JP2021105557A - Inspection method of power storage device - Google Patents

Inspection method of power storage device Download PDF

Info

Publication number
JP2021105557A
JP2021105557A JP2019236722A JP2019236722A JP2021105557A JP 2021105557 A JP2021105557 A JP 2021105557A JP 2019236722 A JP2019236722 A JP 2019236722A JP 2019236722 A JP2019236722 A JP 2019236722A JP 2021105557 A JP2021105557 A JP 2021105557A
Authority
JP
Japan
Prior art keywords
power supply
storage device
power storage
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019236722A
Other languages
Japanese (ja)
Other versions
JP7347208B2 (en
Inventor
直孝 井出
Naotaka Ide
直孝 井出
康明 大槻
Yasuaki Otsuki
康明 大槻
嘉夫 松山
Yoshio Matsuyama
嘉夫 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019236722A priority Critical patent/JP7347208B2/en
Publication of JP2021105557A publication Critical patent/JP2021105557A/en
Application granted granted Critical
Publication of JP7347208B2 publication Critical patent/JP7347208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

To provide an inspection method of a power storage device capable of preventing occurrence of a trouble due to existence of voltage difference between set power supply voltage and device voltage when determining quality of the power storage device by power supply current flowing when constant voltage is applied to the power storage device.SOLUTION: An inspection method of a power storage device 1 includes: a constant current step in which a DC power supply EP capable of mutually switching between a constant voltage mode and a constant current mode is connected to the power storage device 1 via a connection wiring CW and constant current Ibc is supplied from the DC power supply EP in a constant current mode to the power storage device 1; a voltage application step of causing the DC power supply to generate power supply voltage Vep in the constant voltage mode having the same magnitude as final power supply voltage Vepe generated by a DC power supply at an end of the constant current step, while maintaining connection between the DC power supply and the power storage device, and applying the power supply voltage to the power storage device; and a detection step for detecting an internal short circuit of the power storage device from a convergence state of the power supply current Ib in the voltage application step.SELECTED DRAWING: Figure 2

Description

本発明は、蓄電デバイスの検査方法に関する。 The present invention relates to a method for inspecting a power storage device.

従来、二次電池など蓄電デバイスの良否を判定する検査方法が種々提案されている。例えば特許文献1では、検査対象とする二次電池を加圧状態で放置する放置工程を行うと共に、この放置工程の前後に電池電圧を測定する。放置工程の前後に生じた電池電圧の差は、放置工程の間に生じた自己放電による電圧低下量を示している。即ち、電圧低下量が大きい電池は自己放電量が多いことになる。このため、電圧低下量の大小により二次電池の良否を判定できる。なおこの検査方法は、二次電池などの蓄電デバイスの製造方法をなす工程中の一工程として行われることもある。 Conventionally, various inspection methods for determining the quality of a power storage device such as a secondary battery have been proposed. For example, in Patent Document 1, a leaving step of leaving the secondary battery to be inspected in a pressurized state is performed, and the battery voltage is measured before and after this leaving step. The difference in battery voltage generated before and after the leaving process indicates the amount of voltage decrease due to self-discharge generated during the leaving process. That is, a battery having a large amount of voltage drop has a large amount of self-discharge. Therefore, the quality of the secondary battery can be determined by the magnitude of the voltage drop. Note that this inspection method may be performed as one step in the process of manufacturing a power storage device such as a secondary battery.

特開2010−153275号公報Japanese Unexamined Patent Publication No. 2010-153275

しかしながら、上述の二次電池の良否判定の手法では、蓄電デバイスの良否判定に時間が掛かる不具合があった。放置工程の放置時間を長く取らないと、二次電池の良否の判定に有意性があるといえるほどの電圧低下量の大小の差異が生じないからである。 However, the above-mentioned method for determining the quality of the secondary battery has a problem that it takes time to determine the quality of the power storage device. This is because unless the leaving time of the leaving step is long, there is no difference in the amount of voltage decrease that can be said to be significant in determining the quality of the secondary battery.

そこで、図5に示すように、二次電池などの蓄電デバイスCTの接続端子CT1,CT2に接続配線CWを介して可変直流定電圧電源SPを接続し、適宜設定した定電圧(電源電圧)Vspを印加し続けることにより、蓄電デバイスCTを通じて流れる電源電流(漏れ電流)Idを電流検知部SPIで検知し、この電源電流Idが安定した時点での電源電流Idの大きさから、蓄電デバイスCTの良否を判定する手法を考えた。なお、図5では、蓄電デバイスCTは、並列に接続されたデバイス容量Cd及び短絡抵抗Rdpに、直流抵抗Rdsが直列に接続された等価回路で示してある。また、蓄電デバイスCTの接続端子CT1,CT2と接続配線CWの接続プローブP1,P2との間には、それぞれ接触抵抗R1,R2が発生する。また、接続配線CWに生じる抵抗を併せて配線抵抗Rwとする。 Therefore, as shown in FIG. 5, a variable DC constant voltage power supply SP is connected to the connection terminals CT1 and CT2 of the power storage device CT such as a secondary battery via the connection wiring CW, and the constant voltage (power supply voltage) Vsp set appropriately is set. Is continuously applied, the power supply current (leakage current) Id flowing through the power storage device CT is detected by the current detection unit SPI, and from the magnitude of the power supply current Id when the power supply current Id becomes stable, the power storage device CT I considered a method to judge the quality. In FIG. 5, the power storage device CT is shown by an equivalent circuit in which a DC resistor Rds is connected in series to a device capacitance Cd and a short-circuit resistor Rdp connected in parallel. Further, contact resistors R1 and R2 are generated between the connection terminals CT1 and CT2 of the power storage device CT and the connection probes P1 and P2 of the connection wiring CW, respectively. Further, the resistance generated in the connection wiring CW is also referred to as the wiring resistance Rw.

定電圧の電源電圧Vspを蓄電デバイスCTに印加し続けると、この蓄電デバイスCTが充電あるいは放電されて、可変直流定電圧電源SPの電源電圧Vspと、蓄電デバイスCT(そのデバイス容量Cdに生じる)デバイス電圧Vdとが徐々に均衡し、蓄電デバイスCTのうち、デバイス容量Cdには充電電流Iidが流れず、直流抵抗Rds及び短絡抵抗Rdpを通じて電源電流(漏れ電流)Idのみが流れる状態となって安定すると考えられる。従って、安定した状態における電源電流Idを検知すれば、蓄電デバイスCTの短絡抵抗Rdpの大小を検知できると考えられるからである。 When the constant voltage power supply voltage Vsp is continuously applied to the power storage device CT, the power storage device CT is charged or discharged, and the power supply voltage Vsp of the variable DC constant voltage power supply SP and the power storage device CT (generated in the device capacity Cd). The device voltage Vd is gradually balanced, and among the power storage device CT, the charging current Iid does not flow in the device capacitance Cd, and only the power supply current (leakage current) Id flows through the DC resistance Rds and the short-circuit resistance Rdp. It is considered to be stable. Therefore, if the power supply current Id in a stable state is detected, it is considered that the magnitude of the short-circuit resistance Rdp of the power storage device CT can be detected.

ところで、電源電流Idを早期に安定させ、蓄電デバイスCTの良否判定を早期に可能とするには、図5に示す、可変直流定電圧電源SPと蓄電デバイスCTとを接続した回路において、蓄電デバイスCT外に存在する外部抵抗Rextを、より正確には、接続配線CWの配線抵抗Rwと、接続プローブP1,P2と接続端子CT1,CT2との間の接触抵抗R1,R2と、直流抵抗Rsとの和(Rext=Rw+R1+R2)を小さくするとよい。電源電流Idの変化の速さを羈束する時定数τ(=Cb・Rext)を小さくできるからである。具体的には、接続配線CWの配線抵抗Rwを下げるべく、接続配線CWの長さを短く、径を太くするのが好ましい。 By the way, in order to stabilize the power supply current Id at an early stage and enable the quality determination of the power storage device CT at an early stage, the power storage device in the circuit connecting the variable DC constant voltage power supply SP and the power storage device CT shown in FIG. To be more precise, the external resistance Next existing outside the CT is the wiring resistance Rw of the connection wiring CW, the contact resistances R1 and R2 between the connection probes P1 and P2 and the connection terminals CT1 and CT2, and the DC resistance Rs. It is preferable to reduce the sum of (Rext = Rw + R1 + R2). This is because the time constant τ (= Cb · Next) that bundles the speed of change of the power supply current Id can be reduced. Specifically, in order to reduce the wiring resistance Rw of the connecting wiring CW, it is preferable to shorten the length of the connecting wiring CW and increase the diameter.

一方、可変直流定電圧電源SPの可変定電圧源SPEで発生させ電圧検知部SPVで検知する電源電圧Vspの大きさは、設定値に対し誤差が生じるので、蓄電デバイスCTに実際に印加される電源電圧Vspを蓄電デバイスCT(デバイス容量Cd)に生じているデバイス電圧Vdに完全に一致させることは困難である。このため、図5に示す回路において、可変直流定電圧電源SPの電源電圧Vspと蓄電デバイスCTのデバイス電圧Vdとの間に電圧差ΔV(=Vsp−Vd)が存在すると、蓄電デバイスCTに対し電源電圧Vspを印加した直後に、大きな電源電流Id(≒ΔV/Rext)が流れる(蓄電デバイスの直流抵抗Rdsは十分小さいとする)。ここで前述のように、外部抵抗Rextを小さくしていた場合には、特に大きな電源電流Idが印加当初に流れる。これにより、可変直流定電圧電源SPを損傷したり、接続配線CWの接続プローブP1,P2と蓄電デバイスCTの接続端子CT1,CT2とが溶着するなどの不具合を生じる虞がある。一方、このような不具合を避けるために外部抵抗Rextを大きくすると、蓄電デバイスCTの良否判定に時間が掛かる。 On the other hand, the magnitude of the power supply voltage Vsp generated by the variable constant voltage source SPE of the variable DC constant voltage power supply SP and detected by the voltage detection unit SPV causes an error with respect to the set value, so that it is actually applied to the power storage device CT. It is difficult to completely match the power supply voltage Vsp with the device voltage Vd generated in the power storage device CT (device capacitance Cd). Therefore, in the circuit shown in FIG. 5, if a voltage difference ΔV (= Vsp-Vd) exists between the power supply voltage Vsp of the variable DC constant voltage power supply SP and the device voltage Vd of the power storage device CT, the power storage device CT Immediately after applying the power supply voltage Vsp, a large power supply current Id (≈ΔV / Next) flows (assuming that the DC resistance Rds of the power storage device is sufficiently small). Here, as described above, when the external resistance Next is reduced, a particularly large power supply current Id flows at the initial stage of application. This may damage the variable DC constant voltage power supply SP, or cause problems such as welding of the connection probes P1 and P2 of the connection wiring CW and the connection terminals CT1 and CT2 of the power storage device CT. On the other hand, if the external resistance Next is increased in order to avoid such a problem, it takes time to determine the quality of the power storage device CT.

本発明は、かかる現状に鑑みてなされたものであって、蓄電デバイスに定電圧を印加した場合に流れる電源電流により、当該蓄電デバイスの良否を判定するにあたり、設定した電源電圧とデバイス電圧との電圧差が存在することに伴う不具合の発生を防止した、蓄電デバイスの検査方法を提供するものである。 The present invention has been made in view of the current situation, and the set power supply voltage and the device voltage are used to determine the quality of the power storage device based on the power supply current flowing when a constant voltage is applied to the power storage device. It provides an inspection method of a power storage device that prevents the occurrence of a defect due to the existence of a voltage difference.

上記課題を解決するための本発明の一態様は、定電圧モードと定電流モードとを相互に切り替え可能な直流電源を、接続配線を介して蓄電デバイスの蓄電端子間に接続し、上記定電流モードとした上記直流電源から上記蓄電端子を通じて上記蓄電デバイスに、予め定めた大きさの定電流を流す定電流ステップと、上記定電流ステップに続いて、上記定電流ステップにおける上記接続配線を介した上記直流電源と上記蓄電デバイスとの接続を維持したまま、かつ、上記定電圧モードとした上記直流電源に、上記定電流ステップの終期に上記直流電源で生じさせていた終期電源電圧と同じ大きさの電源電圧を発生させて、上記接続配線を介して上記蓄電デバイスの上記蓄電端子間に印加する電圧印加ステップと、上記電圧印加ステップにおいて上記蓄電デバイスに流す電源電流の収束状況から、上記蓄電デバイスの内部短絡を検知する検知ステップと、を備える蓄電デバイスの検査方法である。 One aspect of the present invention for solving the above-mentioned problems is to connect a DC power supply capable of switching between a constant voltage mode and a constant current mode between storage terminals of a power storage device via a connection wiring, and to connect the constant current mode. A constant current step in which a constant current of a predetermined magnitude is passed from the DC power supply in the mode to the storage device through the storage terminal, and following the constant current step, via the connection wiring in the constant current step. The same magnitude as the final power supply voltage generated by the DC power supply at the end of the constant current step in the DC power supply in the constant voltage mode while maintaining the connection between the DC power supply and the power storage device. From the convergence status of the voltage application step of generating the power supply voltage of the above and applying it between the storage terminals of the power storage device via the connection wiring and the power supply current flowing to the power storage device in the voltage application step, the power storage device It is a method of inspecting a power storage device including a detection step for detecting an internal short circuit.

上述の検査方法では、まず定電流ステップでは、定電流モードとした直流電源から蓄電デバイスに定電流を流すため、そもそも大電流は流れない。その後、電圧印加ステップにおいて、定電圧モードとした直流電源で蓄電デバイスに電圧を印加するのであるが、定電流ステップの終期に直流電源で生じさせていた終期電源電圧と同じ大きさの電源電圧を発生させて、蓄電デバイスに印加する。このため、上述のように定電流ステップでも大電流は流れない上、従来と異なり、電圧印加ステップの当初にも、定電流ステップで流した定電流と同じ大きさの電流が流れるに留まり、外部抵抗の大小に拘わらず、大電流が流れることがない。このため、従来のような不具合を生じないで、外部抵抗、具体的には、接続配線の配線抵抗を適宜の大きさに選択して、蓄電デバイスの内部短絡を検知できる。 In the above-mentioned inspection method, first, in the constant current step, a constant current is passed from the DC power supply in the constant current mode to the power storage device, so that a large current does not flow in the first place. After that, in the voltage application step, the voltage is applied to the power storage device by the DC power supply in the constant voltage mode, but the power supply voltage of the same magnitude as the final power supply voltage generated by the DC power supply at the end of the constant current step is applied. Generate and apply to the power storage device. Therefore, as described above, a large current does not flow even in the constant current step, and unlike the conventional case, a current of the same magnitude as the constant current flowed in the constant current step flows even at the beginning of the voltage application step, and is external. A large current does not flow regardless of the magnitude of the resistance. Therefore, it is possible to detect an internal short circuit of the power storage device by selecting an external resistance, specifically, a wiring resistance of the connection wiring, to an appropriate size without causing a problem as in the past.

なお、定電流ステップで蓄電デバイスに流す定電流の大きさは、適宜設定すれば良いが、電圧印加ステップにおいて蓄電デバイスを流れる電流が収束して安定する大きさに近い大きさとすると良い。例えば、蓄電デバイスの良否を判別する電流しきい値を設定する場合には、この電流しきい値の1/2〜2倍程度の大きさとすると良い。 The magnitude of the constant current flowing through the power storage device in the constant current step may be appropriately set, but it is preferable that the size is close to the size at which the current flowing through the power storage device converges and stabilizes in the voltage application step. For example, when setting a current threshold value for determining the quality of the power storage device, the size may be about 1/2 to 2 times the current threshold value.

電圧印加ステップでは、蓄電デバイスを流れる電源電流の変化は徐々に収束する。具体的には、終期電源電圧と同じ大きさとした電源電圧と蓄電デバイスの内部短絡で生じる短絡抵抗の大きさとから定まる電流値(収束電流値)に向けて、徐々に変化が収束し安定する。この収束電流値が、蓄電デバイスの内部短絡の大きさの良否を判別する電流しきい値よりも大きい場合には、蓄電デバイスの短絡抵抗の大きさが小さく、内部短絡が生じていると考えられ、不良品と判断できる。一方、収束電流値が電流しきい値よりも小さい場合には、蓄電デバイスの短絡抵抗が大きく、内部短絡が生じていないと考えられ、良品と判断できる。
このことから、検知ステップにおいて、蓄電デバイスを流れる電流の収束状況から、蓄電デバイスの内部短絡を検知する手法としては、上述の収束電流値が得られる時期まで電圧印加ステップを継続し収束電流値を取得して、取得した収束電流値を用いて、内部短絡を判断する手法が挙げられる。そのほか、蓄電デバイスに流す電源電流が十分収束しなくとも、安定に近づいていると判断できた段階での電源電流の値、電流しきい値と比較する手法も挙げられる。また、蓄電デバイスに流す電源電流が十分収束しなくとも、蓄電デバイスに流す電源電流の収束の方向が、電流しきい値に比して、増加方向か減少方向かを判断することで、蓄電デバイスの内部短絡を検知するようにしても良い。
In the voltage application step, the change in the power supply current flowing through the power storage device gradually converges. Specifically, the change gradually converges and stabilizes toward a current value (convergent current value) determined by the power supply voltage having the same magnitude as the final power supply voltage and the magnitude of the short-circuit resistance generated by the internal short circuit of the power storage device. When this convergent current value is larger than the current threshold value for determining the quality of the internal short circuit of the power storage device, it is considered that the short circuit resistance of the power storage device is small and an internal short circuit has occurred. , It can be judged as a defective product. On the other hand, when the convergent current value is smaller than the current threshold value, it is considered that the short-circuit resistance of the power storage device is large and no internal short-circuit has occurred, and it can be judged as a non-defective product.
Therefore, in the detection step, as a method of detecting the internal short circuit of the power storage device from the convergence state of the current flowing through the power storage device, the voltage application step is continued until the time when the above-mentioned convergent current value is obtained to obtain the convergent current value. There is a method of determining an internal short circuit by acquiring and using the acquired convergent current value. In addition, even if the power supply current flowing through the power storage device does not converge sufficiently, there is also a method of comparing the value of the power supply current and the current threshold value at the stage when it can be determined that the power supply current is approaching stability. Further, even if the power supply current flowing through the power storage device does not converge sufficiently, the power storage device can be determined whether the direction of convergence of the power supply current flowing through the power storage device is an increase direction or a decrease direction with respect to the current threshold value. It may be possible to detect an internal short circuit of.

このような検査方法を適用できる蓄電デバイスとしては、リチウムイオン二次電池などの二次電池のほか、電気二重層キャパシタ、リチウムイオンキャパシタなどのキャパシタが挙げられる。 Examples of the power storage device to which such an inspection method can be applied include a secondary battery such as a lithium ion secondary battery, an electric double layer capacitor, and a capacitor such as a lithium ion capacitor.

さらに、組み立てた未充電の蓄電デバイスをあらかじめ定めた充電状態まで初充電して充電済みの蓄電デバイスとする初充電工程と、上記充電済みの蓄電デバイスを検査する検査工程と、を備え、上記検査工程は、請求項1に記載の蓄電デバイスの検査方法を行う工程を含む蓄電デバイスの製造方法とするのが好ましい。 Further, the inspection is provided with an initial charging step of first charging the assembled uncharged power storage device to a predetermined charging state to make it a charged power storage device, and an inspection step of inspecting the charged power storage device. The step is preferably a method for manufacturing a power storage device, which includes a step of performing the method for inspecting the power storage device according to claim 1.

この蓄電デバイスの製造方法では、初充電工程の後の検査工程に、前述の蓄電デバイスの内部短絡を検知する検査方法を行う工程を含むので、電源電圧とデバイス電圧との電圧差が存在することに伴う不具合の発生を防止しつつ、内部短絡の検査を行った蓄電デバイスを製造できる。 In this method for manufacturing a power storage device, the inspection step after the initial charging step includes the step of performing the above-mentioned inspection method for detecting an internal short circuit of the power storage device, so that there is a voltage difference between the power supply voltage and the device voltage. It is possible to manufacture a power storage device that has been inspected for an internal short circuit while preventing the occurrence of problems associated with the above.

実施の形態にかかる検査対象の二次電池の例を示す外観図である。It is an external view which shows the example of the secondary battery to be inspected which concerns on embodiment. 実施形態にかかり、定電流モード及び定電圧モードを選択できる電源を用いた検査回路を二次電池に接続した状態の等価回路図である。FIG. 5 is an equivalent circuit diagram in a state in which an inspection circuit using a power source capable of selecting a constant current mode and a constant voltage mode is connected to a secondary battery according to an embodiment. 実施形態にかかる二次電池の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the secondary battery which concerns on embodiment. 実施形態にかかり、検査対象の二次電池を、定電流モードとこれに続く定電圧モードで駆動した場合に流れる電源電流の時間変化を示すグラフである。FIG. 5 is a graph showing a time change of a power supply current flowing when the secondary battery to be inspected is driven in a constant current mode and a subsequent constant voltage mode according to the embodiment. 定電圧電源を用いた二次電池の検査回路の構成を示す等価回路図である。It is an equivalent circuit diagram which shows the structure of the inspection circuit of a secondary battery using a constant voltage power source.

以下、本発明の実施形態を、図面を参照しつつ説明する。まず、検査対象の蓄電デバイスである二次電池1について説明する。図1に示す二次電池1は、扁平な直方体形状でアルミニウムからなる電池ケース10と、この電池ケース10内に内蔵された、図示しない電極体を有している。電池ケース10は、有底で四角筒状のケース本体11と、ケース本体11を封口する矩形板状の蓋体13とからなる。この蓋体13には、接続端子である正極端子50及び負極端子60が設けられている。但し、検査する二次電池1は、図1のような扁平角型のものに限らず、円筒型など他の形状のものでも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the secondary battery 1 which is a power storage device to be inspected will be described. The secondary battery 1 shown in FIG. 1 has a battery case 10 having a flat rectangular parallelepiped shape and made of aluminum, and an electrode body (not shown) built in the battery case 10. The battery case 10 includes a bottomed and square tubular case body 11 and a rectangular plate-shaped lid 13 that seals the case body 11. The lid 13 is provided with a positive electrode terminal 50 and a negative electrode terminal 60, which are connection terminals. However, the secondary battery 1 to be inspected is not limited to the flat square type as shown in FIG. 1, and may have other shapes such as a cylindrical type.

次いで図2に、二次電池1を検査回路IPCに接続した状態の等価回路図を示す。図2では、二次電池1は、起電要素である電池容量Cbと、この電池容量Cbと並列に接続された短絡抵抗Rpと、電池容量Cb及び短絡抵抗Rpに直列に接続された直流抵抗Rsより構成される等価回路で示してある。このうち、短絡抵抗Rpは、二次電池1内の図示しない電極体が本来有している絶縁抵抗を、あるいはこれに加えて、電極体に混入する場合がある金属異物などによる短絡経路の有する抵抗をモデル化したものである。このため、短絡抵抗Rpが小さい不良品の二次電池1では、電池容量Cbに蓄積された電荷が短絡抵抗Rpを通じた内部短絡により、比較的短時間で放電(自己放電)されることになる。 Next, FIG. 2 shows an equivalent circuit diagram in a state where the secondary battery 1 is connected to the inspection circuit IPC. In FIG. 2, the secondary battery 1 has a battery capacity Cb, which is an electromotive element, a short-circuit resistance Rp connected in parallel with the battery capacity Cb, and a DC resistance connected in series with the battery capacity Cb and the short-circuit resistance Rp. It is shown by an equivalent circuit composed of Rs. Of these, the short-circuit resistance Rp has the insulation resistance originally possessed by the electrode body (not shown) in the secondary battery 1, or in addition to this, has a short-circuit path due to a metal foreign substance that may be mixed in the electrode body. It is a model of resistance. Therefore, in the defective secondary battery 1 having a small short-circuit resistance Rp, the electric charge accumulated in the battery capacity Cb is discharged (self-discharged) in a relatively short time due to an internal short circuit through the short-circuit resistance Rp. ..

検査回路IPCは、直流電源EPと、先端に接続プローブP1,P2を有する接続配線CWと、を有している。直流電源EPは、定電流モードと定電圧モードとを切り替えて相互に移行できるようになっている。即ち、図2に示す等価回路で言えば、可変定電圧源EPEと可変定電流源EPCとをモード選択スイッチSWで切り替え可能となっている。また直流電源EPは、可変定電圧源EPEあるいは可変定電流源EPCとモード選択スイッチSWとに直列に接続され、直流電源EPが流す電源電流Ibを検知する電流検知部EPIを有している。また、可変定電圧源EPEあるいは可変定電流源EPCとモード選択スイッチSWとに並列に接続され、直流電源EPが出力する電源電圧Vepを検知する電圧検知部EPVを有している。 The inspection circuit IPC has a DC power supply EP and a connection wiring CW having connection probes P1 and P2 at the tips thereof. The DC power supply EP can switch between the constant current mode and the constant voltage mode to switch between them. That is, in the equivalent circuit shown in FIG. 2, the variable constant voltage source EPE and the variable constant current source EPC can be switched by the mode selection switch SW. Further, the DC power supply EP is connected in series with the variable constant voltage source EPE or the variable constant current source EPC and the mode selection switch SW, and has a current detection unit EPI that detects the power supply current Ib flowing through the DC power supply EP. Further, it has a voltage detection unit EPV which is connected in parallel to the variable constant voltage source EPE or the variable constant current source EPC and the mode selection switch SW and detects the power supply voltage Vep output by the DC power supply EP.

図2に示すように、接続配線CWには配線抵抗Rwが生じる。また、接続プローブP1と二次電池1の正極端子50との間には接触抵抗R1が、接続プローブP2と負極端子60との間には接触抵抗R2が発生する。さらに、配線抵抗Rwと接触抵抗R1及びR2の和を、外部抵抗Rext(=Rw+R1+R2)とする。 As shown in FIG. 2, a wiring resistor Rw is generated in the connection wiring CW. Further, a contact resistor R1 is generated between the connection probe P1 and the positive electrode terminal 50 of the secondary battery 1, and a contact resistor R2 is generated between the connection probe P2 and the negative electrode terminal 60. Further, the sum of the wiring resistor Rw and the contact resistors R1 and R2 is defined as the external resistor Next (= Rw + R1 + R2).

この検査回路IPCを用いて、二次電池1の短絡抵抗Rpの大小による、二次電池1の良否を検査する。短絡抵抗Rpが小さければ不良品であり、大きければ良品である。但し、本実施形態では、後述するように、短絡抵抗Rpの大小判断に代えて、定電圧を印加した後に安定した電源電流Ibの大きさを用いて、二次電池1の良否を判断する。 Using this inspection circuit IPC, the quality of the secondary battery 1 is inspected depending on the magnitude of the short-circuit resistance Rp of the secondary battery 1. If the short-circuit resistance Rp is small, it is a defective product, and if it is large, it is a good product. However, in the present embodiment, as will be described later, the quality of the secondary battery 1 is determined by using the magnitude of the power supply current Ib that is stable after applying a constant voltage instead of determining the magnitude of the short-circuit resistance Rp.

この検査を含む二次電池1の製造方法の流れについて、図3のフローチャートを参照して説明する。先ず、組立工程S1において、二次電池1を組み立てる。出来上がった二次電池1は未充電であるため、初充電工程S2において、予め定めた充電パターンで初充電を行う。次いで、初充電された二次電池1を、開放状態として、高温下で所定時間に亘り放置する高温エージング工程S3を行う。その後、冷却工程S4において二次電池1を室温まで徐々に冷却する。 The flow of the manufacturing method of the secondary battery 1 including this inspection will be described with reference to the flowchart of FIG. First, in the assembly step S1, the secondary battery 1 is assembled. Since the completed secondary battery 1 is not charged, it is first charged in a predetermined charging pattern in the initial charging step S2. Next, a high-temperature aging step S3 is performed in which the initially charged secondary battery 1 is left in an open state for a predetermined time at a high temperature. Then, in the cooling step S4, the secondary battery 1 is gradually cooled to room temperature.

次いで、図3において破線で示す検査工程S5を行う。この検査工程S5は、定電流工程S51、電圧印加工程S52、収束検知工程S53、及び判定工程S54を含む。この検査工程S5では、具体的には図2に示すように、二次電池1の正極端子50に接続プローブP1を、負極端子60に接続プローブP2を接続して、検査回路IPCを二次電池1に接続する。検査工程S5においては、この状態を維持する。即ち、一旦形成した正極端子50と接続プローブP1との接続、及び、負極端子60と接続プローブP2との接続は、この検査工程S5が終了するまで変化させず、接続し直しは行わない。正極端子50と接続プローブP1との間に生じる接触抵抗R1、及び、負極端子60と接続プローブP2との間に生じる接触抵抗R2の大きさは、接続のたびに変動するからである。 Next, the inspection step S5 shown by the broken line in FIG. 3 is performed. This inspection step S5 includes a constant current step S51, a voltage application step S52, a convergence detection step S53, and a determination step S54. In this inspection step S5, specifically, as shown in FIG. 2, the connection probe P1 is connected to the positive electrode terminal 50 of the secondary battery 1 and the connection probe P2 is connected to the negative electrode terminal 60, and the inspection circuit IPC is connected to the secondary battery. Connect to 1. In the inspection step S5, this state is maintained. That is, the connection between the positive electrode terminal 50 and the connection probe P1 once formed and the connection between the negative electrode terminal 60 and the connection probe P2 are not changed until the inspection step S5 is completed, and the connection is not reconnected. This is because the magnitudes of the contact resistance R1 generated between the positive electrode terminal 50 and the connecting probe P1 and the contact resistance R2 generated between the negative electrode terminal 60 and the connecting probe P2 vary with each connection.

この状態で、定電流工程S51において、直流電源EPを定電流モードとして、図2に即して言えば、モード選択スイッチSWを切り替えて可変定電流源EPCに接続して、予め定めた大きさの定電流Ibc(本実施形態では、Ibc=80μA)を二次電池1に流す。すると、既に初充電工程S2で充電されていた二次電池1の電池容量Cbがさらに充電される。また、二次電池1の正負極端子50,60間には、電池電圧Vbが発生し、直流電源EPの電源電圧Vepは、定電流Ibcを流すべく、電池電圧Vbと外部抵抗Rextで決まる大きさに制御される(Vep=Vb+Rext・Ibc)。本実施形態では、この定電流工程S51を、検査時間t=0〜200秒に亘って行う。なお、図4に、典型的な良品と不良品の二次電池1について、定電流工程S51及び次述する電圧印加工程S52を行った場合の、電源電流Ibの変化の様子を示す。図4から理解できるように、定電流工程S51に検査時間t=0〜200秒の間は、良品及び不良品のいずれの二次電池1でも、電源電流Ibとして、Ibc=80μAの定電流が流されていることが判る。 In this state, in the constant current step S51, the DC power supply EP is set to the constant current mode, and according to FIG. 2, the mode selection switch SW is switched and connected to the variable constant current source EPC to have a predetermined size. The constant current Ibc (Ibc = 80 μA in this embodiment) is passed through the secondary battery 1. Then, the battery capacity Cb of the secondary battery 1 already charged in the initial charging step S2 is further charged. Further, a battery voltage Vb is generated between the positive and negative terminals 50 and 60 of the secondary battery 1, and the power supply voltage Vep of the DC power supply EP is large, which is determined by the battery voltage Vb and the external resistance Rext in order to allow a constant current Ibc to flow. It is controlled by (Vep = Vb + Next · Ibc). In the present embodiment, the constant current step S51 is performed over an inspection time t = 0 to 200 seconds. Note that FIG. 4 shows how the power supply current Ib changes when the constant current step S51 and the voltage application step S52 described below are performed on the typical non-defective and defective secondary batteries 1. As can be understood from FIG. 4, during the inspection time t = 0 to 200 seconds in the constant current step S51, the constant current of Ibc = 80 μA is set as the power supply current Ib in both the non-defective and defective secondary batteries 1. You can see that it is being washed away.

次いで、電圧印加工程S52に進む。具体的には、直流電源EPと二次電池1との接続を維持したまま、直流電源EPを定電圧モードに移行させる、図2に即して言えば、モード選択スイッチSWを切り替えて、可変定電圧源EPEに接続して、定電圧を発生させ、二次電池1に印加する。具体的には、定電流工程S51の終期(検査時間t=200secの直前、以下、t=200(−)と表記する)において、直流電源EPが発生していた終期電源電圧Vepe=Vep(200(−))と同じ大きさの電源電圧Vepを、電圧印加工程S52で継続維持して発生させる。このため、この電圧印加工程S52の当初(検査時間t=200secの直後、以下、t=200(+)と表記する)において流れる電源電流(電池電流)Ib(200(+))は、定電流工程S51で流していた定電流Ibcに等しくなる(Ib(200(+))=Ibc)。本実施形態で言えば、電圧印加工程S52の当初の電源電流Ib(200(+))は80μAとなる(Ib(200(+))=80μA)。このように、本実施形態では、電圧印加工程S52で二次電池1に終期電源電圧Vepeと同じ定電圧を印加するのであるが、外部抵抗Rextの大小に拘わらず、定電圧の印加当初に大電流が流れることがない。このため、適宜の外部抵抗Rextを選択できる。従って、次述するように、この電圧印加工程S52で、徐々に変化が収束して安定する電源電流Ibを、早期に収束させ安定させるため、外部抵抗Rextを小さくすること、具体的には、接続配線CWを太くあるいは短くして配線抵抗Rwを小さくすることができる。 Then, the process proceeds to the voltage application step S52. Specifically, the DC power supply EP is shifted to the constant voltage mode while maintaining the connection between the DC power supply EP and the secondary battery 1. In accordance with FIG. 2, the mode selection switch SW is switched and variable. It is connected to a constant voltage source EPE to generate a constant voltage and applied to the secondary battery 1. Specifically, at the end of the constant current process S51 (immediately before the inspection time t = 200 sec, hereinafter referred to as t = 200 (-)), the final power supply voltage Vep = Vep (200) in which the DC power supply EP was generated. A power supply voltage Vep having the same magnitude as (-)) is continuously maintained and generated in the voltage application step S52. Therefore, the power supply current (battery current) Ib (200 (+)) flowing at the beginning of the voltage application step S52 (immediately after the inspection time t = 200 sec, hereinafter referred to as t = 200 (+)) is a constant current. It becomes equal to the constant current Ibc flowing in the step S51 (Ib (200 (+)) = Ibc). According to the present embodiment, the initial power supply current Ib (200 (+)) of the voltage application step S52 is 80 μA (Ib (200 (+)) = 80 μA). As described above, in the present embodiment, the same constant voltage as the final power supply voltage Vep is applied to the secondary battery 1 in the voltage application step S52, but regardless of the magnitude of the external resistance Rext, the constant voltage is large at the beginning of application of the constant voltage. No current flows. Therefore, an appropriate external resistance Next can be selected. Therefore, as described below, in the voltage application step S52, in order to reduce the external resistance Rext in order to quickly converge and stabilize the power supply current Ib whose change gradually converges and stabilizes, specifically, The wiring resistance Rw can be reduced by making the connection wiring CW thicker or shorter.

さて、図4からも理解できるように、この電圧印加工程S52では、上述のように、終期電源電圧Vepe(=Vep(200(−)))と同じ大きさの電源電圧Vepを継続して発生するので、二次電池1の電池容量Cbに引き続き充電される。すると、電池容量Cbで発生する電圧(従って、電池電圧Vb)が徐々に上昇し、電源電流Ibが徐々に減少する。そしてついには、終期電源電圧Vepeと同じ大きさの電源電圧Vepでは、電池容量Cbを充電できなくなり、電池容量Cbには充電電流Iibが流れず、電源電流Ibは、直流抵抗Rsと短絡抵抗Rpの直列回路を流れる分のみとなって安定する。なお、短絡抵抗Rpに比して、直流抵抗Rsは十分小さいので無視できる。従って、電圧印加工程S52を介してから十分時間が経過した後に、電源電流Ibは、短絡抵抗Rpの大小に応じた大きさとなって安定する。即ち、二次電池1に内部短絡が生じており、短絡抵抗Rpが相対的に小さい場合には、電源電流Ibが大きい値で安定する。逆に、二次電池1に内部短絡が生じておらず、短絡抵抗Rpが相対的に大きい場合には、電源電流Ibが小さな値で安定する。従って、安定した時点での電源電流Ibの大きさにより、二次電池1の内部短絡の有無に関する、二次電池1の良否を判定できる。 As can be understood from FIG. 4, in this voltage application step S52, as described above, the power supply voltage Vep having the same magnitude as the final power supply voltage Vep (= Vep (200 (−))) is continuously generated. Therefore, the battery capacity Cb of the secondary battery 1 is continuously charged. Then, the voltage generated in the battery capacity Cb (hence, the battery voltage Vb) gradually increases, and the power supply current Ib gradually decreases. Finally, at a power supply voltage Vep having the same magnitude as the final power supply voltage Vep, the battery capacity Cb cannot be charged, the charging current Iib does not flow through the battery capacity Cb, and the power supply current Ib is the DC resistance Rs and the short-circuit resistance Rp. It is stable because it flows only through the series circuit of. The DC resistance Rs is sufficiently smaller than the short-circuit resistance Rp and can be ignored. Therefore, after a sufficient time has elapsed after passing through the voltage application step S52, the power supply current Ib becomes stable with a magnitude corresponding to the magnitude of the short-circuit resistance Rp. That is, when an internal short circuit occurs in the secondary battery 1 and the short circuit resistance Rp is relatively small, the power supply current Ib stabilizes at a large value. On the contrary, when the secondary battery 1 does not have an internal short circuit and the short circuit resistance Rp is relatively large, the power supply current Ib stabilizes at a small value. Therefore, the quality of the secondary battery 1 with respect to the presence or absence of an internal short circuit of the secondary battery 1 can be determined from the magnitude of the power supply current Ib at the time of stabilization.

そこで、収束検知工程S53では、電源電流Ibの変化が収束し安定したか否かを検知し、変化が収束していない場合(No)には、電圧印加工程S52を継続する。一方、変化が収束している場合(Yes)には、判定工程S54に進む。なお、電源電流Ibの変化が収束しているかどうかを検知する手法としては、適宜の手法を選択できる。 Therefore, in the convergence detection step S53, it is detected whether or not the change in the power supply current Ib has converged and is stable, and if the change has not converged (No), the voltage application step S52 is continued. On the other hand, when the changes have converged (Yes), the process proceeds to the determination step S54. An appropriate method can be selected as a method for detecting whether or not the change in the power supply current Ib has converged.

例えば本実施形態では、定期的(10秒毎)に電源電流Ibの大きさを検知して、電源電流の値Ib(n)を得ておく(nは自然数)。続いて、電源電流の値Ib(n)を得た各時点で、Ib(n−12)からIb(n)までの13ヶ(過去2分間)の電源電流値の平均値AV1と、Ib(n−24)からIb(n−12)までの13ヶ(過去4分〜過去2分までの2分間)の電源電流値の平均値AV2との差(AV1−AV2)を算出する。本実施形態では、図4に示すように、定電流工程S51において、Ibc=80μAの定電流を流したので、電圧印加工程S52では、良品及び不良品の二次電池1のいずれでも、電源電流Ibは、80μAから徐々に減少して、短絡抵抗Rpの大きさに応じた電源電流Ibの大きさで安定する。そこで、初めて2つの平均値の差が0以上(0又は正の値)となった(AV1−AV2≧0)となった時点で、電源電流Ibの変化が収束したと判断する。図4に示す良品の二次電池1は、上向き矢印で示す検査時間t=1460秒の時点で電源電流Ibの変化が収束したと判断された。また、図4に示す負良品の二次電池1は、下向き矢印で示す検査時間t=1380秒の時点で電源電流Ibの変化が収束したと判断された。 For example, in the present embodiment, the magnitude of the power supply current Ib is detected periodically (every 10 seconds) to obtain the value of the power supply current Ib (n) (n is a natural number). Subsequently, at each time when the power supply current value Ib (n) was obtained, the average value AV1 of the 13 power supply current values (for the past 2 minutes) from Ib (n-12) to Ib (n) and Ib ( The difference (AV1-AV2) from the average value AV2 of the power supply current values of 13 months (the past 4 minutes to the past 2 minutes) from n-24) to Ib (n-12) is calculated. In the present embodiment, as shown in FIG. 4, a constant current of Ibc = 80 μA was applied in the constant current step S51. Therefore, in the voltage application step S52, the power supply current was supplied to both the non-defective and defective secondary batteries 1. Ib gradually decreases from 80 μA and stabilizes at the magnitude of the power supply current Ib according to the magnitude of the short-circuit resistance Rp. Therefore, when the difference between the two average values becomes 0 or more (0 or a positive value) for the first time (AV1-AV2 ≧ 0), it is determined that the change in the power supply current Ib has converged. In the non-defective secondary battery 1 shown in FIG. 4, it was determined that the change in the power supply current Ib had converged at the time of the inspection time t = 1460 seconds indicated by the upward arrow. Further, in the non-defective secondary battery 1 shown in FIG. 4, it was determined that the change in the power supply current Ib had converged at the time of the inspection time t = 1380 seconds indicated by the downward arrow.

判定工程S54では、収束検知工程S53で電源電流Ibの変化が収束し安定したと判断した時点での電源電流Ibの大きさなどを用いて、検査対象の二次電池1が良品であるか不良品であるかを判定する。例えば、本実施形態では、電源電流Ibの変化が収束したと判断された時点(図4に示す二次電池1で言えば、検査時間t=1460秒あるいはt=1380秒の時点)で算出していた平均値AV1の大きさ(13ヶ分、過去2分間の電源電流の平均値)と、予め定めておいた電流しきい値Ibthとを比較する。そして、平均値AV1が電流しきい値Ibthよりも小さい(AV1<Ibth)の場合(Yes)には、検査対象の二次電池1が良品であると判定する。しかし、平均値AV1が電流しきい値Ibth以上(AV1≧Ibth)である場合(No)には、検査対象の二次電池1は不良品であると判定する。本実施形態では、図4において破線で示すように、電流しきい値Ibthを30μA(Ibth=30μA)に設定してある。このため、図4において上側のグラフをなす二次電池1は、AV1≧Ibthであるので、判定工程S54において、不良品と判定される。一方、図4において下側のグラフをなす二次電池1は、AV1<Ibthであるので、判定工程S54において、良品と判定される。かくして、良品とされた二次電池1が完成する。なお、不良品と判定された二次電池1は廃棄される。 In the determination step S54, whether the secondary battery 1 to be inspected is a non-defective product or not by using the magnitude of the power supply current Ib at the time when it is determined in the convergence detection step S53 that the change in the power supply current Ib has converged and is stable. Determine if it is a good product. For example, in the present embodiment, it is calculated at the time when it is determined that the change in the power supply current Ib has converged (in the case of the secondary battery 1 shown in FIG. 4, the inspection time is t = 1460 seconds or t = 1380 seconds). The magnitude of the average value AV1 (13 months, the average value of the power supply current for the past 2 minutes) and the predetermined current threshold Ibth are compared. Then, when the average value AV1 is smaller than the current threshold value Ibth (AV1 <Ibth) (Yes), it is determined that the secondary battery 1 to be inspected is a non-defective product. However, when the average value AV1 is equal to or higher than the current threshold value Ibth (AV1 ≧ Ibth) (No), it is determined that the secondary battery 1 to be inspected is a defective product. In the present embodiment, as shown by the broken line in FIG. 4, the current threshold value Ibth is set to 30 μA (Ibth = 30 μA). Therefore, since the secondary battery 1 forming the upper graph in FIG. 4 has AV1 ≧ Ibth, it is determined to be a defective product in the determination step S54. On the other hand, since the secondary battery 1 forming the lower graph in FIG. 4 has AV1 <Ibth, it is determined to be a non-defective product in the determination step S54. In this way, the secondary battery 1 which is regarded as a good product is completed. The secondary battery 1 determined to be defective is discarded.

以上において、本発明を実施形態に即して説明したが、本発明は実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、二次電池1の製造方法における検査工程S5で、上述の検査方法を採用した。しかし、二次電池1の製造段階のみならず、二次電池1を一旦使用した後に、二次電池を検査する場合に適用しても良い。
In the above, the present invention has been described according to the embodiment, but it goes without saying that the present invention is not limited to the embodiment and can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the above-mentioned inspection method is adopted in the inspection step S5 in the manufacturing method of the secondary battery 1. However, it may be applied not only in the manufacturing stage of the secondary battery 1 but also in the case of inspecting the secondary battery after the secondary battery 1 is used once.

1 二次電池(蓄電デバイス)
50 (二次電池の)正極端子(接続端子)
60 (二次電池の)負極端子(接続端子)
IPC 検査回路
EP 直流電源
EPE 可変定電圧源
EPC 可変定電流源
SW モード選択スイッチ
EPI 電流検知部
EPV 電圧検知部
Vep 電源電圧
Vepe 終期電源電圧
CW 接続配線
P1,P2 (接続配線の)接続プローブ
Rw (接続配線の)配線抵抗
R1,R2 (接続配線の接続プローブと蓄電デバイスの接続端子との間の)接触抵抗
Vb (二次電池の)電池電圧
Ib (二次電池を流れる)電源電流
Ibc (定電流モードで流す)定電流
Cb (二次電池の)電池容量
Rs (二次電池の)直流抵抗
Rp (二次電池の)短絡抵抗
Iib 充電電流
t 検査時間
S1 組立工程
S2 初充電工程
S3 高温エージング工程
S4 冷却工程
S5 検査工程
S51 定電流工程(定電流ステップ)
S52 電圧印加工程(電圧印加ステップ)
S53 収束検知工程(検知ステップ)
S54 判定工程(検知ステップ)
1 Secondary battery (power storage device)
50 Positive electrode terminal (connection terminal) (of secondary battery)
60 Negative terminal (connection terminal) (of secondary battery)
IPC inspection circuit EP DC power supply EPE variable constant voltage source EPC variable constant current source SW mode selection switch EPI current detector EPV voltage detector Vep power supply voltage Vep terminal power supply voltage CW connection wiring P1, P2 (connection wiring) connection probe Rw ( Wiring resistance R1 and R2 (between the connection probe of the connection wiring and the connection terminal of the power storage device) Contact resistance Vb (secondary battery) Battery voltage Ib (flowing through the secondary battery) Power supply current Ibc (constant) Constant current Cb (for secondary battery) Battery capacity Rs (for secondary battery) DC resistance Rp (for secondary battery) Short-circuit resistance Iib Charging current t Inspection time S1 Assembly process S2 Initial charging process S3 High temperature aging Process S4 Cooling process S5 Inspection process S51 Constant current process (constant current step)
S52 Voltage application step (voltage application step)
S53 Convergence detection process (detection step)
S54 Judgment process (detection step)

Claims (1)

定電圧モードと定電流モードとを相互に切り替え可能な直流電源を、接続配線を介して蓄電デバイスの蓄電端子間に接続し、上記定電流モードとした上記直流電源から上記蓄電端子を通じて上記蓄電デバイスに、予め定めた大きさの定電流を流す定電流ステップと、
上記定電流ステップに続いて、上記定電流ステップにおける上記接続配線を介した上記直流電源と上記蓄電デバイスとの接続を維持したまま、かつ、上記定電圧モードとした上記直流電源に、上記定電流ステップの終期に上記直流電源で生じさせていた終期電源電圧と同じ大きさの電源電圧を発生させて、上記接続配線を介して上記蓄電デバイスの上記蓄電端子間に印加する電圧印加ステップと、
上記電圧印加ステップにおいて上記蓄電デバイスに流す電源電流の収束状況から、上記蓄電デバイスの内部短絡を検知する検知ステップと、を備える
蓄電デバイスの検査方法。
A DC power supply capable of switching between a constant voltage mode and a constant current mode is connected between the storage terminals of the power storage device via a connection wiring, and the DC power supply in the constant current mode is connected to the power storage device through the power storage terminal. In addition, a constant current step in which a constant current of a predetermined size is passed, and
Following the constant current step, the constant current is applied to the DC power supply in the constant voltage mode while maintaining the connection between the DC power supply and the power storage device via the connection wiring in the constant current step. At the end of the step, a voltage application step of generating a power supply voltage having the same magnitude as the final power supply voltage generated by the DC power supply and applying it between the power storage terminals of the power storage device via the connection wiring, and a voltage application step.
A method for inspecting a power storage device, comprising a detection step for detecting an internal short circuit of the power storage device from the convergence state of a power supply current flowing through the power storage device in the voltage application step.
JP2019236722A 2019-12-26 2019-12-26 Inspection method for energy storage devices Active JP7347208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236722A JP7347208B2 (en) 2019-12-26 2019-12-26 Inspection method for energy storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236722A JP7347208B2 (en) 2019-12-26 2019-12-26 Inspection method for energy storage devices

Publications (2)

Publication Number Publication Date
JP2021105557A true JP2021105557A (en) 2021-07-26
JP7347208B2 JP7347208B2 (en) 2023-09-20

Family

ID=76919302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236722A Active JP7347208B2 (en) 2019-12-26 2019-12-26 Inspection method for energy storage devices

Country Status (1)

Country Link
JP (1) JP7347208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354357B1 (en) 2022-06-15 2023-10-02 日鉄テックスエンジ株式会社 Charge/discharge inspection equipment and charge/discharge inspection equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271408A (en) * 1998-01-19 1999-10-08 Matsushita Electric Ind Co Ltd Method for detecting degradation of secondary battery and charger equipped with degradation detecting function
JP2003059544A (en) * 2001-05-29 2003-02-28 Canon Inc Inside information detecting method of secondary cell, inside information detecting device, inside information detecting program and medium storing same program
JP2008243440A (en) * 2007-03-26 2008-10-09 Nissan Motor Co Ltd Abnormality detecting device of secondary battery and abnormality detecting method of battery
JP2016091872A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Abnormality detection method and abnormality detection apparatus for secondary battery
WO2017150416A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Degradation determination method and electricity storage system
JP2019091622A (en) * 2017-11-15 2019-06-13 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
JP2019113469A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
JP2019138757A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Power storage device inspection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271408A (en) * 1998-01-19 1999-10-08 Matsushita Electric Ind Co Ltd Method for detecting degradation of secondary battery and charger equipped with degradation detecting function
JP2003059544A (en) * 2001-05-29 2003-02-28 Canon Inc Inside information detecting method of secondary cell, inside information detecting device, inside information detecting program and medium storing same program
JP2008243440A (en) * 2007-03-26 2008-10-09 Nissan Motor Co Ltd Abnormality detecting device of secondary battery and abnormality detecting method of battery
JP2016091872A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Abnormality detection method and abnormality detection apparatus for secondary battery
WO2017150416A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Degradation determination method and electricity storage system
JP2019091622A (en) * 2017-11-15 2019-06-13 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
JP2019113469A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
JP2019138757A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Power storage device inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354357B1 (en) 2022-06-15 2023-10-02 日鉄テックスエンジ株式会社 Charge/discharge inspection equipment and charge/discharge inspection equipment
WO2023243733A1 (en) * 2022-06-15 2023-12-21 日鉄テックスエンジ株式会社 Charge/discharge testing device and charge/discharge testing equipment
JP2023182912A (en) * 2022-06-15 2023-12-27 日鉄テックスエンジ株式会社 Charging and discharging inspection device, and charging and discharging inspection facility

Also Published As

Publication number Publication date
JP7347208B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP5160220B2 (en) How to manage a pool of rechargeable batteries
JP2019113469A (en) Self-discharge inspection method for power storage device
JP2018519531A (en) Battery cell defect detection apparatus and method using unknown discharge current
JP6907790B2 (en) Inspection method and manufacturing method of power storage device
KR102391533B1 (en) Method for diagnosing a low voltage of a secondary cell and apparatus thereof
WO2017161882A1 (en) Power cell selection method
JP6794974B2 (en) Self-discharge inspection method for power storage devices
JP2008243440A (en) Abnormality detecting device of secondary battery and abnormality detecting method of battery
JP7209450B2 (en) SELF-DISCHARGE INSPECTION METHOD FOR ELECTRICITY STORAGE DEVICE AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE
JP7347208B2 (en) Inspection method for energy storage devices
JP7074731B2 (en) Inspection method of power storage device and manufacturing method of power storage device
US11721848B2 (en) Method for inspecting self-discharge of a power storage device, and method for producing the power storage device
CN112213650A (en) Method for inspecting electric storage device and method for manufacturing electric storage device
KR102551798B1 (en) Method for inspecting insulation of a secondary battery
KR101927845B1 (en) Battery testing device and method thereof
JP3925136B2 (en) Capacitor pass / fail judgment method
JP2002313435A (en) Battery inspection method
JP7278312B2 (en) SELF-DISCHARGE INSPECTION METHOD FOR ELECTRICITY STORAGE DEVICE AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE
US11777421B2 (en) Method for adjusting device voltage of power storage device
JP2021051906A (en) Inspection device, inspection method and manufacturing method for power storage device
JP7172891B2 (en) Method for manufacturing secondary battery
JP5928815B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP7040369B2 (en) Inspection method of power storage device
JP2014085323A (en) Secondary battery inspection method
JP2021131952A (en) Inspection method of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7347208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151