of the first bearing portion and the third bearing portion includes an elastic member arranged in a state of being compressed in the axial direction, and the restoring force of the elastic member causes the second rotating member to make the first rotation. It is urged away from the member and
The second rotating member receives the restoring force, and the amount of movement in the axial direction from the initial position farthest in the axial direction from the differential gear mechanism to the differential gear mechanism side is the amount of movement in the second bearing portion. It is limited to the specified value or less,
The second rotating member compresses the elastic member when the amount of axial movement of the second rotating member from the initial position to the differential gear mechanism side is not limited by the second bearing portion. However, the distance that can be moved in the axial direction from the initial position to the differential gear mechanism side is longer than the predetermined value.
Vehicle driving force distribution device.
前記第3軸受部は、内輪と外輪との間に複数の転動体を配置してなる転がり軸受と、前記弾性部材とを含み、
前記弾性部材が前記内輪又は前記外輪と軸方向に並んで配置された、
請求項1に記載の車両用駆動力配分装置。
The third bearing portion includes a rolling bearing formed by arranging a plurality of rolling elements between an inner ring and an outer ring, and the elastic member.
The elastic member is arranged so as to be axially aligned with the inner ring or the outer ring.
The vehicle driving force distribution device according to claim 1.
前記断続機構は、前記第2回転部材に対して相対回転不能かつ軸方向移動可能に連結された噛み合い部材を有し、前記噛み合い部材が軸方向一側に移動したときに前記第1回転部材と噛み合うように構成されており、
前記弾性部材は、前記第1回転部材を、前記噛み合い部材から離間する方向に付勢している、
請求項2に記載の車両用駆動力配分装置。
The intermittent mechanism has a meshing member that is connected to the second rotating member so as to be relatively non-rotatable and axially movable, and when the meshing member moves axially to one side, the first rotating member and the first rotating member. It is configured to mesh and
The elastic member urges the first rotating member in a direction away from the meshing member.
The vehicle driving force distribution device according to claim 2.
JP2020002304A 2020-01-09 2020-01-09 Drive force distribution device for vehicle Pending JP2021110377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020002304A JP2021110377A (en) 2020-01-09 2020-01-09 Drive force distribution device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020002304A JP2021110377A (en) 2020-01-09 2020-01-09 Drive force distribution device for vehicle

Publications (1)

Publication Number Publication Date
JP2021110377A true JP2021110377A (en) 2021-08-02

Family

ID=77059560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020002304A Pending JP2021110377A (en) 2020-01-09 2020-01-09 Drive force distribution device for vehicle

Country Status (1)

Country Link
JP (1) JP2021110377A (en)

Similar Documents

Publication Publication Date Title
US9022195B2 (en) Bi-directional overrunning clutch having split roll cage and drag mechanism
JP3628983B2 (en) Power transmission device having an electromagnetic clutch
JP7275874B2 (en) clutch device
US20140128192A1 (en) Motor driving force transmission system
US20130112520A1 (en) Bi-Directional Overrunning Clutch Having Split Roll Cage
WO2013082168A1 (en) Friction disk mechanism for bi-directional overrunning clutch
EP2971830A1 (en) Bi-directional overrunning clutch having split roll cage
US20160025152A1 (en) Clutch for non-engine powered vehicle drive wheel
JP2003032806A (en) In-wheel motor driving unit and hybrid system
JP2007145088A (en) Power transmission device
US11226012B2 (en) Driving force transmission device
JP2021110377A (en) Drive force distribution device for vehicle
EP1002683B1 (en) A clutch apparatus
JP2008024064A (en) Bearing unit
CN210554153U (en) Power transmission device for vehicle
JP7367412B2 (en) Drive force distribution device
JP2004533589A (en) Ball arrangement structure in torque transmission device
JP2013108613A (en) Clutch, and four-wheel drive vehicle
WO2023021707A1 (en) Sealing structure
US11192449B2 (en) Drive force transfer device and four-wheel-drive vehicle
WO2023276719A1 (en) Clutch actuator
JP5531903B2 (en) Cam mechanism and driving force transmission device
JP2023014721A (en) Rotation power transmission mechanism
WO2023276715A1 (en) Clutch actuator
JP5753003B2 (en) clutch