JP2021098184A - Separation apparatus and method for high-efficiency purification treatment of residual dirty oil liquid in chemical industry - Google Patents

Separation apparatus and method for high-efficiency purification treatment of residual dirty oil liquid in chemical industry Download PDF

Info

Publication number
JP2021098184A
JP2021098184A JP2020011632A JP2020011632A JP2021098184A JP 2021098184 A JP2021098184 A JP 2021098184A JP 2020011632 A JP2020011632 A JP 2020011632A JP 2020011632 A JP2020011632 A JP 2020011632A JP 2021098184 A JP2021098184 A JP 2021098184A
Authority
JP
Japan
Prior art keywords
valve
liquid
tank
oil
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020011632A
Other languages
Japanese (ja)
Other versions
JP6739829B1 (en
Inventor
慧 王
Hui Wang
慧 王
麗華 程
Lihua Cheng
麗華 程
紅兵 紀
Hongbing Ji
紅兵 紀
業鵬 肖
Yepeng Xiao
業鵬 肖
朝林 梁
Chaolin Liang
朝林 梁
欽臻 範
Qin Zhen Fan
欽臻 範
敏 黄
Satoshi Ko
敏 黄
暁敏 呉
Xiaomin Wu
暁敏 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Application granted granted Critical
Publication of JP6739829B1 publication Critical patent/JP6739829B1/en
Publication of JP2021098184A publication Critical patent/JP2021098184A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

To provide a separation apparatus and a method for high-efficiency purification treatment of residual dirty oil liquid in a chemical industry, which efficiently purify the residual dirty oil liquid by intensively collecting the liquid.SOLUTION: A separation apparatus comprises a storage facility, a distillation/separation facility, a static mixing facility and a gravitational precipitation facility. Readily-volatile soft/refractory-heavy raw materials of residual dirty oil liquid are respectively precipitated spontaneously in the storage facility by gravity, and then separated into gas hydrocarbon and precipitated liquid by a continuous or intermittent method. Clarified liquid from the storage facility is separated following two kinds of different technique means for evaporation-water washing or water washing-evaporation. Rates of utilization of the residual dirty oil liquid are improved by switching different operation processes depending on properties of the residual dirty oil liquid, and high-quality components in the residual dirty oil liquid are sufficiently utilized to reduce environmental pollution. Further, a property of composition of the residual dirty oil is adjusted so that the liquid can be normally separated, by adding a pipe line for returning overhead-fraction oil to crude materials.SELECTED DRAWING: Figure 1

Description

本発明は、石油化学工業生産の技術分野に関し、より具体的には、石油化学工業の生産過程における汚油残液の高効率浄化処理用の装置に関する。 The present invention relates to the technical field of petrochemical industry production, and more specifically to an apparatus for high-efficiency purification treatment of sewage residual liquid in the production process of the petrochemical industry.

中国の石油化学産業の急速な発展に伴い、生産過程においてさまざまな汚油残液が不可避的に発生する。分解によりエチレンを製造する大型装置では、分解過程に高温タールが存在し、その下流の関連装置は、重合過程においてさまざまな汚油残液を発生させる。これら汚油残液は、物理的及び化学的性質がさまざまであり、コロイド・アスファルテン、液状ポリマー、オレフィン基を有する芳香環化合物、さらに使用済みの触媒粉末や微小炭素顆粒を含む。また、安全及び環境保護政策の厳格化に伴い、これら廃油が、企業内で無害化処理されて利用できなければ、企業の持続可能な発展を制限してしまうことになる。 With the rapid development of China's petrochemical industry, various sewage residues are inevitably generated in the production process. In a large-scale apparatus that produces ethylene by decomposition, high-temperature tar is present in the decomposition process, and related equipment downstream thereof generates various sewage residual liquids in the polymerization process. These sewage residues vary in physical and chemical properties and include colloids / asphaltene, liquid polymers, aromatic ring compounds with olefin groups, and used catalyst powders and microcarbon granules. In addition, due to stricter safety and environmental protection policies, if these waste oils are not detoxified and used within the enterprise, it will limit the sustainable development of the enterprise.

したがって、さまざまな汚油残液を集中して処理する装置を提供することで、良好な経済的利益、環境的利益及び社会的利益を作り出すことは、当業者にとって解決しなければならない課題となっている。 Therefore, creating good economic, environmental and social benefits by providing equipment to centrally treat various sewage residues is a challenge for those skilled in the art to solve. ing.

中国特許出願公開第106675605号明細書Chinese Patent Application Publication No. 106675605

新しいタール残渣の処理方法及び装置であって、該装置は、タール残液混合撹拌タンク、タール残液供給タンク、加熱コイル、タール残液供給ポンプ、一次残液蒸発器、一次残液気液分離器a、一次残液気液分離器、排気凝縮器、酢酸貯蔵タンク、二次残液蒸発器、二次残液凝縮器、タール残渣収集タンク、精留酢酸精製塔を備える。 A new tar residue treatment method and device, which includes a tar residual liquid mixing and stirring tank, a tar residual liquid supply tank, a heating coil, a tar residual liquid supply pump, a primary residual liquid evaporator, and a primary residual liquid gas-liquid separation. It is equipped with a vessel a, a primary residual liquid gas-liquid separator, an exhaust condenser, an acetic acid storage tank, a secondary residual liquid evaporator, a secondary residual liquid condenser, a tar residue collection tank, and a rectified acetic acid purification tower.

以上を踏まえて、本発明は、化学工業における汚油残液の高効率浄化処理用の分離装置及び方法を提供し、これら汚油残液を集中して回収し効率よく浄化処理することを目的とする。 Based on the above, it is an object of the present invention to provide a separation device and a method for high-efficiency purification treatment of sewage residual liquid in the chemical industry, and to centrally collect and efficiently purify these sewage residual liquid. And.

上記目的を達成するために、本発明は、下記技術案を採用する。 In order to achieve the above object, the present invention adopts the following technical proposal.

本発明の第1態様の実施例は、化学工業から排出される廃油・廃液の高効率浄化処理用の分離装置を提供し、該装置は、貯蔵設備、蒸留分離設備、静的混合設備、重力沈降設備を備え、その中で、
前記貯蔵設備は、軽質易揮発性汚油残液を貯蔵するための負荷球形タンク(C1)と、重質難揮発性汚油残液を貯蔵するための普通貯蔵タンク(C2)とを備え、前記負荷球形タンク(C1)には、清澄液を排出するための第1排出口が設けられ、前記普通貯蔵タンク(C2)には、清澄液を排出するための第2排出口が設けられ、前記第1排出口は、第1ポンプ(P1)を介して第1熱交換器(E1)の入り口側に接続され、前記第2排出口は、第2ポンプ(P2)を介して前記第1熱交換器(E1)の入り口側に接続され、前記第1ポンプ(P1)、第2ポンプ(P2)が前記第1熱交換器(E1)に接続される共通管路には、第1バルブ(V1)が設けられ、
前記蒸留分離設備は、精留塔(T1)を備え、前記精留塔(T1)の内部には、上から下へ順次塔頂気相排出口、清澄液供給口及び塔底液相排出口が設けられ、前記第1熱交換器(E1)の出口側が第2熱交換器(E2)、第3熱交換器(E3)を介して前記清澄液供給口に接続され、前記塔頂気相排出口は、前記第1熱交換器(E1)を介して還流タンク(C3)の入り口に接続され、前記精留塔(T1)には、塔頂還流口がさらに設けられ、前記還流タンク(C3)は、還流ポンプ(P3)を介して前記塔頂還流口に接続されて、塔頂の温度を調整して塔頂留出油に要求される品質を制御する液相還流を形成させ、
前記静的混合設備は、静的混合器(M1)を備え、前記静的混合器(M1)には、油類入り口、洗浄水入り口及び油水混合物出口が設けられ、前記第1ポンプ(P1)、第2ポンプ(P2)は、また同一管路を介して該油類入り口に接続され、該同一管路には、第2バルブ(V2)が設けられ、前記還流タンク(C3)は、管路を介して該油類入り口に接続され、還流タンク(C3)と該油類入り口との間には、第3バルブ(V3)が設けられ、
前記重力沈降設備は、重力沈降タンク(C4)を備え、前記重力沈降タンク(C4)には、上から下へ順次気相排出口、油水混合物入り口、清澄液を排出するための第3排出口、油含有汚水排出口が設けられ、前記油水混合物入り口は、管路を介して前記油水混合物出口に接続され、前記第3排出口は、順次第5ポンプ(P5)、第4バルブ(V4)を介して前記第1熱交換器(E1)に接続され、前記第4バルブ(V4)に接続されていない前記第5ポンプ(P5)の管路には、第5バルブ(V5)が設けられ、前記塔頂気相排出口は、管路を介して前記第5バルブ(V5)の出口に接続され、前記塔頂気相排出口と前記第5バルブ(V5)の出口との間の管路には、第6バルブ(V6)が設けられる。
The embodiment of the first aspect of the present invention provides a separation device for high-efficiency purification treatment of waste oil and waste liquid discharged from the chemical industry, and the device includes storage equipment, distillation separation equipment, static mixing equipment, and gravity. Equipped with sedimentation equipment, in which
The storage facility includes a load spherical tank (C1) for storing light and easily volatile sewage residual liquid and a normal storage tank (C2) for storing heavy and difficult volatile sewage residual liquid. The load spherical tank (C1) is provided with a first discharge port for discharging the clarified liquid, and the ordinary storage tank (C2) is provided with a second discharge port for discharging the clarified liquid. The first discharge port is connected to the inlet side of the first heat exchanger (E1) via the first pump (P1), and the second discharge port is connected to the first through the second pump (P2). A first valve is provided in a common pipeline connected to the inlet side of the heat exchanger (E1) and to which the first pump (P1) and the second pump (P2) are connected to the first heat exchanger (E1). (V1) is provided,
The distillation separation facility is provided with a rectification tower (T1), and inside the rectification tower (T1), a column top gas phase discharge port, a clarification liquid supply port, and a tower bottom liquid phase discharge port are sequentially provided from top to bottom. Is provided, and the outlet side of the first heat exchanger (E1) is connected to the clear liquid supply port via the second heat exchanger (E2) and the third heat exchanger (E3), and the column top gas phase. The discharge port is connected to the inlet of the reflux tank (C3) via the first heat exchanger (E1), and the rectification column (T1) is further provided with a column top reflux port, and the reflux tank (T1) is provided. C3) is connected to the column top reflux port via a reflux pump (P3) to form a liquid phase reflux that regulates the temperature of the column top to control the quality required for the column top distillate.
The static mixing facility includes a static mixer (M1), and the static mixer (M1) is provided with an oil inlet, a washing water inlet, and an oil-water mixture outlet, and the first pump (P1). , The second pump (P2) is also connected to the oil inlet via the same pipe, a second valve (V2) is provided in the same pipe, and the recirculation tank (C3) is a pipe. A third valve (V3) is provided between the recirculation tank (C3) and the oil inlet, which is connected to the oil inlet via a road.
The gravity settling facility is provided with a gravity settling tank (C4), and the gravity settling tank (C4) has a gas phase discharge port, an oil-water mixture inlet, and a third discharge port for discharging a clear liquid in order from top to bottom. , An oil-containing sewage discharge port is provided, the oil-water mixture inlet is connected to the oil-water mixture outlet via a pipeline, and the third discharge port is sequentially connected to a fifth pump (P5) and a fourth valve (V4). A fifth valve (V5) is provided in the pipeline of the fifth pump (P5) which is connected to the first heat exchanger (E1) and not connected to the fourth valve (V4). The tower top gas phase discharge port is connected to the outlet of the fifth valve (V5) via a pipeline, and the pipe between the tower top gas phase discharge port and the outlet of the fifth valve (V5). A sixth valve (V6) is provided on the road.

本発明の第1態様の実現可能な形態によれば、前記精留塔(T1)は、精留部及びストリッピング部を備え、前記精留部には、高性能パッキング分離部材が使用され、ストリッピング部には、コーキング防止可能な大容量ランダムパッキングが使用される。 According to a feasible embodiment of the first aspect of the present invention, the rectification tower (T1) includes a rectification section and a stripping section, and a high-performance packing separation member is used for the rectification section. A large-capacity random packing that can prevent caulking is used for the stripping portion.

本発明の第1態様の実現可能な形態によれば、前記精留塔(T1)のボトムには、放散蒸気入り口がさらに設けられている。 According to a feasible embodiment of the first aspect of the present invention, the bottom of the rectification column (T1) is further provided with a divergent steam inlet.

本発明の第1態様の実現可能な形態によれば、前記第1バルブ(V1)と第3バルブ(V3)の間には、分岐バルブ(V7)が設けられ、前記分岐バルブ(V7)が開かれたとき、前記精留塔(T1)から蒸留された一部の低沸点炭化水素類物質が、前記分岐バルブ(V7)を介して前記第1バルブ(V1)からの清澄液と混合する。 According to a feasible embodiment of the first aspect of the present invention, a branch valve (V7) is provided between the first valve (V1) and the third valve (V3), and the branch valve (V7) is provided. When opened, some low boiling point hydrocarbon material distilled from the rectification column (T1) mixes with the clarified solution from the first valve (V1) via the branch valve (V7). ..

本発明の第2態様は、化学工業における汚油残液の高効率浄化処理用の方法を提供し、該方法は、前記装置を用い、処理対象となる化学工業における汚油残液の性質に応じて、蒸留−水洗及び水洗−蒸留、または蒸留−水洗・水洗−蒸留のどちらかの処理方法を実施する。 A second aspect of the present invention provides a method for high-efficiency purification treatment of sewage residual liquid in the chemical industry, and the method uses the above-mentioned apparatus to determine the properties of the sewage residual liquid in the chemical industry to be treated. Depending on the treatment method, either distillation-water washing and water washing-distillation, or distillation-water washing / water washing-distillation is carried out.

本発明の第2態様の実現可能な形態によれば、前記蒸留−水洗処理方法の手順は、以下のとおりである。
第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を開け、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を閉め、第1ポンプ(P1)を起動させて負荷球形タンク(C1)における清澄液を吸い出すとともに、第2ポンプ(P2)を起動させて普通貯蔵タンク(C2)における清澄液を吸い出す。
生産の要求に対応する割合で負荷球形タンク(C1)及び普通貯蔵タンク(C2)から吸い出された清澄液を混合し、順次第1熱交換器(E1)、第2熱交換器(E2)、第3熱交換器(E3)を介して混合後の清澄液を精留塔(T1)に送り、前記精留塔(T1)で前記清澄液を蒸留処理し、発生させた低沸点炭化水素類物質及び水蒸気を凝縮させ、冷却させた後、還流タンク(C3)に送り、一部の低沸点炭化水素類物質を還流ポンプ(P3)で精留塔(T1)のトップに戻し、還流タンク(C3)からの低沸点炭化水素類物質を静的混合器(M1)に送る。
前記静的混合器(M1)に水を加えて、低沸点炭化水素類物質と水を所定の割合で静的混合器(M1)において混合して洗浄を行い、洗浄して得られた油水混合物を重力沈降タンク(C4)に送り、さらに重力沈降タンク(C4)による不均一相分離により水洗のステップを完了する。
According to the feasible embodiment of the second aspect of the present invention, the procedure of the distillation-water washing treatment method is as follows.
Open the 1st valve (V1), 3rd valve (V3), 5th valve (V5), close the 2nd valve (V2), 4th valve (V4), 6th valve (V6), and close the 1st pump (V6). P1) is started to suck out the clear liquid in the load spherical tank (C1), and the second pump (P2) is started to suck out the clear liquid in the normal storage tank (C2).
The clarified liquid sucked out from the load spherical tank (C1) and the ordinary storage tank (C2) is mixed at a ratio corresponding to the production requirement, and the first heat exchanger (E1) and the second heat exchanger (E2) are sequentially mixed. , The clarified liquid after mixing is sent to the rectifying tower (T1) via the third heat exchanger (E3), and the clarified liquid is distilled and treated in the rectifying tower (T1) to generate low boiling point hydrocarbons. After condensing and cooling similar substances and water vapor, they are sent to the recirculation tank (C3), and some low boiling point hydrocarbon substances are returned to the top of the distillation column (T1) by the recirculation pump (P3), and the recirculation tank. The low boiling point hydrocarbon material from (C3) is sent to the static mixer (M1).
Water is added to the static mixer (M1), and a low boiling point hydrocarbon substance and water are mixed at a predetermined ratio in the static mixer (M1) for washing, and the oil-water mixture obtained by washing is performed. Is sent to the gravity settling tank (C4), and the non-uniform phase separation by the gravity settling tank (C4) completes the washing step.

前記水洗−蒸留処理方法の手順は、以下のとおりである。
第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を閉め、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を開け、第1ポンプ(P1)を起動させて負荷球形タンク(C1)における清澄液を吸い出すとともに、第2ポンプ(P2)を起動させて普通貯蔵タンク(C2)における清澄液を吸い出す。
生産の要求に対応する割合で負荷球形タンク(C1)及び普通貯蔵タンク(C2)から吸い出された清澄液を混合し、混合後の清澄液を静的混合器(M1)に入れる。
前記静的混合器(M1)に水を加えて、前記混合後の清澄液と水を所定の割合で静的混合器(M1)において混合して洗浄を行い、洗浄して得られた油水混合物を重力沈降タンク(C4)に送り、さらに重力沈降タンク(C4)による不均一相分離により水洗のステップを完了し、順次第1熱交換器(E1)、第2熱交換器(E2)、第3熱交換器(E3)を介して水洗後の清澄液を精留塔(T1)に送り、精留塔(T1)で蒸留処理し、低沸点炭化水素類物質と高沸点炭化水素類物質に分離させ、蒸留分離ステップを完了する。
The procedure of the water washing-distillation treatment method is as follows.
Close the 1st valve (V1), 3rd valve (V3), 5th valve (V5), open the 2nd valve (V2), 4th valve (V4), 6th valve (V6), and open the 1st pump (V6). P1) is started to suck out the clear liquid in the load spherical tank (C1), and the second pump (P2) is started to suck out the clear liquid in the normal storage tank (C2).
The clarified liquid sucked out from the load spherical tank (C1) and the ordinary storage tank (C2) is mixed at a ratio corresponding to the production requirement, and the clarified liquid after mixing is put into the static mixer (M1).
Water is added to the static mixer (M1), the clarified liquid after mixing and water are mixed in a static mixer (M1) at a predetermined ratio for washing, and the oil-water mixture obtained by washing is performed. Is sent to the gravity settling tank (C4), and the step of washing with water is completed by the heterogeneous phase separation by the gravity settling tank (C4), and the first heat exchanger (E1), the second heat exchanger (E2), and the second heat exchanger are sequentially completed. 3 The clarified liquid after washing with water is sent to the rectification tower (T1) via the heat exchanger (E3) and distilled in the rectification tower (T1) to obtain low-boiling hydrocarbon substances and high-boiling hydrocarbon substances. Separation completes the distillation separation step.

本発明の第2態様の実現可能な形態によれば、前記負荷球形タンク(C1)の操作温度は、1〜70℃、普通貯蔵タンク(C2)の操作温度は、1〜100℃、負荷球形タンク(C1)、普通貯蔵タンク(C2)の操作圧力は、いずれも0〜0.8MPaであり、
前記精留塔(T1)では、操作温度が常温40〜300℃、操作圧力が0〜0.5MPaであり、
前記静的混合器(M1)では、操作温度が2〜80℃、操作圧力が0〜0.8MPaであり、
前記重力沈降タンク(C4)では、操作温度が2〜80℃、操作圧力が0〜0.5MPaであり、
前記還流タンク(C3)では、操作温度が2〜60℃、操作圧力が0〜0.5MPaである。
According to the feasible embodiment of the second aspect of the present invention, the operating temperature of the load spherical tank (C1) is 1 to 70 ° C., the operating temperature of the ordinary storage tank (C2) is 1 to 100 ° C., and the load spherical shape. The operating pressure of the tank (C1) and the ordinary storage tank (C2) is 0 to 0.8 MPa.
In the rectification column (T1), the operating temperature is room temperature 40 to 300 ° C., and the operating pressure is 0 to 0.5 MPa.
In the static mixer (M1), the operating temperature is 2 to 80 ° C. and the operating pressure is 0 to 0.8 MPa.
In the gravity settling tank (C4), the operating temperature is 2 to 80 ° C. and the operating pressure is 0 to 0.5 MPa.
In the reflux tank (C3), the operating temperature is 2 to 60 ° C. and the operating pressure is 0 to 0.5 MPa.

上記技術案から分かるように、従来技術に比べて、本発明の有益な効果は、以下のとおりである。
1.エチレンプラントの各操作ユニット由来の汚油残液を易揮発性、難揮発性の2つの種類に分けて、それぞれ負荷球形タンク(C1)及び普通貯蔵タンク(C2)に供給し、それによって、すべての汚油残液が負荷球形タンク(C1)に供給されることを回避することができる。その後、集中して効率よく浄化処理を行う。
2.清澄液の性質に応じて操作プロセスを切り替えることにより、汚油残液における高品質成分を十分に利用し、汚油残液の利用率を向上させて、環境汚染を低減させる。
3.精留塔(T1)を分離装置として、塔底から水蒸気を吹き込んで油蒸気の分圧を低下させ、塔底の温度を低下させることによって、占有する面積を減少させて、設備投資を低下させ、塔底油の熱重縮合を減少させ、また、塔底の熱量を統合することでエネルギーの利用を最大化させる。
4.化学工業における汚油残液は、集中回収され、効率よく浄化処理されて、その中で下流加工装置により求められる原料性質を満たす回収塔頂留分油の割合は50%〜80%である。塔底釜液と沈降液をブレンドすると、遅延コーキング装置により求められる原料の性質を満たし、又は舶舶用残渣燃料油の性質への要件を満たす。
5.プロセスの柔軟性が高く、即ち、蒸留−水洗の形態も水洗−蒸留の形態も利用可能であり、分岐バルブを設けることにより、廃油原料性質の多様性に対応でき、超重質・超高粘度の汚油残液原料の処理に適用できる。
As can be seen from the above technical proposal, the beneficial effects of the present invention as compared with the prior art are as follows.
1. 1. The sewage residual liquid derived from each operation unit of the ethylene plant is divided into two types, easily volatile and non-volatile, and supplied to the load spherical tank (C1) and the ordinary storage tank (C2), respectively, thereby all. It is possible to prevent the residual liquid of the sewage from being supplied to the load spherical tank (C1). After that, the purification process is concentrated and efficiently performed.
2. By switching the operation process according to the properties of the clarified liquid, the high-quality components in the sewage residual liquid are fully utilized, the utilization rate of the sewage residual liquid is improved, and environmental pollution is reduced.
3. 3. Using the rectification tower (T1) as a separation device, steam is blown from the bottom of the tower to reduce the partial pressure of oil vapor and lower the temperature of the bottom of the tower, thereby reducing the area occupied and reducing capital investment. , Reduces thermal polycondensation of column bottom oil and maximizes energy utilization by integrating the amount of heat in the column bottom.
4. The sewage residual liquid in the chemical industry is centrally recovered and efficiently purified, and the proportion of the distillate at the top of the recovery tower that satisfies the raw material properties required by the downstream processing equipment is 50% to 80%. Blending the bottom kettle liquid and the sedimentation liquid meets the raw material properties required by the delayed caulking device, or the requirements for the properties of marine residual fuel oil.
5. The process is highly flexible, that is, both distillation-water-washing and water-washing-distillation forms can be used, and by providing a branch valve, it is possible to deal with a variety of waste oil raw material properties, and it is ultra-heavy and ultra-high viscosity. It can be applied to the treatment of sewage residual liquid raw materials.

本発明の実施例又は従来技術における技術案をより明瞭に説明するために、以下、実施例又は従来技術の説明に必要な図面を簡単に説明するが、明らかなように、以下の説明における図面は、本発明の実施例に過ぎず、当業者であれば、創造的な努力を必要とせずに、これら図面に基づいてほかの図面を取得できる。 In order to more clearly explain the technical proposal in the embodiment or the prior art of the present invention, the drawings necessary for the description of the embodiment or the prior art will be briefly described below, but as is clear, the drawings in the following description will be described. Is merely an embodiment of the present invention, and those skilled in the art can obtain other drawings based on these drawings without the need for creative effort.

本発明の化学工業における汚油残液の高効率浄化処理用の分離装置の一例の構造接続模式図である。It is a structural connection schematic diagram of an example of a separation device for high-efficiency purification treatment of sewage residual liquid in the chemical industry of the present invention.

以下、本発明の実施例における技術案を明瞭で完全に説明するが、明らかなように、説明される実施例は、本発明の実施例の一部に過ぎず、すべての実施例ではない。当業者であれば、本発明の実施例に基づいて創造的な努力を必要とせずに取得し得るほかの実施例は、すべて本発明の特許範囲に属する。 Hereinafter, the technical proposals in the examples of the present invention will be clearly and completely described, but as is clear, the described examples are only a part of the examples of the present invention, not all the examples. All other examples that can be obtained by one of ordinary skill in the art based on the embodiments of the present invention without the need for creative effort are within the scope of the invention.

図1を参照しながら本発明をさらに説明すると、本発明は、化学工業における汚油残液の高効率浄化処理用の装置及び方法を提供し、本装置は、貯蔵設備、蒸留分離設備、静的混合設備、重力沈降設備を備える。 To further explain the present invention with reference to FIG. 1, the present invention provides an apparatus and method for highly efficient purification treatment of sewage residual liquid in the chemical industry, and the present invention includes storage equipment, distillation separation equipment, and static. Equipped with a mixing facility and gravity settling facility.

前記貯蔵設備は、軽質易揮発性汚油残液を貯蔵するための負荷球形タンク(C1)と、重質難揮発性汚油残液を貯蔵するための普通貯蔵タンク(C2)とを備え、前記負荷球形タンク(C1)には、清澄液を排出するための第1排出口が設けられ、前記普通貯蔵タンク(C2)には、清澄液を排出するための第2排出口が設けられ、前記第1排出口は、第1ポンプ(P1)を介して第1熱交換器(E1)の入り口側に接続され、前記第2排出口は、第2ポンプ(P2)を介して前記第1熱交換器(E1)の入り口側に接続され、前記第1ポンプ(P1)、第2ポンプ(P2)が前記第1熱交換器(E1)に接続される共通管路には、第1バルブ(V1)が設けられ、
前記蒸留分離設備は、精留塔(T1)を備え、前記精留塔(T1)の内部には、上から下へ順次塔頂気相排出口、清澄液供給口及び塔底液相排出口が設けられ、前記第1熱交換器(E1)の出口側が第2熱交換器(E2)、第3熱交換器(E3)を介して前記清澄液供給口に接続され、前記塔頂気相排出口は、前記第1熱交換器(E1)を介して還流タンク(C3)の入り口に接続され、前記精留塔(T1)には、塔頂還流口がさらに設けられ、前記還流タンク(C3)は、還流ポンプ(P3)を介して前記塔頂還流口に接続されて、塔頂の温度を調整して塔頂留出油に要求される品質を制御する液相還流を形成させ、
前記静的混合設備は、静的混合器(M1)を備え、前記静的混合器(M1)には、油類入り口、洗浄水入り口及び油水混合物出口が設けられ、前記第1ポンプ(P1)、第2ポンプ(P2)は、また同一管路を介して該油類入り口に接続され、該同一管路には、第2バルブ(V2)が設けられ、前記還流タンク(C3)は、管路を介して該油類入り口に接続され、還流タンク(C3)と該油類入り口との間には、第3バルブ(V3)が設けられ、
前記重力沈降設備は、重力沈降タンク(C4)を備え、前記重力沈降タンク(C4)には、上から下へ順次気相排出口、油水混合物入り口、清澄液を排出するための第3排出口、油含有汚水排出口が設けられ、前記油水混合物入り口は、管路を介して前記油水混合物出口に接続され、前記第3排出口は、順次第5ポンプ(P5)、第4バルブ(V4)を介して前記第1熱交換器(E1)に接続され、前記第4バルブ(V4)に接続されていない前記第5ポンプ(P5)の管路には、第5バルブ(V5)が設けられ、前記塔頂気相排出口は、管路を介して前記第5バルブ(V5)の出口に接続され、前記塔頂気相排出口と前記第5バルブ(V5)の出口との間の管路には、第6バルブ(V6)が設けられる。
The storage facility includes a load spherical tank (C1) for storing light and easily volatile sewage residual liquid and a normal storage tank (C2) for storing heavy and difficult volatile sewage residual liquid. The load spherical tank (C1) is provided with a first discharge port for discharging the clarified liquid, and the ordinary storage tank (C2) is provided with a second discharge port for discharging the clarified liquid. The first discharge port is connected to the inlet side of the first heat exchanger (E1) via the first pump (P1), and the second discharge port is connected to the first through the second pump (P2). A first valve is provided in a common pipeline connected to the inlet side of the heat exchanger (E1) and to which the first pump (P1) and the second pump (P2) are connected to the first heat exchanger (E1). (V1) is provided,
The distillation separation facility is provided with a rectification tower (T1), and inside the rectification tower (T1), a column top gas phase discharge port, a clarification liquid supply port, and a tower bottom liquid phase discharge port are sequentially provided from top to bottom. Is provided, and the outlet side of the first heat exchanger (E1) is connected to the clear liquid supply port via the second heat exchanger (E2) and the third heat exchanger (E3), and the column top gas phase. The discharge port is connected to the inlet of the reflux tank (C3) via the first heat exchanger (E1), and the rectification column (T1) is further provided with a column top reflux port, and the reflux tank (T1) is provided. C3) is connected to the column top reflux port via a reflux pump (P3) to form a liquid phase reflux that regulates the temperature of the column top to control the quality required for the column top distillate.
The static mixing facility includes a static mixer (M1), and the static mixer (M1) is provided with an oil inlet, a washing water inlet, and an oil-water mixture outlet, and the first pump (P1). , The second pump (P2) is also connected to the oil inlet via the same pipe, a second valve (V2) is provided in the same pipe, and the recirculation tank (C3) is a pipe. A third valve (V3) is provided between the recirculation tank (C3) and the oil inlet, which is connected to the oil inlet via a road.
The gravity settling facility is provided with a gravity settling tank (C4), and the gravity settling tank (C4) has a gas phase discharge port, an oil-water mixture inlet, and a third discharge port for discharging a clear liquid in order from top to bottom. , An oil-containing sewage discharge port is provided, the oil-water mixture inlet is connected to the oil-water mixture outlet via a pipeline, and the third discharge port is sequentially connected to a fifth pump (P5) and a fourth valve (V4). A fifth valve (V5) is provided in the pipeline of the fifth pump (P5) which is connected to the first heat exchanger (E1) and not connected to the fourth valve (V4). The tower top gas phase discharge port is connected to the outlet of the fifth valve (V5) via a pipeline, and the pipe between the tower top gas phase discharge port and the outlet of the fifth valve (V5). A sixth valve (V6) is provided on the road.

1つの実現可能な形態では、前記精留塔(T1)は、精留部及びストリッピング部を備え、精留部には、高性能パッキング分離部材(3−20段の理論段に相当)が使用され、ストリッピング部には、コーキング防止可能な大容量ランダムパッキング(1−3段の理論段に相当)が使用され、供給段は気液を供給してフラッシュ蒸発を行う空間(1段の理論段に相当)であり、塔頂には、塔頂の温度を調整して塔頂留出油に要求される品質を制御するための液相還流が設けられる。1つの実現可能な形態では、前記精留塔(T1)のボトムには、放散蒸気入り口がさらに設けられており、熱量を供給して気相還流を発生させるためにリボイラーが塔底に設けられるのではなく、塔底の液面の上方へ水蒸気を直接吹き込んで放散を行い、それにより、油蒸気の分圧を低下させて、ストリッピング作用を高めるという効果を奏する。 In one feasible form, the rectification column (T1) comprises a rectification section and a stripping section, the rectification section having a high performance packing separation member (corresponding to a 3-20 theoretical step). A large-capacity random packing (corresponding to the theoretical stage of 1-3 stages) that can prevent coking is used for the stripping part, and the supply stage is a space for supplying gas and liquid to perform flash evaporation (1 stage). The top of the tower is provided with a liquid-phase reflux for adjusting the temperature of the top and controlling the quality required for the distillate at the top. In one feasible form, the bottom of the rectification column (T1) is further provided with a divergent steam inlet and a reboiler is provided at the bottom of the column to supply heat and generate gas phase reflux. Instead, steam is blown directly above the liquid level at the bottom of the tower to dissipate it, thereby reducing the partial pressure of oil vapor and enhancing the stripping action.

1つの実現可能な形態では、前記第1バルブ(V1)と第3バルブ(V3)との間には、分岐バルブ(V7)が設けられ、前記分岐バルブ(V7)が開かれたとき、前記精留塔(T1)から蒸留された一部の低沸点炭化水素類物質が、前記分岐バルブ(V7)を介して前記第1バルブ(V1)からの清澄液と混合する。汚油残液の性質を、装置に入る前に調整することはできないが、分岐バルブ(V7)及び対応する操作によって可能になり、このため、極めて重くて(標準密度≦1050kg/m)粘度が高い(50℃動粘度≦200mm/s)汚油残液を処理して分離することができ、分離装置及び方法の汎用性を向上させることができる。 In one feasible form, a branch valve (V7) is provided between the first valve (V1) and the third valve (V3), and when the branch valve (V7) is opened, said A part of the low boiling point hydrocarbon substance distilled from the rectification column (T1) is mixed with the clarified liquid from the first valve (V1) via the branch valve (V7). The nature of the sewage residue cannot be adjusted before entering the device, but it is made possible by the branch valve (V7) and the corresponding operation, which makes it extremely heavy (standard density ≤ 1050 kg / m 3 ) and viscosity. (50 ° C. kinematic viscosity ≤ 200 mm 2 / s) can be treated and separated, and the versatility of the separation device and method can be improved.

本発明に係る化学工業における汚油残液の高効率浄化処理用の方法は、上記装置を用い、回収された汚油残液原料の性質に応じて、蒸留−水洗(スキーム1)又は水洗−蒸留(スキーム2)の2種の異なる技術手段に従って浄化分離処理を効率よく実施できる。 The method for high-efficiency purification treatment of sewage residual liquid in the chemical industry according to the present invention uses the above-mentioned apparatus, and depending on the properties of the recovered sewage residual liquid raw material, distillation-water washing (scheme 1) or water washing-. Purification and separation treatment can be efficiently carried out according to two different technical means of distillation (scheme 2).

清澄液の品質が高い場合、スキーム1に従って操作を行い(第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を開け、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を閉める)、負荷球形タンク(C1)からの軽質汚油残液(F1)と普通貯蔵タンク(C2)からの重質汚油残液(F2)とを生産の要求に従って管路において混合し、第2バルブ(V2)を通過させて、順次塔頂留分油(D)、塔底重質油(R)と熱交換させ、最後に、中圧蒸気と熱交換させて、精留塔(T1)に入れて分離させる。放散蒸気は、制御バルブを操作することにより精留塔の塔底の液面の上方に至り、塔底へ流れる液相流れを放散させ、それにおける軽質成分をストリッピングする。精留塔(T1)では、操作温度が40〜300℃、操作圧力が0.1〜0.5MPa、塔全体の理論段数が5〜24段である。低沸点の軽質成分及び水蒸気は、下から上へと塔頂に流れて、熱交換器、水冷器を通過した後、操作温度2〜60℃、操作圧力0.1〜0.5MPaの還流タンク(C3)に入る。それにおける気相物質は、気体炭化水素(G)としてガスパイプラインに入り、油含有汚水は、汚水処理装置に排出され、液相の塔頂留分油(D)は、一部が塔頂冷還流として塔頂の温度を制御し、塔頂留分油(D)の乾燥ポイントを確保し、過剰な部分が塔頂留分油として水洗ユニットに送られる。蒸留により得られた頂留分油(D)は、第4バルブ(V4)を通過した後、一定の割合の新しい水(油と水の質量比は3:1)に同伴して、操作温度2〜80℃、操作圧力0.1〜0.8MPaの静的混合器(M1)に入り強力に混合され、強力に混合されると、油における水に可溶な塩類、非炭化水素類化合物を溶解させることができ、次に、操作温度2〜80℃、操作圧力0.1〜0.5MPaの重力沈降タンク(C4)に送り油水分離を行う。重力沈降タンク(C4)のボトムの水ドラムにおける洗浄廃水と還流タンク(C3)における油含有汚水は、一緒に汚水処理装置に送られ、洗浄された留分油は、下流の水素化装置の原料タンクに入り、水素化精製原料油として高品質の油製品に変換される。 If the quality of the clarified liquid is high, operate according to Scheme 1 (1st valve (V1), 3rd valve (V3), 5th valve (V5) open, 2nd valve (V2), 4th valve (V4). ), 6th valve (V6) is closed), light sewage residual liquid (F1) from the load spherical tank (C1) and heavy sewage residual liquid (F2) from the normal storage tank (C2) are produced. Mix in the pipeline as required, pass through the second valve (V2), and sequentially exchange heat with the tower top distillate oil (D) and the tower bottom heavy oil (R), and finally with medium pressure steam and heat. It is exchanged and placed in a rectification tower (T1) for separation. By operating the control valve, the released vapor reaches above the liquid level at the bottom of the rectification tower, dissipates the liquid phase flow to the bottom of the rectification tower, and strips the light components in the liquid phase flow. In the rectification column (T1), the operating temperature is 40 to 300 ° C., the operating pressure is 0.1 to 0.5 MPa, and the theoretical plate number of the entire column is 5 to 24. Light components with a low boiling point and water vapor flow from the bottom to the top of the column, pass through a heat exchanger and a water cooler, and then a reflux tank with an operating temperature of 2 to 60 ° C and an operating pressure of 0.1 to 0.5 MPa. Enter (C3). The gas phase substance in it enters the gas pipeline as a gaseous hydrocarbon (G), the oil-containing sewage is discharged to the sewage treatment device, and the liquid phase top distillate fraction (D) is partially cooled at the top. The temperature of the top of the tower is controlled as a reflux, a drying point of the top distillate oil (D) is secured, and the excess portion is sent to the washing unit as the top distillate oil. After passing through the 4th valve (V4), the top distillate oil (D) obtained by distillation is accompanied by a certain ratio of new water (mass ratio of oil to water is 3: 1), and the operating temperature is changed. It enters a static mixer (M1) with an operating pressure of 0.1 to 0.8 MPa at 2 to 80 ° C. and is strongly mixed. When strongly mixed, water-soluble salts and non-hydrocarbon compounds in oil Next, oil and water are separated by feeding to a gravity settling tank (C4) having an operating temperature of 2 to 80 ° C. and an operating pressure of 0.1 to 0.5 MPa. The washed wastewater in the water drum at the bottom of the gravity settling tank (C4) and the oil-containing sewage in the recirculation tank (C3) are sent together to the sewage treatment equipment, and the washed distillate is used as the raw material for the downstream hydrogenation equipment. It enters the tank and is converted into high quality oil products as hydrorefined feedstock.

清澄液の品質が低い場合、スキーム2に従って操作を行い(第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を閉め、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を開ける)、負荷球形タンク(C1)からの軽質汚油残液(F1)と普通貯蔵タンク(C2)からの重質汚油残液(F2)を生産の要求に従って管路において混合させ、第1バルブ(V1)を通過させて、一定の割合の新しい水(油と水の質量比は4:1)に同伴して静的混合器(M1)に入れて、強力に混合させた後、重力沈降タンク(C4)に送り、油水分離を行う。静的混合器(M1)では、操作温度が2〜80℃、操作圧力が0.1〜0.8MPaである。強力に混合した後、油における水に可溶な塩類、非炭化水素類混合物を溶解させることができ、次に、管路を介して油水混合物を、操作温度2〜80℃、操作圧力0.1〜0.5MPaの重力沈降タンク(C4)に入れて、洗浄沈降操作により不均一相分離を行い、それによって気体炭化水素(G)は、タンクのトップから抜き出され、管路、制御バルブを介してガスパイプラインに導入され、洗浄水は、タンクの底部の水ドラムから汚水処理装置に排出され、洗浄後の清澄液は、タンクのボトムから抜き出され、管路、第5バルブ(V5)を通過した後、順次塔頂留分油(D)、塔底重質油(R)と熱交換し、最後に中圧蒸気と熱交換し、精留塔(T1)に入って分離される。放散蒸気は、制御バルブを操作することにより精留塔(T1)の塔底の液面の上方に送られ、塔底へ流れる液相物流を放散させて、それにおける軽質成分をストリッピングする。精留塔(T1)では、操作温度が40〜300℃、操作圧力が0.1〜0.5MPa、塔全体の理論段数が5〜24段である。低沸点の軽質成分及び水蒸気は、下から上へと塔頂に流れて、熱交換器、水冷器を通過した後、操作温度2〜60℃、操作圧力0.1〜0.5MPaの還流タンク(C3)に送られる。それにおける気相物質は、気体炭化水素(G)としてガスパイプラインに入り、油含有汚水は、重力沈降タンク(C4)の洗浄水とともに汚水処理装置に排出され、液相の塔頂留分油(D)は、一部が塔頂冷還流として塔頂の温度を制御し、塔頂留分油(D)の乾燥ポイントを確保し、過剰な部分が塔頂留分油として下流の水素化装置の原料タンクに送られ、水素化精製原料油として高品質の油製品に変換される。 If the quality of the clarified liquid is low, operate according to Scheme 2 (1st valve (V1), 3rd valve (V3), 5th valve (V5) closed, 2nd valve (V2), 4th valve (V4). ), Open the 6th valve (V6)), request for production of light sewage residual liquid (F1) from the load spherical tank (C1) and heavy sewage residual liquid (F2) from the ordinary storage tank (C2). Mix in the pipeline according to, pass through the first valve (V1) and enter the static mixer (M1) with a certain proportion of fresh water (oil to water mass ratio 4: 1). After vigorously mixing, the valve is sent to a gravity settling tank (C4) for oil-water separation. In the static mixer (M1), the operating temperature is 2 to 80 ° C. and the operating pressure is 0.1 to 0.8 MPa. After vigorous mixing, the water-soluble salt and non-hydrocarbon mixture in the oil can be dissolved, and then the oil-water mixture is passed through the conduit at an operating temperature of 2-80 ° C. and an operating pressure of 0. It is placed in a gravity settling tank (C4) of 1 to 0.5 MPa, and non-uniform phase separation is performed by a washing and settling operation, whereby the gaseous hydrocarbon (G) is extracted from the top of the tank, and the pipeline and control valve. The wash water is discharged from the water drum at the bottom of the tank to the sewage treatment device, and the clarified liquid after washing is withdrawn from the bottom of the tank, and is taken out from the bottom of the tank, and the fifth valve (V5). After passing through), heat is exchanged with the tower top distillate oil (D) and the tower bottom heavy oil (R), and finally with medium pressure steam, and the valve enters the rectification tower (T1) and is separated. To. The released vapor is sent above the liquid level at the bottom of the rectification tower (T1) by operating the control valve, dissipates the liquid phase distribution flowing to the bottom of the rectification tower (T1), and strips the light components therein. In the rectification column (T1), the operating temperature is 40 to 300 ° C., the operating pressure is 0.1 to 0.5 MPa, and the theoretical plate number of the entire column is 5 to 24. Light components with a low boiling point and water vapor flow from the bottom to the top of the column, pass through a heat exchanger and a water cooler, and then a reflux tank with an operating temperature of 2 to 60 ° C and an operating pressure of 0.1 to 0.5 MPa. It is sent to (C3). The gas phase material in it enters the gas pipeline as a gaseous hydrocarbon (G), and the oil-containing sewage is discharged to the sewage treatment device together with the wash water of the gravity settling tank (C4), and the liquid phase tower top distillate oil (liquid phase distillate). In D), the temperature of the top of the tower is controlled by partially cooling and recirculating the top of the tower, a drying point of the top distillate oil (D) is secured, and the excess portion is used as the top distillate in the downstream hydrocarbon device. It is sent to the raw material tank of the company and converted into high quality oil products as hydrocarbon refined raw material oil.

実施例1
化学工業における汚油残液の高効率浄化処理用の装置については、処理能力が2t/hであり、本例では、15種類の廃油を供給混合原料とし、その中で、6種類の汚油残液は、低沸点軽質成分(標準密度800kg/m未満)であり、65質量%を占め、9種類の汚油残液は、高沸点重質成分(標準密度800kg/m超)であり、35質量%を占めており、蒸留−水洗プロセスを用い、具体的な操作は、以下のとおりである。
負荷球形タンク(C1)では、操作温度が25℃、操作圧力が0.35MPaであり、普通貯蔵タンク(C2)では、操作温度が25℃、操作圧力が0MPaである。流出流れの質量流量については、負荷球形タンク(C1)では、65%、普通貯蔵タンク(C2)では、35%であるように制御しながら、管路において常温で混合する。
精留塔(T1)の精留部は、2段規則パッキング(理論段数12段)であり、ストリッピング部は、1段ランダムパッキング(理論段数3段)であり、汚油残液供給位置は、上から第2段と第3段のパッキングの間にあり、放散蒸気供給位置は、塔底の液面の上方(第3段パッキングの下部)にあり、塔頂からは、低沸点の留分油(即ち低沸点炭化水素類物質)及び水蒸気、塔底からは、高沸点重質油(即ち高沸点炭化水素類物質)が流出する。塔頂の還流比は0.7であり、塔底から吹き込まれる水蒸気は、塔底の重質油の5%(質量)であり、油蒸気の分圧を低下させて塔底温度を低下させる。塔底の操作温度が225℃、塔頂の操作温度が113℃、操作圧力が0.13MPaである。還流タンク(C3)では、操作温度が40℃、操作圧力が0.1MPaである。
蒸留により得られた留分油は、静的混合器(M1)に送られる。静的混合器(M1)に入った油と新しい常温水との質量比は、4:1であり、静的混合器(M1)では、操作温度が37〜38℃、操作圧力が0.6MPaである。
重力沈降タンク(C4)では、操作温度が37℃、操作圧力が0.25MPaである。
塔頂の熱い材料も塔底の熱い材料も新しい原料と熱交換し、熱統合を行い、それにより、できるだけ熱量を回収して、冷却水の使用量を低減させる。
上記条件によれば、回収可能な留分油の収率は、63.12%に達し、下流のガソリン水素化装置により求められる原料の性質を満たす。塔底重質油及び沈降液をブレンドすると、遅延コーキング装置により求められる原料の性質を満たし、又は舶残渣燃料油の性質を満たす。
実施例1に必要な汚油残液は、比較的クリーンであり、得られた水洗留分油は、それ以上クリーンであり、水洗水の使用量低減に有利であり、さらに水洗には、乳化現象が発生しない。
Example 1
The equipment for high-efficiency purification treatment of sewage residual liquid in the chemical industry has a treatment capacity of 2 t / h. In this example, 15 types of waste oil are used as supply mixed raw materials, and 6 types of sewage oil are used. The residual liquid is a low boiling point light component (standard density less than 800 kg / m 3 ) and occupies 65% by mass, and the nine types of sewage residual liquid are high boiling point heavy components (standard density 800 kg / m 3 or more). Yes, it accounts for 35% by mass, and the specific operation using the distillation-washing process is as follows.
In the load spherical tank (C1), the operating temperature is 25 ° C. and the operating pressure is 0.35 MPa, and in the ordinary storage tank (C2), the operating temperature is 25 ° C. and the operating pressure is 0 MPa. The mass flow rate of the outflow is controlled to be 65% in the load spherical tank (C1) and 35% in the normal storage tank (C2), and is mixed at room temperature in the pipeline.
The rectifying part of the rectifying tower (T1) has two-stage regular packing (theoretical plate number of 12 stages), the stripping part has one-stage random packing (theoretical plate number of three stages), and the sewage residual liquid supply position is. From the top, between the 2nd and 3rd stage packing, the divergent steam supply position is above the liquid level at the bottom of the tower (lower part of the 3rd stage packing), and from the top of the tower, low boiling point retention High boiling point heavy oil (that is, high boiling point hydrocarbon substance) flows out from the oil separation (that is, low boiling point hydrocarbon substance) and steam, and from the bottom of the column. The reflux ratio at the top of the tower is 0.7, and the water vapor blown from the bottom of the tower is 5% (mass) of the heavy oil at the bottom of the tower, which lowers the partial pressure of the oil vapor and lowers the temperature of the bottom of the tower. .. The operating temperature at the bottom of the tower is 225 ° C, the operating temperature at the top of the tower is 113 ° C, and the operating pressure is 0.13 MPa. In the reflux tank (C3), the operating temperature is 40 ° C. and the operating pressure is 0.1 MPa.
The distillate obtained by distillation is sent to a static mixer (M1). The mass ratio of the oil contained in the static mixer (M1) to the new room temperature water is 4: 1. In the static mixer (M1), the operating temperature is 37 to 38 ° C. and the operating pressure is 0.6 MPa. Is.
In the gravity settling tank (C4), the operating temperature is 37 ° C. and the operating pressure is 0.25 MPa.
Both the hot material at the top of the tower and the hot material at the bottom of the tower exchange heat with new raw materials and perform heat integration, thereby recovering as much heat as possible and reducing the amount of cooling water used.
According to the above conditions, the yield of recoverable distillate oil reaches 63.12%, which satisfies the properties of the raw material required by the downstream gasoline hydrogenator. When the column bottom heavy oil and the sediment are blended, the properties of the raw material required by the delayed caulking device are satisfied, or the properties of the marine residual fuel oil are satisfied.
The sewage residual liquid required for Example 1 is relatively clean, and the obtained water-washed fractional oil is more clean, which is advantageous for reducing the amount of water-washed water used, and is further emulsified for washing with water. The phenomenon does not occur.

実施例2
化学工業における汚油残液の高効率浄化処理用の装置は、処理能力2t/hであり、汚油残液には炭素粒子の固形分不純物が含まれ、且つアスファルテンが多い場合、まず蒸留すると、物質移動分離部材に垢が発生しやすく、長周期の運転に悪影響を及ぼす。この場合、実施例2が好ましく、装置の安全性、運転の安定性が確保できる。
本例では、15種類の廃油を供給混合原料とし、その中で、5種類の汚油残液は、低沸点軽質成分(標準密度800kg/m未満)であり、54質量%を占め、10種類の汚油残液は、高沸点重質成分(標準密度800kg/m超)であり、46質量%を占めており、蒸留−水洗プロセスを用い、具体的な操作は、以下のとおりである。
負荷球形タンク(C1)では、操作温度が25℃、操作圧力が0.35MPa、普通貯蔵タンク(C2)では、操作温度が25℃、操作圧力が0MPaである。流出流れの質量流量については、負荷球形タンク(C1)では、54%、普通貯蔵タンク(C2)では、46%であるように制御しながら、管路において常温で混合する。
精留塔(T1)の精留部は、2段規則パッキング(理論段数12段)であり、ストリッピング部は、1段ランダムパッキング(理論段数3段)であり、汚油残液供給位置は、上から第2段と第3段のパッキングの間にあり、放散蒸気供給位置は、塔底の液面の上方(第3段パッキングの下部)にあり、塔頂からは、低沸点留分油及び水蒸気、塔底からは、高沸点重質油が流出する。塔頂の還流比は、0.67であり、塔底から吹き込まれる水蒸気は、塔底の重質油の5%(質量)であり、塔底の操作温度が227℃、塔頂の操作温度が115℃、操作圧力が0.13MPaである。還流タンク(C3)では、操作温度が40℃、操作圧力が0.1MPaである。
蒸留により得られた留分油は、静的混合器(M1)に送られる。静的混合器(M1)に入った油と新しい常温水との質量比は、4:1であり、静的混合器(M1)では、操作温度が37〜38℃、操作圧力が0.6MPaである。
重力沈降タンク(C4)では、操作温度が37℃、操作圧力が0.25MPaである。
上記条件によれば、回収可能な留分油の収率は、52.1%に達し、下流のガソリン水素化装置により求められる原料の性質を満たすものの、指標の一部がぎりぎりで合格することとなる。塔底重質油及び沈降液をブレンドすると、遅延コーキング装置により求められる原料の性質を満たし、又は舶用残渣燃料油の性質を満たす。
Example 2
The equipment for high-efficiency purification treatment of sewage residual liquid in the chemical industry has a treatment capacity of 2 t / h, and if the sewage residual liquid contains solid content impurities of carbon particles and has a large amount of asphaltene, it should be distilled first. , The mass transfer separation member is prone to stains, which adversely affects long-cycle operation. In this case, Example 2 is preferable, and the safety of the device and the stability of operation can be ensured.
In this example, the 15 kinds of waste oil and supplying mixed material, in which five types of fouling oil bottoms, a low boiling light components (less than standard density 800 kg / m 3), accounting for 54 mass%, 10 The type of sewage residual liquid is a high boiling point heavy component (standard density over 800 kg / m 3 ), occupies 46% by mass, uses a distillation-washing process, and the specific operation is as follows. is there.
In the load spherical tank (C1), the operating temperature is 25 ° C. and the operating pressure is 0.35 MPa, and in the ordinary storage tank (C2), the operating temperature is 25 ° C. and the operating pressure is 0 MPa. The mass flow rate of the outflow is controlled to be 54% in the load spherical tank (C1) and 46% in the normal storage tank (C2), and mixed at room temperature in the pipeline.
The rectifying part of the rectifying tower (T1) has two-stage regular packing (theoretical plate number of 12 stages), the stripping part has one-stage random packing (theoretical plate number of three stages), and the sewage residual liquid supply position is. , Between the 2nd and 3rd stage packing from the top, the divergent steam supply position is above the liquid level at the bottom of the tower (lower part of the 3rd stage packing), and from the top of the tower, a low boiling point distillate. High boiling point heavy oil flows out from oil, steam, and the bottom of the column. The recirculation ratio of the tower top is 0.67, the water vapor blown from the tower bottom is 5% (mass) of the heavy oil at the bottom, the operating temperature of the tower bottom is 227 ° C, and the operating temperature of the tower top. Is 115 ° C. and the operating pressure is 0.13 MPa. In the reflux tank (C3), the operating temperature is 40 ° C. and the operating pressure is 0.1 MPa.
The distillate obtained by distillation is sent to a static mixer (M1). The mass ratio of the oil contained in the static mixer (M1) to the new room temperature water is 4: 1. In the static mixer (M1), the operating temperature is 37 to 38 ° C. and the operating pressure is 0.6 MPa. Is.
In the gravity settling tank (C4), the operating temperature is 37 ° C. and the operating pressure is 0.25 MPa.
According to the above conditions, the yield of recoverable distillate oil reaches 52.1%, which satisfies the properties of the raw material required by the downstream gasoline hydrogenator, but only a part of the index passes. Will be. When the column bottom heavy oil and the sediment are blended, the properties of the raw material required by the delayed caulking device are satisfied, or the properties of the marine residual fuel oil are satisfied.

実施例3
化学工業における汚油残液の高効率浄化処理用の装置であって、本例では、12種類の汚油残液を供給混合原料とし、その中で、3種類の汚油残液は、低沸点軽質成分(標準密度800kg/m未満)であり、21質量%であり、9種類の汚油残液は、高沸点重質成分(標準密度800kg/m超)であり、そのうちの4種類の汚油残液は、超重質・超高粘度の多環芳香族炭化水素及びアスファルテン成分であり、79質量%を占めており、混合後の原料は、標準密度1060kg/m、50℃動粘度≦203mm/sに達する。装置については、処理能力が1.6t/hであり、蒸留−水洗プロセスを用い、具体的な操作は、以下のとおりである。
負荷球形タンク(C1)では、操作温度が25℃、操作圧力が0.35MPa、普通貯蔵タンク(C2)では、操作温度が57℃、操作圧力が0MPaである。流出流れの質量流量については、負荷球形タンク(C1)では、16%、普通貯蔵タンク(C2)では、84%であるように制御しながら、管路において常温で混合する。
精留塔(T1)の精留部は、2段規則パッキング(理論段数12段)であり、ストリッピング部は、1段ランダムパッキング(理論段数3段)であり、汚油残液供給位置は、上から第2段と第3段のパッキングの間にあり、放散蒸気供給位置は、塔底の液面の上方(第3段のパッキングの下部)にあり、塔頂からは、低沸点の留分油及び水蒸気、塔底からは、高沸点の重質油が流出する。塔頂の還流比は、0.68であり、塔底から吹き込まれる水蒸気は、塔底重質油の5%(質量)であり、油蒸気の分圧を低下させて塔底温度を低下させる。塔底の操作温度が225℃、塔頂の操作温度が114℃、操作圧力が0.13MPaである。還流タンク(C3)では、操作温度が40℃、操作圧力が0.1MPaである。
蒸留により得られた留分油は、一部が0.6702/hで循環分岐バルブを通過して戻り、重質原料と混合し、残りの一部が0.367t/hで静的混合器(M1)に送られる。静的混合器(M1)に入った油と新しい常温水との質量比は、4:1であり、静的混合器(M1)では、操作温度が37〜38℃、操作圧力が0.6MPaである。
重力沈降タンク(C4)では、操作温度が37℃、操作圧力が0.25MPaである。
塔頂の熱い材料も塔底の熱い材料も新しい原料と熱交換し、熱統合を行い、それにより、できるだけ熱量を回収して、冷却水の使用量を低減させる。
上記条件によれば、超重質・超高粘度の汚油残液材料を処理して、回収可能な留分油の収率は、20.58%に達し、下流のガソリン水素化装置により求められる原料の性質を満たす。塔底重質油及び沈降液をブレンドすると、遅延コーキング装置により求められる原料の性質を満たし、又は舶用残渣燃料油の性質を満たす。
Example 3
A device for high-efficiency purification treatment of sewage residual liquid in the chemical industry. In this example, 12 types of sewage residual liquid are used as a feed mixture, and among them, 3 types of sewage residual liquid are low. It is a light boiling component (standard density less than 800 kg / m 3 ) and is 21% by mass, and 9 kinds of sewage residual liquids are high boiling heavy components (standard density 800 kg / m 3 or more), and 4 of them. The types of sewage residual liquid are ultra-heavy and ultra-high viscosity polycyclic aromatic hydrocarbons and asphaltene components, which account for 79% by mass, and the raw material after mixing has a standard density of 1060 kg / m 3 , 50 ° C. The kinematic viscosity reaches ≤203 mm 2 / s. The apparatus has a processing capacity of 1.6 t / h, uses a distillation-water washing process, and the specific operation is as follows.
In the load spherical tank (C1), the operating temperature is 25 ° C. and the operating pressure is 0.35 MPa, and in the ordinary storage tank (C2), the operating temperature is 57 ° C. and the operating pressure is 0 MPa. The mass flow rate of the outflow is controlled to be 16% in the load spherical tank (C1) and 84% in the normal storage tank (C2), and mixed at room temperature in the pipeline.
The rectifying part of the rectifying tower (T1) has two-stage regular packing (theoretical plate number of 12 stages), the stripping part has one-stage random packing (theoretical plate number of three stages), and the sewage residual liquid supply position is. From the top, between the 2nd and 3rd stage packing, the divergent steam supply position is above the liquid level at the bottom of the tower (below the 3rd stage packing), and from the top of the tower, the boiling point is low. Distillate oil, steam, and heavy oil with a high boiling point flow out from the bottom of the column. The reflux ratio at the top of the column is 0.68, and the water vapor blown from the bottom of the column is 5% (mass) of the heavy oil at the bottom of the column, which lowers the partial pressure of the oil vapor and lowers the temperature of the bottom of the column. .. The operating temperature at the bottom of the tower is 225 ° C, the operating temperature at the top of the tower is 114 ° C, and the operating pressure is 0.13 MPa. In the reflux tank (C3), the operating temperature is 40 ° C. and the operating pressure is 0.1 MPa.
A part of the distillate obtained by distillation passes through the circulation branch valve at 0.6702 / h and returns to be mixed with the heavy raw material, and the remaining part is a static mixer at 0.367 t / h. It is sent to (M1). The mass ratio of the oil contained in the static mixer (M1) to the new room temperature water is 4: 1. In the static mixer (M1), the operating temperature is 37 to 38 ° C. and the operating pressure is 0.6 MPa. Is.
In the gravity settling tank (C4), the operating temperature is 37 ° C. and the operating pressure is 0.25 MPa.
Both the hot material at the top of the tower and the hot material at the bottom of the tower exchange heat with new raw materials and perform heat integration, thereby recovering as much heat as possible and reducing the amount of cooling water used.
According to the above conditions, the yield of the distillate oil that can be recovered by treating the ultra-heavy and ultra-high viscosity sewage residual liquid material reaches 20.58%, which is obtained by a downstream gasoline hydration device. Satisfy the properties of the raw material. When the column bottom heavy oil and the sediment are blended, the properties of the raw material required by the delayed caulking device are satisfied, or the properties of the marine residual fuel oil are satisfied.

本発明の上記実施例は、汚油残液の性質に応じて異なる操作プロセスを切り替えることによって、汚油残液の利用率を向上させ、汚油残液における高品質成分を十分に利用して、環境汚染を低減させることができる。また、全精留塔を分離装置とするため、占有する面積を低減させて、設備投資を低下させ、さらに塔底の熱量に対して熱統合を行うことでエネルギーの利用を最大化させる。また、汚油残液の供給源の量にはバランスがよくなくて非連続性もあるため、性質の差異が大きいという特徴があることを考慮して、塔頂留分油が戻るための原料パイプライン、即ち分岐バルブ(V7)を増設し、それによって、正常に分離処理できるように汚油残液組成の性質を調整できる。 In the above embodiment of the present invention, the utilization rate of the sewage residual liquid is improved by switching different operation processes according to the properties of the sewage residual liquid, and the high quality components in the sewage residual liquid are fully utilized. , Environmental pollution can be reduced. In addition, since the entire rectification tower is used as a separation device, the area occupied is reduced, capital investment is reduced, and energy utilization is maximized by performing heat integration with respect to the amount of heat at the bottom of the tower. In addition, since the amount of sewage residual liquid supply source is not well-balanced and has discontinuity, it is a raw material for returning the top distillate oil, considering that there is a large difference in properties. A pipeline, i.e. a branch valve (V7), can be added to adjust the nature of the sewage residual liquid composition for normal separation.

本明細書における各実施例は、漸進的な形で説明されており、各実施例については、ほかの実施例との相違点が重点として説明され、各実施例の間の同じ又は類似した部分は、互いに参照すればよい。実施例で開示された装置に関しては、実施例で開示された方法に対応するため、簡単に説明し、関連する内容については、方法の部分についての説明を参照すればよい。 Each embodiment in the present specification is described in a gradual manner, and each embodiment is described with emphasis on differences from other examples, and the same or similar parts between the respective examples. May refer to each other. The apparatus disclosed in the examples will be briefly described in order to correspond to the method disclosed in the examples, and for related contents, the description of the method part may be referred to.

開示された実施例の上記説明により、当業者が本発明を実現又は利用することができる。これら実施例に対するさまざまな修正は、当業者にとって明らかなことであり、本明細書に定義された一般的な原理は、本発明の趣旨又は範囲から逸脱せずにほかの実施例においても実現できる。したがって、本発明は、本明細書に示されるこれら実施例に制限されず、本明細書に開示された原理及び新規性と一致する最も広範な範囲と合致する。 Those skilled in the art can realize or utilize the present invention by the above description of the disclosed examples. Various modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein can be implemented in other embodiments without departing from the spirit or scope of the invention. .. Accordingly, the invention is not limited to these examples set forth herein and is consistent with the broadest scope consistent with the principles and novelty disclosed herein.

本発明の第1態様の実施例は、化学工業から排出される廃油・廃液の高効率浄化処理用の分離装置を提供し、該装置は、貯蔵設備、蒸留分離設備、静的混合設備、重力沈降設備を備え、その中で、
前記貯蔵設備は、軽質易揮発性汚油残液を貯蔵するための球形タンク(C1)と、重質難揮発性汚油残液を貯蔵するための普通貯蔵タンク(C2)とを備え、前記球形タンク(C1)には、清澄液を排出するための第1排出口が設けられ、前記普通貯蔵タンク(C2)には、清澄液を排出するための第2排出口が設けられ、前記第1排出口は、第1ポンプ(P1)を介して第1熱交換器(E1)の入り口側に接続され、前記第2排出口は、第2ポンプ(P2)を介して前記第1熱交換器(E1)の入り口側に接続され、前記第1ポンプ(P1)、第2ポンプ(P2)が前記第1熱交換器(E1)に接続される共通管路には、第1バルブ(V1)が設けられ、
前記蒸留分離設備は、精留塔(T1)を備え、前記精留塔(T1)の内部には、塔頂に位置する塔頂気相排出口、塔外周面に位置する清澄液供給口及び塔底に位置する塔底液相排出口が設けられ、前記第1熱交換器(E1)の出口側が第2熱交換器(E2)、第3熱交換器(E3)を介して前記清澄液供給口に接続され、前記塔頂気相排出口は、前記第1熱交換器(E1)を介して還流タンク(C3)の入り口に接続され、前記精留塔(T1)には、塔頂還流口がさらに設けられ、前記還流タンク(C3)は、還流ポンプ(P3)を介して前記塔頂還流口に接続されて、塔頂の温度を調整して塔頂留出油に要求される品質を制御する液相還流を形成させ、
前記静的混合設備は、静的混合器(M1)を備え、前記静的混合器(M1)には、油類入り口、洗浄水入り口及び油水混合物出口が設けられ、前記第1ポンプ(P1)、第2ポンプ(P2)は、また同一管路を介して該油類入り口に接続され、該同一管路には、第2バルブ(V2)が設けられ、前記還流タンク(C3)は、管路を介して該油類入り口に接続され、還流タンク(C3)と該油類入り口との間には、第3バルブ(V3)が設けられ、
前記重力沈降設備は、重力沈降タンク(C4)を備え、前記重力沈降タンク(C4)には、タンク上面に位置する気相排出口及び油水混合物入り口、タンク下面に位置する清澄液を排出するための第3排出口及び油含有汚水排出口が設けられ、前記油水混合物入り口は、管路を介して前記油水混合物出口に接続され、前記第3排出口は、順次第5ポンプ(P5)、第4バルブ(V4)を介して前記第1熱交換器(E1)に接続され、前記第4バルブ(V4)に接続されていない前記第5ポンプ(P5)の管路には、第5バルブ(V5)が設けられ、前記塔頂気相排出口は、管路を介して前記第5バルブ(V5)の出口に接続され、前記塔頂気相排出口と前記第5バルブ(V5)の出口との間の管路には、第6バルブ(V6)が設けられる。
The embodiment of the first aspect of the present invention provides a separation device for high-efficiency purification treatment of waste oil and waste liquid discharged from the chemical industry, and the device includes storage equipment, distillation separation equipment, static mixing equipment, and gravity. Equipped with sedimentation equipment, in which
The storage facility is provided with a spherical-shaped tank for storing a light volatile dirty oil residual liquid (C1), and a common storage tank for storing the heavy flame volatile dirty oil residual liquid (C2), the front Symbol sphere shape tank (C1), a first outlet for discharging the clarified liquid is provided, wherein the common storage tank (C2), a second outlet for discharging the clarified liquid is provided The first discharge port is connected to the inlet side of the first heat exchanger (E1) via the first pump (P1), and the second discharge port is connected to the first outlet side via the second pump (P2). 1 In the common pipeline connected to the inlet side of the heat exchanger (E1) and the first pump (P1) and the second pump (P2) are connected to the first heat exchanger (E1), the first A valve (V1) is provided,
The distillation separation facility is provided with a rectification tower (T1), and inside the rectification tower (T1), a tower top gas phase discharge port located at the top of the tower, a clear liquid supply port located on the outer peripheral surface of the tower, and a clear liquid supply port are provided. A bottom liquid phase discharge port located at the bottom of the tower is provided, and the outlet side of the first heat exchanger (E1) is the clarified liquid via the second heat exchanger (E2) and the third heat exchanger (E3). The tower top gas phase discharge port is connected to the supply port, is connected to the inlet of the reflux tank (C3) via the first heat exchanger (E1), and is connected to the rectification tower (T1) at the top of the tower. A recirculation port is further provided, and the recirculation tank (C3) is connected to the column top recirculation port via a recirculation pump (P3) to adjust the temperature of the column top and is required for the column top distillate. Forming a liquid phase reflux that controls quality,
The static mixing facility includes a static mixer (M1), and the static mixer (M1) is provided with an oil inlet, a washing water inlet, and an oil-water mixture outlet, and the first pump (P1). , The second pump (P2) is also connected to the oil inlet via the same pipe, a second valve (V2) is provided in the same pipe, and the recirculation tank (C3) is a pipe. A third valve (V3) is provided between the recirculation tank (C3) and the oil inlet, which is connected to the oil inlet via a road.
The gravitational sedimentation equipment comprises a gravity settling tank (C4), the gravitational settling tank (C4) is for discharging a gas phase outlet and the oil-water mixture inlet is located in a tank top, a clear liquid located in the tank bottom surface The third discharge port and the oil-containing sewage discharge port are provided, the oil-water mixture inlet is connected to the oil-water mixture outlet via a pipeline, and the third discharge port is sequentially connected to the fifth pump (P5) and the fifth pump (P5). A fifth valve (P5) is connected to the pipeline of the fifth pump (P5) which is connected to the first heat exchanger (E1) via the four valve (V4) and is not connected to the fourth valve (V4). V5) is provided, and the tower top gas phase discharge port is connected to the outlet of the fifth valve (V5) via a pipeline, and the tower top gas phase discharge port and the outlet of the fifth valve (V5) are provided. A sixth valve (V6) is provided in the conduit between the valve and the valve.

本発明の第1態様の実現可能な形態によれば、前記精留塔(T1)のボトムには、放散蒸気入り口(S1)がさらに設けられている。 According to a feasible embodiment of the first aspect of the present invention, a divergent steam inlet (S1) is further provided at the bottom of the rectification column (T1).

本発明の第2態様の実現可能な形態によれば、前記蒸留−水洗処理方法の手順は、以下のとおりである。
第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を開け、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を閉め、第1ポンプ(P1)を起動させて球形タンク(C1)における清澄液を吸い出すとともに、第2ポンプ(P2)を起動させて普通貯蔵タンク(C2)における清澄液を吸い出す。
生産の要求に対応する割合で球形タンク(C1)及び普通貯蔵タンク(C2)から吸い出された清澄液を混合し、順次第1熱交換器(E1)、第2熱交換器(E2)、第3熱交換器(E3)を介して混合後の清澄液を精留塔(T1)に送り、前記精留塔(T1)で前記清澄液を蒸留処理し、発生させた低沸点炭化水素類物質及び水蒸気を凝縮させ、冷却させた後、還流タンク(C3)に送り、一部の低沸点炭化水素類物質を還流ポンプ(P3)で精留塔(T1)のトップに戻し、還流タンク(C3)からの低沸点炭化水素類物質を静的混合器(M1)に送る。
前記静的混合器(M1)に水を加えて、低沸点炭化水素類物質と水を所定の割合で静的混合器(M1)において混合して洗浄を行い、洗浄して得られた油水混合物を重力沈降タンク(C4)に送り、さらに重力沈降タンク(C4)による不均一相分離により水洗のステップを完了する。
According to the feasible embodiment of the second aspect of the present invention, the procedure of the distillation-water washing treatment method is as follows.
Open the 1st valve (V1), 3rd valve (V3), 5th valve (V5), close the 2nd valve (V2), 4th valve (V4), 6th valve (V6), and close the 1st pump (V6). P1) was allowed to start with sucking the clarified liquid in the sphere-shaped tank (C1), sucked out clarified liquid on plain storage tank (C2) activates the second pump (P2).
Clarified liquid that has been sucked out of the sphere-shaped tank (C1) and common storage tank (C2) at a rate corresponding to the request of producing mixed, order soon first heat exchanger (E1), a second heat exchanger (E2) , The clarified liquid after mixing is sent to the rectifying tower (T1) via the third heat exchanger (E3), and the clarified liquid is distilled and treated in the rectifying tower (T1) to generate low boiling point hydrocarbons. After condensing and cooling similar substances and water vapor, they are sent to the recirculation tank (C3), and some low boiling point hydrocarbon substances are returned to the top of the distillation column (T1) by the recirculation pump (P3), and the recirculation tank. The low boiling point hydrocarbon material from (C3) is sent to the static mixer (M1).
Water is added to the static mixer (M1), and a low boiling point hydrocarbon substance and water are mixed at a predetermined ratio in the static mixer (M1) for washing, and the oil-water mixture obtained by washing is performed. Is sent to the gravity settling tank (C4), and the non-uniform phase separation by the gravity settling tank (C4) completes the washing step.

前記水洗−蒸留処理方法の手順は、以下のとおりである。
第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を閉め、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を開け、第1ポンプ(P1)を起動させて球形タンク(C1)における清澄液を吸い出すとともに、第2ポンプ(P2)を起動させて普通貯蔵タンク(C2)における清澄液を吸い出す。
生産の要求に対応する割合で球形タンク(C1)及び普通貯蔵タンク(C2)から吸い出された清澄液を混合し、混合後の清澄液を静的混合器(M1)に入れる。
前記静的混合器(M1)に水を加えて、前記混合後の清澄液と水を所定の割合で静的混合器(M1)において混合して洗浄を行い、洗浄して得られた油水混合物を重力沈降タンク(C4)に送り、さらに重力沈降タンク(C4)による不均一相分離により水洗のステップを完了し、順次第1熱交換器(E1)、第2熱交換器(E2)、第3熱交換器(E3)を介して水洗後の清澄液を精留塔(T1)に送り、精留塔(T1)で蒸留処理し、低沸点炭化水素類物質と高沸点炭化水素類物質に分離させ、蒸留分離ステップを完了する。
The procedure of the water washing-distillation treatment method is as follows.
Close the 1st valve (V1), 3rd valve (V3), 5th valve (V5), open the 2nd valve (V2), 4th valve (V4), 6th valve (V6), and open the 1st pump (V6). P1) was allowed to start with sucking the clarified liquid in the sphere-shaped tank (C1), sucked out clarified liquid on plain storage tank (C2) activates the second pump (P2).
Clarified liquid that has been sucked out of the sphere-shaped tank (C1) and common storage tank (C2) at a rate corresponding to the requirements of production were mixed, put it clarified liquid after mixing in a static mixer (M1).
Water is added to the static mixer (M1), the clarified liquid after mixing and water are mixed in a static mixer (M1) at a predetermined ratio for washing, and the oil-water mixture obtained by washing is performed. Is sent to the gravity settling tank (C4), and the step of washing with water is completed by the heterogeneous phase separation by the gravity settling tank (C4), and the first heat exchanger (E1), the second heat exchanger (E2), and the second heat exchanger are sequentially completed. 3 The clarified liquid after washing with water is sent to the rectification tower (T1) via the heat exchanger (E3) and distilled in the rectification tower (T1) to obtain low-boiling hydrocarbon substances and high-boiling hydrocarbon substances. Separation completes the distillation separation step.

本発明の第2態様の実現可能な形態によれば、前記球形タンク(C1)の操作温度は、1〜70℃、普通貯蔵タンク(C2)の操作温度は、1〜100℃、球形タンク(C1)、普通貯蔵タンク(C2)の操作圧力は、いずれも0〜0.8MPaであり、
前記精留塔(T1)では、操作温度が常温40〜300℃、操作圧力が0〜0.5MPaであり、
前記静的混合器(M1)では、操作温度が2〜80℃、操作圧力が0〜0.8MPaであり、
前記重力沈降タンク(C4)では、操作温度が2〜80℃、操作圧力が0〜0.5MPaであり、
前記還流タンク(C3)では、操作温度が2〜60℃、操作圧力が0〜0.5MPaである。
According to a second aspect of the feasible embodiment of the present invention, the operating temperature of the pre-Symbol sphere shape tank (C1) is, 1 to 70 ° C., the operating temperature of common storage tank (C2) is, 1 to 100 ° C., spheres The operating pressure of the shape tank (C1) and the ordinary storage tank (C2) is 0 to 0.8 MPa.
In the rectification column (T1), the operating temperature is room temperature 40 to 300 ° C., and the operating pressure is 0 to 0.5 MPa.
In the static mixer (M1), the operating temperature is 2 to 80 ° C. and the operating pressure is 0 to 0.8 MPa.
In the gravity settling tank (C4), the operating temperature is 2 to 80 ° C. and the operating pressure is 0 to 0.5 MPa.
In the reflux tank (C3), the operating temperature is 2 to 60 ° C. and the operating pressure is 0 to 0.5 MPa.

上記技術案から分かるように、従来技術に比べて、本発明の有益な効果は、以下のとおりである。
1.エチレンプラントの各操作ユニット由来の汚油残液を易揮発性、難揮発性の2つの種類に分けて、それぞれ球形タンク(C1)及び普通貯蔵タンク(C2)に供給し、それによって、すべての汚油残液が球形タンク(C1)に供給されることを回避することができる。その後、集中して効率よく浄化処理を行う。
2.清澄液の性質に応じて操作プロセスを切り替えることにより、汚油残液における高品質成分を十分に利用し、汚油残液の利用率を向上させて、環境汚染を低減させる。
3.精留塔(T1)を分離装置として、塔底から水蒸気を吹き込んで油蒸気の分圧を低下させ、塔底の温度を低下させることによって、占有する面積を減少させて、設備投資を低下させ、塔底油の熱重縮合を減少させ、また、塔底の熱量を統合することでエネルギーの利用を最大化させる。
4.化学工業における汚油残液は、集中回収され、効率よく浄化処理されて、その中で下流加工装置により求められる原料性質を満たす回収塔頂留分油の割合は50%〜80%である。塔底釜液と沈降液をブレンドすると、遅延コーキング装置により求められる原料の性質を満たし、又は舶舶用残渣燃料油の性質への要件を満たす。
5.プロセスの柔軟性が高く、即ち、蒸留−水洗の形態も水洗−蒸留の形態も利用可能であり、分岐バルブを設けることにより、廃油原料性質の多様性に対応でき、超重質・超高粘度の汚油残液原料の処理に適用できる。
As can be seen from the above technical proposal, the beneficial effects of the present invention as compared with the prior art are as follows.
1. 1. Volatile the dirty oil residual liquid from each operating unit of an ethylene plant, in two kinds of sparingly volatile, supplied to their respective ball-shaped tank (C1) and common storage tank (C2), whereby , it is possible to avoid that all dirty oil residual liquid is supplied to the spherical-shaped tank (C1). After that, the purification process is concentrated and efficiently performed.
2. By switching the operation process according to the properties of the clarified liquid, the high-quality components in the sewage residual liquid are fully utilized, the utilization rate of the sewage residual liquid is improved, and environmental pollution is reduced.
3. 3. Using the rectification tower (T1) as a separation device, steam is blown from the bottom of the tower to reduce the partial pressure of oil vapor and lower the temperature of the bottom of the tower, thereby reducing the area occupied and reducing capital investment. , Reduces thermal polycondensation of column bottom oil and maximizes energy utilization by integrating the amount of heat in the column bottom.
4. The sewage residual liquid in the chemical industry is centrally recovered and efficiently purified, and the proportion of the distillate at the top of the recovery tower that satisfies the raw material properties required by the downstream processing equipment is 50% to 80%. Blending the bottom kettle liquid and the sedimentation liquid meets the raw material properties required by the delayed caulking device, or the requirements for the properties of marine residual fuel oil.
5. The process is highly flexible, that is, both distillation-water-washing and water-washing-distillation forms can be used, and by providing a branch valve, it is possible to deal with a variety of waste oil raw material properties, and it is ultra-heavy and ultra-high viscosity. It can be applied to the treatment of sewage residual liquid raw materials.

前記貯蔵設備は、軽質易揮発性汚油残液を貯蔵するための球形タンク(C1)と、重質難揮発性汚油残液を貯蔵するための普通貯蔵タンク(C2)とを備え、前記球形タンク(C1)には、清澄液を排出するための第1排出口が設けられ、前記普通貯蔵タンク(C2)には、清澄液を排出するための第2排出口が設けられ、前記第1排出口は、第1ポンプ(P1)を介して第1熱交換器(E1)の入り口側に接続され、前記第2排出口は、第2ポンプ(P2)を介して前記第1熱交換器(E1)の入り口側に接続され、前記第1ポンプ(P1)、第2ポンプ(P2)が前記第1熱交換器(E1)に接続される共通管路には、第1バルブ(V1)が設けられ、
前記蒸留分離設備は、精留塔(T1)を備え、前記精留塔(T1)の内部には、上から下へ順次塔頂気相排出口、清澄液供給口及び塔底液相排出口が設けられ、前記第1熱交換器(E1)の出口側が第2熱交換器(E2)、第3熱交換器(E3)を介して前記清澄液供給口に接続され、前記塔頂気相排出口は、前記第1熱交換器(E1)を介して還流タンク(C3)の入り口に接続され、前記精留塔(T1)には、塔頂還流口がさらに設けられ、前記還流タンク(C3)は、還流ポンプ(P3)を介して前記塔頂還流口に接続されて、塔頂の温度を調整して塔頂留出油に要求される品質を制御する液相還流を形成させ、
前記静的混合設備は、静的混合器(M1)を備え、前記静的混合器(M1)には、油類入り口、洗浄水入り口及び油水混合物出口が設けられ、前記第1ポンプ(P1)、第2ポンプ(P2)は、また同一管路を介して該油類入り口に接続され、該同一管路には、第2バルブ(V2)が設けられ、前記還流タンク(C3)は、管路を介して該油類入り口に接続され、還流タンク(C3)と該油類入り口との間には、第3バルブ(V3)が設けられ、
前記重力沈降設備は、重力沈降タンク(C4)を備え、前記重力沈降タンク(C4)には、上から下へ順次気相排出口、油水混合物入り口、清澄液を排出するための第3排出口、油含有汚水排出口が設けられ、前記油水混合物入り口は、管路を介して前記油水混合物出口に接続され、前記第3排出口は、順次第5ポンプ(P5)、第4バルブ(V4)を介して前記第1熱交換器(E1)に接続され、前記第4バルブ(V4)に接続されていない前記第5ポンプ(P5)の管路には、第5バルブ(V5)が設けられ、前記塔頂気相排出口は、管路を介して前記第5バルブ(V5)の出口に接続され、前記塔頂気相排出口と前記第5バルブ(V5)の出口との間の管路には、第6バルブ(V6)が設けられる。
The storage facility is provided with a spherical-shaped tank for storing a light volatile dirty oil residual liquid (C1), and a common storage tank for storing the heavy flame volatile dirty oil residual liquid (C2), the front Symbol sphere shape tank (C1), a first outlet for discharging the clarified liquid is provided, wherein the common storage tank (C2), a second outlet for discharging the clarified liquid is provided The first discharge port is connected to the inlet side of the first heat exchanger (E1) via the first pump (P1), and the second discharge port is connected to the first outlet side via the second pump (P2). 1 In the common pipeline connected to the inlet side of the heat exchanger (E1) and the first pump (P1) and the second pump (P2) are connected to the first heat exchanger (E1), the first A valve (V1) is provided,
The distillation separation facility is provided with a rectification tower (T1), and inside the rectification tower (T1), a column top gas phase discharge port, a clarification liquid supply port, and a tower bottom liquid phase discharge port are sequentially provided from top to bottom. Is provided, and the outlet side of the first heat exchanger (E1) is connected to the clear liquid supply port via the second heat exchanger (E2) and the third heat exchanger (E3), and the column top gas phase. The discharge port is connected to the inlet of the reflux tank (C3) via the first heat exchanger (E1), and the rectification column (T1) is further provided with a column top reflux port, and the reflux tank (T1) is provided. C3) is connected to the column top reflux port via a reflux pump (P3) to form a liquid phase reflux that regulates the temperature of the column top to control the quality required for the column top distillate.
The static mixing facility includes a static mixer (M1), and the static mixer (M1) is provided with an oil inlet, a washing water inlet, and an oil-water mixture outlet, and the first pump (P1). , The second pump (P2) is also connected to the oil inlet via the same pipe, a second valve (V2) is provided in the same pipe, and the recirculation tank (C3) is a pipe. A third valve (V3) is provided between the recirculation tank (C3) and the oil inlet, which is connected to the oil inlet via a road.
The gravity settling facility is provided with a gravity settling tank (C4), and the gravity settling tank (C4) has a gas phase discharge port, an oil-water mixture inlet, and a third discharge port for discharging a clear liquid in order from top to bottom. , An oil-containing sewage discharge port is provided, the oil-water mixture inlet is connected to the oil-water mixture outlet via a pipeline, and the third discharge port is sequentially connected to a fifth pump (P5) and a fourth valve (V4). A fifth valve (V5) is provided in the pipeline of the fifth pump (P5) which is connected to the first heat exchanger (E1) and not connected to the fourth valve (V4). The tower top gas phase discharge port is connected to the outlet of the fifth valve (V5) via a pipeline, and the pipe between the tower top gas phase discharge port and the outlet of the fifth valve (V5). A sixth valve (V6) is provided on the road.

1つの実現可能な形態では、前記精留塔(T1)は、精留部及びストリッピング部を備え、精留部には、高性能パッキング分離部材(3−20段の理論段に相当)が使用され、ストリッピング部には、コーキング防止可能な大容量ランダムパッキング(1−3段の理論段に相当)が使用され、供給段は気液を供給してフラッシュ蒸発を行う空間(1段の理論段に相当)であり、塔頂には、塔頂の温度を調整して塔頂留出油に要求される品質を制御するための液相還流が設けられる。1つの実現可能な形態では、前記精留塔(T1)のボトムには、放散蒸気入り口(S1)がさらに設けられており、熱量を供給して気相還流を発生させるためにリボイラーが塔底に設けられるのではなく、塔底の液面の上方へ水蒸気を直接吹き込んで放散を行い、それにより、油蒸気の分圧を低下させて、ストリッピング作用を高めるという効果を奏する。 In one feasible form, the rectification column (T1) comprises a rectification section and a stripping section, the rectification section having a high performance packing separation member (corresponding to a 3-20 theoretical step). A large-capacity random packing (corresponding to the theoretical stage of 1-3 stages) that can prevent coking is used for the stripping part, and the supply stage is a space for supplying gas and liquid to perform flash evaporation (1 stage). The top of the tower is provided with a liquid-phase reflux for adjusting the temperature of the top and controlling the quality required for the distillate at the top. In one feasible form, the bottom of the rectification column (T1 ) is further provided with a divergent steam inlet (S1) , and a reboiler is provided at the bottom of the column to supply heat and generate gas phase reflux. Instead of being provided in the tower, water vapor is directly blown above the liquid level at the bottom of the tower to dissipate it, thereby reducing the partial pressure of oil vapor and enhancing the stripping action.

1つの実現可能な形態では、前記第1バルブ(V1)と第3バルブ(V3)との間には、分岐バルブ(V7)が設けられ、前記分岐バルブ(V7)が開かれたとき、分岐バルブ(V7)を通った一部の低沸点炭化水素類物質は第1バルブ(V1)の方向へ進んで、第1熱交換器(E1)の上部の位置で第1バルブ(V1)からの清澄液と混合し、混合後に第1熱交換器(E1)を通って第2熱交換器(E2)へ向かう。汚油残液の性質を、装置に入る前に調整することはできないが、分岐バルブ(V7)及び対応する操作によって可能になり、このため、極めて重くて(標準密度≦1050kg/m)粘度が高い(50℃動粘度≦200mm/s)汚油残液を処理して分離することができ、分離装置及び方法の汎用性を向上させることができる。 In one feasible form, a branch valve (V7) is provided between the first valve (V1) and the third valve (V3) to branch when the branch valve (V7) is opened. Some low-boiling hydrocarbon material that has passed through the valve (V7) travels toward the first valve (V1) and is located above the first heat exchanger (E1) from the first valve (V1). It is mixed with the clarified liquid, and after mixing, it goes through the first heat exchanger (E1) to the second heat exchanger (E2). The nature of the sewage residue cannot be adjusted before entering the device, but it is made possible by the branch valve (V7) and the corresponding operation, which makes it extremely heavy (standard density ≤ 1050 kg / m 3 ) and viscosity. (50 ° C. kinematic viscosity ≤ 200 mm 2 / s) can be treated and separated, and the versatility of the separation device and method can be improved.

清澄液の品質が高い場合、スキーム1に従って操作を行い(第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を開け、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を閉める)、球形タンク(C1)からの軽質汚油残液(F1)と普通貯蔵タンク(C2)からの重質汚油残液(F2)とを生産の要求に従って管路において混合し、第バルブ(V)を通過させて、順次塔頂留分油(D)、塔底重質油(R)と熱交換させ、最後に、中圧蒸気と熱交換させて、精留塔(T1)に入れて分離させる。放散蒸気は、制御バルブを操作することにより精留塔の塔底の液面の上方に至り、塔底へ流れる液相流れを放散させ、それにおける軽質成分をストリッピングする。精留塔(T1)では、操作温度が40〜300℃、操作圧力が0.1〜0.5MPa、塔全体の理論段数が5〜24段である。低沸点の軽質成分及び水蒸気は、下から上へと塔頂に流れて、熱交換器、水冷器を通過した後、操作温度2〜60℃、操作圧力0.1〜0.5MPaの還流タンク(C3)に入る。それにおける気相物質は、気体炭化水素(G)としてガスパイプラインに入り、油含有汚水は、汚水処理装置に排出され、液相の塔頂留分油(D)は、一部が塔頂冷還流として塔頂の温度を制御し、塔頂留分油(D)の乾燥ポイントを確保し、過剰な部分が塔頂留分油として水洗ユニットに送られる。蒸留により得られた頂留分油(D)は、第バルブ(V)を通過した後、一定の割合の新しい水(油と水の質量比は3:1)に同伴して、操作温度2〜80℃、操作圧力0.1〜0.8MPaの静的混合器(M1)に入り強力に混合され、強力に混合されると、油における水に可溶な塩類、非炭化水素類化合物を溶解させることができ、次に、操作温度2〜80℃、操作圧力0.1〜0.5MPaの重力沈降タンク(C4)に送り油水分離を行う。重力沈降タンク(C4)のボトムの水ドラムにおける洗浄廃水と還流タンク(C3)における油含有汚水は、一緒に汚水処理装置に送られ、洗浄された留分油は、下流の水素化装置の原料タンクに入り、水素化精製原料油として高品質の油製品に変換される。 If the quality of the clarified liquid is high, operate according to Scheme 1 (1st valve (V1), 3rd valve (V3), 5th valve (V5) open, 2nd valve (V2), 4th valve (V4). ), sixth closing valve (V6)), from spherical-shaped tank (C1) light fouling oil residual liquid (F1) and ordinary storage heavy fouling oil bottoms from the tank (C2) (F2) and the production Mix in the pipeline as required , pass through the first valve (V 1 ), sequentially exchange heat with the tower top distillate oil (D), the tower bottom heavy oil (R), and finally with the medium pressure steam. The heat is exchanged, and the mixture is placed in a rectification column (T1) for separation. By operating the control valve, the released vapor reaches above the liquid level at the bottom of the rectification tower, dissipates the liquid phase flow to the bottom of the rectification tower, and strips the light components in the liquid phase flow. In the rectification column (T1), the operating temperature is 40 to 300 ° C., the operating pressure is 0.1 to 0.5 MPa, and the theoretical plate number of the entire column is 5 to 24. Light components with a low boiling point and water vapor flow from the bottom to the top of the column, pass through a heat exchanger and a water cooler, and then a reflux tank with an operating temperature of 2 to 60 ° C and an operating pressure of 0.1 to 0.5 MPa. Enter (C3). The gas phase substance in it enters the gas pipeline as a gaseous hydrocarbon (G), the oil-containing sewage is discharged to the sewage treatment device, and the liquid phase top distillate fraction (D) is partially cooled at the top. The temperature of the top of the tower is controlled as a reflux, a drying point of the top distillate oil (D) is secured, and the excess portion is sent to the washing unit as the top distillate oil. By distillation resulting top distillate oil (D) passes through the third valve (V 3), (the weight ratio of oil and water 3: 1) fresh water of a certain percentage by entrained, It enters a static mixer (M1) with an operating temperature of 2 to 80 ° C. and an operating pressure of 0.1 to 0.8 MPa and is strongly mixed. When strongly mixed, water-soluble salts and non-hydrocarbons in oil are used. Similar compounds can be dissolved, and then oil-water separation is performed by feeding to a gravity settling tank (C4) having an operating temperature of 2 to 80 ° C. and an operating pressure of 0.1 to 0.5 MPa. The washed wastewater in the water drum at the bottom of the gravity settling tank (C4) and the oil-containing sewage in the recirculation tank (C3) are sent together to the sewage treatment equipment, and the washed distillate is used as the raw material for the downstream hydrogenation equipment. It enters the tank and is converted into high quality oil products as hydrorefined feedstock.

実施例A
清澄液の品質が低い場合、スキーム2に従って操作を行い(第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を閉め、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を開ける)、球形タンク(C1)からの軽質汚油残液(F1)と普通貯蔵タンク(C2)からの重質汚油残液(F2)を生産の要求に従って管路において混合させ、第バルブ(V)を通過させて、一定の割合の新しい水(油と水の質量比は4:1)に同伴して静的混合器(M1)に入れて、強力に混合させた後、重力沈降タンク(C4)に送り、油水分離を行う。静的混合器(M1)では、操作温度が2〜80℃、操作圧力が0.1〜0.8MPaである。強力に混合した後、油における水に可溶な塩類、非炭化水素類混合物を溶解させることができ、次に、管路を介して油水混合物を、操作温度2〜80℃、操作圧力0.1〜0.5MPaの重力沈降タンク(C4)に入れて、洗浄沈降操作により不均一相分離を行い、それによって気体炭化水素(G)は、タンクのトップから抜き出され、管路、制御バルブを介してガスパイプラインに導入され、洗浄水は、タンクの底部の水ドラムから汚水処理装置に排出され、洗浄後の清澄液は、タンクのボトムから抜き出され、管路、第バルブ(V)を通過した後、順次塔頂留分油(D)、塔底重質油(R)と熱交換し、最後に中圧蒸気と熱交換し、精留塔(T1)に入って分離される。放散蒸気は、制御バルブを操作することにより精留塔(T1)の塔底の液面の上方に送られ、塔底へ流れる液相物流を放散させて、それにおける軽質成分をストリッピングする。精留塔(T1)では、操作温度が40〜300℃、操作圧力が0.1〜0.5MPa、塔全体の理論段数が5〜24段である。低沸点の軽質成分及び水蒸気は、下から上へと塔頂に流れて、熱交換器、水冷器を通過した後、操作温度2〜60℃、操作圧力0.1〜0.5MPaの還流タンク(C3)に送られる。それにおける気相物質は、気体炭化水素(G)としてガスパイプラインに入り、油含有汚水は、重力沈降タンク(C4)の洗浄水とともに汚水処理装置に排出され、液相の塔頂留分油(D)は、一部が塔頂冷還流として塔頂の温度を制御し、塔頂留分油(D)の乾燥ポイントを確保し、過剰な部分が塔頂留分油として下流の水素化装置の原料タンクに送られ、水素化精製原料油として高品質の油製品に変換される。
Example A
If the quality of the clarified liquid is low, operate according to Scheme 2 (1st valve (V1), 3rd valve (V3), 5th valve (V5) closed, 2nd valve (V2), 4th valve (V4). ), the sixth opening valves (V6)), a request producing heavy fouling oil residual liquid (F2) from the light-fouling oil from spherical-shaped tank (C1) bottoms (F1) and ordinary storage tank (C2) Mix in the pipeline according to, pass through the second valve (V 2 ) and enter the static mixer (M1) with a certain proportion of fresh water (oil to water mass ratio 4: 1). After mixing vigorously, it is sent to a gravity settling tank (C4) to separate oil and water. In the static mixer (M1), the operating temperature is 2 to 80 ° C. and the operating pressure is 0.1 to 0.8 MPa. After vigorous mixing, the water-soluble salt and non-hydrocarbon mixture in the oil can be dissolved, and then the oil-water mixture is passed through the conduit at an operating temperature of 2-80 ° C. and an operating pressure of 0. It is placed in a gravity settling tank (C4) of 1 to 0.5 MPa, and non-uniform phase separation is performed by a washing and settling operation, whereby the gaseous hydrocarbon (G) is extracted from the top of the tank, and the pipeline and control valve. Introduced into the gas pipeline via the tank, the wash water is discharged from the water drum at the bottom of the tank to the sewage treatment device, and the clarified liquid after washing is withdrawn from the bottom of the tank, and the pipeline, the 4th valve (V). After passing through 4 ), heat is exchanged with the tower top distillate oil (D) and the tower bottom heavy oil (R) in sequence, and finally with medium pressure steam, and the valve enters the rectification tower (T1) and separates. Will be done. The released vapor is sent above the liquid level at the bottom of the rectification tower (T1) by operating the control valve, dissipates the liquid phase distribution flowing to the bottom of the rectification tower (T1), and strips the light components therein. In the rectification column (T1), the operating temperature is 40 to 300 ° C., the operating pressure is 0.1 to 0.5 MPa, and the theoretical plate number of the entire column is 5 to 24. Light components with a low boiling point and water vapor flow from the bottom to the top of the column, pass through a heat exchanger and a water cooler, and then a reflux tank with an operating temperature of 2 to 60 ° C and an operating pressure of 0.1 to 0.5 MPa. It is sent to (C3). The gas phase material in it enters the gas pipeline as a gaseous hydrocarbon (G), and the oil-containing sewage is discharged to the sewage treatment device together with the wash water of the gravity settling tank (C4), and the liquid phase tower top distillate oil (liquid phase distillate). In D), the temperature of the top of the tower is controlled by partially cooling and recirculating the top of the tower, a drying point of the top distillate oil (D) is secured, and the excess portion is used as the top distillate in the downstream hydrocarbon device. It is sent to the raw material tank of the company and converted into high quality oil products as hydrocarbon refined raw material oil.

実施例1
化学工業における汚油残液の高効率浄化処理用の装置については、処理能力が2t/hであり、本例では、15種類の廃油を供給混合原料とし、その中で、6種類の汚油残液は、低沸点軽質成分(標準密度800kg/m未満)であり、65質量%を占め、9種類の汚油残液は、高沸点重質成分(標準密度800kg/m超)であり、35質量%を占めており、蒸留−水洗プロセスを用い、具体的な操作は、以下のとおりである。
形タンク(C1)では、操作温度が25℃、操作圧力が0.35MPaであり、普通貯蔵タンク(C2)では、操作温度が25℃、操作圧力が0MPaである。流出流れの質量流量については、球形タンク(C1)では、65%、普通貯蔵タンク(C2)では、35%であるように制御しながら、管路において常温で混合する。
精留塔(T1)の精留部は、2段規則パッキング(理論段数12段)であり、ストリッピング部は、1段ランダムパッキング(理論段数3段)であり、汚油残液供給位置は、上から第2段と第3段のパッキングの間にあり、放散蒸気供給位置は、塔底の液面の上方(第3段パッキングの下部)にあり、塔頂からは、低沸点の留分油(即ち低沸点炭化水素類物質)及び水蒸気、塔底からは、高沸点重質油(即ち高沸点炭化水素類物質)が流出する。塔頂の還流比は0.7であり、塔底から吹き込まれる水蒸気は、塔底の重質油の5%(質量)であり、油蒸気の分圧を低下させて塔底温度を低下させる。塔底の操作温度が225℃、塔頂の操作温度が113℃、操作圧力が0.13MPaである。還流タンク(C3)では、操作温度が40℃、操作圧力が0.1MPaである。
蒸留により得られた留分油は、静的混合器(M1)に送られる。静的混合器(M1)に入った油と新しい常温水との質量比は、4:1であり、静的混合器(M1)では、操作温度が37〜38℃、操作圧力が0.6MPaである。
重力沈降タンク(C4)では、操作温度が37℃、操作圧力が0.25MPaである。
塔頂の熱い材料も塔底の熱い材料も新しい原料と熱交換し、熱統合を行い、それにより、できるだけ熱量を回収して、冷却水の使用量を低減させる。
上記条件によれば、回収可能な留分油の収率は、63.12%に達し、下流のガソリン水素化装置により求められる原料の性質を満たす。塔底重質油及び沈降液をブレンドすると、遅延コーキング装置により求められる原料の性質を満たし、又は舶残渣燃料油の性質を満たす。
実施例1に必要な汚油残液は、比較的クリーンであり、得られた水洗留分油は、それ以上クリーンであり、水洗水の使用量低減に有利であり、さらに水洗には、乳化現象が発生しない。
Example 1
The equipment for high-efficiency purification treatment of sewage residual liquid in the chemical industry has a treatment capacity of 2 t / h. In this example, 15 types of waste oil are used as supply mixed raw materials, and 6 types of sewage oil are used. The residual liquid is a low boiling point light component (standard density less than 800 kg / m 3 ) and occupies 65% by mass, and the nine types of sewage residual liquid are high boiling point heavy components (standard density 800 kg / m 3 or more). Yes, it accounts for 35% by mass, and the specific operation using the distillation-washing process is as follows.
In spherical-shaped tank (C1), operating temperature of 25 ° C., the operating pressure is 0.35 MPa, the ordinary storage tank (C2), operating temperature of 25 ° C., the operation pressure is 0 MPa. The mass flow rate of the effluent stream, the sphere-shaped tank (C1), 65% in ordinary storage tank (C2), while controlling the 35% are mixed at room temperature in the conduit.
The rectifying part of the rectifying tower (T1) has two-stage regular packing (theoretical plate number of 12 stages), the stripping part has one-stage random packing (theoretical plate number of three stages), and the sewage residual liquid supply position is. From the top, between the 2nd and 3rd stage packing, the divergent steam supply position is above the liquid level at the bottom of the tower (lower part of the 3rd stage packing), and from the top of the tower, low boiling point retention High boiling point heavy oil (that is, high boiling point hydrocarbon substance) flows out from the oil separation (that is, low boiling point hydrocarbon substance) and steam, and from the bottom of the column. The reflux ratio at the top of the tower is 0.7, and the water vapor blown from the bottom of the tower is 5% (mass) of the heavy oil at the bottom of the tower, which lowers the partial pressure of the oil vapor and lowers the temperature of the bottom of the tower. .. The operating temperature at the bottom of the tower is 225 ° C, the operating temperature at the top of the tower is 113 ° C, and the operating pressure is 0.13 MPa. In the reflux tank (C3), the operating temperature is 40 ° C. and the operating pressure is 0.1 MPa.
The distillate obtained by distillation is sent to a static mixer (M1). The mass ratio of the oil contained in the static mixer (M1) to the new room temperature water is 4: 1. In the static mixer (M1), the operating temperature is 37 to 38 ° C. and the operating pressure is 0.6 MPa. Is.
In the gravity settling tank (C4), the operating temperature is 37 ° C. and the operating pressure is 0.25 MPa.
Both the hot material at the top of the tower and the hot material at the bottom of the tower exchange heat with new raw materials and perform heat integration, thereby recovering as much heat as possible and reducing the amount of cooling water used.
According to the above conditions, the yield of recoverable distillate oil reaches 63.12%, which satisfies the properties of the raw material required by the downstream gasoline hydrogenator. When the column bottom heavy oil and the sediment are blended, the properties of the raw material required by the delayed caulking device are satisfied, or the properties of the marine residual fuel oil are satisfied.
The sewage residual liquid required for Example 1 is relatively clean, and the obtained water-washed fractional oil is more clean, which is advantageous for reducing the amount of water-washed water used, and is further emulsified for washing with water. The phenomenon does not occur.

実施例2
化学工業における汚油残液の高効率浄化処理用の装置は、処理能力2t/hであり、汚油残液には炭素粒子の固形分不純物が含まれ、且つアスファルテンが多い場合、まず蒸留すると、物質移動分離部材に垢が発生しやすく、長周期の運転に悪影響を及ぼす。蒸留を先に行う場合であっても、実施例2によれば、垢の発生を低減できるため、実施例2が好ましく、装置の安全性、運転の安定性が確保できる。
本例では、15種類の廃油を供給混合原料とし、その中で、5種類の汚油残液は、低沸点軽質成分(標準密度800kg/m未満)であり、54質量%を占め、10種類の汚油残液は、高沸点重質成分(標準密度800kg/m超)であり、46質量%を占めており、蒸留−水洗プロセスを用い、具体的な操作は、以下のとおりである。
形タンク(C1)では、操作温度が25℃、操作圧力が0.35MPa、普通貯蔵タンク(C2)では、操作温度が25℃、操作圧力が0MPaである。流出流れの質量流量については、球形タンク(C1)では、54%、普通貯蔵タンク(C2)では、46%であるように制御しながら、管路において常温で混合する。
精留塔(T1)の精留部は、2段規則パッキング(理論段数12段)であり、ストリッピング部は、1段ランダムパッキング(理論段数3段)であり、汚油残液供給位置は、上から第2段と第3段のパッキングの間にあり、放散蒸気供給位置は、塔底の液面の上方(第3段パッキングの下部)にあり、塔頂からは、低沸点留分油及び水蒸気、塔底からは、高沸点重質油が流出する。塔頂の還流比は、0.67であり、塔底から吹き込まれる水蒸気は、塔底の重質油の5%(質量)であり、塔底の操作温度が227℃、塔頂の操作温度が115℃、操作圧力が0.13MPaである。還流タンク(C3)では、操作温度が40℃、操作圧力が0.1MPaである。
蒸留により得られた留分油は、静的混合器(M1)に送られる。静的混合器(M1)に入った油と新しい常温水との質量比は、4:1であり、静的混合器(M1)では、操作温度が37〜38℃、操作圧力が0.6MPaである。
重力沈降タンク(C4)では、操作温度が37℃、操作圧力が0.25MPaである。
上記条件によれば、回収可能な留分油の収率は、52.1%に達し、下流のガソリン水素化装置により求められる原料の性質を満たすものの、指標の一部がぎりぎりで合格することとなる。塔底重質油及び沈降液をブレンドすると、遅延コーキング装置により求められる原料の性質を満たし、又は舶用残渣燃料油の性質を満たす。
Example 2
The equipment for high-efficiency purification treatment of sewage residual liquid in the chemical industry has a treatment capacity of 2 t / h, and if the sewage residual liquid contains solid content impurities of carbon particles and has a large amount of asphaltene, it should be distilled first. , The mass transfer separation member is prone to stains, which adversely affects long-cycle operation. Even when distillation is performed first, according to Example 2, the generation of dirt can be reduced, so that Example 2 is preferable, and the safety of the apparatus and the stability of operation can be ensured.
In this example, the 15 kinds of waste oil and supplying mixed material, in which five types of fouling oil bottoms, a low boiling light components (less than standard density 800 kg / m 3), accounting for 54 mass%, 10 The type of sewage residual liquid is a high boiling point heavy component (standard density over 800 kg / m 3 ), occupies 46% by mass, uses a distillation-washing process, and the specific operation is as follows. is there.
In spherical-shaped tank (C1), operating temperature of 25 ° C., the operating pressure is 0.35 MPa, the ordinary storage tank (C2), operating temperature of 25 ° C., the operating pressure is 0 MPa. The mass flow rate of the effluent stream, the sphere-shaped tank (C1), 54% in ordinary storage tank (C2), while controlled to be 46%, are mixed at room temperature in the conduit.
The rectifying part of the rectifying tower (T1) has two-stage regular packing (theoretical plate number of 12 stages), the stripping part has one-stage random packing (theoretical plate number of three stages), and the sewage residual liquid supply position is. , Between the 2nd and 3rd stage packing from the top, the divergent steam supply position is above the liquid level at the bottom of the tower (lower part of the 3rd stage packing), and from the top of the tower, a low boiling point distillate. High boiling point heavy oil flows out from oil, steam, and the bottom of the column. The recirculation ratio of the tower top is 0.67, the water vapor blown from the tower bottom is 5% (mass) of the heavy oil at the bottom, the operating temperature of the tower bottom is 227 ° C, and the operating temperature of the tower top. Is 115 ° C. and the operating pressure is 0.13 MPa. In the reflux tank (C3), the operating temperature is 40 ° C. and the operating pressure is 0.1 MPa.
The distillate obtained by distillation is sent to a static mixer (M1). The mass ratio of the oil contained in the static mixer (M1) to the new room temperature water is 4: 1. In the static mixer (M1), the operating temperature is 37 to 38 ° C. and the operating pressure is 0.6 MPa. Is.
In the gravity settling tank (C4), the operating temperature is 37 ° C. and the operating pressure is 0.25 MPa.
According to the above conditions, the yield of recoverable distillate oil reaches 52.1%, which satisfies the properties of the raw material required by the downstream gasoline hydrogenator, but only a part of the index passes. Will be. When the column bottom heavy oil and the sediment are blended, the properties of the raw material required by the delayed caulking device are satisfied, or the properties of the marine residual fuel oil are satisfied.

実施例3
化学工業における汚油残液の高効率浄化処理用の装置であって、本例では、12種類の汚油残液を供給混合原料とし、その中で、3種類の汚油残液は、低沸点軽質成分(標準密度800kg/m未満)であり、21質量%であり、9種類の汚油残液は、高沸点重質成分(標準密度800kg/m超)であり、そのうちの4種類の汚油残液は、超重質・超高粘度の多環芳香族炭化水素及びアスファルテン成分であり、79質量%を占めており、混合後の原料は、標準密度1060kg/m、50℃動粘度≦203mm/sに達する。装置については、処理能力が1.6t/hであり、蒸留−水洗プロセスを用い、具体的な操作は、以下のとおりである。
形タンク(C1)では、操作温度が25℃、操作圧力が0.35MPa、普通貯蔵タンク(C2)では、操作温度が57℃、操作圧力が0MPaである。流出流れの質量流量については、球形タンク(C1)では、16%、普通貯蔵タンク(C2)では、84%であるように制御しながら、管路において常温で混合する。
精留塔(T1)の精留部は、2段規則パッキング(理論段数12段)であり、ストリッピング部は、1段ランダムパッキング(理論段数3段)であり、汚油残液供給位置は、上から第2段と第3段のパッキングの間にあり、放散蒸気供給位置は、塔底の液面の上方(第3段のパッキングの下部)にあり、塔頂からは、低沸点の留分油及び水蒸気、塔底からは、高沸点の重質油が流出する。塔頂の還流比は、0.68であり、塔底から吹き込まれる水蒸気は、塔底重質油の5%(質量)であり、油蒸気の分圧を低下させて塔底温度を低下させる。塔底の操作温度が225℃、塔頂の操作温度が114℃、操作圧力が0.13MPaである。還流タンク(C3)では、操作温度が40℃、操作圧力が0.1MPaである。
蒸留により得られた留分油は、一部が0.6702/hで循環分岐バルブを通過してり、重質原料と混合し、残りの一部が0.367t/hで静的混合器(M1)に送られる。静的混合器(M1)に入った油と新しい常温水との質量比は、4:1であり、静的混合器(M1)では、操作温度が37〜38℃、操作圧力が0.6MPaである。
重力沈降タンク(C4)では、操作温度が37℃、操作圧力が0.25MPaである。
塔頂の熱い材料も塔底の熱い材料も新しい原料と熱交換し、熱統合を行い、それにより、できるだけ熱量を回収して、冷却水の使用量を低減させる。
上記条件によれば、超重質・超高粘度の汚油残液材料を処理して、回収可能な留分油収率は、20.58%に達し、下流のガソリン水素化装置により求められる原料の性質をたす。塔底重質油及び沈降液をブレンドすると、遅延コーキング装置により求められる原の性質を満たし、又は舶用残渣燃料油の性質を満たす。
Example 3
A device for high-efficiency purification treatment of sewage residual liquid in the chemical industry. In this example, 12 types of sewage residual liquid are used as a feed mixture, and among them, 3 types of sewage residual liquid are low. It is a light boiling component (standard density less than 800 kg / m 3 ) and is 21% by mass, and 9 kinds of sewage residual liquids are high boiling heavy components (standard density 800 kg / m 3 or more), and 4 of them. The types of sewage residual liquid are ultra-heavy and ultra-high viscosity polycyclic aromatic hydrocarbons and asphaltene components, which account for 79% by mass, and the raw material after mixing has a standard density of 1060 kg / m 3 , 50 ° C. The kinematic viscosity reaches ≤203 mm 2 / s. The apparatus has a processing capacity of 1.6 t / h, uses a distillation-water washing process, and the specific operation is as follows.
In spherical-shaped tank (C1), operating temperature of 25 ° C., the operating pressure is 0.35 MPa, the ordinary storage tank (C2), operating temperature of 57 ° C., the operating pressure is 0 MPa. The mass flow rate of the effluent stream, the sphere-shaped tank (C1), 16% in ordinary storage tank (C2), while controlling the 84% are mixed at room temperature in the conduit.
The rectifying part of the rectifying tower (T1) has two-stage regular packing (theoretical plate number of 12 stages), the stripping part has one-stage random packing (theoretical plate number of three stages), and the sewage residual liquid supply position is. From the top, between the 2nd and 3rd stage packing, the divergent steam supply position is above the liquid level at the bottom of the tower (below the 3rd stage packing), and from the top of the tower, the boiling point is low. Distillate oil, steam, and heavy oil with a high boiling point flow out from the bottom of the column. The reflux ratio at the top of the column is 0.68, and the water vapor blown from the bottom of the column is 5% (mass) of the heavy oil at the bottom of the column, which lowers the partial pressure of the oil vapor and lowers the temperature of the bottom of the column. .. The operating temperature at the bottom of the tower is 225 ° C, the operating temperature at the top of the tower is 114 ° C, and the operating pressure is 0.13 MPa. In the reflux tank (C3), the operating temperature is 40 ° C. and the operating pressure is 0.1 MPa.
A part of the distillate obtained by distillation passes through the circulation branch valve at 0.6702 / h and is mixed with the heavy raw material, and the other part is a static mixer at 0.367 t / h. It is sent to (M1). The mass ratio of the oil contained in the static mixer (M1) to the new room temperature water is 4: 1. In the static mixer (M1), the operating temperature is 37 to 38 ° C. and the operating pressure is 0.6 MPa. Is.
In the gravity settling tank (C4), the operating temperature is 37 ° C. and the operating pressure is 0.25 MPa.
Both the hot material at the top of the tower and the hot material at the bottom of the tower exchange heat with new raw materials and perform heat integration, thereby recovering as much heat as possible and reducing the amount of cooling water used.
According to the above conditions, the yield of distillate oil that can be recovered by treating an ultra-heavy and ultra-high viscosity sewage residual liquid material reaches 20.58%, which is a raw material required by a downstream gasoline hydration device. Add to the nature of. When the column bottom heavy oil and the sediment are blended, they satisfy the original properties required by the delayed caulking device or the properties of marine residual fuel oil.

Claims (7)

化学工業における汚油残液の高効率浄化処理用の分離装置であって、
貯蔵設備、蒸留分離設備、静的混合設備、重力沈降設備を備え、
前記貯蔵設備は、軽質易揮発性汚油残液を貯蔵するための負荷球形タンク(C1)と、重質難揮発性汚油残液を貯蔵するための普通貯蔵タンク(C2)とを備え、前記負荷球形タンク(C1)には、清澄液を排出するための第1排出口が設けられ、前記普通貯蔵タンク(C2)には、清澄液を排出するための第2排出口が設けられ、前記第1排出口は、第1ポンプ(P1)を介して第1熱交換器(E1)の入り口側に接続され、前記第2排出口は、第2ポンプ(P2)を介して前記第1熱交換器(E1)の入り口側に接続され、前記第1ポンプ(P1)、第2ポンプ(P2)が前記第1熱交換器(E1)に接続される共通管路には、第1バルブ(V1)が設けられ、
前記蒸留分離設備は、精留塔(T1)を備え、前記精留塔(T1)の内部には、上から下へ順次塔頂気相排出口、清澄液供給口及び塔底液相排出口が設けられ、前記第1熱交換器(E1)の出口側が第2熱交換器(E2)、第3熱交換器(E3)を介して前記清澄液供給口に接続され、前記塔頂気相排出口は、前記第1熱交換器(E1)を介して還流タンク(C3)の入り口に接続され、前記精留塔(T1)には、塔頂還流口がさらに設けられ、前記還流タンク(C3)は、還流ポンプ(P3)を介して前記塔頂還流口に接続されて、塔頂の温度を調整して塔頂留出油に要求される品質を制御する液相還流を形成させ、
前記静的混合設備は、静的混合器(M1)を備え、前記静的混合器(M1)には、油類入り口、洗浄水入り口及び油水混合物出口が設けられ、前記第1ポンプ(P1)、第2ポンプ(P2)は、また同一管路を介して該油類入り口に接続され、該同一管路には、第2バルブ(V2)が設けられ、前記還流タンク(C3)は、管路を介して該油類入り口に接続され、還流タンク(C3)と該油類入り口との間には、第3バルブ(V3)が設けられ、
前記重力沈降設備は、重力沈降タンク(C4)を備え、前記重力沈降タンク(C4)には、上から下へ順次気相排出口、油水混合物入り口、清澄液を排出するための第3排出口、油含有汚水排出口が設けられ、前記油水混合物入り口は、管路を介して前記油水混合物出口に接続され、前記第3排出口は、順次第5ポンプ(P5)、第4バルブ(V4)を介して前記第1熱交換器(E1)に接続され、前記第4バルブ(V4)に接続されていない前記第5ポンプ(P5)の管路には、第5バルブ(V5)が設けられ、前記塔頂気相排出口は、管路を介して前記第5バルブ(V5)の出口に接続され、前記塔頂気相排出口と前記第5バルブ(V5)の出口との間の管路には、第6バルブ(V6)が設けられる、
ことを特徴とする化学工業における汚油残液の高効率浄化処理用の分離装置。
A separation device for high-efficiency purification treatment of sewage residual liquid in the chemical industry.
Equipped with storage equipment, distillation separation equipment, static mixing equipment, gravity sedimentation equipment,
The storage facility includes a load spherical tank (C1) for storing light and easily volatile sewage residual liquid and a normal storage tank (C2) for storing heavy and difficult volatile sewage residual liquid. The load spherical tank (C1) is provided with a first discharge port for discharging the clarified liquid, and the ordinary storage tank (C2) is provided with a second discharge port for discharging the clarified liquid. The first discharge port is connected to the inlet side of the first heat exchanger (E1) via the first pump (P1), and the second discharge port is connected to the first through the second pump (P2). A first valve is provided in a common pipeline connected to the inlet side of the heat exchanger (E1) and to which the first pump (P1) and the second pump (P2) are connected to the first heat exchanger (E1). (V1) is provided,
The distillation separation facility is provided with a rectification tower (T1), and inside the rectification tower (T1), a column top gas phase discharge port, a clarification liquid supply port, and a tower bottom liquid phase discharge port are sequentially provided from top to bottom. Is provided, and the outlet side of the first heat exchanger (E1) is connected to the clear liquid supply port via the second heat exchanger (E2) and the third heat exchanger (E3), and the column top gas phase. The discharge port is connected to the inlet of the reflux tank (C3) via the first heat exchanger (E1), and the rectification column (T1) is further provided with a column top reflux port, and the reflux tank (T1) is provided. C3) is connected to the column top reflux port via a reflux pump (P3) to form a liquid phase reflux that regulates the temperature of the column top to control the quality required for the column top distillate.
The static mixing facility includes a static mixer (M1), and the static mixer (M1) is provided with an oil inlet, a washing water inlet, and an oil-water mixture outlet, and the first pump (P1). , The second pump (P2) is also connected to the oil inlet via the same pipe, a second valve (V2) is provided in the same pipe, and the recirculation tank (C3) is a pipe. A third valve (V3) is provided between the recirculation tank (C3) and the oil inlet, which is connected to the oil inlet via a road.
The gravity settling facility is provided with a gravity settling tank (C4), and the gravity settling tank (C4) has a gas phase discharge port, an oil-water mixture inlet, and a third discharge port for discharging a clear liquid in order from top to bottom. , An oil-containing sewage discharge port is provided, the oil-water mixture inlet is connected to the oil-water mixture outlet via a pipeline, and the third discharge port is sequentially connected to a fifth pump (P5) and a fourth valve (V4). A fifth valve (V5) is provided in the pipeline of the fifth pump (P5) which is connected to the first heat exchanger (E1) and not connected to the fourth valve (V4). The tower top gas phase discharge port is connected to the outlet of the fifth valve (V5) via a pipeline, and the pipe between the tower top gas phase discharge port and the outlet of the fifth valve (V5). A sixth valve (V6) is provided on the road,
A separation device for high-efficiency purification treatment of sewage residual liquid in the chemical industry.
前記精留塔(T1)は、精留部及びストリッピング部を備え、前記精留部には、高性能パッキング分離部材が使用され、ストリッピング部には、コーキング防止可能な大容量ランダムパッキングが使用される、
ことを特徴とする請求項1に記載の化学工業における汚油残液の高効率浄化処理用の装置。
The rectification tower (T1) includes a rectification section and a stripping section, a high-performance packing separation member is used for the rectification section, and a large-capacity random packing capable of preventing caulking is used for the stripping section. used,
The apparatus for high-efficiency purification treatment of sewage residual liquid in the chemical industry according to claim 1.
前記精留塔(T1)のボトムには、放散蒸気入り口がさらに設けられている、
ことを特徴とする請求項2に記載の化学工業における汚油残液の高効率浄化処理用の装置。
A divergent steam inlet is further provided at the bottom of the rectification tower (T1).
The apparatus for high-efficiency purification treatment of sewage residual liquid in the chemical industry according to claim 2.
前記第1バルブ(V1)と第3バルブ(V3)の間には、分岐バルブ(V7)が設けられ、前記分岐バルブ(V7)が開かれたとき、前記精留塔(T1)から蒸留された一部の低沸点炭化水素類物質が、前記分岐バルブ(V7)を介して前記第1バルブ(V1)からの清澄液と混合する、
ことを特徴とする請求項1に記載の化学工業における汚油残液の高効率浄化処理用の装置。
A branch valve (V7) is provided between the first valve (V1) and the third valve (V3), and when the branch valve (V7) is opened, it is distilled from the rectification column (T1). Some low-boiling hydrocarbon substances are mixed with the clarified liquid from the first valve (V1) via the branch valve (V7).
The apparatus for high-efficiency purification treatment of sewage residual liquid in the chemical industry according to claim 1.
化学工業における汚油残液の高効率浄化処理用の方法であって、
請求項1〜4のいずれか1項に記載の装置を用いて、処理対象となる化学工業における汚油残液の性質に応じて、蒸留−水洗及び/又は水洗−蒸留処理方法を実施する、
ことを特徴とすることを特徴とする。
It is a method for high-efficiency purification treatment of sewage residual liquid in the chemical industry.
Using the apparatus according to any one of claims 1 to 4, a distillation-water wash and / or a water wash-distillation treatment method is carried out according to the nature of the sewage residual liquid in the chemical industry to be treated.
It is characterized in that.
前記蒸留−水洗処理方法は、
第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を開け、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を閉め、第1ポンプ(P1)を起動させて負荷球形タンク(C1)における清澄液を吸い出すとともに、第2ポンプ(P2)を起動させて普通貯蔵タンク(C2)における清澄液を吸い出すステップと、
生産の要求に対応する割合で負荷球形タンク(C1)及び普通貯蔵タンク(C2)から吸い出された清澄液を混合し、順次第1熱交換器(E1)、第2熱交換器(E2)、第3熱交換器(E3)を介して混合後の清澄液を精留塔(T1)に送り、前記精留塔(T1)で前記清澄液を蒸留処理し、発生させた低沸点炭化水素類物質及び水蒸気を凝縮させて冷却させた後、還流タンク(C3)に送り、一部の低沸点炭化水素類物質を還流ポンプ(P3)で精留塔(T1)のトップに戻し、還流タンク(C3)からの低沸点炭化水素類物質をさらに静的混合器(M1)に送るステップと、
前記静的混合器(M1)に水を加えて、低沸点炭化水素類物質と水を所定の割合で静的混合器(M1)において混合して洗浄を行い、洗浄して得られた油水混合物を重力沈降タンク(C4)に送り、さらに重力沈降タンク(C4)による不均一相分離により水洗のステップを完了するステップと、を含み、
前記水洗−蒸留処理方法は、
第1バルブ(V1)、第3バルブ(V3)、第5バルブ(V5)を閉め、第2バルブ(V2)、第4バルブ(V4)、第6バルブ(V6)を開け、第1ポンプ(P1)を起動させて負荷球形タンク(C1)における清澄液を吸い出すとともに、第2ポンプ(P2)を起動させて普通貯蔵タンク(C2)における清澄液を吸い出すステップと、
生産の要求に対応する割合で負荷球形タンク(C1)及び普通貯蔵タンク(C2)から吸い出された清澄液を混合し、混合後の清澄液を静的混合器(M1)に入れるステップと、
前記静的混合器(M1)に水を加えて、前記混合後の清澄液と水を所定の割合で静的混合器(M1)において混合して洗浄を行い、洗浄して得られた油水混合物を重力沈降タンク(C4)に送り、さらに重力沈降タンク(C4)による不均一分離により水洗のステップを完了し、順次第1熱交換器(E1)、第2熱交換器(E2)、第3熱交換器(E3)を介して水洗後の清澄液を精留塔(T1)に送り、精留塔(T1)で蒸留処理し、低沸点炭化水素類物質と高沸点炭化水素類物質に分離させ、蒸留分離ステップを完了するステップと、を含む、
ことを特徴とする請求項5に記載の化学工業における汚油残液の高効率浄化処理用の方法。
The distillation-water washing treatment method is
Open the 1st valve (V1), 3rd valve (V3), 5th valve (V5), close the 2nd valve (V2), 4th valve (V4), 6th valve (V6), and close the 1st pump (V6). The step of starting P1) to suck out the clear liquid in the load spherical tank (C1) and starting the second pump (P2) to suck out the clear liquid in the normal storage tank (C2).
The clarified liquid sucked out from the load spherical tank (C1) and the ordinary storage tank (C2) is mixed at a ratio corresponding to the production requirement, and the first heat exchanger (E1) and the second heat exchanger (E2) are sequentially mixed. , The clarified liquid after mixing is sent to the rectifying tower (T1) via the third heat exchanger (E3), and the clarified liquid is distilled and treated in the rectifying tower (T1) to generate low boiling point hydrocarbons. After condensing and cooling similar substances and water vapor, they are sent to the recirculation tank (C3), and some low boiling point hydrocarbon substances are returned to the top of the rectification tower (T1) by the recirculation pump (P3), and the recirculation tank. The step of further sending the low boiling point hydrocarbon substance from (C3) to the static mixer (M1), and
Water is added to the static mixer (M1), and a low boiling point hydrocarbon substance and water are mixed at a predetermined ratio in the static mixer (M1) for washing, and the oil-water mixture obtained by washing is performed. Is sent to the gravity settling tank (C4), and further includes a step of completing the washing step by heterogeneous phase separation by the gravity settling tank (C4).
The water-washing-distillation treatment method is
Close the 1st valve (V1), 3rd valve (V3), 5th valve (V5), open the 2nd valve (V2), 4th valve (V4), 6th valve (V6), and open the 1st pump (V6). The step of starting P1) to suck out the clear liquid in the load spherical tank (C1) and starting the second pump (P2) to suck out the clear liquid in the normal storage tank (C2).
A step of mixing the clarified liquid sucked out from the load spherical tank (C1) and the ordinary storage tank (C2) at a ratio corresponding to the production requirement, and putting the clarified liquid after mixing into the static mixer (M1).
Water is added to the static mixer (M1), and the clarified liquid after mixing and water are mixed in a static mixer (M1) at a predetermined ratio for washing, and the oil-water mixture obtained by washing is performed. Is sent to the gravity settling tank (C4), and the washing step is completed by non-uniform separation by the gravity settling tank (C4), and the first heat exchanger (E1), the second heat exchanger (E2), and the third heat exchanger are sequentially completed. The clarified liquid after washing with water is sent to the rectification tower (T1) via a heat exchanger (E3), distilled in the rectification tower (T1), and separated into a low boiling point hydrocarbon substance and a high boiling point hydrocarbon substance. And complete the distillation separation step, including,
The method for high-efficiency purification treatment of sewage residual liquid in the chemical industry according to claim 5.
前記負荷球形タンク(C1)の操作温度は、1〜70℃、普通貯蔵タンク(C2)の操作温度は、1〜100℃、負荷球形タンク(C1)、普通貯蔵タンク(C2)の操作圧力は、いずれも0〜0.8MPaであり、
前記精留塔(T1)では、操作温度が常温40〜300℃、操作圧力が0〜0.5MPaであり、
前記静的混合器(M1)では、操作温度が2〜80℃、操作圧力が0〜0.8MPaであり、
前記重力沈降タンク(C4)では、操作温度が2〜80℃、操作圧力が0〜0.5MPaであり、
前記還流タンク(C3)では、操作温度が2〜60℃、操作圧力が0〜0.5MPaである、
ことを特徴とする請求項5に記載の化学工業における汚油残液の高効率浄化処理用の方法。
The operating temperature of the load spherical tank (C1) is 1 to 70 ° C., the operating temperature of the normal storage tank (C2) is 1 to 100 ° C., and the operating pressure of the load spherical tank (C1) and the normal storage tank (C2) is , Both are 0 to 0.8 MPa,
In the rectification column (T1), the operating temperature is room temperature 40 to 300 ° C., and the operating pressure is 0 to 0.5 MPa.
In the static mixer (M1), the operating temperature is 2 to 80 ° C. and the operating pressure is 0 to 0.8 MPa.
In the gravity settling tank (C4), the operating temperature is 2 to 80 ° C. and the operating pressure is 0 to 0.5 MPa.
In the reflux tank (C3), the operating temperature is 2 to 60 ° C. and the operating pressure is 0 to 0.5 MPa.
The method for high-efficiency purification treatment of sewage residual liquid in the chemical industry according to claim 5.
JP2020011632A 2019-12-20 2020-01-28 Separation apparatus and method for highly efficient purification treatment of waste oil residual liquid in chemical industry Active JP6739829B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911331140.6A CN111135597B (en) 2019-12-20 2019-12-20 Separation device and method for efficiently and cleanly treating chemical waste oil residual liquid
CN201911331140.6 2019-12-20

Publications (2)

Publication Number Publication Date
JP6739829B1 JP6739829B1 (en) 2020-08-12
JP2021098184A true JP2021098184A (en) 2021-07-01

Family

ID=70519255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011632A Active JP6739829B1 (en) 2019-12-20 2020-01-28 Separation apparatus and method for highly efficient purification treatment of waste oil residual liquid in chemical industry

Country Status (2)

Country Link
JP (1) JP6739829B1 (en)
CN (1) CN111135597B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534278B (en) * 2020-11-10 2024-03-15 宝武碳业科技股份有限公司 Benzene hydrogenation pre-evaporation system with online cleaning function, process and application
CN114100172B (en) * 2021-10-27 2022-12-27 中国石油化工股份有限公司 Treatment method of chemical residual liquid
CN114225476B (en) * 2022-01-19 2024-05-14 智火柴科技(深圳)有限公司 Bubble eliminating device for oil way
CN116212430B (en) * 2023-03-20 2023-09-26 重庆中润新材料股份有限公司 Ammonia water recovery system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769043B2 (en) * 1994-12-19 2006-04-19 日揮株式会社 Treatment method of hydrocarbon-containing gas
US5738762A (en) * 1995-03-08 1998-04-14 Ohsol; Ernest O. Separating oil and water from emulsions containing toxic light ends
CN200955422Y (en) * 2006-09-06 2007-10-03 王庆生 Oil-purifying apparatus
CN101812320B (en) * 2009-08-14 2013-02-06 李宝东 Waste oil regenerated energy device and processing method
CN104556513B (en) * 2013-10-15 2016-08-17 中国石油化工股份有限公司 Dirty oil dewatering process and device
CN104711008B (en) * 2015-03-12 2017-12-22 中国石油化工股份有限公司 A kind of device for preventing oil distillation column salt crust
CN106336886B (en) * 2016-11-04 2017-11-17 成都西南石大石油工程技术有限公司 A kind of industrial waste oil extraction equipment and its application method containing solid particle
CN206355622U (en) * 2016-12-20 2017-07-28 杜彪 A kind of PETROLEUM PROCESSING rectifying column
CN106929095A (en) * 2017-01-24 2017-07-07 玉门市润泽环保再生能源新技术有限公司 A kind of waste mineral oil processing method
CN108929718B (en) * 2017-05-26 2020-12-01 中国石油天然气股份有限公司 Desalting system and crude oil desalting method
CN109355087B (en) * 2018-11-21 2021-01-15 陕西延长石油(集团)有限责任公司 Step recovery device and method for oil product in gas containing oil dust
CN109880648B (en) * 2019-04-10 2021-04-02 上海思九科技发展有限公司 Fractionating tower circulating device and water washing method

Also Published As

Publication number Publication date
JP6739829B1 (en) 2020-08-12
CN111135597B (en) 2021-02-05
CN111135597A (en) 2020-05-12

Similar Documents

Publication Publication Date Title
JP2021098184A (en) Separation apparatus and method for high-efficiency purification treatment of residual dirty oil liquid in chemical industry
CN104254590B (en) Integrated slurries hydrotreating and steam pyrolysis are carried out to crude oil to produce petroleum chemicals
CN104151119B (en) The method of octane-iso is prepared in the deep processing of a kind of carbon four
CA2931815C (en) Process and unit for solvent recovery from solvent diluted tailings derived from bitumen froth treatment
CN106459772A (en) Process to produce aromatics from crude oil
CN1957068A (en) Steam cracking of hydrocarbon feedstocks containing salt and/or particulate matter
WO2016127273A1 (en) Method and apparatus for strengthening oil-water separation and coupled desalting functions in cold low pressure separator
KR101475068B1 (en) A process and an appratus for water quenching a pyrolysis furnace effluent
JP4481567B2 (en) Quench water pretreatment process
CN204151295U (en) A kind of anti-salt crust device of liquid-liquid extraction
CN103484159B (en) Matching technology method for optimizing feeding of coal tar suspended bed hydrocracker
CN107177372B (en) The suspended bed hydrogenation method and hydrogenation system of heavy oil feedstock
CN216808705U (en) Efficient integrated top circulating oil dechlorination system
CN105621359B (en) The process system of HCl and hydrogen is reclaimed in a kind of gas from light hydrocarbon
CN112607981B (en) Method and system for recycling waste mineral oil sludge
CN210462963U (en) Dilute steam generator capable of controlling steam/hydrocarbon ratio for light hydrocarbon thermal cracking
JP4286557B2 (en) Oil processing equipment for waste plastic containing PET
CN114426860A (en) Heavy oil supercritical extraction separation method and device
CN114100172B (en) Treatment method of chemical residual liquid
CN111334325A (en) Method for transforming industrial naphthalene system into wash oil purification system
KR102552143B1 (en) METHOD AND APPARATUS FOR PREPARING n-HEXANE
CN113999690B (en) Device and method for pyrolysis treatment of coal tar fluidized bed
CN105567294B (en) A kind of method for reducing ethylene unit energy consumption
WO2022166740A1 (en) Cracked gas heat recovery apparatus and cracked gas heat recovery method
CN116286084B (en) Method for dearomatizing straight-run diesel oil fraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200128

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200716

R150 Certificate of patent or registration of utility model

Ref document number: 6739829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250