JP2021107569A - Copper sintered substrate nano-silver impregnated joint sheet, method therefor and joining method - Google Patents

Copper sintered substrate nano-silver impregnated joint sheet, method therefor and joining method Download PDF

Info

Publication number
JP2021107569A
JP2021107569A JP2019239019A JP2019239019A JP2021107569A JP 2021107569 A JP2021107569 A JP 2021107569A JP 2019239019 A JP2019239019 A JP 2019239019A JP 2019239019 A JP2019239019 A JP 2019239019A JP 2021107569 A JP2021107569 A JP 2021107569A
Authority
JP
Japan
Prior art keywords
silver
copper
nanoparticles
bonding
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019239019A
Other languages
Japanese (ja)
Other versions
JP6713120B1 (en
Inventor
小松 晃雄
Akio Komatsu
晃雄 小松
徹也 片瀬
Tetsuya Katase
徹也 片瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEISHO KIKO KK
Original Assignee
MEISHO KIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEISHO KIKO KK filed Critical MEISHO KIKO KK
Priority to JP2019239019A priority Critical patent/JP6713120B1/en
Application granted granted Critical
Publication of JP6713120B1 publication Critical patent/JP6713120B1/en
Publication of JP2021107569A publication Critical patent/JP2021107569A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Abstract

To provide a joint sheet for sintering joining usable for the high temperature heat resistant joining between a power semiconductor and a copper substrate, having simple implementation and having excellent strength, electrical conductivity and thermal conductivity of the joint to be formed, producible at a low cost and capable of long term preservation, a method for producing the same and a joining method.SOLUTION: A joint sheet 1 is composed of a copper sintered substrate 2 as a porous copper sintered structure made of a plurality of sintered and joined copper nanoparticles 4 and a plurality of silver single nanoparticles 5 with organic covering arranged at the surface 33 of the copper sintered substrate 2 and fine pores 21. The silver single nanoparticles 5 are mutually joined and also joined with the copper sintered structure. The numerical density of the silver single nanoparticles 5 is high in the surface 33 of the joint sheet 1 and is low at the inside, and have gradient concentration. The silver single nanoparticles 5 are carboxylic acid-covered silver nanoparticles, the 84% particle diameter D84 are 1.4 to 2.0 nm, a particle diameter distribution width is 15% or lower and an organic covering amount is 10 to 15 mass%.SELECTED DRAWING: Figure 2

Description

本発明は、焼結接合用の接合シートとその製法及び接合方法に関し、更に詳しくは、パワー半導体と銅基板の接合等の、高温での使用に耐える接合構造を形成するための、焼結接合用の接合シートとその製法及び接合方法に関する。 The present invention relates to a bonding sheet for sintering bonding, a manufacturing method thereof, and a bonding method. More specifically, the present invention is a sintered bonding for forming a bonding structure that can withstand use at high temperatures, such as bonding a power semiconductor and a copper substrate. Related to the joining sheet for use and its manufacturing method and joining method.

最近の先端技術の高度化に伴って、半導体等接合製品の小型化・高性能化が要請され、高温環境でも使用できる耐熱性を具えた接合材料が求められている。現在の市販流通品である鉛合金はんだは、有害物質の鉛金属イオンが当該はんだを使用した工業製品が廃棄される際に排出されるため、環境有害物質に指定され、現在、代替品が無いとの理由で例外的に使用が認められている状況である。鉛フリー合金はんだ使用上限温度は現状で230℃であり、鉛はんだ使用温度320℃ですら、市場が求める耐熱性の要請からはほど遠い状況にある。より高温での使用に耐え、かつ市場が認める諸特性を備えた、鉛フリーな接合材料が要請されている。 With the recent sophistication of advanced technology, miniaturization and high performance of bonding products such as semiconductors are required, and bonding materials having heat resistance that can be used even in a high temperature environment are required. Lead alloy solder, which is currently a commercially available product, is designated as an environmentally harmful substance because lead metal ions, which are harmful substances, are discharged when industrial products using the solder are discarded, and there is currently no alternative. It is a situation where use is exceptionally permitted for the reason. The upper limit temperature for using lead-free alloy solder is currently 230 ° C, and even the temperature for using lead solder of 320 ° C is far from the demand for heat resistance on the market. There is a demand for lead-free bonding materials that can withstand higher temperatures and have market-accepted properties.

銀ナノ粒子は比較的低温で焼結でき、優れた電気的・熱的特性を有することから、鉛はんだに代わる半導体接合材料として、種々の製法が開発されており、それを分散させた焼結性接合剤ペーストはよく知られている。また、そのペーストに高分子有機材料を混錬させて、ペーストの粘度調整溶剤等を除外させて薄くシート状にまで加工したナノ金属接合シートについても開発され、ペーストを塗布・乾燥・焼結する工程よりも実装時により簡便となる工夫がされたナノ金属接合シート(特許文献4)や、焼結を不完全な状態で終了させてあるナノ銀接合シート(特許文献6)についても知られている。しかし、これらナノ金属ペースト材料の従来品では、接合特性に関しては鉛はんだや鉛フリー型はんだに比較して優れているが、ダイアタッチ時のはみ出しやペースト塗布厚の不均一、焼結層の脆弱性など実装過程での種々の問題点が生じる。ナノ金属ペーストのシート化材料であるナノ金属接合シートでは実装過程での簡便さの問題は解決しているが、ペーストのシート化時に混錬する高分子材料の焼成過程でペーストよりさらに高温・長時間焼成が必要となり、この点での改善は不可欠である。 Since silver nanoparticles can be sintered at a relatively low temperature and have excellent electrical and thermal properties, various manufacturing methods have been developed as semiconductor bonding materials to replace lead solder, and sintering in which they are dispersed. Sex-bonding pastes are well known. In addition, a nanometal bonded sheet was also developed in which a high molecular weight organic material was kneaded into the paste and processed into a thin sheet by excluding the viscosity adjusting solvent of the paste, and the paste was applied, dried and sintered. Also known are nanometal bonded sheets (Patent Document 4) that have been devised to be easier to mount than processes, and nanosilver bonded sheets (Patent Document 6) in which sintering is completed in an incomplete state. There is. However, although the conventional products of these nanometal paste materials are superior to lead solders and lead-free solders in terms of bonding characteristics, they are squeezed out during die attachment, the paste coating thickness is uneven, and the sintered layer is fragile. Various problems occur in the mounting process such as sex. The nanometal bonded sheet, which is a sheeting material for nanometal paste, solves the problem of simplicity in the mounting process, but it is even hotter and longer than the paste in the firing process of the polymer material that is kneaded during the sheeting of the paste. Time firing is required, and improvement in this regard is essential.

特開2006−202944号公報(特許文献1)には、図15に示すように、半導体素子101の銀電極111と銅基板121aとの間に、多孔質金属層である銅ポーラス板103を介在させ、ナノ銀ペースト104を、銀電極111と銅ポーラス板103との間、及び銅基板121aと銅ポーラス板103との間に設置し、加熱して接合する接合方法の発明が開示されている。この発明は、ナノ銀ペーストの使用量削減と応力緩和の効果を有するが、ナノ銀ペーストのバインダに含まれる有機成分が焼成の際に多量にガス化するため、形成される接合構造の接合強度、耐熱性、電気伝導度及び熱伝導度に悪影響を及ぼすこと、ペースト状の接合材料であるためシート状の接合材料に比べて実装過程での種々の複雑さが存在すること、更に加熱接合過程での焼成設定温度で、長い保持時間を要すること等の欠点がある。 In Japanese Patent Application Laid-Open No. 2006-202944 (Patent Document 1), as shown in FIG. 15, a copper porous plate 103, which is a porous metal layer, is interposed between the silver electrode 111 of the semiconductor element 101 and the copper substrate 121a. The invention of a joining method is disclosed in which the nano-silver paste 104 is installed between the silver electrode 111 and the copper porous plate 103, and between the copper substrate 121a and the copper porous plate 103, and is heated and joined. .. The present invention has the effects of reducing the amount of nano-silver paste used and relieving stress, but since a large amount of organic components contained in the binder of nano-silver paste are gasified during firing, the bonding strength of the formed bonding structure is high. , It has an adverse effect on heat resistance, electrical conductivity and thermal conductivity, and because it is a paste-like bonding material, there are various complications in the mounting process compared to sheet-shaped bonding material, and further, the heat bonding process There is a drawback that a long holding time is required at the set temperature for firing in.

被接合材料にナノ銀ペーストを塗布して焼成により接合する方法や、その結果生じる接合構造については、いくつかの従来技術が存在する。特開2012−074627号公報(特許文献2)には接触抵抗を低減せしめる観点から、特開2018−193604号公報(特許文献3)には放熱性の向上と損傷抑制の観点から、特開2016−021578号公報(特許文献5)にはコスト削減の観点から、特許文献1と同様な接合方法又は接合構造の発明が開示されている。しかし、いずれもペースト状の接合材料を使用するため、シート状の接合材料に比べて実装過程での種々の複雑さが存在することや焼成設定温度で
の加熱接合に長時間を要すること等の欠点がある。
There are several conventional techniques for a method of applying nanosilver paste to a material to be bonded and bonding by firing, and a bonding structure resulting as a result. Japanese Patent Application Laid-Open No. 2012-0742627 (Patent Document 2) has a viewpoint of reducing contact resistance, and Japanese Patent Application Laid-Open No. 2018-193604 (Patent Document 3) has a viewpoint of improving heat dissipation and suppressing damage. -021578 (Patent Document 5) discloses an invention of a joining method or a joining structure similar to Patent Document 1 from the viewpoint of cost reduction. However, since all of them use a paste-like bonding material, there are various complications in the mounting process as compared with the sheet-shaped bonding material, and it takes a long time to heat-bond at the set firing temperature. There are drawbacks.

特開2017−069560号公報(特許文献4)には、金属微粒子を含む加熱接合用シートの発明が開示されている。しかし、この発明には、加熱接合用シートが含有する熱分解性バインダが焼成時に多量の気体を発生させるため、接合強度等が低下し、かつ焼成設定温度での加熱接合に長時間を要する欠点等がある。また、国際公開2015−056589号公報(特許文献6)には、銀ナノ粒子を含有するペーストの焼結により作製される加熱接合用の銀シートであって、該焼結を途中で停止させてある銀シートの発明が開示されている。しかし、この発明では、加圧下で焼成設定温度170℃〜250℃での加熱接合に於いて完全焼結には更に3〜30分の長時間を要することや、多量の銀ナノ粒子を含有するため高コストである等の欠点がある。 Japanese Unexamined Patent Publication No. 2017-609560 (Patent Document 4) discloses an invention of a heat bonding sheet containing metal fine particles. However, the present invention has a drawback that the pyrolyzable binder contained in the heat-bonding sheet generates a large amount of gas during firing, so that the bonding strength and the like are lowered and it takes a long time to heat-bond at the set firing temperature. And so on. Further, according to International Publication No. 2015-056589 (Patent Document 6), it is a silver sheet for heat bonding produced by sintering a paste containing silver nanoparticles, and the sintering is stopped in the middle. The invention of a silver sheet is disclosed. However, in the present invention, in the heat bonding at the set firing temperature of 170 ° C. to 250 ° C. under pressure, it takes a long time of 3 to 30 minutes for complete sintering, and a large amount of silver nanoparticles are contained. Therefore, there are drawbacks such as high cost.

一般に加熱接合用の接合シートを用いた半導体実装分野での高精度化・微細化接合に要請される課題を要約して述べると、実装プロセスの簡易化・短時間化、低コスト化、合わせて高機能性保持と共に、長期安定性も有し、同時に量産性も保証すること、さらに近年重要となる製品の廃棄時における環境安全性が挙げられる。
より詳しくは、接合シートには工業製品として次の特性が求められる。(1)焼成前では、工業製品としての保存時における品質安定性、切断容易性など積層体形成作業の簡便性、(2)焼結進行時においては、より低い焼結温度、より短い焼結時間、焼結時に発生する分解成分の安全性、(3)焼結完了後は接合強度特性、電気伝導・熱伝導特性、環境温度の変化への適正応答性、すなわち応力緩和特性を有するなど長期品質信頼性が求められる。上記の通り、これらをすべて解決した製品は見当たらないし、はんだ等現状市場流通製品に比較して、優れた特性を有し、応力緩和が最適化なされていなければならない。本発明は、流通製品であるはんだ接合剤や接合シートより、上記のすべての点で優れている性能特性を有する製品を実現することを目的とする。
To summarize the issues required for high-precision and miniaturized bonding in the field of semiconductor mounting using bonding sheets for heat bonding, the mounting process can be simplified, shortened, and cost-reduced. In addition to maintaining high functionality, it also has long-term stability, and at the same time guarantees mass productivity, and environmental safety when disposing of products, which has become important in recent years.
More specifically, the bonded sheet is required to have the following characteristics as an industrial product. (1) Before firing, quality stability during storage as an industrial product, ease of cutting, and other ease of laminate formation work, (2) During sintering progress, lower sintering temperature, shorter sintering Long-term such as time, safety of decomposition components generated during sintering, (3) bonding strength characteristics after sintering, electrical conduction / heat conduction characteristics, appropriate response to changes in environmental temperature, that is, stress relaxation characteristics. Quality reliability is required. As mentioned above, there is no product that solves all of these problems, and it must have excellent characteristics and stress relaxation optimized compared to the products currently on the market such as solder. An object of the present invention is to realize a product having excellent performance characteristics in all of the above points, as compared with a solder bonding agent or a bonding sheet which is a distribution product.

特開2006−202944号公報Japanese Unexamined Patent Publication No. 2006-202944 特開2012−074627号公報Japanese Unexamined Patent Publication No. 2012-0746227 特開2018−193604号公報JP-A-2018-193604 特開2017−069560号公報Japanese Unexamined Patent Publication No. 2017-609560 特開2016−021578号公報Japanese Unexamined Patent Publication No. 2016-021578 国際公開2015−056589号公報International Publication No. 2015-056589

Ph. Buffat and J−P. Borel Phys. Rev. A13, 2287 (1976)Ph. Buffat and JP. Borel Phys. Rev. A13, 2287 (1976)

したがって本願発明の課題は、鉛フリーで、高温耐熱接合用途に用いることができ、実装が簡便で、形成される接合の強度、電気伝導度及び熱伝導度に優れ、低コストに製造でき、長期保存可能な、焼結接合用の接合シートとその製法、及び該接合シートを用いた接合方法を提供することである。 Therefore, the subject of the present invention is that it is lead-free, can be used for high-temperature heat-resistant bonding applications, is easy to mount, has excellent strength, electrical conductivity and thermal conductivity of the formed bond, can be manufactured at low cost, and can be manufactured for a long period of time. It is an object of the present invention to provide a sinterable bonding sheet for sintering bonding, a method for producing the same, and a bonding method using the bonding sheet.

本発明は、上記課題を解決するためになされたものであり、銅ナノ粒子からなる銅焼結基板と、シングルナノ銀単分散液の該銅焼結基板への塗布・乾燥を組み合わせて、強接合かつ長期信頼性を示す加圧・短時間焼結接合型の接合シートを実現することにより上記課
題を解決するものである。すなわち、ナノ金属ペーストの金属成分を銅ナノ粒子に置き換えて低価格化を図り、ナノ銅ペーストを無加圧、あるいは低加圧下で焼成して、微細孔を多数保有する均一厚みで平行度が良く、内部応力緩和機能を保有する数十ミクロン程度の厚みの焼結完了済みの銅焼結基板を作成し、その接合面となる表面、好ましくは両方の表面には、均一粒子径のシングルナノ銀単分散液を表面から内部にしみこませて塗布して乾燥させる。好ましくは低分子カルボン酸で被覆された、銀シングルナノ粒子を単分散させたシングルナノ銀分散液の塗布乾燥膜(ナノ銀含浸領域)の焼成設定温度は250℃程度が可能であり、銀シングルナノ粒子の粒径分布幅が小さく、短時間内に焼成が一気に進む設計が可能な特徴がある。
The present invention has been made to solve the above problems, and is strong by combining a copper sintered substrate composed of copper nanoparticles and coating and drying of a single nanosilver monodisperse liquid on the copper sintered substrate. The above problems are solved by realizing a pressure / short-time sintering type bonding sheet that is bonded and exhibits long-term reliability. That is, the metal component of the nanometal paste is replaced with copper nanoparticles to reduce the price, and the nanocopper paste is fired without pressure or under low pressure to have a uniform thickness with many fine pores and parallelism. A well-sintered copper sintered substrate having a thickness of several tens of microns having an internal stress relaxation function is prepared, and a single nanoparticle having a uniform particle size is formed on the surface to be the bonding surface, preferably both surfaces. Soak the silver monodisperse from the surface to the inside, apply and dry. The firing set temperature of the coating dry film (nano-silver impregnated region) of the single nano-silver dispersion liquid in which silver single nanoparticles are monodispersed, preferably coated with a low-molecular-weight carboxylic acid, can be about 250 ° C., and the silver single is silver. The particle size distribution width of nanoparticles is small, and it is possible to design the firing to proceed at once within a short time.

本発明の第1の形態は、焼結結合した複数の銅ナノ粒子からなる多孔質の銅焼結構造体である銅焼結基板と、該銅焼結基板の表面及び微細孔に配置された、有機被覆を有する複数の銀シングルナノ粒子から構成される接合シートであり、前記銀シングルナノ粒子は互いに結合し、前記銅焼結構造体とも結合し、前記銀シングルナノ粒子の数密度は、前記接合シートの少なくとも片側の表面で高く、内部では低く、傾斜濃度化されていることを特徴とする接合シートである。 The first embodiment of the present invention is a copper sintered substrate which is a porous copper sintered structure composed of a plurality of sintered and bonded copper nanoparticles, and is arranged on the surface and micropores of the copper sintered substrate. , A bonding sheet composed of a plurality of silver single nanoparticles having an organic coating, the silver single nanoparticles are bonded to each other and also bonded to the copper sintered structure, and the number density of the silver single nanoparticles is determined. The bonding sheet is characterized in that it is high on the surface of at least one side of the bonding sheet, low on the inside, and has an inclined concentration.

本発明の第2の形態は、前記銀シングルナノ粒子は、銀核の粒径分布における84%粒径(D84)が1.4〜2.0nm、粒径分布幅が15%以下の銀ナノ粒子である前記接合シートである。 In the second embodiment of the present invention, the silver single nanoparticles are silver having an 84% particle size (D 84 ) of 1.4 to 2.0 nm and a particle size distribution width of 15% or less in the particle size distribution of the silver nucleus. The bonding sheet which is a nanoparticle.

本発明の第3の形態は、前記銀シングルナノ粒子が、有機被覆量10〜15質量%のカルボン酸被覆銀ナノ粒子である前記接合シートである。 A third aspect of the present invention is the bonding sheet in which the silver single nanoparticles are carboxylic acid-coated silver nanoparticles having an organic coating amount of 10 to 15% by mass.

本発明の第4の形態は、前記数密度が、前記接合シートの裏表の両方の表面から内部に向けて低くなっている前記接合シートである。 A fourth aspect of the present invention is the bonded sheet in which the number density is lowered inward from both the front and back surfaces of the bonded sheet.

本発明の第5の形態は、前記数密度が、前記接合シートの裏表の表面のうち、片側の表面から他方の表面に向けて低くなっている前記接合シートである。ただし、該数密度が低い方の表面においても、銀シングルナノ粒子の数密度は、接合機能を有する程度の数密度となっている。 A fifth aspect of the present invention is the bonding sheet in which the number density is lowered from one surface to the other surface of the front and back surfaces of the bonding sheet. However, even on the surface having the lower number density, the number density of the silver single nanoparticles is such that the silver single nanoparticles have a bonding function.

本発明の第6の形態は、有機被覆を有する銀シングルナノ粒子を溶媒に分散させてシングルナノ銀分散液を得る、シングルナノ銀分散液準備工程と、銅ナノ粒子を含有するナノ銅ペーストを焼成して多孔質の銅焼結基板を形成する銅焼結基板形成工程と、前記銅焼結基板の表面に、前記シングルナノ銀分散液を塗布若しくは含浸させ、更に乾燥させることにより、前記銅焼結基板の前記表面及び該表面に隣接する体積領域に、傾斜濃度化された銀シングルナノ粒子を配置して、傾斜機能を付与する傾斜機能付与工程、を有することを特徴とする接合シートの製法である。 A sixth embodiment of the present invention comprises a single nanosilver dispersion preparation step of dispersing silver single nanoparticles having an organic coating in a solvent to obtain a single nanosilver dispersion, and a nanocopper paste containing copper nanoparticles. The copper is formed by firing to form a porous copper sintered substrate, and by applying or impregnating the surface of the copper sintered substrate with the single nanosilver dispersion liquid and further drying the copper. A bonding sheet characterized by having a tilting function imparting step of arranging tilted-concentration silver single nanoparticles on the surface of the sintered substrate and a volume region adjacent to the surface to impart a tilting function. It is a manufacturing method.

本発明の第7の形態は、前記接合シートを介して、第1被接合物と第2被接合物を接合する接合方法であり、第1被接合物と、1枚以上の前記接合シートと、第2被接合物、をこの順に積層して積層体を形成する積層ステップと、圧力を加えつつ、当該積層体を焼成して接合体を形成するステップを有することを特徴とする接合方法である。 A seventh aspect of the present invention is a joining method for joining a first object to be joined and a second object to be joined via the joining sheet, and the first object to be joined and one or more of the joining sheets. A joining method characterized by having a laminating step of laminating the second object to be joined in this order to form a laminated body, and a step of firing the laminated body to form a bonded body while applying pressure. be.

本発明の第8の形態は、前記積層ステップにおいて、積層に先立って実装時の固定化を確実にするための固定化助剤を前記接合シートの表面に添加する前記接合方法である。 An eighth aspect of the present invention is the joining method in which an immobilization aid for ensuring immobilization at the time of mounting is added to the surface of the joining sheet prior to laminating in the laminating step.

本発明の第9の形態は、被接合物に、前記接合シートを積層して仮留めしてなる積層体である。 A ninth aspect of the present invention is a laminated body obtained by laminating the joining sheet on an object to be joined and temporarily fixing the joining sheet.

本発明の第1の形態によれば、焼結結合した複数の銅ナノ粒子からなる多孔質の銅焼結構造体である銅焼結基板と、該銅焼結基板の表面及び微細孔に配置された、有機被覆を有する複数の銀シングルナノ粒子から構成される接合シートであり、前記銀シングルナノ粒子は互いに結合し、前記銅焼結構造体とも結合し、前記銀シングルナノ粒子の数密度は、前記接合シートの少なくとも片側の表面で高く、内部では低く、傾斜濃度化されていることを特徴とする接合シートを提供できる。 According to the first aspect of the present invention, a copper sintered substrate, which is a porous copper sintered structure composed of a plurality of sintered and bonded copper nanoparticles, is arranged on the surface and micropores of the copper sintered substrate. It is a bonded sheet composed of a plurality of silver single nanoparticles having an organic coating, and the silver single nanoparticles are bonded to each other and also bonded to the copper sintered structure, and the number density of the silver single nanoparticles is high. Can provide a bonding sheet characterized in that it is high on the surface of at least one side of the bonding sheet, low on the inside, and has an inclined concentration.

本形態の接合シートは、焼成済の銅焼結基板と、未焼成の銀シングルナノ粒子群から構成される。銅焼結基板は銅ナノ粒子の焼結により、微細孔を有して互いに粒子間結合した銅金属の多孔質の焼結構造体(銅焼結構造体)を形成している。有機被覆を有する銀シングルナノ粒子群は、銅焼結基板の表面及び銅焼結構造体の微細孔内に吸着結合して分布している。図2を参照して、銅焼結基板2と銀シングルナノ粒子5からなるこのような構成は、例えば、銅ナノ粒子4を含むナノ銅ペーストを焼成して銅焼結基板2を作製し、銅焼結基板2の表面に銀シングルナノ粒子5を含むシングルナノ銀分散液を塗布・含浸させ、さらにシングルナノ銀分散液の溶媒を乾燥除去することにより形成することができる。「銅焼結基板と・・銀シングルナノ粒子群から構成される」とは、銀シングルナノ粒子を銅焼結基板の表面及び微細孔に配置する際に用いられる溶媒などが除去されていることを意味する。本形態の接合シートは、溶媒が除去されているゆえに、乾燥状態の表面を有するから、特にカバーの為のフィルム等を施さなくても数枚を重ねて保管することに支障がなく、空気中の塵埃も付着しにくく、取り扱いが容易で保存性にも優れる。また、溶媒が除去されているから、該接合シートを用いた接合の為の加圧焼成の際には、溶媒の熱分解や酸化分解によるガスの発生がないので、銅金属の多孔質焼結構造体の破壊・劣化がなく、銀シングルナノ粒子の銀金属成分の低温融解現象により、銅金属の多孔質焼結構造体の銀メッキ化と銀銅合金化により強固な接合構造体が形成される。 The bonded sheet of this embodiment is composed of a fired copper sintered substrate and an unfired silver single nanoparticle group. The copper sintered substrate is formed by sintering copper nanoparticles to form a porous sintered structure (copper sintered structure) of copper metal having micropores and interparticle bonding with each other. The silver single nanoparticles group having an organic coating are distributed by adsorption bonding on the surface of the copper sintered substrate and in the micropores of the copper sintered structure. With reference to FIG. 2, such a configuration composed of the copper sintered substrate 2 and the silver single nanoparticles 5 is prepared, for example, by firing a nanocopper paste containing the copper nanoparticles 4 to prepare the copper sintered substrate 2. It can be formed by applying and impregnating a single nanosilver dispersion liquid containing silver single nanoparticles 5 on the surface of the copper sintered substrate 2, and further drying and removing the solvent of the single nanosilver dispersion liquid. "Composed of a copper sintered substrate and a group of silver single nanoparticles" means that the solvent used when arranging the silver single nanoparticles on the surface and micropores of the copper sintered substrate has been removed. Means. Since the bonding sheet of this embodiment has a dry surface because the solvent has been removed, there is no problem in stacking and storing several sheets without applying a film or the like for a cover, and the bonding sheet is in the air. It is easy to handle and has excellent storage stability. Further, since the solvent is removed, no gas is generated due to thermal decomposition or oxidative decomposition of the solvent during pressure firing for bonding using the bonding sheet, so that a porous sintered structure of copper metal is used. There is no destruction or deterioration of the structure, and a strong bonded structure is formed by silver plating and silver-copper alloying of the porous sintered structure of copper metal by the low temperature melting phenomenon of the silver metal component of silver single nanoparticles. NS.

本形態の接合シートには2つのタイプがある。1つは図(1A)に示すように、裏表の両面に銀シングルナノ粒子が高密度に分布しているタイプAであり、もう1つは図(1B)に示すように、銀シングルナノ粒子が片面には高密度で、裏面は焼成時の接合が可能な程度に低濃度に分布制御されたタイプBである。本形態の接合シートの使用時には、例えば2つの被接合物の間にタイプAの本接合シートを挟んで積層体を形成し、この積層体を加圧焼成することにより、本接合シートに含まれる銀シングルナノ粒子の有機被覆を酸化除去しつつ、該銀シングルナノ粒子の銀核を、他の銀シングルナノ粒子の銀核や、焼結結合済の銅ナノ粒子や、被接合物と焼結結合させて、本接合シートを介して2つの被接合物が接合した接合体を形成する。接合のために焼成する際には、銅焼結基板は焼結済であり、銀シングルナノ粒子を焼結させるだけでよいから、焼成設定温度での焼成に要する時間は短くて済む。加えて本接合シートにおいては、焼結が必要な銀シングルナノ粒子は熱伝達の速い表面付近に集中しており、焼成設定温度での焼成に要する時間は10〜60秒程度の短時間で済み、従来のナノ銀ペーストによる接合の1/5程度の時間で焼成でき、熱分解してガスを発生する溶媒がそもそも存在せず、かつ、接合強度低下の原因となる銀シングルナノ粒子の有機被覆の熱分解に伴うガスの発生量も少ないから大きな接合強度を確保できる。更に、従来のナノ銀ペーストでは必要であった塗布の手間も、はみ出しの心配も、乾燥に要する時間も不要である。加えて、本形態の接合シートは、銀の使用量が少なくて済むから低コストで製造できる。 There are two types of bonding sheets of this embodiment. One is type A in which silver single nanoparticles are densely distributed on both the front and back surfaces as shown in FIG. (1A), and the other is silver single nanoparticles as shown in FIG. (1B). However, one side has a high density, and the back side is a type B whose distribution is controlled to a low concentration so that bonding at the time of firing is possible. When the bonded sheet of this embodiment is used, for example, a type A main bonded sheet is sandwiched between two objects to be joined to form a laminated body, and the laminated body is pressure-fired to be included in the main bonded sheet. While removing the organic coating of the silver single nanoparticles by oxidation, the silver nuclei of the silver single nanoparticles are sintered with the silver nuclei of other silver single nanoparticles, the copper nanoparticles that have been sintered and bonded, or the object to be bonded. By joining, two objects to be joined are joined via the main joining sheet to form a bonded body. When firing for bonding, the copper sintered substrate has already been sintered, and it is only necessary to sinter the silver single nanoparticles, so that the time required for firing at the firing set temperature can be shortened. In addition, in this bonded sheet, the silver single nanoparticles that need to be sintered are concentrated near the surface where heat transfer is fast, and the time required for firing at the firing set temperature is as short as about 10 to 60 seconds. , It can be fired in about 1/5 of the time of bonding with conventional nano-silver paste, there is no solvent that generates gas by thermal decomposition, and the organic coating of silver single nanoparticles that causes a decrease in bonding strength. Since the amount of gas generated by thermal decomposition is small, a large bonding strength can be secured. Further, the labor of application, the worry of protrusion, and the time required for drying, which are required in the conventional nano-silver paste, are not required. In addition, the bonded sheet of this embodiment can be manufactured at low cost because the amount of silver used is small.

更に、本形態の接合シートにおいては、表面に垂直な方向での銀シングルナノ粒子の濃度分布は、内部に進むにつれて濃度が小さくなり(図(1c)を参照)、被接合物との接合界面33付近には銀シングルナノ粒子がほぼ100%、すなわち95%以上の相対濃度(銀成分の密度の、銀成分と銅成分の密度の合計に対する割合)で集中しており、接合の
ための焼成後の接合界面での接合力は、銀シングルナノ粒子の焼結による低融点化した銀核の融液が全て担い、熱伝導度及び電気伝導度に優れた強接合が可能な設計となっている。また、接合シートの内部においては銀シングルナノ粒子の銀核と多孔質の銅焼結構造体がほぼ合金化されて一体化し、強固な結合を形成する。
Further, in the bonding sheet of this embodiment, the concentration distribution of the silver single nanoparticles in the direction perpendicular to the surface becomes smaller toward the inside (see FIG. (1c)), and the bonding interface with the object to be bonded. Silver single nanoparticles are concentrated in the vicinity of 33 at a relative concentration of almost 100%, that is, 95% or more (the ratio of the density of the silver component to the total density of the silver component and the copper component), and firing for bonding. The bonding force at the subsequent bonding interface is entirely borne by the melt of silver nuclei whose melting point has been lowered by sintering silver single nanoparticles, and the design enables strong bonding with excellent thermal and electrical conductivity. There is. Further, inside the bonding sheet, the silver nucleus of the silver single nanoparticles and the porous copper sintered structure are almost alloyed and integrated to form a strong bond.

本明細書において、銅ナノ粒子とは、有機被覆されていない、平均粒径が約5×101nm程度の銅粒子をいう。本形態の接合シートは、焼結結合した複数の銅ナノ粒子からなる多孔質の銅焼結基板が応力緩和特性を発揮するから、接合のための焼成時には被接合物間の温度伸縮特性の相違によらない強固な接合の形成という利点を有し、接合のための焼成後には形成された接合の高耐久性及び長期信頼性という利点を有する。例えば、本形態の接合シートを間に挟んで、接合面には金属メッキ加工がなされたシリコン半導体と銅基板を、加圧焼成により強固に接合することができ、形成された接合は熱衝撃に対する長期耐久性を有する。 In the present specification, the copper nanoparticles are copper particles having an average particle size of about 5 × 10 1 nm, which are not organically coated. In the bonded sheet of this embodiment, a porous copper sintered substrate composed of a plurality of sintered and bonded copper nanoparticles exhibits stress relaxation characteristics, so that there is a difference in temperature expansion and contraction characteristics between objects to be bonded during firing for bonding. It has the advantage of forming a strong bond regardless of the above, and has the advantage of high durability and long-term reliability of the formed bond after firing for bonding. For example, a silicon semiconductor and a copper substrate having a metal-plated surface can be firmly bonded by pressure firing with a bonding sheet of the present embodiment sandwiched between them, and the formed bonding is resistant to thermal shock. Has long-term durability.

なお、本明細書において、銀シングルナノ粒子とは、平均粒径が約2nm程度の銀ナノ粒子をいう。銅焼結基板に銀シングルナノ粒子を配置する際に使用する溶媒中での分散性の観点から、銀シングルナノ粒子は有機被覆を有しているが、上記の平均粒径とは、有機被覆の部分を含まない、銀核の粒径(直径)の平均(個数平均)をいう。 In the present specification, the silver single nanoparticles refer to silver nanoparticles having an average particle size of about 2 nm. From the viewpoint of dispersibility in the solvent used when arranging the silver single nanoparticles on the copper sintered substrate, the silver single nanoparticles have an organic coating, but the above average particle size is the organic coating. It means the average (number average) of the particle size (diameter) of silver nuclei not including the part.

本発明の第2の形態によれば、前記銀シングルナノ粒子は、銀核の粒径分布における84%粒径(D84)が1.4〜2.0nm、粒径分布幅が15%以下の銀ナノ粒子である前記接合シートを提供できる。84%粒径(D84)は、多数の粒子を粒径が小さい順に並べて、最も粒径が小さい粒子を0%、最も粒径が大きい粒子を100%の位置としたとき、84%の位置に存在する粒子の粒径のことであり、粒径分布が正規分布の場合には、平均粒径(m)に標準偏差(σ)を加えた値(m+σ)に相当する粒径である。本形態の銀シングルナノ粒子は、その84%の粒径が2.0nm以下であり、粒子の融点が250℃以下であるから、250℃程度の低い温度で焼結結合して銀化することが可能である。なお、84%粒径が1.4nm未満の銀シングルナノ粒子群は、作製時の粒径制御が難しい。また、粒径分布幅(粒径分布の標準偏差の、平均粒径に対する割合)は15%以下と狭いことが好ましい。例えば、平均粒径1.7nm±0.3nm(粒径の標準偏差)であれば、粒径分布幅は15%であるから、この条件を満たす。接合シートに含まれる銀シングルナノ粒子の粒径分布幅が狭いと、接合のための焼成の際に、該銀シングルナノ粒子同士はほぼ同一温度で溶融して結合可能となるから、焼結が一気に進み、短時間で効率的に焼結結合して、強固な接合が確実に形成される利点がある。 According to the second embodiment of the present invention, the silver single nanoparticles have an 84% particle size (D 84 ) of 1.4 to 2.0 nm and a particle size distribution width of 15% or less in the particle size distribution of the silver nucleus. The bonded sheet, which is silver nanoparticles of the above, can be provided. The 84% particle size (D 84 ) is the 84% position when a large number of particles are arranged in ascending order of particle size, the smallest particle size is 0%, and the largest particle size is 100%. When the particle size distribution is a normal distribution, it is the particle size corresponding to the value (m + σ) obtained by adding the standard deviation (σ) to the average particle size (m). Since 84% of the silver single nanoparticles of this embodiment have a particle size of 2.0 nm or less and a melting point of 250 ° C. or less, they are sintered and bonded at a low temperature of about 250 ° C. to be silvered. Is possible. It is difficult to control the particle size of the silver single nanoparticles group having an 84% particle size of less than 1.4 nm at the time of production. Further, the particle size distribution width (ratio of the standard deviation of the particle size distribution to the average particle size) is preferably as narrow as 15% or less. For example, if the average particle size is 1.7 nm ± 0.3 nm (standard deviation of the particle size), the particle size distribution width is 15%, and this condition is satisfied. If the particle size distribution width of the silver single nanoparticles contained in the bonding sheet is narrow, the silver single nanoparticles can be melted and bonded at almost the same temperature during firing for bonding, so that sintering can be performed. There is an advantage that a strong bond is surely formed by proceeding at a stretch and efficiently sintering and bonding in a short time.

本発明の第3の形態によれば、前記銀シングルナノ粒子が、有機被覆量10〜15質量%のカルボン酸被覆銀ナノ粒子である前記接合シートを提供できる。有機被覆の成分がカルボン酸由来の銀シングルナノ粒子は、焼結時にカルボン酸の酸化分解反応により発熱する。したがって、被接合物と本形態の接合シートを250℃程度の低温の焼結環境温度で接合する場合であっても、本接合シートにおいて、被接合物との接合界面付近に存在する銀シングルナノ粒子は焼結の進行とともに連鎖的に溶融状態となり、効率的かつ加速度的に接合が確実に進行する。すなわち、加温焼結時に銀シングルナノ粒子の有機被覆の酸化分解反応がもたらす発熱効果により、接合シートの接合界面付近全体の温度が自発高温化し、焼結が一気に加速されるように設計されているのである。本形態の接合シートは焼成時に、このように設計された「機能性銀銅ハイブリッド焼結層」を形成可能であるから、低温の焼結環境温度であっても、短時間焼結及び強固な結合の形成という利点を有する。なお、銀シングルナノ粒子の有機被覆量が10質量%未満である場合には、後述するシングルナノ銀分散液の溶媒中における銀シングルナノ粒子の分散性が悪くなり凝集しやすくなるため、銀シングルナノ粒子を銅焼結基板に配置する際に、その表面に沿った方向に均一に配置することが困難になる。また、有機被覆量が15質量%を超える場合には、有機
被覆の酸化分解に時間を要し、短時間焼結が難しくなる。
According to the third aspect of the present invention, it is possible to provide the bonding sheet in which the silver single nanoparticles are carboxylic acid-coated silver nanoparticles having an organic coating amount of 10 to 15% by mass. Silver single nanoparticles whose organic coating component is derived from carboxylic acid generate heat due to the oxidative decomposition reaction of carboxylic acid during sintering. Therefore, even when the object to be bonded and the bonded sheet of the present embodiment are bonded at a low sintering environment temperature of about 250 ° C., the silver single nanos present in the vicinity of the bonding interface with the object to be bonded in the present bonded sheet. As the sintering progresses, the particles are in a molten state in a chain reaction, and the bonding proceeds efficiently and at an accelerating rate. That is, it is designed so that the temperature of the entire vicinity of the bonding interface of the bonding sheet spontaneously rises due to the heat generation effect caused by the oxidative decomposition reaction of the organic coating of silver single nanoparticles during warm sintering, and the sintering is accelerated at once. There is. Since the bonded sheet of this embodiment can form the "functional silver-copper hybrid sintered layer" designed in this way at the time of firing, it can be sintered for a short time and is strong even at a low sintering environment temperature. It has the advantage of forming a bond. When the organic coating amount of the silver single nanoparticles is less than 10% by mass, the dispersibility of the silver single nanoparticles in the solvent of the single nanosilver dispersion described later is deteriorated and the silver single nanoparticles are easily aggregated. When the nanoparticles are arranged on the copper sintered substrate, it becomes difficult to arrange the nanoparticles uniformly in the direction along the surface thereof. Further, when the organic coating amount exceeds 15% by mass, it takes time for oxidative decomposition of the organic coating, and short-time sintering becomes difficult.

本形態においては、上記の発熱効果を確保する観点から、銀シングルナノ粒子の銀核の粒径が小さくなるほど、カルボン酸被覆のカルボン酸の分子量および炭素数は小さいことが好ましい。しかし、小さすぎる銀核は、湿式還元法で形成する際の粒径の制御が困難である。粒径が約2.0nm程度の銀核に対しては、該カルボン酸は、炭素数8のオクタン酸が最適である。 In the present embodiment, from the viewpoint of ensuring the above-mentioned heat generating effect, it is preferable that the smaller the particle size of the silver nucleus of the silver single nanoparticles, the smaller the molecular weight and the number of carbon atoms of the carboxylic acid coated with the carboxylic acid. However, it is difficult to control the particle size of silver nuclei that are too small when they are formed by the wet reduction method. For a silver nucleus having a particle size of about 2.0 nm, the carboxylic acid is optimally octanoic acid having 8 carbon atoms.

本発明の第4の形態によれば、前記数密度が、前記接合シートの裏表の両方の表面から内部に向けて低くなっている前記接合シートを提供できる。本発明の接合シートには、タイプAとタイプBの2つのタイプがある。本形態は、このうちタイプAの接合シートである。例えばシリコン半導体と銅基板のように、温度伸縮特性の異なる2つの被接合材をタイプAの接合シートを介して積層して低温で加圧焼成することにより、強固な接合を形成することができ、形成された接合は熱衝撃に対する長期耐久性を有する。 According to the fourth aspect of the present invention, it is possible to provide the bonded sheet in which the number density is lowered inward from both the front and back surfaces of the bonded sheet. There are two types of bonding sheets of the present invention, type A and type B. This embodiment is a type A bonding sheet. A strong bond can be formed by laminating two materials to be bonded having different temperature expansion / contraction characteristics, such as a silicon semiconductor and a copper substrate, via a type A bonding sheet and firing under pressure at a low temperature. The formed joint has long-term durability against thermal shock.

タイプAの接合シートの場合には、図(2A)に示すように、銀シングルナノ粒子の数密度は、接合シートの裏表の両方の表面で大きく、内部で小さくなり、片側の表面からの距離を横軸に、前記比の値を縦軸にとってグラフを描くと、U字型のグラフとなる。タイプBの接合シートの場合には、図(2B)に示すように、前記数密度は、接合シートの片側の表面で大きく、内部方向に進むにつれて減少し、前記片側の表面からの距離xを横軸に、前記比の値を縦軸にとってグラフを描くとおよそ指数関数的に減少するグラフとなる。dを銅焼結基板の厚さ、C,Lを正のパラメータとして、0<x≦dの範囲で前記比の値を指数関数C×exp(−x/L)でフィットしたとき、長さL×ln(2)をタイプBの接合シートの半減厚という。また、タイプAの接合シートの場合には、C,D,Lを正のパラメータとして、0<x≦dの範囲で前記比の値を2つの指数関数の和C×exp(−x/L)+D×exp((x−d)/L)でフィットしたとき、長さL×ln(2)を半減厚という。なお、いずれのタイプの接合シートでも、ナノ銀がコートされた表面における、銀シングルナノ粒子の前記相対濃度はほぼ100%、すなわち95%以上である。 In the case of a type A bonded sheet, as shown in FIG. (2A), the number density of silver single nanoparticles is large on both the front and back surfaces of the bonded sheet, small inside, and the distance from one surface. When a graph is drawn with the horizontal axis and the value of the ratio on the vertical axis, a U-shaped graph is obtained. In the case of a type B bonded sheet, as shown in FIG. (2B), the number density is large on one surface of the bonded sheet and decreases as it progresses inward, and the distance x from the one surface If a graph is drawn with the ratio value on the horizontal axis and the value of the ratio on the vertical axis, the graph will decrease approximately exponentially. With d as the thickness of the copper sintered substrate and C and L as positive parameters, the length when the value of the ratio is fitted by the exponential function C × exp (−x / L) in the range of 0 <x ≦ d. L × ln (2) is called half the thickness of the type B bonding sheet. In the case of a type A bonded sheet, the value of the ratio is the sum of the two exponential functions C × exp (−x / L) in the range of 0 <x ≦ d, with C, D, and L as positive parameters. ) + D × exp ((x−d) / L), the length L × ln (2) is called half thickness. In any type of bonding sheet, the relative concentration of the silver single nanoparticles on the surface coated with nanosilver is approximately 100%, that is, 95% or more.

接合シートのナノ銀がコートされた表面から深さLまでの範囲(0≦x≦L)に含まれる体積領域をナノ銀含浸領域という。ナノ銀含浸領域(3)は便宜上、定めた体積領域であって、接合シートのナノ銀含浸領域以外の部分にも銀シングルナノ粒子は存在している。また、接合シートの厚みが薄い場合には、タイプAでもタイプBでも、接合シート全体がナノ銀含浸領域となる。 The volume region included in the range (0 ≦ x ≦ L) from the surface coated with nano silver of the bonding sheet to the depth L is called a nano silver impregnated region. The nano-silver impregnated region (3) is a defined volume region for convenience, and silver single nanoparticles are also present in a portion of the bonding sheet other than the nano-silver impregnated region. Further, when the thickness of the bonded sheet is thin, the entire bonded sheet becomes a nano-silver impregnated region in both type A and type B.

なお、十分な接合強度を確保する観点から、最低限の銀シングルナノ粒子の含有量は必要であり、半減厚は小さすぎないことが好ましい。半減厚は限定されるものではないが、概ね1〜100μmであり、より好ましくは5〜20μmである。なお、接合シートの厚みが薄い場合には、半減厚に上限を設ける必要はない。 From the viewpoint of ensuring sufficient bonding strength, the minimum content of silver single nanoparticles is necessary, and it is preferable that the half-thickness is not too small. The half-thickness is not limited, but is generally 1 to 100 μm, more preferably 5 to 20 μm. When the thickness of the bonding sheet is thin, it is not necessary to set an upper limit on the half thickness.

本発明の第5の形態によれば、前記数密度が、前記接合シートの裏表の表面のうち、片側の表面から他方の表面に向けて低くなっている前記接合シートを提供できる。本形態は、タイプBの接合シートである。タイプBの接合シートは通常、その厚みが薄くて接合シート全体がナノ銀含浸領域であるものを使用し、半分の厚みのものを2枚重ねて使用してタイプAの代わりに用いる。そうすることで、焼成接合後には、タイプAの接合シートにおいて最も脆弱な銅焼結基板の内部のかわりに、「機能性銀銅ハイブリッド焼結層」が配置され、大きな接合強度を確保することができる。 According to the fifth aspect of the present invention, it is possible to provide the bonded sheet in which the number density is lowered from one surface to the other surface of the front and back surfaces of the bonded sheet. This embodiment is a type B bonding sheet. As the type B bonding sheet, a sheet having a thin thickness and the entire bonding sheet having a nano-silver impregnated region is usually used, and two sheets having a half thickness are used in place of the type A. By doing so, after the fire bonding, a "functional silver-copper hybrid sintered layer" is arranged instead of the inside of the most fragile copper sintered substrate in the type A bonding sheet to ensure a large bonding strength. Can be done.

本発明の第6の形態によれば、有機被覆を有する銀シングルナノ粒子を溶媒に分散させ
てシングルナノ銀分散液を得る、シングルナノ銀分散液準備工程と、銅ナノ粒子を含有するナノ銅ペーストを焼成して多孔質の銅焼結基板を形成する、銅焼結基板形成工程と、前記銅焼結基板の表面に、前記シングルナノ銀分散液を塗布若しくは含浸させ、更に乾燥させることにより、前記銅焼結基板の前記表面及び該表面に隣接する体積領域に、傾斜濃度化された銀シングルナノ粒子を配置して、傾斜機能を付与する傾斜機能付与工程、を有することを特徴とする接合シートの製法を提供できる。
According to the sixth embodiment of the present invention, a single nanosilver dispersion preparation step of dispersing silver single nanoparticles having an organic coating in a solvent to obtain a single nanosilver dispersion and nanocopper containing copper nanoparticles. By firing the paste to form a porous copper sintered substrate, and by applying or impregnating the surface of the copper sintered substrate with the single nanosilver dispersion and further drying. The copper sintered substrate is characterized by having a tilting function imparting step of arranging tilt-concentrated silver single nanoparticles on the surface and a volume region adjacent to the surface to impart a tilting function. A method for producing a bonded sheet can be provided.

シングルナノ銀分散液準備工程においては、有機被覆を有する銀シングルナノ粒子を溶媒に分散させてシングルナノ銀分散液を得る。溶媒としては限定されるものではないが、アルカン系溶剤、例えばメチルシクロヘキサンを使用できる。粘度調整のために低沸点溶剤を少量加えてもよい。銀シングルナノ粒子は粒径分布幅が約15%以下と狭く、かつ、溶媒中に単分散していることが好ましい。エヴァポレータを用いて濃度を調整し、銀シングルナノ粒子を約10質量%の濃度で含むシングルナノ銀分散液を得る。 In the single nanosilver dispersion preparation step, silver single nanoparticles having an organic coating are dispersed in a solvent to obtain a single nanosilver dispersion. The solvent is not limited, but an alkane-based solvent, for example, methylcyclohexane can be used. A small amount of low boiling point solvent may be added to adjust the viscosity. It is preferable that the silver single nanoparticles have a narrow particle size distribution width of about 15% or less and are monodispersed in a solvent. The concentration is adjusted using an evaporator to obtain a single nanosilver dispersion containing silver single nanoparticles at a concentration of about 10% by mass.

銅焼結基板形成工程においては、銅ナノ粒子を含有するナノ銅ペーストを焼成して多孔質の銅焼結基板を形成する。鏡面研磨された基板、例えばシリコン基板上にナノ銅ペーストを約15〜200μm程度の均一な厚みで塗布し、ナノ銅ペーストに含まれる溶媒を乾燥させる工程を経て、純窒素ガス雰囲気で無加圧、若しくは低加圧で焼成して、シリコン基板から分離し、約10〜150μm程度の均一厚みの自立した焼結済みの銅焼結基板を得る。 In the copper sintered substrate forming step, a nano copper paste containing copper nanoparticles is fired to form a porous copper sintered substrate. A nano-copper paste is applied to a mirror-polished substrate, for example, a silicon substrate with a uniform thickness of about 15 to 200 μm, and the solvent contained in the nano-copper paste is dried. Alternatively, it is fired under low pressure to separate it from the silicon substrate to obtain a self-supporting sintered copper sintered substrate having a uniform thickness of about 10 to 150 μm.

傾斜機能付与工程においては、多孔質の銅焼結構造体である銅焼結基板の少なくとも片側の表面に、前記シングルナノ銀分散液を塗布若しくは含浸させ、更に低温でゆっくり乾燥させることにより、前記銅焼結基板の少なくとも前記表面の側に、傾斜濃度化された有機被覆を有する銀シングルナノ粒子を含むナノ銀含浸領域を形成して、前記銅焼結基板にナノ銀をコートしてなる接合シートを得る。このようにしてナノ銀含浸領域を形成することにより、接合シートにおける銀シングルナノ粒子の濃度は、表面が高濃度で、内部に向かって低濃度化した傾斜濃度分布となる。 In the step of imparting the tilting function, the single nanosilver dispersion is applied or impregnated on the surface of at least one side of the copper sintered substrate, which is a porous copper sintered structure, and then slowly dried at a low temperature to obtain the above. A bonding formed by forming a nano-silver impregnated region containing silver single nanoparticles having a gradient-concentrated organic coating on at least the surface side of the copper-sintered substrate and coating the copper-sintered substrate with nano-silver. Get a sheet. By forming the nano-silver impregnated region in this way, the concentration of the silver single nanoparticles in the bonded sheet has a gradient concentration distribution in which the surface has a high concentration and the concentration decreases toward the inside.

傾斜機能付与工程において、銅焼結基板の表面にシングルナノ銀分散液を塗布若しくは含浸させ、更に低温でゆっくり乾燥させると、銀シングルナノ粒子が銅焼結基板の表面及び微細孔に配置され、前記有機被覆を有する銀シングルナノ粒子群は、銅焼結基板の表面及び多孔質の銅焼結構造体の微細孔内に吸着結合して分布した接合シートが得られる。一方、シングルナノ銀分散液の溶媒と、オプションで添加される低沸点溶剤とは、低温でゆっくり乾燥させる際に蒸発して除去される。したがって、接合シートの表面は乾燥状態となるから、当該接合シートは数枚を重ねて保管することに支障がなく、空気中の塵埃も付着しにくく、取り扱いが容易で保存性にも優れる。更に、接合のための焼成設定温度(250℃〜350℃)での焼成の際には、溶媒や低沸点溶剤は上記の通り蒸発除去されて存在しないから、溶媒や低沸点溶剤が銀シングルナノ粒子の焼結を妨げることはない。 In the step of imparting the tilting function, when a single nanosilver dispersion is applied or impregnated on the surface of the copper sintered substrate and then slowly dried at a low temperature, silver single nanoparticles are arranged on the surface of the copper sintered substrate and micropores. The silver single nanoparticles group having the organic coating can be bonded and bonded to the surface of the copper sintered substrate and in the micropores of the porous copper sintered structure to obtain a bonded sheet. On the other hand, the solvent of the single nanosilver dispersion liquid and the low boiling point solvent added as an option are removed by evaporation when slowly drying at a low temperature. Therefore, since the surface of the bonded sheet is in a dry state, there is no problem in storing several bonded sheets in a stack, dust in the air does not easily adhere to the bonded sheet, handling is easy, and storage stability is excellent. Furthermore, when firing at the set firing temperature (250 ° C to 350 ° C) for bonding, the solvent and low boiling point solvent are not present after being evaporated and removed as described above, so that the solvent and low boiling point solvent are silver single nano. It does not interfere with the sintering of particles.

本発明の第7の形態によれば、図(3A)又は図(3B)を参照して、前記接合シート(1a又は1b)を介して、第1被接合物(6a)と第2被接合物(6b)を接合する接合方法であり、第1被接合物と、1枚以上の前記接合シート(1a又は1b)と、第2被接合物、をこの順に積層して積層体(10)を形成する積層ステップと、圧力を加えつつ、当該積層体を焼成して接合体を形成するステップ、を有することを特徴とする接合方法を提供できる。被接合物は限定されるものではないが、たとえば、パワー半導体等の半導体、電子部品、金属基板、回路基板、又は放熱板であり、特に、パワー半導体と銅基板が好適である。接合シートは、被接合物の形状にあわせて、自在にカットされた切断片として利用してもよい。 According to the seventh aspect of the present invention, with reference to FIG. (3A) or FIG. This is a joining method for joining objects (6b), in which the first object to be joined, one or more of the joining sheets (1a or 1b), and the second object to be joined are laminated in this order to form a laminated body (10). It is possible to provide a joining method characterized by having a laminating step of forming a laminated body and a step of firing the laminated body to form a bonded body while applying pressure. The object to be joined is not limited, but is, for example, a semiconductor such as a power semiconductor, an electronic component, a metal substrate, a circuit board, or a heat sink, and a power semiconductor and a copper substrate are particularly preferable. The joining sheet may be used as a cut piece that is freely cut according to the shape of the object to be joined.

本発明に係る接合シートは、製造時及び実装時の取り扱い容易性の観点から、その厚さは、好ましくは10〜150μmの範囲で、より好ましくは20〜100μmの範囲で変える設計が可能で、放熱基板等大面積接合には厚く、小面積の半導体接合では薄くし、多数枚のシートの重ね合わせ接合も可能である。本接合シートによって形成される接合構造をせん断破壊すると、接合界面付近ではなく銅焼結基板の内部で破壊されることから、接合界面付近のナノ銀含浸領域で形成される「機能性銀銅ハイブリッド焼結層」は内部より高強度であることがわかる。したがって、本接合シートは、1枚の厚さが約30μm以下と薄い場合、本接合シートを重ね合わせて加圧・焼成して接合する方が、接合部全体の厚みを有する1枚のみの本接合シートを加圧・焼成して接合する場合と比較して、より低温・低加圧での焼成で同等の接合強度が確保できる。 From the viewpoint of ease of handling during manufacturing and mounting, the bonded sheet according to the present invention can be designed so that its thickness is preferably changed in the range of 10 to 150 μm, more preferably in the range of 20 to 100 μm. It is thick for large-area bonding such as a heat-dissipating substrate, thin for small-area semiconductor bonding, and can be bonded by stacking a large number of sheets. When the bonded structure formed by this bonding sheet is shear-broken, it is destroyed inside the copper sintered substrate instead of near the bonding interface. Therefore, a "functional silver-copper hybrid" formed in the nano-silver impregnated region near the bonding interface. It can be seen that the "sintered layer" has higher strength than the inside. Therefore, when the thickness of one of the main joining sheets is as thin as about 30 μm or less, it is better to superimpose the main joining sheets, pressurize and bake them, and then join them. Compared with the case where the joining sheet is pressed and fired to be joined, the same joining strength can be secured by firing at a lower temperature and lower pressure.

本発明の第8の形態によれば、前記積層ステップにおいて、積層に先立って実装時の固定化を確実にするための固定化助剤を前記接合シートの表面に添加する前記接合方法を提供できる。本形態の接合方法によれば、積層の際、被接合物と当接する接合シートの表面に固定化助剤が添加されているから、軽く抑えるだけで本接合シートを被接合物に確実に固定化することができる利点を有する。固定化助剤は一定の条件を満足するならばその種類を問わない。その条件とは、(1)上記固定化に必要な粘性を有し、(2)銅焼結基板のナノ銀含浸領域の表面に少量を添加したとき、表面全体に一様な厚みで広がる濡れ性を有し、(3)焼成設定温度(250℃〜350℃)より低い温度で蒸発するから、接合のための焼成時に、銀シングルナノ粒子の焼結を妨げることがなく、(4)少量の使用で足りるので、上記の蒸発で発生する気体も少ないこと、である。たとえば、固定化助剤として、イソボロニルシクロヘキサノールを10〜30質量%、より好ましくは20質量%の濃度でメチルシクロヘキサンに溶解させた溶液を用い、該溶液を銅焼結基板のナノ銀含浸領域の表面に1滴若しくは数滴を滴下することで、上記(1)〜(4)の条件を満たす固定化を達成することができる。 According to the eighth aspect of the present invention, it is possible to provide the joining method in which an immobilization aid for ensuring immobilization at the time of mounting is added to the surface of the joining sheet prior to laminating in the laminating step. .. According to the joining method of this embodiment, since the immobilization aid is added to the surface of the joining sheet that comes into contact with the object to be bonded during laminating, the joining sheet is securely fixed to the object to be joined by simply pressing it lightly. Has the advantage of being able to. The type of immobilization aid may be used as long as it satisfies certain conditions. The conditions are (1) the viscosity required for the above immobilization, and (2) wetness that spreads over the entire surface with a uniform thickness when a small amount is added to the surface of the nano-silver impregnated region of the copper sintered substrate. Since it has properties and evaporates at a temperature lower than (3) the set firing temperature (250 ° C to 350 ° C), it does not interfere with the sintering of silver single nanoparticles during firing for bonding, and (4) a small amount. Is sufficient, so that the amount of gas generated by the above evaporation is small. For example, as an immobilization aid, a solution of isobolonylcyclohexanol dissolved in methylcyclohexane at a concentration of 10 to 30% by mass, more preferably 20% by mass is used, and the solution is impregnated with nanosilver on a copper sintered substrate. By dropping one or several drops on the surface of the region, immobilization satisfying the above conditions (1) to (4) can be achieved.

本発明の第9の形態によれば、図(4A)又は図(4B)を参照して、被接合物(6)に、前記接合シート(1b)を積層して仮留めしてなる積層体を提供できる。被接合物は限定されるものではないが、たとえば、パワー半導体等の半導体、電子部品、金属基板、回路基板、又は放熱板であり、特に、放熱板が好適である。接合シートは、被接合物の形状にあわせて、自在にカットされた切断片として利用してもよい。 According to the ninth aspect of the present invention, referring to FIG. (4A) or FIG. (4B), the bonded sheet (1b) is laminated on the object to be joined (6) and temporarily fastened. Can be provided. The object to be joined is not limited, but is, for example, a semiconductor such as a power semiconductor, an electronic component, a metal substrate, a circuit board, or a heat sink, and a heat sink is particularly preferable. The joining sheet may be used as a cut piece that is freely cut according to the shape of the object to be joined.

本形態の利用例について説明する。整流素子など電流仕様の発熱の多い半導体と一般の半導体を同一基板上に接合・配置する際に、整流素子の上面に放熱板をさらに加えて接合する必要がある。1つの実装方法は、まず、一般の半導体と整流素子を本発明に係る接合シートにより基板上に焼成接合・配置し、次に、整流素子と放熱板を本発明に係る接合シートを介して焼成接合する方法である。この場合、本形態のように放熱板にあらかじめ本発明に係る接合シートを仮留めした中間積層体を準備しておくと、整流素子と本発明に係る接合シートと放熱板をこの順に接合した積層体を形成する際の位置合わせ等の手間が省ける。なお、仮留めの方法は限定されず、接着剤による局所接着や、局所加圧焼結など様々な方法があり得る。また、用いる接合シートはタイプAでもタイプBでも構わず、タイプBの裏表は被接合物の性質に応じていずれでもよく、複数枚の接合シートを仮留めしてもよい。 An example of using this embodiment will be described. When joining and arranging a semiconductor that generates a lot of heat with current specifications such as a rectifying element and a general semiconductor on the same substrate, it is necessary to add a heat sink to the upper surface of the rectifying element. One mounting method is to first fire-bond and arrange a general semiconductor and a rectifying element on a substrate by a bonding sheet according to the present invention, and then fire the rectifying element and a heat sink via the bonding sheet according to the present invention. It is a method of joining. In this case, if an intermediate laminate in which the bonding sheet according to the present invention is temporarily fastened to the heat sink as in the present embodiment is prepared, the rectifying element, the bonding sheet according to the present invention, and the heat sink are bonded in this order. You can save time and effort such as alignment when forming the body. The method of temporary fastening is not limited, and various methods such as local bonding with an adhesive and local pressure sintering may be possible. Further, the joining sheet to be used may be type A or type B, and the front and back of the type B may be either type depending on the properties of the object to be joined, and a plurality of joining sheets may be temporarily fastened.

図1は接合シートの断面構造の説明図である。FIG. 1 is an explanatory view of a cross-sectional structure of a bonded sheet. 図2は接合シートにおける銀シングルナノ粒子の傾斜濃度分布を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the gradient concentration distribution of silver single nanoparticles in the bonded sheet. 図3は接合シートを介して2つの被接合物を積層した積層体の説明図である。FIG. 3 is an explanatory view of a laminated body in which two objects to be joined are laminated via a joining sheet. 図4は被接合物と接合シートを積層した中間積層体の説明図である。FIG. 4 is an explanatory view of an intermediate laminated body in which an object to be joined and a joining sheet are laminated. 図5は接合シートの製法のフロー図である。FIG. 5 is a flow chart of a method for producing a bonded sheet. 図6はシングルナノ銀分散液についての熱重量示差熱分析の結果を示すグラフ図である。FIG. 6 is a graph showing the results of thermogravimetric differential thermal analysis for a single nanosilver dispersion. 図7は、銀シングルナノ粒子の電子顕微鏡写真の写真図である。FIG. 7 is a photographic view of an electron micrograph of silver single nanoparticles. 図8はシリコン基板上に銅ナノペーストを塗布した状態を示す写真図である。FIG. 8 is a photographic view showing a state in which copper nanopaste is applied on a silicon substrate. 図9はシリコン基板上に形成された銅焼結基板を示す写真図である。FIG. 9 is a photographic view showing a copper sintered substrate formed on a silicon substrate. 図10は銅焼結基板の焼結表面の状態を示すSEM写真図である。FIG. 10 is an SEM photograph showing the state of the sintered surface of the copper sintered substrate. 図11は銅焼結基板の表面にシングルナノ銀分散液を帯状にスプレー塗布して乾燥させた状態を示す写真図である。FIG. 11 is a photographic view showing a state in which a single nanosilver dispersion liquid is spray-coated in a strip shape on the surface of a copper sintered substrate and dried. 図12はカットした接合シートの切断片を示す説明図である。FIG. 12 is an explanatory view showing a cut piece of the cut joint sheet. 図13は銅試験片の接合強度試験の実施方法を説明するための写真図である。FIG. 13 is a photographic diagram for explaining a method of performing a joint strength test of a copper test piece. 図14は熱サイクル負荷試験の結果を示すグラフ図である。FIG. 14 is a graph showing the results of the thermal cycle load test. 図15は従来の導電性ペーストを用いた接合方法の説明図である。FIG. 15 is an explanatory diagram of a joining method using a conventional conductive paste.

以下に、本発明に係る銅焼結基板ナノ銀含浸型接合シートとその製法及び接合方法の実施形態を、図面を参照しながら詳細に説明する。 Hereinafter, a copper sintered substrate nano-silver impregnated bonding sheet according to the present invention, a method for producing the same, and an embodiment of the bonding method will be described in detail with reference to the drawings.

<1.本発明の背景及び要点>
本発明は、銅ナノ粒子からなる銅焼結基板と、シングルナノ銀単分散液の該銅焼結基板への塗布・乾燥を組み合わせた強接合かつ長期信頼性を示す加圧・短時間焼結接合型の接合シートとその製法、及び該接合シートを用いた接合方法である。
半導体実装分野での高精度化・微細化接合に要請される既述の課題を全て解決するため、接合シートのシート基材として銅ナノ粒子が焼結を完了してなる多孔質の銅焼結基板を用い、半導体と銅基板との接合等における接合機能付与に銀シングルナノ粒子が溶媒中に単分散したシングルナノ銀分散液を用い、実装プロセスの簡易化と実装時間の短時間化を図る。すなわち、シート基材には粒径50nm程度のナノ銅主体の銅焼結基板を用い、低コスト化を図りつつ、応力緩和機能を持たせる。銅焼結基板は、ナノ銅ペーストを無加圧、あるいは低加圧下で焼成して作製され、均一厚みで平行度がよく、微細孔を多数保有して応力緩和機能を有する。その接合面となる片側の表面、あるいは好ましくは両側の表面には、平均粒径がシングルナノメートル程度と極小さく、かつ、粒径分布幅が15%以下と狭く、粒径が均一な銀シングルナノ粒子を含むシングルナノ銀分散液を表面から内部へと浸み込ませて塗布し乾燥させ、表面を高濃度に、内部に向かって低濃度化した傾斜配置分布を実現させ、接合強度の傾斜機能化を図る。すなわち、加温焼結時に銀シングルナノ粒子の有機被覆、好ましくは低分子カルボン酸被覆の酸化分解反応による発熱効果により、接合層全体の温度が自発高温化し、焼結が一気に加速されるように設計された「機能性銀銅ハイブリッド焼結層」を構成し、その接合面は250℃程度の低温域で金属化する粒径分布幅の極狭い銀シングルナノ粒子の分散液を接合面から接合層の内部に向かって、そのナノ粒子濃度を低下するように塗布せしめた、強接合性・内部応力緩和特性を保有させた安価な、半導体接合に適したシート状接合材料である接合シートとその製法、及び接合方法が提供される。焼成のとき、接合層の内部は既に焼結された銅焼結体であるから、焼結の必要な部分は熱伝達の一番早い接合界面近くのみであり、これが接合のための焼成に要する時間をごく短時間とすることを可能としている。
<1. Background and gist of the present invention>
The present invention is a strong bonding and short-time sintering that exhibits long-term reliability by combining a copper sintered substrate composed of copper nanoparticles and coating and drying of a single nanosilver single dispersion liquid on the copper sintered substrate. It is a bonding type bonding sheet, a manufacturing method thereof, and a bonding method using the bonding sheet.
Porous copper sintering in which copper nanoparticles are completely sintered as the sheet base material of the bonding sheet in order to solve all the above-mentioned problems required for high-precision and fine-grained bonding in the semiconductor mounting field. Using a substrate, a single nanosilver dispersion in which silver single nanoparticles are monodispersed in a solvent is used to impart a bonding function in bonding between a semiconductor and a copper substrate, etc., to simplify the mounting process and shorten the mounting time. .. That is, a copper sintered substrate mainly composed of nanocopper having a particle size of about 50 nm is used as the sheet base material to provide a stress relaxation function while reducing the cost. The copper sintered substrate is produced by firing nano-copper paste under no pressure or low pressure, has a uniform thickness and good parallelism, has a large number of micropores, and has a stress relaxation function. A silver single having an extremely small average particle size of about a single nanometer, a narrow particle size distribution width of 15% or less, and a uniform particle size on one surface, or preferably both sides, which is the joint surface. A single nanosilver dispersion containing nanoparticles is impregnated from the surface to the inside, applied, and dried to realize an inclined arrangement distribution with a high concentration on the surface and a low concentration toward the inside, and the inclination of the bonding strength. Aim for functionality. That is, during warm sintering, the temperature of the entire bonding layer spontaneously rises due to the heat generation effect of the organic coating of silver single nanoparticles, preferably the oxidative decomposition reaction of the low molecular weight carboxylic acid coating, so that sintering is accelerated at once. The designed "functional silver-copper hybrid sintered layer" is formed, and the bonding surface is metallized in a low temperature range of about 250 ° C. A dispersion of silver single nanoparticles with an extremely narrow particle size distribution width is bonded from the bonding surface. A bonding sheet, which is an inexpensive sheet-like bonding material suitable for semiconductor bonding, which is coated toward the inside of the layer so as to reduce the nanoparticle concentration and has strong bonding properties and internal stress relaxation characteristics, and its A manufacturing method and a joining method are provided. At the time of firing, since the inside of the bonding layer is an already sintered copper sintered body, the part requiring sintering is only near the bonding interface where heat transfer is the fastest, which is required for firing for bonding. It is possible to make the time very short.

本発明に係る接合シートは、基材である多孔質の銅焼結基板を含むゆえに応力緩和機能を有する。鉛はんだ、あるいは鉛フリー合金はんだは、接合時、構成金属成分の融点以上の温度で使用されるので、使用温度としては350℃〜230℃の範囲で使用される。被接合材料間の熱的特性の違いのために、環境温度に変化があると被接合材料を接合している接合用材料の内部には、形状や温度に依存して、内部応力が発生し、それを緩和する機構が必要となる。鉛では原子間のクリープと呼ばれる応力緩和機構が存在する。しかし、
銀や銅金属のナノ粒子を配したナノ金属ペーストは固相焼結接合であり、金属は高融点で原子間相互作用が強く、クリープ現象の発現による応力緩和を期待することはできない。焼結性金属ナノ粒子を含む接合材料を用いた接合形成においては、焼結後の環境変化で生じる内部応力の、クリープ現象以外のメカニズムによる緩和機構の発現解明と、そのような応力緩和機構を有する接合用材料の最適組成設計が必要となる。本発明では、銅ナノ粒子が焼結結合してなる多孔質の銅焼結基板を基材として用いることで、応力緩和を実現している。
Since the bonded sheet according to the present invention contains a porous copper sintered substrate as a base material, it has a stress relaxation function. Since lead solder or lead-free alloy solder is used at a temperature equal to or higher than the melting point of the constituent metal components at the time of joining, the operating temperature is in the range of 350 ° C. to 230 ° C. Due to the difference in thermal properties between the materials to be bonded, internal stress is generated inside the bonding material to which the materials to be bonded are bonded when the environmental temperature changes, depending on the shape and temperature. , A mechanism to alleviate it is needed. In lead, there is a stress relaxation mechanism called creep between atoms. but,
The nanometal paste in which nanoparticles of silver or copper metal are arranged is a solid-phase sintered bond, and the metal has a high melting point and strong interatomic interaction, so stress relaxation due to the occurrence of creep phenomenon cannot be expected. In bonding formation using bonding materials containing sinterable metal nanoparticles, elucidation of the expression of the relaxation mechanism of internal stress caused by environmental changes after sintering by a mechanism other than the creep phenomenon, and such stress relaxation mechanism It is necessary to design the optimum composition of the bonding material to be possessed. In the present invention, stress relaxation is realized by using a porous copper sintered substrate formed by sintering and bonding copper nanoparticles as a base material.

本発明に係る接合シートとその製法、及び接合方法を、接合を形成するための半導体等の実装過程の観点から見た場合の特徴は、(1)ペーストの塗布作業工程を省き、焼結が完了した銅焼結基板を基材として用いること。(2)焼結では短時間化を実現する。すなわち、粒径分布幅の少ない銀シングルナノ粒子は、その有機被覆成分が低分子カルボン酸由来のため、有機被覆量約13質量%である銀ナノ粒子は焼結時にカルボン酸の酸化分解反応により発熱し、焼結環境温度では銅焼結基板と被接合材間でナノ銀は溶融状態となり、効率的・加速度的に接合プロセスが確実に進行すること。(3)合わせて焼結完了後は、基材である銅焼結基板のミクロ構造が接合層内での応力緩和特性を発現する高機能性焼結性の接合シートを提供できるので、長期信頼性を有する接合構造を形成できること、である。 The features of the bonded sheet according to the present invention, its manufacturing method, and the bonding method from the viewpoint of the mounting process of a semiconductor or the like for forming a bond are as follows: (1) Sintering can be performed by omitting the paste coating work step. Use the completed copper sintered substrate as the base material. (2) Sintering can shorten the time. That is, since the organic coating component of silver single nanoparticles having a small particle size distribution width is derived from a low molecular weight carboxylic acid, silver nanoparticles having an organic coating amount of about 13% by mass are subjected to an oxidative decomposition reaction of carboxylic acid at the time of sintering. It generates heat, and at the sintering environment temperature, the nanosilver melts between the copper sintered substrate and the material to be bonded, and the bonding process proceeds efficiently and at an accelerated rate. (3) After the sintering is completed, a highly functional sinterable bonding sheet in which the microstructure of the copper sintered substrate, which is the base material, exhibits stress relaxation characteristics in the bonding layer can be provided, so that long-term reliability can be provided. It is possible to form a bonded structure having a property.

本発明を成し遂げるためには、第1に粒径分布幅の狭い銀シングルナノ粒子の製法を確立し、更に、該銀シングルナノ粒子を分散させたシングルナノ銀分散液の製法を確立すること。第2に銅ナノ粒子が焼結結合してなる多孔質の銅焼結基板の製法を確立すること。第3に銅焼結基板への銀シングルナノ粒子の傾斜塗布の方法を確立すること。第4に得られた接合シートを被接合体に配置して、短時間実装による機能性を評価し、形成される接合構造の長期安定性を適切な評価方法で証明すること、が必要であった。以下、製法を示すフロー図である図5を参照しながら、本発明の一実施形態を順に説明する。 In order to accomplish the present invention, first, a method for producing silver single nanoparticles having a narrow particle size distribution width is established, and further, a method for producing a single nanosilver dispersion liquid in which the silver single nanoparticles are dispersed is established. Secondly, to establish a method for producing a porous copper sintered substrate formed by sintering and bonding copper nanoparticles. Thirdly, to establish a method for inclined coating of silver single nanoparticles on a copper sintered substrate. Fourth, it is necessary to place the obtained joint sheet on the object to be joined, evaluate the functionality by short-time mounting, and prove the long-term stability of the formed joint structure by an appropriate evaluation method. rice field. Hereinafter, one embodiment of the present invention will be described in order with reference to FIG. 5, which is a flow chart showing a manufacturing method.

<2.シングルナノ銀分散液の準備>
シングルナノ銀分散液を準備するためのシングルナノ銀分散液準備工程S1は、銀シングルナノ粒子形成工程S11と、銀シングルナノ粒子分散工程S12を含む。銀シングルナノ粒子に要請される条件として重要なものを挙げると、(1)粒径分布幅15%以下、(2)平均粒径約2nm程度、(3)有機被覆量15質量%以下、(4)焼成時の有機被覆の酸化分解反応で発熱があること、(5)アルカン溶媒への単分散性に優れていること、である。加えて、焼成設定温度250℃を実現するためには、条件(6)84%粒径(D84)が2.0nm以下、が要請される。
<2. Preparation of single nano-silver dispersion>
The single nanosilver dispersion preparation step S1 for preparing the single nanosilver dispersion includes a silver single nanoparticle formation step S11 and a silver single nanoparticle dispersion step S12. Important conditions required for silver single nanoparticles are (1) particle size distribution width of 15% or less, (2) average particle size of about 2 nm, (3) organic coating amount of 15% by mass or less, ( 4) There is heat generation due to the oxidative decomposition reaction of the organic coating during firing, and (5) it is excellent in monodispersity in the alkane solvent. In addition, in order to realize the firing set temperature of 250 ° C., the condition (6) 84% particle size (D 84 ) is required to be 2.0 nm or less.

<2−1.銀シングルナノ粒子形成工程>
粒径分布幅の狭い銀シングルナノ粒子を製造するための銀シングルナノ粒子形成工程S11では、例えば、180℃まで加温したアルコール溶液中に被覆試薬のカルボン酸を投入し、炭酸銀を投入して撹拌し、反応で生じた分解ガスである炭酸ガスの発生が終了後、反応液を直ちにマイナス40℃まで冷却したイソプロピルアルコール中に排出して、超急速冷却して粒径成長を止める。冷却後の反応液はろ過生成をする過程で、60℃に加温したイソプロピルアルコールで洗浄し、精製された銀シングルナノ銀粒子を得る。
今回は、アルコールとしてオクタノールを、被覆試薬としてオクタン酸を用いて銀シングルナノ粒子の試料#C8AgSN(実施例)を得、また、アルコールとしてデカノールを、被覆試薬としてデカン酸を用いて銀シングルナノ粒子の試料#C10AgSN(比較例)を得た。反応条件や試料の特性を表1に示す。特性のうち、銀化温度の測定方法については後述する。試料#C8AgSNは上記の6つの条件をすべて満足するが、試料#C10AgSNは条件(3),(4),(6)を満たさない。
<2-1. Silver single nanoparticle formation process>
In the silver single nanoparticle forming step S11 for producing silver single nanoparticles having a narrow particle size distribution width, for example, the carboxylic acid of the coating reagent is put into an alcohol solution heated to 180 ° C., and silver carbonate is put into it. After the generation of carbonic acid gas, which is a decomposition gas generated in the reaction, is completed, the reaction solution is immediately discharged into isopropyl alcohol cooled to −40 ° C. and ultra-rapidly cooled to stop particle size growth. The reaction solution after cooling is washed with isopropyl alcohol heated to 60 ° C. in the process of filtration formation to obtain purified silver single nanosilver particles.
This time, octanol as an alcohol and octanoic acid as a coating reagent were used to obtain a sample # C8AgSN (Example) of silver single nanoparticles, and decanol was used as an alcohol and decanoic acid was used as a coating reagent to obtain silver single nanoparticles. Sample # C10AgSN (comparative example) was obtained. Table 1 shows the reaction conditions and sample characteristics. Among the characteristics, the method of measuring the silvering temperature will be described later. Sample # C8AgSN satisfies all of the above six conditions, but Sample # C10AgSN does not satisfy conditions (3), (4) and (6).

Figure 2021107569
Figure 2021107569

<2−2.銀シングルナノ粒子分散工程>
次に、溶媒、好ましくはアルカン系溶媒中に銀シングルナノ粒子を単分散させる銀シングルナノ粒子分散工程S12では、例えば、メチルシクロヘキサンを溶媒として用い、該溶媒中に上記銀シングルナノ銀粒子を分散させて銀シングルナノ粒子の単分散状態を作り、エヴァポレータを用いて溶媒を蒸発させ、銀シングルナノ粒子の濃度が約10質量%程度のシングルナノ銀分散液を得る。高分解透過型電子顕微鏡(HRTEM)を用いた粒径分布観測結果は、後述するように(1.7±0.3)nmが得られ、粒径分布幅は約15%と極めて小さい。
<2-2. Silver single nanoparticle dispersion process>
Next, in the silver single nanoparticle dispersion step S12 in which the silver single nanoparticles are monodispersed in a solvent, preferably an alcan-based solvent, for example, methylcyclohexane is used as a solvent, and the silver single nanoparticles are dispersed in the solvent. The reaction is carried out to form a monodisperse state of silver single nanoparticles, and the solvent is evaporated using an evaporator to obtain a single nanosilver dispersion having a concentration of silver single nanoparticles of about 10% by mass. As a result of particle size distribution observation using a high resolution transmission electron microscope (HRTEM), (1.7 ± 0.3) nm is obtained as described later, and the particle size distribution width is extremely small, about 15%.

<2−3.銀シングルナノ粒子の熱解析結果>
銀シングルナノ粒子を用いて形成したシングルナノ銀分散液を試料として、熱重量示差熱分析装置を用いて温度を30℃から400℃まで変化させて熱重量示差熱分析(TG−DTA)を行った。一例として、試料#C8AgSN(下記の<注>を参照)の銀シングルナノ粒子を用いて形成したシングルナノ銀分散液についての熱重量示差熱分析の結果を図6に示す。昇温速度は5℃/分とした。分析に先立って、エヴァポレータを用いてシングルナノ銀分散液の溶媒を十分に蒸発させた。曲線81は示差熱流量(μV)を示し、参照物質と試料との間の温度差を、熱電対を用いて電圧に換算して測定したものである。曲線82は質量比(%)を示し、初期値に対する質量の割合を表している。30℃〜198℃の間では溶媒の蒸発により質量が減少する。198℃における質量は初期値の97.8%である(図6の点B2を参照)。その後、198℃〜260℃の間で銀シングルナノ粒子のカルボン酸被覆が酸化反応により過剰発熱を伴いながら分解し、緩やかに質量が減少する(図6の点A2〜A3〜A4及び点B2〜B4を参照)。更に、銀シングルナノ粒子の銀核が240℃付近から焼結を開始し、約250℃で発熱のピークとなり(点A3を参照)、約260℃で焼結が完了する。したがって、試料#C8AgSNの銀シングルナノ粒子の焼結温度(銀化温度)は約250℃である。焼結完了時における質量は初期値の85.3%であるから(点B4を参照)、試料#C8AgSNの銀シングルナノ粒子の有機被覆量はおよそ
(97.8%−85.3%)/0.978 = 12.8質量%
であるとわかる。
<2-3. Thermal analysis results of silver single nanoparticles>
Using a single nanosilver dispersion formed using silver single nanoparticles as a sample, thermogravimetric differential thermal analysis (TG-DTA) was performed by changing the temperature from 30 ° C to 400 ° C using a thermogravimetric differential thermal analyzer. rice field. As an example, FIG. 6 shows the results of thermogravimetric differential thermal analysis of a single nanosilver dispersion formed using silver single nanoparticles of sample # C8AgSN (see <Note> below). The heating rate was 5 ° C./min. Prior to the analysis, the solvent of the single nanosilver dispersion was sufficiently evaporated using an evaporator. Curve 81 shows the differential thermal flow rate (μV), and the temperature difference between the reference substance and the sample is measured by converting it into a voltage using a thermocouple. The curve 82 shows the mass ratio (%) and shows the ratio of the mass to the initial value. Between 30 ° C and 198 ° C, the mass decreases due to evaporation of the solvent. The mass at 198 ° C. is 97.8% of the initial value (see point B2 in FIG. 6). After that, the carboxylic acid coating of the silver single nanoparticles is decomposed by an oxidation reaction between 198 ° C. and 260 ° C. with excessive heat generation, and the mass gradually decreases (points A2 to A3 to A4 and points B2 to 2 in FIG. 6). See B4). Further, the silver nuclei of the silver single nanoparticles start sintering at around 240 ° C., the heat generation peaks at about 250 ° C. (see point A3), and the sintering is completed at about 260 ° C. Therefore, the sintering temperature (silvering temperature) of the silver single nanoparticles of sample # C8AgSN is about 250 ° C. Since the mass at the completion of sintering is 85.3% of the initial value (see point B4), the organic coating amount of the silver single nanoparticles of sample # C8AgSN is approximately (97.8% -85.3%) /. 0.978 = 12.8% by mass
It turns out that.

また、試料#C10AgSNについても熱重量示差熱分析(TG−DTA)を行い、該試料の銀シングルナノ粒子の有機被覆量が約18質量%で、焼結温度(銀化温度)が約275℃であるとの結果を得た。 In addition, thermogravimetric differential thermal analysis (TG-DTA) was also performed on sample # C10AgSN, and the organic coating amount of the silver single nanoparticles of the sample was about 18% by mass, and the sintering temperature (silverization temperature) was about 275 ° C. I got the result that.

金属ナノ粒子はその粒径が小さくなると、金属の融点が粒径に依存して降下する現象が認められ、シングルナノの粒径ではバルク値の1/3程度まで融点の降下することが、非特許文献1に記されている。銀や銅のナノ粒子を用いた焼結性接合材料の焼成温度は、すべてこの原理に基づいている。銀シングルナノ粒子の融点が250℃であれば、該銀シングルナノ粒子の銀核の粒径は約2.0nmである。200℃〜300℃の範囲では、銀核の粒径が0.1nm小さくなる毎に、融点は約10℃降下する。 When the particle size of metal nanoparticles becomes smaller, the phenomenon that the melting point of the metal decreases depending on the particle size is observed, and it is not possible to decrease the melting point to about 1/3 of the bulk value with the particle size of single nanoparticles. It is described in Patent Document 1. The firing temperatures of sinterable bonding materials using silver and copper nanoparticles are all based on this principle. When the melting point of the silver single nanoparticles is 250 ° C., the particle size of the silver nucleus of the silver single nanoparticles is about 2.0 nm. In the range of 200 ° C. to 300 ° C., the melting point drops by about 10 ° C. for every 0.1 nm reduction in the particle size of the silver nuclei.

<2−4.銀シングルナノ粒子のTEM像>
試料#C8AgSNの銀シングルナノ粒子を用いて形成したシングルナノ銀分散液をシリコン基板に塗布し、溶媒を蒸発させたのち、高分解透過型電子顕微鏡(HRTEM)を用いて観察した。そのTEM像を図7に示す。数個の銀シングルナノ粒子で形成された直径4〜6nm程度のクラスタがいくつか存在している。各クラスタ内の銀シングルナノ粒子は粒径1.2〜2.3nm程度の銀核と有機被覆とで構成されている。各銀核の金属銀の結晶構造が観察できる。なお、このTEM像ではシングルナノ銀分散液の溶媒を蒸発させた状態で観察しているので、銀シングルナノ粒子は凝集してクラスタを形成しているが、溶媒を蒸発させる前の状態ではほぼ単分散していると考えられる。TEM像の解析に基づく銀核の粒径分布として平均粒径1.7nm±0.3nm(標準偏差)が得られた。試料#C8AgSNの銀シングルナノ粒子の銀核の粒径分布幅は約15%とごく狭い。この平均粒径及び粒径分布幅は、既述のTG−DTA分析の結果と整合的である。
<2-4. TEM image of silver single nanoparticles>
A single nanosilver dispersion formed using silver single nanoparticles of sample # C8AgSN was applied to a silicon substrate, the solvent was evaporated, and then the sample was observed using a high resolution transmission electron microscope (HRTEM). The TEM image is shown in FIG. There are several clusters with a diameter of about 4 to 6 nm formed of several silver single nanoparticles. The silver single nanoparticles in each cluster are composed of a silver nucleus having a particle size of about 1.2 to 2.3 nm and an organic coating. The crystal structure of metallic silver in each silver nucleus can be observed. In this TEM image, since the solvent of the single nanosilver dispersion is observed in an evaporated state, the silver single nanoparticles aggregate to form clusters, but in the state before the solvent is evaporated, the silver single nanoparticles are almost agglomerated. It is considered to be monodisperse. An average particle size of 1.7 nm ± 0.3 nm (standard deviation) was obtained as the particle size distribution of the silver nuclei based on the analysis of the TEM image. The particle size distribution width of the silver nucleus of the silver single nanoparticles of sample # C8AgSN is as narrow as about 15%. The average particle size and the particle size distribution width are consistent with the results of the TG-DTA analysis described above.

<3.銅焼結基板の形成>
銅ナノ粒子が焼結結合してなる多孔質の銅焼結基板を形成するための銅焼結基板形成工程S2は、ナノ銅ペーストを基板上に塗布するナノ銅ペースト塗布工程S21と、基板上に塗布されたナノ銅ペーストを焼成して銅焼結基板を得るためのナノ銅ペースト焼成工程S22を含む。
<3. Formation of copper sintered substrate>
The copper sintered substrate forming step S2 for forming a porous copper sintered substrate formed by sintering and bonding copper nanoparticles includes a nano copper paste coating step S21 for applying a nano copper paste on the substrate and a copper sintered substrate coating step S21 on the substrate. The nano-copper paste firing step S22 for calcining the nano-copper paste applied to the copper sintered substrate is included.

<3−1.ナノ銅ペースト>
ナノ銅ペーストは、銅ナノ粒子、増粘剤及び粘度調整溶剤を混練して作製される。平均粒径50nmの有機被覆を有さない銅ナノ粒子を用い、増粘剤としてイソボロニルシクロヘキサノール(商品名:テルソルブ MTPH、日本テルペン化学株式会社製)を、粘度調整溶剤として日本テルペン化学株式会社製のテルソルブTHA−90を、表2に示す質量比で用いて、#高粘度タイプ、#中粘度タイプ、#低粘度タイプの3タイプのナノ銅ペーストを得た。
<3-1. Nano copper paste >
The nanocopper paste is prepared by kneading copper nanoparticles, a thickener and a viscosity adjusting solvent. Using copper nanoparticles without an organic coating with an average particle size of 50 nm, isoboronylcyclohexanol (trade name: Telsolv MTPH, manufactured by Nippon Telpen Chemical Co., Ltd.) as a thickener, and Nippon Telpen Chemical Co., Ltd. as a viscosity adjusting solvent. Using Telsolve THA-90 manufactured by the company in the mass ratio shown in Table 2, three types of nanocopper pastes, # high viscosity type, # medium viscosity type, and # low viscosity type, were obtained.

Figure 2021107569
Figure 2021107569

<3−2.ナノ銅ペーストの塗布及び焼成>
ナノ銅ペーストを基板上に塗布するナノ銅ペースト塗布工程S21においては、例えば
、まず清浄な鏡面研磨されたシリコン基板等の基板上に、ナノ銅ペーストを15〜200μm程度の均一な厚みで塗布する。次いで、基板上に塗布されたナノ銅ペーストを焼成して銅焼結基板を得るナノ銅ペースト焼成工程S22においては、高純度窒素ガスフロー下において350℃程度まで2℃/s程度の昇温速度で約3分間、無加圧下又は低加圧下で焼成して、10〜150μm程度の厚みの剥離・自立した銅焼結基板を得る。無加圧下で焼成する場合には、低粘度ペーストの塗布はスピンコートにより行うことが出来る。低加圧下で焼成する場合には、焼成中に200℃程度の温度の溶剤蒸発工程を設けて、完全乾燥しない温度・時間内に鏡面で押圧することにより数MPa程度の低加圧を行い、塗布されたナノ銅ペーストの表面を平坦化し、焼成後の銅焼結基板の厚みの均一化を図る。塗付したナノ銅ペーストの表面を平坦化しておくことにより、焼成後の銅焼結基板及びその表面に銀シングルナノ粒子をコートしてなる接合シートが均一厚みとなるから、該接合シートを用いた加圧焼成接合の際に、被接合物と接合シートとの接触面積が大きくなり、強い接合強度が確保される。今回は、表3に示す5種類のシート厚と焼成条件に対応した銅ナノペーストを塗布して焼成することにより、銅焼結基板の試料#Cu1〜#Cu5を得た。焼成後の銅焼結基板のシート厚も表3に示した。作成した銅焼結基板の平面サイズは100mm×100mmである。
<3-2. Application and firing of nano-copper paste>
In the nano-copper paste coating step S21 for applying the nano-copper paste on the substrate, for example, first, the nano-copper paste is coated on a substrate such as a clean mirror-polished silicon substrate with a uniform thickness of about 15 to 200 μm. .. Next, in the nano-copper paste firing step S22 in which the nano-copper paste coated on the substrate is fired to obtain a copper sintered substrate, the temperature rise rate of about 2 ° C./s up to about 350 ° C. under a high-purity nitrogen gas flow. The copper sintered substrate having a thickness of about 10 to 150 μm is obtained by firing under no pressure or low pressure for about 3 minutes. When firing under no pressure, the low viscosity paste can be applied by spin coating. When firing under low pressure, a solvent evaporation step at a temperature of about 200 ° C. is provided during firing, and low pressure of about several MPa is performed by pressing with a mirror surface within a temperature and time during which the material is not completely dried. The surface of the applied nano-copper paste is flattened to make the thickness of the copper sintered substrate uniform after firing. By flattening the surface of the coated nano-copper paste, the fired copper sintered substrate and the bonded sheet obtained by coating the surface with silver single nanoparticles have a uniform thickness. During the pressure firing bonding, the contact area between the object to be bonded and the bonding sheet becomes large, and strong bonding strength is ensured. This time, samples # Cu1 to #Cu5 of the copper sintered substrate were obtained by applying and firing copper nanopastes corresponding to the five types of sheet thicknesses and firing conditions shown in Table 3. The sheet thickness of the copper sintered substrate after firing is also shown in Table 3. The plane size of the prepared copper sintered substrate is 100 mm × 100 mm.

Figure 2021107569
Figure 2021107569

図8は、シリコン基板7上に銅ナノペースト(#高粘度タイプ)42を塗布した状態の写真図である。
図9は、シリコン基板7上に銅ナノペースト(#高粘度タイプ)を塗布し、高純度窒素ガス中で昇温速度100℃/分、350℃3分間保持の条件で無加圧焼成して得られた銅焼結基板2の写真図である。2つの帯状(平面サイズ10mm×40mm,厚み50μm)の銅焼結基板2が示されている。
図(10A)は、上記の銅焼結基板2において、焼結した銅ナノ粒子4を示す、焼結表面状態のSEM写真図である。倍率は3万倍である。また、図(10B)は上記SEM写真図の拡大図で、倍率は10万倍である。銅焼結基板2は多孔質であり、多数の微細孔21を有し、微細孔21のサイズは数百nm〜1μmであることがわかる。
FIG. 8 is a photograph of a state in which a copper nanopaste (# high viscosity type) 42 is coated on a silicon substrate 7.
In FIG. 9, copper nanopaste (# high viscosity type) is applied on a silicon substrate 7 and fired in high-purity nitrogen gas at a heating rate of 100 ° C./min and 350 ° C. for 3 minutes without pressure. It is a photograph figure of the obtained copper sintered substrate 2. Two strip-shaped (planar size 10 mm × 40 mm, thickness 50 μm) copper sintered substrate 2 is shown.
FIG. (10A) is an SEM photograph of the sintered surface state showing the sintered copper nanoparticles 4 in the copper sintered substrate 2 described above. The magnification is 30,000 times. Further, FIG. (10B) is an enlarged view of the SEM photographic diagram, and the magnification is 100,000 times. It can be seen that the copper sintered substrate 2 is porous, has a large number of micropores 21, and the size of the micropores 21 is several hundred nm to 1 μm.

本発明に係る接合シートは、平均粒径5×101nm程度の銅ナノ粒子を主成分とするナノ銅ペーストを焼結させた銅焼結基板が、その質量の大部分を占めるから、ナノ銀と銀フィラーからなるナノ銀ペーストに比べて低価格で作製することができる。なお、接合シートの量産性を念頭におくと、銅ナノ粒子にはかなりの量産製造能力が要請される。 In the bonding sheet according to the present invention, a copper sintered substrate obtained by sintering nano-copper paste containing copper nanoparticles having an average particle size of about 5 × 10 1 nm as a main component occupies most of the mass. It can be produced at a lower cost than a nano-silver paste composed of silver and silver filler. Keeping in mind the mass productivity of the bonded sheet, copper nanoparticles are required to have a considerable mass production capacity.

<4.ナノ銀含浸領域の形成>
銅焼結基板の少なくとも一方の表面の側に、傾斜濃度化された銀シングルナノ粒子を含むナノ銀含浸領域を形成するための傾斜機能付与工程S3においては、銅焼結基板の少な
くとも片側の表面に、シングルナノ銀分散液を塗布若しくは含浸させ、更に乾燥させることにより、その目的を達成する。
例えば、(1)銅焼結基板を2mm角程度の薄いSUS製メッシュ状板上にのせ、表面に、あらかじめ作製しておいたシングルナノ銀分散液をゆっくりスプレー塗布し、80℃程度のホットプレート上でゆっくり乾燥させて傾斜濃度化されたナノ銀コートの銅焼結基板(接合シート)を得る。または、(2)平らな浅い容器にシングルナノ銀分散液を入れ、銅焼結基板を該シングルナノ銀分散液中に浸し、引き出して乾燥させて、傾斜濃度化されたナノ銀コートの銅焼結基板(接合シート)を得ることもできる。
今回は、銅焼結基板の試料#Cu1〜#Cu5のそれぞれについて、その両側の表面に、片面ずつ、上記(1)の方法でシングルナノ銀分散液(#C8AgSN)をスプレー塗布し、更に乾燥させることにより、両方の表面の側にナノ銀含浸領域を有する接合シート(#1〜#5)を作製した。作製されたタイプAの接合シートのシート厚を表4に示す。銅焼結基板に銀シングルナノ粒子を含浸させて接合シートとしても、その厚みはほとんど変わらず、厚みの増加はサブミクロン以下である。また、各接合シートの平面形状は100mm×100mmである。
<4. Formation of nano-silver impregnated region>
In the inclination function imparting step S3 for forming the nano-silver impregnated region containing the inclined-concentrated silver single nanoparticles on the side of at least one surface of the copper-sintered substrate, the surface of at least one side of the copper-sintered substrate is formed. Is coated or impregnated with a single nanosilver dispersion and further dried to achieve its purpose.
For example, (1) a copper sintered substrate is placed on a thin SUS mesh plate of about 2 mm square, and a pre-prepared single nanosilver dispersion is slowly spray-coated on the surface of a hot plate at about 80 ° C. It is slowly dried on the surface to obtain a nano-silver-coated copper sintered substrate (bonded sheet) having a gradient concentration. Alternatively, (2) a single nanosilver dispersion is placed in a flat, shallow container, the copper sintered substrate is immersed in the single nanosilver dispersion, pulled out and dried, and the graded concentration of nanosilver coated copper is baked. It is also possible to obtain a bonding substrate (bonding sheet).
This time, for each of the samples # Cu1 to #Cu5 of the copper sintered substrate, a single nanosilver dispersion (# C8AgSN) was spray-coated on the surfaces on both sides of the copper sintered substrate by the method of (1) above, and further dried. By allowing the mixture to be formed, bonded sheets (# 1 to # 5) having nano-silver impregnated regions on both surface sides were prepared. Table 4 shows the sheet thickness of the produced type A bonded sheet. Even if the copper sintered substrate is impregnated with silver single nanoparticles to form a bonded sheet, the thickness is almost unchanged, and the increase in thickness is submicron or less. The planar shape of each joining sheet is 100 mm × 100 mm.

Figure 2021107569
Figure 2021107569

図11は、焼成済みの銅焼結基板(#Cu3)2の表面にシングルナノ銀分散液(銀シングルナノ粒子(#C8AgSN)を用いて作製)を帯状にスプレー塗布し、乾燥した状態の表面の写真図である。銅焼結基板の表面のうち、ナノ銀含浸領域3が形成されている領域は青みを帯びた色を呈し、そうでない領域は銅焼結基板2の表面が露出しているので赤みを帯びた色を呈している。なお、図11の上部の明度が高いのは光源光の反射による。 In FIG. 11, a single nanosilver dispersion (prepared using silver single nanoparticles (# C8AgSN)) is spray-coated on the surface of a fired copper sintered substrate (# Cu3) 2 in a band shape, and the surface is dried. It is a photograph figure of. Of the surface of the copper sintered substrate, the region where the nano-silver impregnated region 3 is formed has a bluish color, and the region where it is not formed is reddish because the surface of the copper sintered substrate 2 is exposed. It has a color. The high brightness in the upper part of FIG. 11 is due to the reflection of the light source light.

接合シートは、適切なサイズにカットし、被接合物に配置して使用する。図12は、平面サイズ10mm×10mm及び5mm×5mmにカットした接合シートの切断片を示す。図で左側に2列に配置された6枚の接合シートの切断片は、シングルナノ銀分散液(#C8AgSNを用いて作製)を片面に塗布し乾燥させた厚み約12μmのタイプBの接合シートの切断片であり、紫がかった色を呈している。図で右側に2列に配置された6枚の接合シートの切断片は、同じシングルナノ銀分散液を両面に塗布し乾燥させた厚み約12μmのタイプAの接合シート(試料#1)の切断片であり、青みを帯びた色を呈している。色の違いは、銀シングルナノ粒子の表面濃度の違いによる。銅焼結基板の厚みが約10μm程度と薄い場合には、シングルナノ銀分散液を銅焼結基板の片面にのみ塗布して乾燥させても、銀シングルナノ粒子は微細孔を通して浸透するので、銅焼結基板の他方の面の側にも銀シングルナノ粒子はいくらか配置され、両面塗布の場合には片面塗布の場合より、一般に表面濃度が大きくなるので、上記の色の違いが生じる。 The joining sheet is cut to an appropriate size and placed on the object to be joined for use. FIG. 12 shows a cut piece of a joining sheet cut into a plane size of 10 mm × 10 mm and 5 mm × 5 mm. The cut pieces of the six bonding sheets arranged in two rows on the left side in the figure are type B bonding sheets having a thickness of about 12 μm, which are obtained by applying a single nanosilver dispersion (prepared using # C8AgSN) on one side and drying. It is a cut piece of sardine and has a purplish color. The cut pieces of the six bonded sheets arranged in two rows on the right side in the figure are cuts of a type A bonded sheet (sample # 1) having a thickness of about 12 μm obtained by applying the same single nanosilver dispersion on both sides and drying. It is a piece and has a bluish color. The difference in color is due to the difference in surface density of silver single nanoparticles. When the thickness of the copper sintered substrate is as thin as about 10 μm, even if the single nanosilver dispersion is applied to only one side of the copper sintered substrate and dried, the silver single nanoparticles permeate through the fine pores. Some silver single nanoparticles are also arranged on the other side of the copper-sintered substrate, and the above-mentioned color difference occurs because the surface density of the double-sided coating is generally higher than that of the single-sided coating.

<5.接合シートの諸特性>
このようにして得られた接合シートは、実装に用いる電子回路部品や回路基板の電極等の被接合物のサイズに応じて、適切なサイズにカットし、被接合物に配置して、被接合物の熱容量や耐熱性に応じて、高純度窒素雰囲気で、温度250℃〜350℃、圧力20MPa以上の加圧環境下で、10秒〜3分程度、より好ましくは10秒〜60秒程度の短時間、最短では約10秒の間、上記温度を保持して焼成し、接合構造を形成し、実装過程を完了させる。この短時間実装による機能性を評価し、さらに形成される接合構造の長期安定性を評価した。
<5. Various characteristics of the joining sheet>
The bonded sheet thus obtained is cut into an appropriate size according to the size of the object to be bonded such as the electronic circuit component used for mounting and the electrode of the circuit board, arranged on the object to be bonded, and bonded. Depending on the heat capacity and heat resistance of the object, it takes about 10 seconds to 3 minutes, more preferably about 10 seconds to 60 seconds, in a high-purity nitrogen atmosphere, in a pressurized environment with a temperature of 250 ° C. to 350 ° C. and a pressure of 20 MPa or more. For a short time, at the shortest, about 10 seconds, the temperature is maintained and fired to form a bonded structure and complete the mounting process. The functionality of this short-time mounting was evaluated, and the long-term stability of the formed joint structure was evaluated.

<5−1.銅試験片の接合における接合強度>
図13に示すように、2つの銅試験片61を、銅焼結基板の両方の側にナノ銀含浸領域を有するタイプAの接合シート1aを用いて接合し、接合強度を調べる試験を行った。銅試験片は、直径10mm、厚み5mmの円柱形の銅試験片(大)61aと、直径5mm、厚み2mmの円柱形の銅試験片(小)61bである。銅試験片(大)61a、接合シート1a、銅試験片(小)61bをこの順に積層して積層体10を形成し、加圧しながら短時間焼成して、接合体を得た。用いた接合シートの試料名と厚み、焼成設定温度、加圧の圧力、保持時間(焼成設定温度を保持する時間)は次の表5の通りである。昇温速度は約2℃/秒であった。得られた接合のせん断強度と最大変位はダイシェアテスターを用いて測定した。表5に測定結果を示す。
<5-1. Bonding strength in bonding copper test pieces>
As shown in FIG. 13, two copper test pieces 61 were joined using a type A bonding sheet 1a having nano-silver impregnated regions on both sides of the copper sintered substrate, and a test was conducted to examine the bonding strength. .. The copper test pieces are a cylindrical copper test piece (large) 61a having a diameter of 10 mm and a thickness of 5 mm and a cylindrical copper test piece (small) 61b having a diameter of 5 mm and a thickness of 2 mm. A copper test piece (large) 61a, a bonding sheet 1a, and a copper test piece (small) 61b were laminated in this order to form a laminated body 10, and the laminated body 10 was fired for a short time while pressurizing to obtain a bonded body. Table 5 below shows the sample name and thickness of the bonded sheet used, the set firing temperature, the pressure of pressurization, and the holding time (the time for holding the set firing temperature). The heating rate was about 2 ° C./sec. The shear strength and maximum displacement of the obtained joint were measured using a die shear tester. Table 5 shows the measurement results.

Figure 2021107569
Figure 2021107569

銅試験片の接合テストでは、焼成設定温度350℃、20〜40MPaの加圧下、30秒〜3分の短い保持時間で、接合シートの厚み(20〜50μm)によらず、80〜113MPaの大きな接合強度を有する強固な接合が形成できることがわかった。比較例のPb5Snはんだによる接合では30分の保持時間で35MPaの接合強度にとどまる。本接合シートははんだ接合に比べて短時間で強固な接合を形成できる。最大変位は約1mm以内に収まっており、接合シートが有する多孔質の銅焼結基板が応力緩和機能を発揮して接合の安定性に寄与していると考えられる。3つの接合構造No.1,No.2,No.3は、接合シートの厚み以外の焼成条件が共通であるが、接合強度はいずれも約110MPaでほぼ等しい。また、破断面を光学顕微鏡で観察すると、破断は接合シートの表面付近のナノ銀含浸領域ではなく、接合シート(銅焼結基板)の内部で生じていることがわかる。本接合シートを用いた加圧焼成接合により形成される接合の接合強度は、接合シートの厚みにはあまり依存せず、銅焼結基板の強度で決まる。 In the bonding test of the copper test piece, the firing set temperature is 350 ° C. under pressure of 20 to 40 MPa, the holding time is as short as 30 seconds to 3 minutes, and the bonding sheet is as large as 80 to 113 MPa regardless of the thickness of the bonded sheet (20 to 50 μm). It was found that a strong bond with joint strength can be formed. In the bonding with Pb5Sn solder of the comparative example, the bonding strength remains at 35 MPa with a holding time of 30 minutes. This joint sheet can form a strong joint in a shorter time than solder joint. The maximum displacement is within about 1 mm, and it is considered that the porous copper sintered substrate of the bonding sheet exerts a stress relaxation function and contributes to the stability of bonding. Three joint structures No. 1, No. 2, No. No. 3 has the same firing conditions other than the thickness of the bonded sheet, but the bonding strengths are all about 110 MPa, which are almost the same. Further, when the fracture surface is observed with an optical microscope, it can be seen that the fracture occurs inside the bonded sheet (copper sintered substrate), not in the nano-silver impregnated region near the surface of the bonded sheet. The bonding strength of a bond formed by pressure firing using this bonding sheet does not depend much on the thickness of the bonding sheet, but is determined by the strength of the copper sintered substrate.

<5−2.接合シートの熱伝導度>
パワー半導体素子等の電子部品の接合に係る接合構造には、高い熱伝導度と高い電気伝導度が求められる。そこで、熱伝導率測定装置を用いて銅焼結基板及び(接合前の)接合シートの熱伝導度を測定した。熱伝導度は、レーザーフラッシュ法で測定した。これは、
試料の表面にレーザ光を瞬間的に照射して加熱し、裏面に伝わる温度勾配から熱拡散率、比熱容量を測定し、試料の密度に基づいて熱伝導率を算出する方法である。この測定のために特別に、ナノ銅ペースト(#高粘度タイプ)を焼成して厚み1.22mmの銅焼結基板(#Cu6)を作製し、また、同様に厚み1.25mmの銅焼結基板を焼成して、その両面にナノ銀含浸領域を設けた接合シート(#6)を作製した。測定にはいずれも、平面サイズが直径8.81mmの円形にカットした切断片を用い、厚みが薄い試料の熱伝導率を計測するための基板測定アタッチメントを使用して測定を行った。その結果を表6に示す。表6には参考のため、鉛共晶はんだ、銀、及び銅の熱伝導度及び比抵抗の数値も記載している。比抵抗の値は、ウィーデマンとフランツによる、金属における熱伝導度と電気伝導度の関係に基づいて、熱伝導度の測定値から計算した。
<5-2. Thermal conductivity of bonded sheet>
High thermal conductivity and high electrical conductivity are required for the bonding structure related to the bonding of electronic components such as power semiconductor elements. Therefore, the thermal conductivity of the copper sintered substrate and the bonded sheet (before bonding) was measured using a thermal conductivity measuring device. Thermal conductivity was measured by laser flash method. this is,
This is a method in which the front surface of a sample is instantaneously irradiated with a laser beam to heat it, the thermal diffusivity and the specific heat capacity are measured from the temperature gradient transmitted to the back surface, and the thermal conductivity is calculated based on the density of the sample. Specially for this measurement, nano copper paste (# high viscosity type) is fired to prepare a copper sintered substrate (# Cu6) having a thickness of 1.22 mm, and similarly, copper sintered having a thickness of 1.25 mm. The substrate was fired to prepare a bonded sheet (# 6) having nano-silver impregnated regions on both sides thereof. In each of the measurements, a cut piece cut into a circle having a plane size of 8.81 mm in diameter was used, and the measurement was performed using a substrate measurement attachment for measuring the thermal conductivity of a thin sample. The results are shown in Table 6. Table 6 also lists the thermal conductivity and resistivity values of lead eutectic solder, silver, and copper for reference. The resistivity value was calculated from the measured thermal conductivity by Wiedemann and Franz, based on the relationship between thermal and electrical conductivity in metals.

Figure 2021107569
Figure 2021107569

銅焼結基板(#Cu6)と接合シート(#6)のいずれもが、熱伝導度、電気伝導度(比抵抗の逆数)ともに、バルク金属と同じオーダーの高い値を示している。これは該銅焼結基板及び該接合シートの金属含有率が高く、かつ、銅ナノ粒子が焼結により結合して、比抵抗の低い電気伝導経路ネットワークを形成し、熱エネルギーもその経路に沿って容易に輸送されるからである。それに対して鉛共晶はんだの、熱伝導度及び電気伝導度はバルク金属と比べて1桁小さい低い値となっている。 Both the copper sintered substrate (# Cu6) and the bonded sheet (# 6) show high values on the same order as bulk metal in terms of both thermal conductivity and electrical conductivity (reciprocal of specific resistance). This is because the copper sintered substrate and the bonded sheet have a high metal content, and copper nanoparticles are bonded by sintering to form an electric conduction path network having a low resistivity, and thermal energy also follows the path. This is because it is easily transported. On the other hand, the thermal conductivity and electrical conductivity of lead eutectic solder are one order of magnitude lower than those of bulk metal.

<5−3.接合シートの長期安定性>
接合シートを用いて形成される接合構造の熱衝撃に対する安定性を調べるため、熱サイクル負荷試験(パワーサイクル試験)を行った。
<5−3−1.半導体実装サンプルの作製>
まず、パワーダイオード(ドープトSi製,面実装タイプNPジャンクション,平面サイズ10mm×10mm,厚み150μm)と、平面サイズ約10mm×10mmにカットした接合シート(#4,厚み40μm)の切断片と、銅板(平面サイズ20mm×20mm,厚み2mm)を上からこの順で積層し、40MPaで加圧しながら350℃の焼成設定温度で1分間保持して焼成して、接合シート接合体(半導体実装サンプル)を作製した。昇温速度は約2℃/秒とした。
<5-3. Long-term stability of bonded sheet>
A thermal cycle load test (power cycle test) was conducted to investigate the stability of the bonded structure formed using the bonded sheet against thermal shock.
<5-3-1. Fabrication of semiconductor mounting sample>
First, a power diode (made of doped Si, surface mount type NP junction, plane size 10 mm × 10 mm, thickness 150 μm), a cut piece of a bonding sheet (# 4, thickness 40 μm) cut to a plane size of about 10 mm × 10 mm, and a copper plate. (Plane size 20 mm x 20 mm, thickness 2 mm) are laminated in this order from the top, held at a firing set temperature of 350 ° C. for 1 minute while pressurizing at 40 MPa, and fired to obtain a bonded sheet joint (semiconductor mounting sample). Made. The heating rate was about 2 ° C./sec.

<5−3−2.はんだ接合の作製>
比較例として、同じパワーダイオードと上記と同じサイズの銅板とを、市販の鉛フリーはんだ(Sn3.0Ag0.5Cu)で接合して鉛フリーはんだ接合体を形成した。同様に、市販の鉛共晶はんだを用いて鉛共晶はんだ接合体を形成した。接合層の厚みはいずれも約50μmであった。
<5-3-2. Fabrication of solder joints>
As a comparative example, the same power diode and a copper plate of the same size as described above were joined with a commercially available lead-free solder (Sn3.0Ag0.5Cu) to form a lead-free solder joint. Similarly, a lead eutectic solder joint was formed using a commercially available lead eutectic solder. The thickness of each of the bonding layers was about 50 μm.

<5−3−3.熱サイクル負荷試験>
上記の接合シート接合体(半導体実装サンプル)を試料として、熱サイクル負荷試験装置を用いて、200℃〜−40℃の熱サイクル負荷を試料にかけた。試料は、上記の銅板が−40℃のヒートシンクの上面に当接する状態で載置される。パワーダイオードの上面と銅板にそれぞれ電極を接続し、電極間に電圧を印加できるようにする。1サイクルは30分間である。1サイクルは、数秒間、順方向の一定の大電流(順方向電流パルス)を試料に通電して接合部の温度を200℃まで上昇させるステップと、その後、電流を遮断して試料を−40℃のヒートシンクにより冷却するステップとで構成される。サイクル数毎の試料の熱抵抗値を、高い順方向電流パルス印加後の電極間の電気抵抗の変化率に基づいて計測する。熱抵抗値が初期値の30%増となったところを上限値として計測を終了する。
同様に、上記の鉛フリーはんだ接合体、及び、鉛共晶はんだ接合体を試料として、サイクル数毎の試料の熱抵抗値を計測した。その結果を表7に示す。鉛フリーはんだ接合体及び鉛共晶はんだ接合体の熱抵抗値は、それぞれ熱抵抗値の初期値で規格化して示した。また、接合シート接合体の熱抵抗値は、鉛共晶はんだ接合体の熱抵抗値の初期値で規格化して示した。図14は、接合シート接合体と鉛共晶はんだ接合体について、表7に示したサイクル数による熱抵抗値の変化の様子をそれぞれ初期値で規格化(標準化)してグラフ化したグラフ図である。
<5-3-3. Thermal cycle load test>
Using the above-mentioned bonding sheet junction (semiconductor mounting sample) as a sample, a thermal cycle load of 200 ° C. to −40 ° C. was applied to the sample using a thermal cycle load tester. The sample is placed in a state where the copper plate is in contact with the upper surface of the heat sink at −40 ° C. Electrodes are connected to the upper surface of the power diode and the copper plate, respectively, so that a voltage can be applied between the electrodes. One cycle is 30 minutes. One cycle consists of energizing the sample with a constant large forward current (forward current pulse) for several seconds to raise the temperature of the junction to 200 ° C., and then shutting off the current to -40 the sample. It consists of a step of cooling with a heat sink at ° C. The thermal resistance value of the sample for each number of cycles is measured based on the rate of change of the electrical resistance between the electrodes after applying a high forward current pulse. The measurement is terminated with the upper limit value when the thermal resistance value increases by 30% of the initial value.
Similarly, using the above-mentioned lead-free solder joint and lead eutectic solder joint as samples, the thermal resistance value of the sample was measured for each number of cycles. The results are shown in Table 7. The thermal resistance values of the lead-free solder joints and the lead eutectic solder joints are shown by standardizing the initial values of the thermal resistance values. Further, the thermal resistance value of the bonded sheet joint body is standardized by the initial value of the thermal resistance value of the lead eutectic solder joint body. FIG. 14 is a graph showing the changes in the thermal resistance value depending on the number of cycles shown in Table 7 by standardizing (standardizing) the initial values of the bonded sheet joint and the lead eutectic solder joint. be.

Figure 2021107569
Figure 2021107569

鉛フリーはんだ接合体では曲線83が示すように200サイクル負荷後に熱抵抗値が80%増、鉛共晶はんだ接合体では500サイクル負荷後に熱抵抗値が60%増となったのに対し、本発明に係る接合シート接合体では曲線84が示すように2000サイクル負荷後でも熱抵抗値が3%程度の増加に留まる。本発明に係る接合シートを用いた接合には、熱衝撃及び冷熱衝撃に対する長期安定性があることが確認された。 As shown by curve 83, the thermal resistance value of the lead-free solder joint increased by 80% after 200 cycles of loading, and that of the lead eutectic solder joint increased by 60% after 500 cycles of loading. In the bonded sheet joint according to the present invention, as shown by the curve 84, the thermal resistance value increases only by about 3% even after 2000 cycles of loading. It was confirmed that the joining using the joining sheet according to the present invention has long-term stability against thermal shock and cold shock.

一般に、はんだ接合の場合には、接合形成のための加熱後の冷却中にも加圧が必要であり、さらに冷却にも時間を要する。冷却中に加圧無しに、冷却を短時間で行うと、接合部に割れが生じ易いからである。本発明に係る接合シートでは、銅焼結基板は初めから焼結しており、焼結を要する部分が薄いナノ銀含浸領域のみであり、焼結で形成されたバルク銀若しくは銀銅合金の融点は高く、かつ、多孔質の銅焼結基板が応力緩和機能を有するから、冷却時に大きな加圧の必要はなく、冷却も短時間で済む利点がある。 Generally, in the case of solder joining, pressurization is required even during cooling after heating for joining, and further cooling also takes time. This is because if cooling is performed for a short time without pressurization during cooling, cracks are likely to occur at the joint. In the bonded sheet according to the present invention, the copper sintered substrate is sintered from the beginning, and the portion requiring sintering is only a thin nano-silver impregnated region, and the melting point of the bulk silver or silver-copper alloy formed by sintering. Since the high-quality and porous copper sintered substrate has a stress-relaxing function, there is no need for a large pressurization during cooling, and there is an advantage that cooling can be completed in a short time.

<5−4.短時間焼成における接合強度のナノ銀ペーストとの比較>
本発明に係る接合シートと比較例としてのナノ銀ペーストを用いて、焼成条件(焼成設定温度、加圧の圧力、保持時間)を変えながら、短時間焼成によりそれぞれ接合体を形成し、せん断強度を比較する。
<5−4−1.ナノ銀ペーストの作製>
比較例として、ペーストの焼成による接合体を形成するために、銅フィラーを含有する
ナノ銀ペースト1及びナノ銀ペースト2を作製した。ナノ銀ペースト1は、銀シングルナノ粒子#C8AgSNと銅フィラーを4:6の質量比で含み、銅フィラーは平均粒径0.10μmの有機被覆を有さない銅粒子であり、更に、増粘剤(イソボルニルシクロヘキサノール)及び粘度調整溶剤(ドデカン)が全質量に対して合わせて約7質量%含有されている。ナノ銀ペースト2は、銀シングルナノ粒子#C10AgSNと銅フィラーを4:6の質量比で含み、銅フィラーは平均粒径0.45μmの有機被覆を有さない銅粒子であり、更に、増粘剤(イソボルニルシクロヘキサノール)及び粘度調整溶剤(ドデカン)が全質量に対して合わせて約7質量%含有されている。
<5-4. Comparison with nano-silver paste with bonding strength in short-time firing>
Using the bonding sheet according to the present invention and nano-silver paste as a comparative example, each bonded body is formed by firing for a short time while changing the firing conditions (firing set temperature, pressurizing pressure, holding time), and the shear strength is changed. To compare.
<5-4-1. Preparation of nano-silver paste>
As a comparative example, nano-silver paste 1 and nano-silver paste 2 containing a copper filler were prepared in order to form a bonded body by firing the paste. The nano-silver paste 1 contains silver single nanoparticles # C8AgSN and a copper filler in a mass ratio of 4: 6, and the copper filler is a copper particle having an average particle size of 0.10 μm and no organic coating, and further thickens. The agent (isobornylcyclohexanol) and the viscosity adjusting solvent (dodecane) are contained in an amount of about 7% by mass in total with respect to the total mass. The nano-silver paste 2 contains silver single nanoparticles # C10AgSN and a copper filler in a mass ratio of 4: 6, and the copper filler is a copper particle having an average particle size of 0.45 μm and no organic coating, and further thickens. The agent (isobornylcyclohexanol) and the viscosity adjusting solvent (dodecane) are contained in an amount of about 7% by mass in total with respect to the total mass.

<5−4−2.接合強度の比較>
上記のナノ銀ペースト又は本発明に係る接合シートを用いて、前記の銅試験片(大)と銅試験片(小)を次の表8に示す焼成条件で、加圧下で10〜60秒の短い保持時間(焼成設定温度に保持する時間)で焼成して2つの銅試験片を接合した接合体を形成し、前記と同様にして最大せん断強度を計測した。その結果を表8に示す。ここで、昇温速度は約2℃/秒であった。なお、本発明に係る接合シートを介して2つの銅試験片を積層して積層体を形成する際には、積層に先立って、実装時の固定化を確実にするための固定化助剤を接合シートの表面にスポイドで1滴ないし数滴、添加した。固定化助剤としては、イソボロニルシクロヘキサノールを20質量%の濃度でメチルシクロヘキサンに溶解させた溶液を用いた。
<5-4-2. Comparison of joint strength>
Using the nano-silver paste or the bonding sheet according to the present invention, the copper test piece (large) and the copper test piece (small) were fired under the conditions shown in Table 8 below for 10 to 60 seconds under pressure. It was fired in a short holding time (time held at the set firing temperature) to form a bonded body in which two copper test pieces were joined, and the maximum shear strength was measured in the same manner as described above. The results are shown in Table 8. Here, the heating rate was about 2 ° C./sec. When two copper test pieces are laminated via the bonding sheet according to the present invention to form a laminate, an immobilization aid for ensuring immobilization at the time of mounting is provided prior to the lamination. One to several drops of spoid were added to the surface of the bonding sheet. As the immobilization aid, a solution of isobolonylcyclohexanol dissolved in methylcyclohexane at a concentration of 20% by mass was used.

Figure 2021107569
Figure 2021107569

表8から読み取れるように、ナノ銀ペーストでは焼成の前にペースト中に含まれるバインダ等の有機成分を除去するための乾燥工程に最低でも3分程度の時間を要するが、本発明に係る接合シートでは、銅焼結基板はすでに焼結済であるから、乾燥工程が不要である。本接合シートを用いれば、接合シートの厚み(20〜50μm)によらず、10〜60秒程度、最短では10秒の短時間の間、焼成設定温度を維持するだけで、ナノ銀ペーストを用いた接合と同等もしくはそれ以上のせん断強度を有する強固な接合を形成することができる。
本発明に係る接合シートを用いて加圧下で10〜60秒程度、焼成設定温度に保持することにより形成した接合構造のせん断強度は、焼成設定温度、焼成時の加圧の圧力、及び保持時間にも依存している。表8に示す6つの接合構造(No.11〜No.16)の接合強度の線形回帰分析(重相関係数R=0.84)により、焼成設定温度が10℃高いとせん断強度は約3MPa大きくなり、焼成時の加圧の圧力が10MPa高いとせん断強度は約13MPa大きくなり、保持時間が10秒長いとせん断強度は約3.5MPa大きくなることがわかる。回帰式によると、焼成設定温度300℃、加圧の圧力30MPa、保
持時間30秒に対して、せん断強度は約65MPaと高強度である。また、接合構造(No.16)は、焼成設定温度250℃、加圧の圧力20MPa、保持時間10秒に対して、せん断強度は約38MPaであるが、これは鉛共晶半田の接合強度(約35MPa)を上回っている。
As can be read from Table 8, in the nano silver paste, the drying step for removing organic components such as binder contained in the paste before firing requires at least about 3 minutes, but the bonding sheet according to the present invention. Then, since the copper sintered substrate has already been sintered, the drying step is unnecessary. If this bonding sheet is used, nano-silver paste can be used simply by maintaining the firing set temperature for a short time of about 10 to 60 seconds, or 10 seconds at the shortest, regardless of the thickness of the bonding sheet (20 to 50 μm). It is possible to form a strong joint having a shear strength equal to or higher than that of the existing joint.
The shear strength of the bonded structure formed by holding the bonding sheet according to the present invention under pressure for about 10 to 60 seconds at the set firing temperature is the set firing temperature, the pressure of pressurization during firing, and the holding time. It also depends on. According to the linear regression analysis (multiple correlation coefficient R = 0.84) of the joint strengths of the six joint structures (No. 11 to No. 16) shown in Table 8, the shear strength is about 3 MPa when the set firing temperature is 10 ° C. higher. It can be seen that when the pressurizing pressure at the time of firing is 10 MPa higher, the shear strength is increased by about 13 MPa, and when the holding time is 10 seconds longer, the shear strength is increased by about 3.5 MPa. According to the regression equation, the shear strength is as high as about 65 MPa with respect to the set firing temperature of 300 ° C., the pressurizing pressure of 30 MPa, and the holding time of 30 seconds. The bonding structure (No. 16) has a shear strength of about 38 MPa with respect to a firing set temperature of 250 ° C., a pressurizing pressure of 20 MPa, and a holding time of 10 seconds. This is the bonding strength of lead eutectic solder (No. 16). It exceeds about 35 MPa).

<5−5.本接合シートの特徴のまとめ>
本発明に係る接合シートでは、接合のための焼結の後に形成される金属(銀、銅、銀銅合金)の融点が779℃以上であるから、共晶生成による効果を考慮しても700℃で融解することはない。したがって、本接合シートは高温耐熱接合用途に用いることができる。多くの同種の金属ナノペーストやいくつかの接合シートが提案されているが、接合状態の諸物性、および、その長期安定性を対比し、本発明がすべての点で優れた接合機能性を付与できる。接合の長期安定性は、環境温度の大幅な変化で生じる内部応力の緩和が、本接合シートの多孔質の銅焼結基板により実現されていることによる。実施例における比較表に示したように、本接合シートの優れた点の概要は、(1)長期保存性:常温保存、年以上の期間が可能、(2)金属含有量:99質量%以上(∵銅焼結基板は100質量%。金属含有量85質量%以上のシングルナノ銀の、接合シートにおける総使用量は5質量%以下であるので99質量%以上となる)、(3)電気伝導度:比抵抗3μΩ・cm以下、(4)熱伝導度:200W/(m・K)以上、(5)接合強度(せん断強度):78MPa以上(350℃,20MPa加圧下1分間焼成時の接合強度。鉛共晶はんだでの2.4倍以上)、(6)長期安定性:熱サイクル負荷試験((200℃(数秒),−40℃(約30分))/サイクル)の結果において、2000サイクル負荷後の熱抵抗値が初期値に対して約3%増以下。一方、鉛共晶はんだは同条件負荷では500サイクル時で初期値に対して60%増と高温環境負荷試験では長期安定性に欠ける、および、(7)低コストに製造できることによる経済効果、にある。
<5-5. Summary of features of this joint sheet>
In the bonding sheet according to the present invention, the melting point of the metal (silver, copper, silver-copper alloy) formed after sintering for bonding is 779 ° C. or higher, so even if the effect of eutectic formation is taken into consideration, 700 It does not melt at ° C. Therefore, this bonding sheet can be used for high-temperature heat-resistant bonding applications. Many similar metal nanopastes and several bonding sheets have been proposed, but the present invention provides excellent bonding functionality in all respects by comparing the physical properties of the bonded state and its long-term stability. can. The long-term stability of the joint is due to the fact that the relaxation of the internal stress caused by a large change in the environmental temperature is realized by the porous copper sintered substrate of the main joint sheet. As shown in the comparison table in the examples, the outline of the excellent points of this bonded sheet is as follows: (1) long-term storage: normal temperature storage, capable of a period of more than a year, (2) metal content: 99% by mass or more. (∵ Copper sintered substrate is 100% by mass. The total amount of single nanosilver with a metal content of 85% by mass or more in the bonded sheet is 5% by mass or less, so it is 99% by mass or more), (3) Electricity Conductivity: Specific resistance 3 μΩ · cm or less, (4) Thermal conductivity: 200 W / (m · K) or more, (5) Bond strength (shear strength): 78 MPa or more (350 ° C, 20 MPa when firing for 1 minute under pressure Bond strength: 2.4 times or more that of lead eutectic solder), (6) Long-term stability: Thermal cycle load test ((200 ° C (several seconds), -40 ° C (about 30 minutes)) / cycle) , The thermal resistance value after 2000 cycle load is about 3% or less increase from the initial value. On the other hand, lead eutectic solder lacks long-term stability in the high-temperature environmental load test, with an increase of 60% from the initial value at 500 cycles under the same conditions, and (7) the economic effect of being able to manufacture at low cost. be.

本接合シートを適切なサイズにカットした切断片を、半導体素子と銅基板など、2つの被接合物の間に配置して加圧焼成することで接合体を形成することができる。従来の各種ナノ金属ペースト塗布による接合方法と比較して、塗布工程・乾燥時間が不要で、焼成設定温度に保持する保持時間も1/5以下と短いから、実装量産性は10倍以上に向上できる特徴がある。また、従来のナノ金属ペーストに樹脂を配した組成の接合シートとの比較でも、本接合シートの焼成設定温度及び保持時間は、より低温で、10〜60秒、最短では10秒と短時間であり、銀ナノ粒子の使用量も少なく、経済性により優れている特徴がある。さらに高温半導体素子との実装では、小型化・大電流負荷によって生じる動作時の発熱を、バルク金属並みの十分な熱伝導性により回避して半導体機能を劣化させない接合特性を発揮し、耐熱性は従来から使用されている鉛共晶はんだを大きく上まわり、熱伝導度では5倍以上であり、加えて電気伝導性もバルク金属並みに優れており、接合特性は従来品のはんだ製品を大きく超えている。また、環境に有害な鉛を含まないので、環境負荷安全性も保有している。 A bonded body can be formed by arranging a cut piece obtained by cutting the bonded sheet to an appropriate size between two objects to be bonded such as a semiconductor element and a copper substrate and firing under pressure. Compared with the conventional bonding method by applying various nanometal pastes, the coating process and drying time are not required, and the holding time to keep at the set firing temperature is as short as 1/5 or less, so mounting mass productivity is improved by 10 times or more. There are features that can be done. In addition, the set firing temperature and holding time of this bonded sheet are as short as 10 to 60 seconds at a lower temperature and 10 seconds at the shortest, as compared with the conventional bonded sheet having a composition in which a resin is arranged on a nanometal paste. Yes, the amount of silver nanoparticles used is small, and it is more economical. Furthermore, when mounted with a high-temperature semiconductor element, the heat generation during operation caused by miniaturization and large current load is avoided by sufficient thermal conductivity equivalent to that of bulk metal, and the bonding characteristics that do not deteriorate the semiconductor function are exhibited, and the heat resistance is high. It greatly exceeds the conventional lead eutectic solder, has a thermal conductivity of 5 times or more, and has excellent electrical conductivity comparable to that of bulk metal, and its bonding characteristics greatly exceed those of conventional solder products. ing. In addition, since it does not contain lead, which is harmful to the environment, it also has environmental load safety.

本発明に係る接合シートは、簡便に使用でき、低コストで製造でき、短い保持時間の焼成で強固な接合を形成でき、形成される接合は従来のはんだ製品を大きく超える接合特性を有し、環境安全性も具備している。従来のはんだ製品及び接合シートの代替品等として、また、従来のはんだ製品では実現不可能であった高温使用に耐える接合形成のための接合用材料として、本接合シートとその製造方法及びそれを用いた接合方法は、幅広い産業上の利用可能性を有する。 The bonding sheet according to the present invention can be easily used, can be manufactured at low cost, can form a strong bonding by firing with a short holding time, and the formed bonding has bonding characteristics far exceeding those of conventional solder products. It also has environmental safety. This joining sheet, its manufacturing method, and its manufacturing method, as a substitute for conventional solder products and joining sheets, and as a joining material for joining to withstand high-temperature use, which was not possible with conventional solder products. The bonding method used has a wide range of industrial applicability.

1 接合シート 1a タイプAの接合シート
1b タイプBの接合シート
2 銅焼結基板 21 微細孔
3 ナノ銀含浸領域 31 第1ナノ銀含浸領域
32 第2ナノ銀含浸領域 33 表面(接合面,接合界面)
4 銅ナノ粒子 42 ナノ銅ペースト
5 銀シングルナノ粒子 5c 銀核
6 被接合物 6a 第1被接合物
6b 第2被接合物 61 銅試験片
61a 銅試験片(大) 61b 銅試験片(小)
7 シリコン基板 10 積層体
81〜84 曲線
1 Bonding sheet 1a Type A bonding sheet 1b Type B bonding sheet 2 Copper sintered substrate 21 Micropores 3 Nano silver impregnated area 31 First nano silver impregnated area 32 Second nano silver impregnated area 33 Surface (bonding surface, bonding interface) )
4 Copper nanoparticles 42 Nanocopper paste 5 Silver single nanoparticles 5c Silver nucleus 6 Joint 6a First joint 6b Second joint 61 Copper test piece 61a Copper test piece (large) 61b Copper test piece (small)
7 Silicon substrate 10 Laminated body 81-84 Curved

Claims (9)

焼結結合した複数の銅ナノ粒子からなる多孔質の銅焼結構造体である銅焼結基板と、該銅焼結基板の表面及び微細孔に配置された、有機被覆を有する複数の銀シングルナノ粒子から構成される接合シートであり、前記銀シングルナノ粒子は互いに結合し、前記銅焼結構造体とも結合し、前記銀シングルナノ粒子の数密度は、前記接合シートの少なくとも片側の表面で高く、内部では低く、傾斜濃度化されていることを特徴とする接合シート。 A copper sintered substrate, which is a porous copper sintered structure composed of a plurality of sintered and bonded copper nanoparticles, and a plurality of silver singles having an organic coating arranged on the surface and micropores of the copper sintered substrate. A bonding sheet composed of nanoparticles, the silver single nanoparticles bonded to each other and also bonded to the copper sintered structure, the number density of the silver single nanoparticles on the surface of at least one side of the bonding sheet. A bonding sheet characterized by being high, low inside, and graded. 前記銀シングルナノ粒子は、銀核の粒径分布における84%粒径(D84)が1.4〜2.0nm、粒径分布幅が15%以下の銀ナノ粒子である請求項1に記載の接合シート。 The first aspect of claim 1, wherein the silver single nanoparticles are silver nanoparticles having an 84% particle size (D 84 ) of 1.4 to 2.0 nm and a particle size distribution width of 15% or less in the particle size distribution of the silver nucleus. Joining sheet. 前記銀シングルナノ粒子は、有機被覆量10〜15質量%のカルボン酸被覆銀ナノ粒子である請求項1又は2に記載の接合シート。 The bonding sheet according to claim 1 or 2, wherein the silver single nanoparticles are carboxylic acid-coated silver nanoparticles having an organic coating amount of 10 to 15% by mass. 前記数密度が、前記接合シートの裏表の両方の表面から内部に向けて低くなっている請求項1〜3のいずれかに記載の接合シート。 The joining sheet according to any one of claims 1 to 3, wherein the number density is lowered inward from both the front and back surfaces of the joining sheet. 前記数密度が、前記接合シートの裏表の表面のうち、片側の表面から他方の表面に向けて低くなっている請求項1〜3のいずれかに記載の接合シート。 The bonding sheet according to any one of claims 1 to 3, wherein the number density is lowered from one surface to the other surface of the front and back surfaces of the bonding sheet. 有機被覆を有する銀シングルナノ粒子を溶媒に分散させてシングルナノ銀分散液を得る、シングルナノ銀分散液準備工程と、銅ナノ粒子を含有するナノ銅ペーストを焼成して多孔質の銅焼結基板を形成する銅焼結基板形成工程と、前記銅焼結基板の表面に、前記シングルナノ銀分散液を塗布若しくは含浸させ、更に乾燥させることにより、前記銅焼結基板の前記表面及び該表面に隣接する体積領域に、傾斜濃度化された銀シングルナノ粒子を配置して、傾斜機能を付与する傾斜機能付与工程、を有することを特徴とする接合シートの製法。 A single nano silver dispersion preparation step in which silver single nanoparticles having an organic coating are dispersed in a solvent to obtain a single nano silver dispersion, and a nano copper paste containing copper nanoparticles are fired to perform porous copper sintering. By coating or impregnating the surface of the copper sintered substrate with the single nanosilver dispersion liquid and further drying the copper sintered substrate forming step of forming the substrate, the surface of the copper sintered substrate and the surface thereof. A method for producing a bonded sheet, which comprises a tilting function imparting step of arranging tilted-concentrated silver single nanoparticles in a volume region adjacent to the tilting function to impart a tilting function. 請求項1〜5のいずれかに記載の接合シートを介して、第1被接合物と第2被接合物を接合する接合方法であり、第1被接合物と、1枚以上の前記接合シートと、第2被接合物と、をこの順に積層して積層体を形成する積層ステップと、圧力を加えつつ、当該積層体を焼成して接合体を形成するステップを有することを特徴とする接合方法。 A joining method for joining a first object to be joined and a second object to be joined via the joining sheet according to any one of claims 1 to 5, wherein the first object to be joined and one or more of the joining sheets are joined. A joining characterized by having a laminating step of laminating the second object to be joined in this order to form a laminated body, and a step of firing the laminated body to form a bonded body while applying pressure. Method. 前記積層ステップにおいて、積層に先立って実装時の固定化を確実にするための固定化助剤を前記接合シートの表面に添加する請求項7に記載の接合方法。 The joining method according to claim 7, wherein in the laminating step, an immobilization aid for ensuring immobilization at the time of mounting is added to the surface of the joining sheet prior to laminating. 被接合物に、請求項1〜5のいずれかに記載の接合シートを積層して仮留めしてなる積層体。 A laminated body obtained by laminating the joining sheet according to any one of claims 1 to 5 on the object to be joined and temporarily fixing the joining sheet.
JP2019239019A 2019-12-27 2019-12-27 Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method Active JP6713120B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019239019A JP6713120B1 (en) 2019-12-27 2019-12-27 Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019239019A JP6713120B1 (en) 2019-12-27 2019-12-27 Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method

Publications (2)

Publication Number Publication Date
JP6713120B1 JP6713120B1 (en) 2020-06-24
JP2021107569A true JP2021107569A (en) 2021-07-29

Family

ID=71104014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019239019A Active JP6713120B1 (en) 2019-12-27 2019-12-27 Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method

Country Status (1)

Country Link
JP (1) JP6713120B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026739B2 (en) * 2020-08-04 2022-02-28 石原ケミカル株式会社 Joining method, copper sintered body and copper paste
CN113664205B (en) * 2021-08-25 2023-06-09 中国核动力研究设计院 Alloy plate with continuously controllable resistivity and preparation method thereof
CN114131018A (en) * 2021-12-10 2022-03-04 中国矿业大学 Preparation method of heat dissipation material of net pressing copper nano packed bed
CN115662946B (en) * 2022-11-03 2023-07-07 广东工业大学 Ultra-fine pitch all-copper interconnection method and ultra-fine pitch all-copper interconnection structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202944A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Joining method and joining structure
JP2007151805A (en) * 2005-12-05 2007-06-21 Mitsubishi Materials Corp Medical device and surface modification method for medical device
JP2010065277A (en) * 2008-09-10 2010-03-25 Nippon Handa Kk Method for manufacturing jointed body of metallic member, and jointed body of metallic member
JP2013168545A (en) * 2012-02-16 2013-08-29 Toyota Motor Corp Method for joining conductive members
JP2016054098A (en) * 2014-09-04 2016-04-14 日立化成株式会社 Silver paste, semiconductor device using the same and method for producing silver paste
JP2017057488A (en) * 2015-09-18 2017-03-23 株式会社応用ナノ粒子研究所 Manufacturing method of nano silver particle and nano silver particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202944A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Joining method and joining structure
JP2007151805A (en) * 2005-12-05 2007-06-21 Mitsubishi Materials Corp Medical device and surface modification method for medical device
JP2010065277A (en) * 2008-09-10 2010-03-25 Nippon Handa Kk Method for manufacturing jointed body of metallic member, and jointed body of metallic member
JP2013168545A (en) * 2012-02-16 2013-08-29 Toyota Motor Corp Method for joining conductive members
JP2016054098A (en) * 2014-09-04 2016-04-14 日立化成株式会社 Silver paste, semiconductor device using the same and method for producing silver paste
JP2017057488A (en) * 2015-09-18 2017-03-23 株式会社応用ナノ粒子研究所 Manufacturing method of nano silver particle and nano silver particle

Also Published As

Publication number Publication date
JP6713120B1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6713120B1 (en) Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
JP5757359B2 (en) Cu / ceramic bonded body, Cu / ceramic bonded body manufacturing method, and power module substrate
EP3217424B1 (en) Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly
JP6337909B2 (en) Manufacturing method of electronic component module
WO2013115359A1 (en) Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
TWI615929B (en) Power module substrate, power module substrate having heatsink, power module, method for producing power module substrate, paste for connecting copper plate, and method for producing laminated body
TWI642154B (en) Power module substrate, and method of producing the same; and power module
Masson et al. Die attach using silver sintering. Practical implementation and analysis
JP2015180600A (en) Power module substrate, power module substrate with heat sink, power module, method for manufacturing power module substrate, and paste for bonding copper member
Zhang et al. Effects of sintering pressure on the densification and mechanical properties of nanosilver double-side sintered power module
JP2006228804A (en) Ceramic substrate for semiconductor module and its manufacturing method
CN108780784B (en) Metal member with Ag-based layer, insulated circuit board with Ag-based layer, semiconductor device, insulated circuit board with heat sink, and method for manufacturing metal member with Ag-based layer
JP6142584B2 (en) Metal composite, circuit board, semiconductor device, and method for manufacturing metal composite
WO2019021637A1 (en) Method for producing metal bonded laminate
TWI651814B (en) Substrate and power module for power module with Ag substrate layer
JP6170045B2 (en) Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof
JP7194922B2 (en) Mounting structures and nanoparticle mounting materials
JP2014110282A (en) Bonding method using paste containing metal fine particle
JP2006120973A (en) Circuit board and manufacturing method thereof
WO2023286860A1 (en) Copper/ceramic bonded body and insulated circuit board
JP7424652B2 (en) Self-supporting membrane, laminated sheet, and method for manufacturing self-supporting membrane
WO2023190450A1 (en) Bonded body manufacturing method
WO2023286857A1 (en) Copper/ceramic assembly and insulating circuit substrate
TW202208567A (en) Bonding sheet and bonded structure
JP2023038748A (en) Heated bonding material stuck with bond essentially consisting of metal nanoparticle and second metal particle, and electric apparatus bonding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6713120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250