JP2021093229A - Recording layer for optical information recording medium, optical information recording medium, and sputtering target - Google Patents

Recording layer for optical information recording medium, optical information recording medium, and sputtering target Download PDF

Info

Publication number
JP2021093229A
JP2021093229A JP2019222445A JP2019222445A JP2021093229A JP 2021093229 A JP2021093229 A JP 2021093229A JP 2019222445 A JP2019222445 A JP 2019222445A JP 2019222445 A JP2019222445 A JP 2019222445A JP 2021093229 A JP2021093229 A JP 2021093229A
Authority
JP
Japan
Prior art keywords
optical information
recording medium
information recording
oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019222445A
Other languages
Japanese (ja)
Inventor
功兵 西山
Kohei Mishiyama
功兵 西山
田内 裕基
Hironori Tauchi
裕基 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019222445A priority Critical patent/JP2021093229A/en
Priority to PCT/JP2020/043470 priority patent/WO2021117470A1/en
Priority to TW109142303A priority patent/TW202122351A/en
Publication of JP2021093229A publication Critical patent/JP2021093229A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B7/2542Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of organic resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

To provide a recording layer for an optical information recording medium with excellent basic characteristics such as degree of modulation and C/N ratio, and excellent power margin, and an optical information recording medium using the recording layer for an optical information recording medium.SOLUTION: A recording layer for an optical information recording medium according to the present invention is a recording layer for an optical information recording medium capable of recording information signals by irradiation with a laser beam, and having metal oxides including Sn oxide or Ta oxide as well as Mn oxide and W oxide, and an atomic number ratio of Mn to the total atomic number of metal elements that make up the metal oxide is 3 atom% or more and 40 atom% or less. The optical information recording medium according to the present invention comprises the recording layer for an optical information recording medium, and a protective layer laminated on the front face and the back face of the recording layer for an optical information recording medium, the protective layer is a dielectric.SELECTED DRAWING: Figure 1

Description

本発明は、光情報記録媒体用記録層、光情報記録媒体、及びスパッタリングターゲットに関する。 The present invention relates to a recording layer for an optical information recording medium, an optical information recording medium, and a sputtering target.

近年、大容量光ディスクが製品化されている。この大容量光ディスクには、記録再生方式により、再生専用型、追記型及び書換え型の3種類がある。このうち追記型の光ディスクの記録方式は、主に、記録層を相変化させる相変化方式、複数の記録層を反応させる層間反応方式、記録層を構成する化合物を分解させる分解方式、記録層に孔やピットなどの記録マークを局所的に形成させる孔開け方式に大別される。 In recent years, large-capacity optical discs have been commercialized. There are three types of large-capacity optical discs, a playback-only type, a write-once type, and a rewrite type, depending on the recording / playback method. Of these, the recording methods for write-once optical discs are mainly phase change methods that change the phase of the recording layer, interlayer reaction methods that react multiple recording layers, decomposition methods that decompose the compounds that make up the recording layer, and recording layers. It is roughly classified into a drilling method in which recording marks such as holes and pits are locally formed.

この大容量光ディスクを構成する光情報記録媒体の記録層としては、Mn酸化物を含む記録層が提案されている(特開2012−139876号公報参照)。この記録層では、レーザ光を照射すると、Mn酸化物がレーザ光により加熱、分解され酸素(Oガス)を放出し、レーザ照射された部分に気泡が生成するようになる。その結果、膜形状が変化し、記録マークが形成される。つまり、この記録層は、追記型の孔開け方式に分類される。 As a recording layer of an optical information recording medium constituting this large-capacity optical disc, a recording layer containing Mn oxide has been proposed (see JP-A-2012-139876). In this recording layer is irradiated with laser light, heated Mn oxide by the laser beam, it decomposed to release oxygen (O 2 gas), so bubbles are generated in the laser irradiated portion. As a result, the film shape changes and a recording mark is formed. That is, this recording layer is classified into a write-once type drilling method.

上記従来の記録層では、Mn酸化物へのレーザ照射に伴う気泡生成による不可逆的な記録方式を用いることで、記録信号の再生に必要な信号振幅を確保できるだけの変調度に優れ、読み取り信号のバックグラウンドノイズレベルに対する出力比であるC/N比(Carrier to Noise ratio)が高い記録層を実現している。 In the above-mentioned conventional recording layer, by using an irreversible recording method by generating bubbles due to laser irradiation of Mn oxide, the modulation degree is excellent enough to secure the signal amplitude necessary for reproducing the recorded signal, and the reading signal can be read. A recording layer having a high C / N ratio (Carrier to Noise ratio), which is an output ratio with respect to the background noise level, is realized.

ところで、光情報記録媒体では、量産時の個体差により記録層等の厚みや面内不均一性により記録層に到達するレーザ光のパワーが変動する。このため、記録層には、変調度やC/N比といった基本特性に加え、記録するレーザ光のパワーが最適値から変動した場合においても、記録される信号の信号特性が低下し難いことが求められる。 By the way, in the optical information recording medium, the power of the laser beam reaching the recording layer fluctuates due to the thickness of the recording layer or the like and the in-plane non-uniformity due to individual differences during mass production. Therefore, in addition to the basic characteristics such as the degree of modulation and the C / N ratio, the recording layer is unlikely to deteriorate the signal characteristics of the recorded signal even when the power of the laser beam to be recorded fluctuates from the optimum value. Desired.

上記従来の記録層では、このレーザ光のパワーが最適値から変動した場合の信号特性の低下が少なからず存在する。このため、レーザ光のパワーが最適値から変動しても信号特性が低下せず良好に信号を記録できる、つまりパワーマージンが大きい記録層が求められている。 In the conventional recording layer, there is a considerable decrease in signal characteristics when the power of the laser beam fluctuates from the optimum value. Therefore, even if the power of the laser beam fluctuates from the optimum value, the signal characteristics do not deteriorate and the signal can be recorded satisfactorily, that is, a recording layer having a large power margin is required.

特開2012−139876号公報Japanese Unexamined Patent Publication No. 2012-139876

本発明は、上述のような事情に基づいてなされたものであり、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる光情報記録媒体用記録層及びこの光情報記録媒体用記録層を用いた光情報記録媒体の提供及び上記光情報記録媒体用記録層を形成するためのスパッタリングターゲットの提供を目的とする。 The present invention has been made based on the above circumstances, and is excellent in basic characteristics such as modulation degree and C / N ratio, and is also excellent in power margin. For an optical information recording medium recording layer and the optical information recording medium. An object of the present invention is to provide an optical information recording medium using a recording layer and to provide a sputtering target for forming the recording layer for the optical information recording medium.

本発明者が、パワーマージンを向上できる記録層について鋭意検討した結果、Mn酸化物に加え、W酸化物と共にSn酸化物又はTa酸化物を含め、Mnの原子数割合を適切に制御することでパワーマージンを向上できることを見出し本発明を完成させた。Mn酸化物を用いた記録層では、レーザ照射により気泡が生成することで記録マークが形成されるが、W酸化物と共にSn酸化物又はTa酸化物をさらに加え、Mnの原子数割合を適切に制御することで、記録層の機械特性が変化し、気泡の形態が安定し易くなった結果、パワーマージンが向上したと本発明者は考えている。 As a result of diligent studies on a recording layer capable of improving the power margin, the present inventor has determined that the atomic number ratio of Mn is appropriately controlled, including Sn oxide or Ta oxide together with W oxide in addition to Mn oxide. The present invention has been completed by finding that the power margin can be improved. In the recording layer using Mn oxide, recording marks are formed by the generation of bubbles by laser irradiation, but Sn oxide or Ta oxide is further added together with W oxide, and the atomic number ratio of Mn is appropriately adjusted. The present inventor believes that the power margin is improved as a result of changing the mechanical properties of the recording layer and making it easier to stabilize the morphology of the bubbles by controlling the recording layer.

すなわち、上記課題を解決するためになされた発明は、レーザ光の照射により情報信号を記録可能な光情報記録媒体用記録層であって、Mn酸化物とW酸化物と共にSn酸化物又はTa酸化物を含む金属酸化物を有し、上記金属酸化物を構成する金属元素の合計原子数に対するMnの原子数割合が3atm%以上40atm%以下である。 That is, the invention made to solve the above problems is a recording layer for an optical information recording medium capable of recording an information signal by irradiation with laser light, and is a Sn oxide or Ta oxidation together with a Mn oxide and a W oxide. It has a metal oxide containing a substance, and the ratio of the number of atoms of Mn to the total number of atoms of the metal elements constituting the metal oxide is 3 atm% or more and 40 atm% or less.

当該光情報記録媒体用記録層は、Mn酸化物へのレーザ照射に伴う気泡生成による不可逆的な記録方式を用いるので、変調度やC/N比といった基本特性に優れる。また、当該光情報記録媒体用記録層は、金属酸化物としてMn酸化物に加え、W酸化物と共にSn酸化物又はTa酸化物を含み、Mnの原子数割合が上記範囲内に制御されている。このため、当該光情報記録媒体用記録層のMn酸化物へのレーザ照射により生成される気泡がW酸化物とSn酸化物又はTa酸化物とにより安定化し易く、パワーマージンが向上する。従って、当該光情報記録媒体用記録層は、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる。 Since the recording layer for an optical information recording medium uses an irreversible recording method by generating bubbles accompanying laser irradiation of Mn oxide, it is excellent in basic characteristics such as modulation degree and C / N ratio. Further, the recording layer for an optical information recording medium contains Sn oxide or Ta oxide together with W oxide in addition to Mn oxide as a metal oxide, and the atomic number ratio of Mn is controlled within the above range. .. Therefore, the bubbles generated by laser irradiation of the Mn oxide of the recording layer for the optical information recording medium are easily stabilized by the W oxide and the Sn oxide or the Ta oxide, and the power margin is improved. Therefore, the recording layer for the optical information recording medium is excellent in basic characteristics such as the degree of modulation and the C / N ratio, and is also excellent in the power margin.

上記金属酸化物を構成する金属元素の合計原子数に対するWの原子数割合としては、10atm%以上65atm%以下が好ましい。このようにWの原子数割合を上記範囲内とすることで、ジッター特性の低下を抑止しつつ、さらにパワーマージンを向上することができる。 The ratio of the number of atoms of W to the total number of atoms of the metal elements constituting the metal oxide is preferably 10 atm% or more and 65 atm% or less. By setting the atomic number ratio of W within the above range in this way, it is possible to further improve the power margin while suppressing the deterioration of the jitter characteristics.

上記金属酸化物を構成する金属元素の合計原子数に対するSn又はTaの原子数割合としては、5atm%以上が好ましい。このようにSn又はTaの原子数割合を上記下限以上とすることで、ジッター特性を向上できる。 The ratio of the number of atoms of Sn or Ta to the total number of atoms of the metal elements constituting the metal oxide is preferably 5 atm% or more. By setting the atomic number ratio of Sn or Ta to the above lower limit or more in this way, the jitter characteristics can be improved.

上記金属酸化物がZn酸化物をさらに含むとよい。金属酸化物にZn酸化物を含めることで、さらにパワーマージンを向上することができる。 It is preferable that the metal oxide further contains a Zn oxide. By including Zn oxide in the metal oxide, the power margin can be further improved.

上記課題を解決するためになされた別の発明は、本発明の光情報記録媒体用記録層と、上記光情報記録媒体用記録層の表面及び裏面に積層される保護層とを備え、上記保護層が誘電体である光情報記録媒体である。 Another invention made to solve the above problems includes a recording layer for an optical information recording medium of the present invention and a protective layer laminated on the front surface and the back surface of the recording layer for an optical information recording medium, and the above protection is provided. An optical information recording medium in which the layer is a dielectric.

当該光情報記録媒体は、本発明の光情報記録媒体用記録層を備えるので、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる。また、当該光情報記録媒体は、保護層が誘電体であるので、信号強度を高めることができ、その基本特性をさらに向上できる。 Since the optical information recording medium includes the recording layer for the optical information recording medium of the present invention, it is excellent in basic characteristics such as modulation degree and C / N ratio, and is also excellent in power margin. Further, since the protective layer of the optical information recording medium is a dielectric material, the signal strength can be increased and the basic characteristics thereof can be further improved.

上記課題を解決するためになされたさらに別の発明は、レーザ光の照射により情報信号を記録可能な光情報記録媒体用記録層を形成するためのスパッタリングターゲットであって、金属元素として少なくともMn及びWと共にSn又はTaを含み、上記金属元素の合計原子数に対するMnの原子数割合が3atm%以上40atm%以下である。 Yet another invention made to solve the above problems is a sputtering target for forming a recording layer for an optical information recording medium capable of recording an information signal by irradiation with a laser beam, and is a sputtering target for forming a recording layer for an optical information recording medium, in which at least Mn and metal elements are used. It contains Sn or Ta together with W, and the ratio of the number of atoms of Mn to the total number of atoms of the metal element is 3 atm% or more and 40 atm% or less.

当該スパッタリングターゲットは、金属元素として少なくともMn及びWと共にSn又はTaを含み、金属元素の合計原子数に対するMnの原子数割合が上記範囲内である。当該スパッタリングターゲットは、光情報記録媒体用記録層を形成するためのスパッタリングターゲットとして、含まれる金属元素を酸化させながら用いることで、金属酸化物としてMn酸化物に加え、W酸化物と共にSn酸化物又はTa酸化物を含み、Mnの原子数割合が上記範囲内に容易に制御できる。従って、当該スパッタリングターゲットを用いることで、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる光情報記録媒体用記録層を容易に製造することができる。 The sputtering target contains Sn or Ta together with at least Mn and W as metal elements, and the ratio of the number of atoms of Mn to the total number of atoms of the metal elements is within the above range. The sputtering target is used as a sputtering target for forming a recording layer for an optical information recording medium while oxidizing a contained metal element, so that in addition to Mn oxide as a metal oxide, Sn oxide together with W oxide. Alternatively, it contains Ta oxide, and the atomic number ratio of Mn can be easily controlled within the above range. Therefore, by using the sputtering target, it is possible to easily manufacture a recording layer for an optical information recording medium which is excellent in basic characteristics such as a degree of modulation and a C / N ratio and also has an excellent power margin.

上記金属元素の合計原子数に対するWの原子数割合としては、10atm%以上65atm%以下が好ましい。このようにWの原子数割合を上記範囲内とすることで、ジッター特性の低下を抑止しつつ、さらにパワーマージンを向上させた光情報記録媒体用記録層を製造することができる。 The ratio of the number of atoms of W to the total number of atoms of the metal elements is preferably 10 atm% or more and 65 atm% or less. By setting the atomic number ratio of W within the above range in this way, it is possible to manufacture a recording layer for an optical information recording medium in which a decrease in jitter characteristics is suppressed and a power margin is further improved.

上記金属元素の合計原子数に対するSn又はTaの原子数割合としては、5atm%以上が好ましい。このようにSn又はTaの原子数割合を上記下限以上とすることで、ジッター特性を向上させた光情報記録媒体用記録層を製造することができる。 The ratio of the number of atoms of Sn or Ta to the total number of atoms of the metal elements is preferably 5 atm% or more. By setting the atomic number ratio of Sn or Ta to the above lower limit or more in this way, it is possible to manufacture a recording layer for an optical information recording medium having improved jitter characteristics.

以上説明したように、本発明の光情報記録媒体用記録層及び光情報記録媒体は、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる。 As described above, the recording layer for an optical information recording medium and the optical information recording medium of the present invention are excellent in basic characteristics such as a degree of modulation and a C / N ratio, and are also excellent in a power margin.

図1は、本発明の一実施形態に係る光情報記録媒体の層構成を示す模式的側面図である。FIG. 1 is a schematic side view showing a layer structure of an optical information recording medium according to an embodiment of the present invention. 図2は、実施例における変調度の測定例を示すグラフである。FIG. 2 is a graph showing a measurement example of the degree of modulation in the examples. 図3は、実施例におけるジッターの測定例を示すグラフである。FIG. 3 is a graph showing a measurement example of jitter in the examples.

以下、本発明の実施の形態について適宜図面を参照しつつ詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[光情報記録媒体]
図1に示す光情報記録媒体は、基板1と、それ自体が本発明の一実施形態である光情報記録媒体用記録層2と、光情報記録媒体用記録層2の表面及び裏面に積層される保護層3と、光透過層4とを備える。また、光情報記録媒体用記録層2の裏面側の保護層3は基板1に積層され、光透過層4は、光情報記録媒体用記録層2の表面側の保護層3に積層されている。つまり、当該光情報記録媒体は、基板1、保護層3、光情報記録媒体用記録層2、保護層3及び光透過層4が下方からこの順に積層されている。
[Optical information recording medium]
The optical information recording medium shown in FIG. 1 is laminated on the front surface and the back surface of a substrate 1, a recording layer 2 for an optical information recording medium, which is itself an embodiment of the present invention, and a recording layer 2 for an optical information recording medium. A protective layer 3 and a light transmitting layer 4 are provided. Further, the protective layer 3 on the back surface side of the recording layer 2 for the optical information recording medium is laminated on the substrate 1, and the light transmitting layer 4 is laminated on the protective layer 3 on the front surface side of the recording layer 2 for the optical information recording medium. .. That is, in the optical information recording medium, the substrate 1, the protective layer 3, the optical information recording medium recording layer 2, the protective layer 3, and the light transmitting layer 4 are laminated in this order from the bottom.

当該光情報記録媒体は、例えばCD、DVD、BD等として用いることができる。一例として当該光情報記録媒体をBD−Rとして用いる場合であれば、例えば波長が380nm以上450nm以下、好ましくは約405nmの青色レーザ光を当該光情報記録媒体用記録層2に照射し、データの記録および再生を行うことができる。このとき用いられるレーザ光のパワーは、実用的には、5mW以上15mW以下である。 The optical information recording medium can be used as, for example, a CD, a DVD, a BD, or the like. As an example, when the optical information recording medium is used as a BD-R, for example, a blue laser light having a wavelength of 380 nm or more and 450 nm or less, preferably about 405 nm is irradiated to the recording layer 2 for the optical information recording medium to obtain data. Recording and playback can be performed. The power of the laser beam used at this time is practically 5 mW or more and 15 mW or less.

<基板>
基板1は、当該光情報記録媒体の強度を担保するための部材である。基板1の形状は、光情報記録媒体の規格等に応じて適宜決定される。例えば市販の大容量光ディスクの規格に則る場合であれば、基板1は外径120mmの円盤状とされ、保護層3が積層される側の表面にウォブリンググルーブとしての凹凸(溝)が形成される。
<Board>
The substrate 1 is a member for ensuring the strength of the optical information recording medium. The shape of the substrate 1 is appropriately determined according to the standard of the optical information recording medium and the like. For example, in the case of complying with the standard of a commercially available large-capacity optical disc, the substrate 1 has a disk shape with an outer diameter of 120 mm, and irregularities (grooves) as wobbling grooves are formed on the surface on the side where the protective layer 3 is laminated. To.

基板1の材質としては、ポリカーボネート、ノルボルネン系樹脂、環状オレフィン系共重合体、非晶質ポリオレフィン等が挙げられる。 Examples of the material of the substrate 1 include polycarbonate, norbornene-based resin, cyclic olefin-based copolymer, and amorphous polyolefin.

基板1の平均厚さの下限としては、0.5mmが好ましく、1mmがより好ましい。一方、基板1の平均厚さの上限としては、1.2mmが好ましく、1.1mmがより好ましい。基板1の平均厚さが上記下限未満であると、当該光情報記録媒体の強度が不足するおそれがある。逆に、基板1の平均厚さが上記上限を超えると、例えば大容量光ディスクの規格に適合できなくなるおそれがある。 The lower limit of the average thickness of the substrate 1 is preferably 0.5 mm, more preferably 1 mm. On the other hand, the upper limit of the average thickness of the substrate 1 is preferably 1.2 mm, more preferably 1.1 mm. If the average thickness of the substrate 1 is less than the above lower limit, the strength of the optical information recording medium may be insufficient. On the contrary, if the average thickness of the substrate 1 exceeds the above upper limit, it may not conform to the standard of, for example, a large-capacity optical disc.

<光情報記録媒体用記録層>
光情報記録媒体用記録層2は、レーザ光の照射により情報信号を記録可能な光情報記録媒体用記録層である。当該光情報記録媒体用記録層2は、Mn酸化物とW酸化物と共にSn酸化物又はTa酸化物を含む金属酸化物を有する。当該光情報記録媒体用記録層2は、追記型の孔開け方式の記録層である。
<Recording layer for optical information recording medium>
The recording layer 2 for an optical information recording medium is a recording layer for an optical information recording medium capable of recording an information signal by irradiation with a laser beam. The recording layer 2 for an optical information recording medium has a metal oxide containing Sn oxide or Ta oxide together with Mn oxide and W oxide. The recording layer 2 for an optical information recording medium is a write-once type recording layer of a perforation type.

(Mn酸化物)
Mn酸化物は、当該光情報記録媒体用記録層2にレーザ光を照射した際、レーザ光により加熱、分解され酸素(Oガス)を放出し、レーザ照射された部分に気泡が生成するようになる。その結果、当該光情報記録媒体用記録層2の形状が変化し、記録マークが形成される。この気泡が発生し、記録マーク形成が行われた部分では、気泡の発生していない部分(すなわち、記録マークを形成していない部分)と比べて透過率が増加(反射率が低下)するので、当該光情報記録媒体用記録層2は変調度を大きくすることができると考えられる。
(Mn oxide)
When the recording layer 2 for an optical information recording medium is irradiated with a laser beam, the Mn oxide is heated and decomposed by the laser beam to release oxygen (O 2 gas) so that bubbles are generated in the laser-irradiated portion. become. As a result, the shape of the recording layer 2 for the optical information recording medium changes, and a recording mark is formed. In the portion where the bubbles are generated and the recording mark is formed, the transmittance is increased (the reflectance is decreased) as compared with the portion where the bubbles are not generated (that is, the portion where the recording mark is not formed). It is considered that the recording layer 2 for the optical information recording medium can increase the degree of modulation.

また、当該光情報記録媒体用記録層2がMn酸化物を含むことで、光吸収率を大きくすることができるため、書き込み時にレーザ光のエネルギーを効率よく熱エネルギーへと変換することができる。従って、当該光情報記録媒体用記録層2は記録感度を向上させることができる。 Further, since the recording layer 2 for the optical information recording medium contains Mn oxide, the light absorption rate can be increased, so that the energy of the laser light can be efficiently converted into the thermal energy at the time of writing. Therefore, the recording layer 2 for the optical information recording medium can improve the recording sensitivity.

Mn酸化物の形態としては、常態として存在するものであれば特に限定されず、MnO、Mn、Mn、MnO等のMnと酸素(O)のみから構成される酸化物であってもよく、W、Zn、Sn等の他の金属を含む複合酸化物であってもよい。 The form of the Mn oxide is not particularly limited as long as it exists as a normal state, and is an oxide composed of only Mn and oxygen (O) such as MnO, Mn 3 O 4 , Mn 2 O 3 , and Mn O 2. It may be a composite oxide containing other metals such as W, Zn, and Sn.

上記金属酸化物を構成する金属元素の合計原子数に対するMnの原子数割合の下限としては、3atm%であり、10atm%がより好ましい。一方、上記Mn原子数割合の上限としては、40atm%であり、35atm%がより好ましい。上記Mnの原子数割合が上記下限未満であると、当該光情報記録媒体用記録層2の変調度や記録感度の向上効果が不十分となるおそれがある。逆に、上記Mnの原子数割合が上記上限を超えると、相対的にWやSn又はTaの原子数が減るため、パワーマージンの向上効果が不十分となるおそれがある。 The lower limit of the ratio of the number of atoms of Mn to the total number of atoms of the metal elements constituting the metal oxide is 3 atm%, more preferably 10 atm%. On the other hand, the upper limit of the Mn atom number ratio is 40 atm%, more preferably 35 atm%. If the ratio of the number of atoms of Mn is less than the above lower limit, the effect of improving the degree of modulation and the recording sensitivity of the recording layer 2 for the optical information recording medium may be insufficient. On the contrary, when the atomic number ratio of Mn exceeds the upper limit, the atomic number of W, Sn or Ta is relatively reduced, so that the effect of improving the power margin may be insufficient.

なお、当該光情報記録媒体用記録層2は、金属Mnを含まないことが好ましい。金属Mnは酸化や分解が進行し易く、当該光情報記録媒体用記録層2が金属Mnを含むと、当該光情報記録媒体用記録層2の耐久性、ひいては当該光情報記録媒体の耐久性を低下させてしまうおそれがある。なお、特定の「金属元素を含まない」とは、意図的に特定の金属元素を含有させないことを意味し、不可避的に含まれる金属元素は存在し得る。ここで、当該光情報記録媒体用記録層2に不可避的に含まれる金属元素の含有量は、当該光情報記録媒体用記録層2において100質量ppm以下程度であると考えられる。つまり、「金属Mnを含まない」とは、意図的に金属Mnを含有させず、従って当該光情報記録媒体用記録層2において金属Mnの含有量が100質量ppm以下であることを意味する。 The recording layer 2 for the optical information recording medium preferably does not contain the metal Mn. Oxidation and decomposition of the metal Mn are likely to proceed, and when the recording layer 2 for the optical information recording medium contains the metal Mn, the durability of the recording layer 2 for the optical information recording medium and the durability of the optical information recording medium are deteriorated. It may be lowered. In addition, the specific "does not contain a metal element" means that the specific metal element is intentionally not contained, and the metal element inevitably contained may exist. Here, it is considered that the content of the metal element inevitably contained in the recording layer 2 for the optical information recording medium is about 100 mass ppm or less in the recording layer 2 for the optical information recording medium. That is, "does not contain metal Mn" means that metal Mn is not intentionally contained, and therefore the content of metal Mn in the recording layer 2 for the optical information recording medium is 100 mass ppm or less.

(Mn酸化物以外の金属酸化物)
当該光情報記録媒体用記録層2は、金属酸化物として、Mn酸化物以外にW酸化物と共にSn酸化物又はTa酸化物を含む。W酸化物とSn酸化物又はTa酸化物とは、当該光情報記録媒体用記録層2のMn酸化物へのレーザ照射により生成される気泡を安定化させ、パワーマージンを向上させる。また、上記金属酸化物がZn酸化物をさらに含むとよい。金属酸化物にZn酸化物を含めることで、さらにパワーマージンを向上することができる。
(Metal oxides other than Mn oxide)
The recording layer 2 for an optical information recording medium contains a Sn oxide or a Ta oxide together with a W oxide as a metal oxide in addition to the Mn oxide. The W oxide and the Sn oxide or the Ta oxide stabilize the bubbles generated by irradiating the Mn oxide of the recording layer 2 for the optical information recording medium with the laser, and improve the power margin. Further, it is preferable that the metal oxide further contains a Zn oxide. By including Zn oxide in the metal oxide, the power margin can be further improved.

上記W酸化物、Sn酸化物、Ta酸化物及びZn酸化物の形態としては、Mn酸化物と同様、酸素(O)のみと結合した酸化物であってもよく、他の金属元素を含む複合酸化物であってもよい。 Similar to Mn oxide, the form of the W oxide, Sn oxide, Ta oxide and Zn oxide may be an oxide bonded only to oxygen (O), and is a composite containing other metal elements. It may be an oxide.

上記金属酸化物を構成する金属元素の合計原子数に対するWの原子数割合の下限としては、10atm%が好ましく、15atm%がより好ましい。一方、上記Wの原子数割合の上限としては、65atm%が好ましく、50atm%がより好ましい。上記Wの原子数割合が上記下限未満であると、パワーマージンが低下するおそれがある。逆に、上記Wの原子数割合が上記上限を超えると、相対的にSn又はTaの原子数割合が低下するため、ジッター特性が低下し、読み取りエラーが生じ易くなるおそれがある。 The lower limit of the ratio of the number of atoms of W to the total number of atoms of the metal elements constituting the metal oxide is preferably 10 atm%, more preferably 15 atm%. On the other hand, as the upper limit of the atomic number ratio of W, 65 atm% is preferable, and 50 atm% is more preferable. If the atomic number ratio of W is less than the lower limit, the power margin may decrease. On the contrary, when the atomic number ratio of W exceeds the upper limit, the atomic number ratio of Sn or Ta is relatively decreased, so that the jitter characteristic is deteriorated and a reading error may easily occur.

上記金属酸化物を構成する金属元素の合計原子数に対するSn又はTaの原子数割合の下限としては、5atm%が好ましく、10atm%がより好ましい。一方、上記Sn又はTaの原子数割合の上限としては、60atm%が好ましく、50atm%がより好ましい。上記Sn又はTaの原子数割合が上記下限未満であると、ジッター特性が低下し、読み取りエラーが生じ易くなるおそれがある。逆に、上記Sn又はTaの原子数割合が上記上限を超えると、相対的にWの原子数割合が低下するため、パワーマージンが低下するおそれがある。 The lower limit of the ratio of the number of atoms of Sn or Ta to the total number of atoms of the metal elements constituting the metal oxide is preferably 5 atm%, more preferably 10 atm%. On the other hand, as the upper limit of the atomic number ratio of Sn or Ta, 60 atm% is preferable, and 50 atm% is more preferable. If the atomic number ratio of Sn or Ta is less than the above lower limit, the jitter characteristic may be deteriorated and a reading error may easily occur. On the contrary, when the atomic number ratio of Sn or Ta exceeds the upper limit, the atomic number ratio of W is relatively decreased, so that the power margin may be decreased.

上記金属酸化物を構成するSn又はTaの原子数に対するWの原子数比の下限としては、0.3が好ましく、0.4がより好ましい。一方、上記Sn又はTaの原子数に対するWの原子数比の上限としては、12が好ましく、10がより好ましい。上記Sn又はTaの原子数に対するWの原子数比が上記下限未満であると、パワーマージンが低下するおそれがある。逆に、上記Sn又はTaの原子数に対するWの原子数比が上記上限を超えると、相対的にSn又はTaの原子数割合が低下するため、ジッター特性が低下し、読み取りエラーが生じ易くなるおそれがある。 The lower limit of the atomic number ratio of W to the atomic number of Sn or Ta constituting the metal oxide is preferably 0.3, more preferably 0.4. On the other hand, as the upper limit of the atomic number ratio of W to the atomic number of Sn or Ta, 12 is preferable, and 10 is more preferable. If the atomic number ratio of W to the atomic number of Sn or Ta is less than the lower limit, the power margin may decrease. On the contrary, when the atomic number ratio of W to the atomic number of Sn or Ta exceeds the upper limit, the atomic number ratio of Sn or Ta is relatively lowered, so that the jitter characteristic is lowered and a reading error is likely to occur. There is a risk.

上記金属酸化物がZn酸化物を含む場合、上記金属酸化物を構成する金属元素の合計原子数に対するZnの原子数割合の下限としては、5atm%が好ましく、10atm%がより好ましい。一方、上記Znの原子数割合の上限としては、70atm%が好ましく、50atm%がより好ましく、40atm%がさらに好ましい。上記Znの原子数割合が上記下限未満であると、Zn酸化物によりパワーマージンの向上効果が不十分となるおそれがある。逆に、上記Znの原子数割合が上記上限を超えると、相対的にWやSn又はTaの原子数が減るため、パワーマージンが低下するおそれがある。 When the metal oxide contains Zn oxide, the lower limit of the ratio of the number of Zn atoms to the total number of atoms of the metal elements constituting the metal oxide is preferably 5 atm%, more preferably 10 atm%. On the other hand, as the upper limit of the atomic number ratio of Zn, 70 atm% is preferable, 50 atm% is more preferable, and 40 atm% is further more preferable. If the ratio of the number of atoms of Zn is less than the above lower limit, the effect of improving the power margin may be insufficient due to the Zn oxide. On the contrary, when the atomic number ratio of Zn exceeds the upper limit, the atomic number of W, Sn or Ta is relatively reduced, so that the power margin may be lowered.

上記金属酸化物には、Mn酸化物、W酸化物、Sn酸化物、Ta酸化物及びZn酸化物以外の酸化物が含まれてもよい。このような金属酸化物としては、In酸化物やCu酸化物等を挙げることができる。ただし、パワーマージン向上効果の観点からは、上記金属酸化物としては、Mn酸化物、W酸化物、Sn酸化物、Ta酸化物及びZn酸化物以外の酸化物を含まないことが好ましい。 The metal oxide may contain oxides other than Mn oxide, W oxide, Sn oxide, Ta oxide and Zn oxide. Examples of such a metal oxide include In oxide and Cu oxide. However, from the viewpoint of the effect of improving the power margin, it is preferable that the metal oxide does not contain oxides other than Mn oxide, W oxide, Sn oxide, Ta oxide and Zn oxide.

また、Mn酸化物以外の金属酸化物についても、これらの酸化物を構成する金属が、金属元素単体として含まれないことが好ましい。中でも、当該光情報記録媒体用記録層2に含まれる金属元素が全て酸化していることがより好ましい。例えば金属In、金属Zn、金属Ta、金属Cu、金属Sn等は、他の酸化物から酸素を奪って酸化する場合があり、当該光情報記録媒体用記録層2の特性を低下させるおそれがある。 Further, with respect to metal oxides other than Mn oxide, it is preferable that the metal constituting these oxides is not contained as a simple substance of the metal element. Above all, it is more preferable that all the metal elements contained in the recording layer 2 for the optical information recording medium are oxidized. For example, metal In, metal Zn, metal Ta, metal Cu, metal Sn, etc. may deprive other oxides of oxygen and oxidize, which may deteriorate the characteristics of the recording layer 2 for the optical information recording medium. ..

当該光情報記録媒体のように当該光情報記録媒体用記録層2の表面及び裏面に保護層3が積層されている場合、当該光情報記録媒体用記録層2の平均厚さの下限としては、2nmが好ましく、5nmがより好ましく、10nmがさらに好ましい。一方、当該光情報記録媒体用記録層2の平均厚さの上限としては、50nmが好ましく、40nmがより好ましく、15nmがさらに好ましい。当該光情報記録媒体用記録層2の平均厚さが上記下限未満であると、当該光情報記録媒体用記録層2の厚さ方向のMn原子数が少なくなるため、記録マーク形成を十分に行うことができず、変調度が不十分となるおそれがある。逆に、当該光情報記録媒体用記録層2の平均厚さが上記上限を超えると、当該光情報記録媒体用記録層2が不要に厚くなるため、当該光情報記録媒体用記録層2の形成に時間がかかり、生産性が低下するおそれや、記録に必要なレーザパワーが大きくなり過ぎるおそれがある。 When the protective layer 3 is laminated on the front surface and the back surface of the optical information recording medium recording layer 2 like the optical information recording medium, the lower limit of the average thickness of the optical information recording medium recording layer 2 is set as the lower limit. 2 nm is preferable, 5 nm is more preferable, and 10 nm is further preferable. On the other hand, the upper limit of the average thickness of the recording layer 2 for the optical information recording medium is preferably 50 nm, more preferably 40 nm, and even more preferably 15 nm. If the average thickness of the recording layer 2 for the optical information recording medium is less than the above lower limit, the number of Mn atoms in the thickness direction of the recording layer 2 for the optical information recording medium decreases, so that the recording mark is sufficiently formed. This may not be possible and the degree of modulation may be insufficient. On the contrary, when the average thickness of the recording layer 2 for the optical information recording medium exceeds the above upper limit, the recording layer 2 for the optical information recording medium becomes unnecessarily thick, so that the recording layer 2 for the optical information recording medium is formed. It takes a long time to reduce the productivity, and the laser power required for recording may become too large.

(利点)
当該光情報記録媒体用記録層2は、Mn酸化物へのレーザ照射に伴う気泡生成による不可逆的な記録方式を用いるので、変調度やC/N比といった基本特性に優れる。また、当該光情報記録媒体用記録層2は、金属酸化物としてMn酸化物に加え、W酸化物と共にSn酸化物又はTa酸化物を含み、Mnの原子数割合が金属酸化物を構成する金属元素の合計原子数に対して3atm%以上40atm%以下に制御されている。このため、当該光情報記録媒体用記録層2のMn酸化物へのレーザ照射により生成される気泡がW酸化物とSn酸化物又はTa酸化物とにより安定化し易く、パワーマージンが向上する。従って、当該光情報記録媒体用記録層2は、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる。
(advantage)
Since the recording layer 2 for an optical information recording medium uses an irreversible recording method by generating bubbles accompanying laser irradiation of Mn oxide, it is excellent in basic characteristics such as modulation degree and C / N ratio. Further, the recording layer 2 for an optical information recording medium contains a Sn oxide or a Ta oxide together with a W oxide in addition to the Mn oxide as a metal oxide, and the atomic number ratio of Mn constitutes the metal oxide. It is controlled to be 3 atm% or more and 40 atm% or less with respect to the total number of atoms of the elements. Therefore, the bubbles generated by laser irradiation of the Mn oxide of the recording layer 2 for the optical information recording medium are easily stabilized by the W oxide and the Sn oxide or the Ta oxide, and the power margin is improved. Therefore, the recording layer 2 for the optical information recording medium is excellent in basic characteristics such as the degree of modulation and the C / N ratio, and is also excellent in the power margin.

<保護層>
保護層3は、誘電体である。当該光情報記録媒体用記録層2は、レーザ照射により酸素の気泡が発生するが、誘電体は、その気泡が逃散することを防止し、当該光情報記録媒体用記録層2の反射率の低下を抑止する。このため、当該光情報記録媒体が保護層3として誘電体を備えることで、当該光情報記録媒体用記録層2の変調度を確保し易くなる。
<Protective layer>
The protective layer 3 is a dielectric. Oxygen bubbles are generated in the recording layer 2 for the optical information recording medium by laser irradiation, but the dielectric prevents the bubbles from escaping, and the reflectance of the recording layer 2 for the optical information recording medium is lowered. Suppress. Therefore, when the optical information recording medium includes a dielectric as the protective layer 3, it becomes easy to secure the degree of modulation of the optical information recording medium recording layer 2.

保護層3を構成する誘電体の材質としては、例えばSi、Al、In、Zn、Zr、Ti、Nb、Ta、Cr、Sn等の酸化物、Si、Al、In、Ge、Cr、Nb、Mo、Ti等の窒化物、Zn硫化物、Cr、Si、Al、Ti、Zr、Ta等の炭化物、Mg、Ca、La等のフッ化物などの公知の誘電体を挙げることができる。なかでも、当該光情報記録媒体の生産性や、記録感度の観点から、Inの酸化物であるInが好ましい。なお、これらの誘電体は混合して用いられてもよい。 Examples of the material of the dielectric material constituting the protective layer 3 include oxides such as Si, Al, In, Zn, Zr, Ti, Nb, Ta, Cr and Sn, Si, Al, In, Ge, Cr and Nb. Known dielectrics such as nitrides such as Mo and Ti, Zn sulfides, carbides such as Cr, Si, Al, Ti, Zr and Ta, and fluorides such as Mg, Ca and La can be mentioned. Of these, In 2 O 3, which is an oxide of In, is preferable from the viewpoint of productivity of the optical information recording medium and recording sensitivity. In addition, these dielectrics may be mixed and used.

保護層3の平均厚さの下限としては、2nmが好ましく、3nmがより好ましい。一方、保護層3の平均厚さの上限としては、30nmが好ましく、25nmがより好ましい。保護層3の平均厚さが上記下限未満であると、当該光情報記録媒体用記録層2にレーザ照射を行った際に発生する気泡の逃散防止効果が不十分となるおそれがある。逆に、保護層3の平均厚さが上記上限を超えると、光の干渉が発生し易くなり、当該光情報記録媒体用記録層2に気泡が発生し難くなるため、当該光情報記録媒体の記録感度が低下するおそれがある。 As the lower limit of the average thickness of the protective layer 3, 2 nm is preferable, and 3 nm is more preferable. On the other hand, the upper limit of the average thickness of the protective layer 3 is preferably 30 nm, more preferably 25 nm. If the average thickness of the protective layer 3 is less than the above lower limit, the effect of preventing the escape of bubbles generated when the recording layer 2 for the optical information recording medium is irradiated with the laser may be insufficient. On the contrary, when the average thickness of the protective layer 3 exceeds the above upper limit, light interference is likely to occur, and bubbles are less likely to be generated in the recording layer 2 for the optical information recording medium. Recording sensitivity may decrease.

<光透過層>
光透過層4は、当該光情報記録媒体の表面を平滑化しレーザ光を入射し易くすると共に、保護層3や当該光情報記録媒体用記録層2の腐食を防止する。
<Light transmission layer>
The light transmitting layer 4 smoothes the surface of the optical information recording medium to facilitate the incident of laser light, and prevents corrosion of the protective layer 3 and the recording layer 2 for the optical information recording medium.

光透過層4の材質には、記録再生を行うレーザ光に対して高い透過率を持ち、光吸収率が小さいものが選択される。具体的には、光透過層4の材質としては、例えばポリカーボネートや紫外線硬化樹脂等を用いることができる。 As the material of the light transmitting layer 4, a material having a high transmittance with respect to the laser beam for recording / reproduction and a small light absorption rate is selected. Specifically, as the material of the light transmitting layer 4, for example, polycarbonate, ultraviolet curable resin, or the like can be used.

光透過層4の平均厚さの下限としては、0.01mmが好ましく、0.015mmがより好ましい。一方、光透過層4の平均厚さの上限としては、0.2mmが好ましく、0.15mmがより好ましい。光透過層4の平均厚さが上記下限未満であると、保護層3や当該光情報記録媒体用記録層2に対する腐食防止効果が不十分となるおそれがある。逆に、光透過層4の平均厚さが上記上限を超えると、NA(開口数)が小さくなり過ぎ、微細な記録マークが記録できなくなるおそれがある。 The lower limit of the average thickness of the light transmitting layer 4 is preferably 0.01 mm, more preferably 0.015 mm. On the other hand, the upper limit of the average thickness of the light transmitting layer 4 is preferably 0.2 mm, more preferably 0.15 mm. If the average thickness of the light transmitting layer 4 is less than the above lower limit, the corrosion prevention effect on the protective layer 3 and the recording layer 2 for the optical information recording medium may be insufficient. On the contrary, if the average thickness of the light transmitting layer 4 exceeds the above upper limit, the NA (numerical aperture) becomes too small, and there is a possibility that fine recording marks cannot be recorded.

<光情報記録媒体の製造方法>
当該光情報記録媒体は、例えば、基板準備工程と、裏面側保護層積層工程と、光情報記録媒体用記録層積層工程と、表面側保護層積層工程と、光透過層積層工程とを備える製造方法により製造することができる。
<Manufacturing method of optical information recording medium>
The optical information recording medium is manufactured including, for example, a substrate preparation step, a back surface side protective layer laminating step, a recording layer laminating step for an optical information recording medium, a front surface side protective layer laminating step, and a light transmitting layer laminating step. It can be manufactured by the method.

(基板準備工程)
基板準備工程では、保護層3が積層される側の表面にウォブリンググルーブとしての凹凸が形成された基板1を準備する。
(Board preparation process)
In the substrate preparation step, the substrate 1 having irregularities as wobbling grooves formed on the surface on the side where the protective layer 3 is laminated is prepared.

このような基板1は、射出成形等により、マスタリング原盤からトラッキング用のウォ
ブリンググルーブの凹凸形状を転写することによって、形成することができる。
Such a substrate 1 can be formed by transferring the uneven shape of the wobbling groove for tracking from the mastering master by injection molding or the like.

(裏面側保護層積層工程)
裏面側保護層積層工程では、上記基板準備工程で準備した基板1の表面に保護層3を積層する。
(Back side protective layer laminating process)
In the back surface side protective layer laminating step, the protective layer 3 is laminated on the surface of the substrate 1 prepared in the substrate preparation step.

基板1の表面への保護層3の積層方法としては、保護層3を構成する誘電体と同じ組成を有するスパッタリングターゲットを用いて、スパッタ法等の公知の成膜手法を利用できる。 As a method for laminating the protective layer 3 on the surface of the substrate 1, a known film forming method such as a sputtering method can be used by using a sputtering target having the same composition as the dielectric constituting the protective layer 3.

(光情報記録媒体用記録層積層工程)
光情報記録媒体用記録層積層工程では、上記裏面側保護層積層工程後の基板1と保護層3とが積層された積層体の表面側に当該光情報記録媒体用記録層2を積層する。
(Recording layer stacking process for optical information recording medium)
In the optical information recording medium recording layer laminating step, the optical information recording medium recording layer 2 is laminated on the front surface side of the laminate in which the substrate 1 and the protective layer 3 are laminated after the back surface side protective layer laminating step.

当該光情報記録媒体用記録層2は、金属酸化物としてMn酸化物とW酸化物と共にSn酸化物又はTa酸化物を含む。このように複数種の酸化物を含む記録層を得るには、スパッタリング法を用いることが好ましい。スパッタリング法を用いることで、当該光情報記録媒体用記録層2の厚さの均一性も確保し易い。 The recording layer 2 for an optical information recording medium contains Sn oxide or Ta oxide together with Mn oxide and W oxide as metal oxides. In order to obtain a recording layer containing a plurality of types of oxides in this way, it is preferable to use a sputtering method. By using the sputtering method, it is easy to ensure the uniformity of the thickness of the recording layer 2 for the optical information recording medium.

当該光情報記録媒体用記録層2を形成するためのスパッタリングターゲットとしては、金属元素として少なくともMn及びWと共にSn又はTaを含むスパッタリングターゲットを用いる。上記金属元素の合計原子数に対するMnの原子数割合の下限としては、3atm%であり、10atm%がより好ましい。一方、上記Mn原子数割合の上限としては、40atm%であり、35atm%がより好ましい。 As the sputtering target for forming the recording layer 2 for the optical information recording medium, a sputtering target containing Sn or Ta together with at least Mn and W as metal elements is used. The lower limit of the ratio of the number of atoms of Mn to the total number of atoms of the metal elements is 3 atm%, more preferably 10 atm%. On the other hand, the upper limit of the Mn atom number ratio is 40 atm%, more preferably 35 atm%.

当該スパッタリングターゲットは、光情報記録媒体用記録層2を形成するためのスパッタリングターゲットとして、含まれる金属元素を酸化させながら用いることで、金属酸化物としてMn酸化物に加え、W酸化物とSn酸化物又はTa酸化物とを含み、Mnの原子数割合が上記範囲内に容易に制御できる。従って、当該スパッタリングターゲットを用いることで、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる光情報記録媒体用記録層2を容易に製造することができる。 The sputtering target is used as a sputtering target for forming the recording layer 2 for an optical information recording medium while oxidizing the contained metal element. As a metal oxide, in addition to Mn oxide, W oxide and Sn oxidation It contains a substance or Ta oxide, and the atomic number ratio of Mn can be easily controlled within the above range. Therefore, by using the sputtering target, it is possible to easily manufacture the recording layer 2 for an optical information recording medium, which is excellent in basic characteristics such as the degree of modulation and the C / N ratio and is also excellent in the power margin.

また、上記金属元素の合計原子数に対するWの原子数割合の下限としては、10atm%が好ましく、15atm%がより好ましい。一方、上記Wの原子数割合の上限としては、65atm%が好ましく、50atm%がより好ましい。上記Wの原子数割合が上記下限未満であると、当該スパッタリングターゲットを用いて製造される光情報記録媒体用記録層2のパワーマージンが低下するおそれがある。逆に、上記Wの原子数割合が上記上限を超えると、相対的にSn又はTaの原子数割合が低下するため、当該スパッタリングターゲットを用いて製造される光情報記録媒体用記録層2のジッター特性が低下し、読み取りエラーが生じ易くなるおそれがある。 Further, as the lower limit of the ratio of the number of atoms of W to the total number of atoms of the metal elements, 10 atm% is preferable, and 15 atm% is more preferable. On the other hand, as the upper limit of the atomic number ratio of W, 65 atm% is preferable, and 50 atm% is more preferable. If the atomic number ratio of W is less than the lower limit, the power margin of the recording layer 2 for an optical information recording medium manufactured by using the sputtering target may decrease. On the contrary, when the atomic number ratio of W exceeds the upper limit, the atomic number ratio of Sn or Ta decreases relatively, so that the jitter of the recording layer 2 for the optical information recording medium manufactured by using the sputtering target The characteristics may deteriorate and reading errors may occur easily.

上記金属元素の合計原子数に対するSn又はTaの原子数割合の下限としては、5atm%が好ましく、10atm%がより好ましい。一方、上記Sn又はTaの原子数割合の上限としては、60atm%が好ましく、50atm%がより好ましい。上記Sn又はTaの原子数割合が上記下限未満であると、当該スパッタリングターゲットを用いて製造される光情報記録媒体用記録層2のジッター特性が低下し、読み取りエラーが生じ易くなるおそれがある。逆に、上記Sn又はTaの原子数割合が上記上限を超えると、相対的にWの原子数割合が低下するため、当該スパッタリングターゲットを用いて製造される光情報記録媒体用記録層2のパワーマージンが低下するおそれがある。 As the lower limit of the ratio of the number of atoms of Sn or Ta to the total number of atoms of the metal elements, 5 atm% is preferable, and 10 atm% is more preferable. On the other hand, as the upper limit of the atomic number ratio of Sn or Ta, 60 atm% is preferable, and 50 atm% is more preferable. If the atomic number ratio of Sn or Ta is less than the above lower limit, the jitter characteristic of the recording layer 2 for an optical information recording medium manufactured by using the sputtering target may be deteriorated, and a reading error may easily occur. On the contrary, when the atomic number ratio of Sn or Ta exceeds the upper limit, the atomic number ratio of W relatively decreases, so that the power of the recording layer 2 for the optical information recording medium manufactured by using the sputtering target Margin may decrease.

当該光情報記録媒体用記録層2をスパッタリング法で形成する場合、反応性スパッタリングを用いることが好ましい。反応性スパッタリングでは、当該スパッタリングターゲットに対してスパッタリングを行いつつ、酸素を供給して酸化を促進させる。 When the recording layer 2 for an optical information recording medium is formed by a sputtering method, it is preferable to use reactive sputtering. In reactive sputtering, oxygen is supplied to promote oxidation while sputtering is performed on the sputtering target.

酸素の供給は、酸素ガスを不活性ガス(例えばArガス)で希釈した雰囲気ガスを用いて行われる。雰囲気ガスにおけるAr流量に対する酸素流量比の下限としては、0.5倍が好ましく、1倍がより好ましい。一方、上記酸素流量比の上限としては、5倍が好ましい。上記酸素流量比が上記下限未満であると、金属の酸化が不十分となり、当該光情報記録媒体用記録層2に金属元素が残留し易くなるため、当該光情報記録媒体の耐久性が低下するおそれがある。逆に、上記酸素流量比が上記上限を超えると、酸化反応が激しくなり過ぎ、形成される当該光情報記録媒体用記録層2の緻密性が低下し、変調度やC/N比といった基本特性が低下するおそれがある。 Oxygen is supplied by using an atmospheric gas obtained by diluting oxygen gas with an inert gas (for example, Ar gas). The lower limit of the oxygen flow rate ratio to the Ar flow rate in the atmospheric gas is preferably 0.5 times, more preferably 1 time. On the other hand, the upper limit of the oxygen flow rate ratio is preferably 5 times. If the oxygen flow rate ratio is less than the above lower limit, the oxidation of the metal becomes insufficient, and the metal element tends to remain in the recording layer 2 for the optical information recording medium, so that the durability of the optical information recording medium is lowered. There is a risk. On the contrary, when the oxygen flow rate ratio exceeds the upper limit, the oxidation reaction becomes too violent, the denseness of the formed recording layer 2 for the optical information recording medium is lowered, and basic characteristics such as the degree of modulation and the C / N ratio are reduced. May decrease.

また、他のスパッタリング条件は常法により決定でき、例えばガス圧としては、0.1Pa以上1Pa以下、スパッタ電力としては、0.2W/cm以上20W/cm以下、基板温度としては、室温(20℃以上30°以下)とすることができる。 Other sputtering conditions can be determined by a conventional method. For example, the gas pressure is 0.1 Pa or more and 1 Pa or less, the sputtering power is 0.2 W / cm 2 or more and 20 W / cm 2 or less, and the substrate temperature is room temperature. (20 ° C. or higher and 30 ° C. or lower).

(表面側保護層積層工程)
表面側保護層積層工程では、上記光情報記録媒体用記録層積層工程で光情報記録媒体用記録層2を積層した積層体の表面側にさらに保護層3を積層する。この表面側保護層積層工程は、上記裏面側保護層積層工程と同様にして行うことができる。
(Surface side protective layer laminating process)
In the surface-side protective layer laminating step, the protective layer 3 is further laminated on the surface side of the laminated body in which the optical information recording medium recording layer 2 is laminated in the optical information recording medium recording layer laminating step. This front surface side protective layer laminating step can be performed in the same manner as the back surface side protective layer laminating step.

(光透過層積層工程)
光透過層積層工程では、上記表面側保護層積層工程で表面側の保護層3を積層した積層体の表面側にさらに光透過層4を積層する。
(Light transmitting layer laminating process)
In the light transmitting layer laminating step, the light transmitting layer 4 is further laminated on the surface side of the laminated body in which the protective layer 3 on the surface side is laminated in the surface side protective layer laminating step.

この光透過層4の積層方法は、使用する材料の特性等に応じて公知の方法を用いることができる。例えば光透過層4として紫外線硬化樹脂を用いる場合であれば、紫外線硬化樹脂組成物をスピンコート等により塗布した後、光照射を行うことにより形成することができる。 As the method of laminating the light transmitting layer 4, a known method can be used depending on the characteristics of the material used and the like. For example, when an ultraviolet curable resin is used as the light transmitting layer 4, it can be formed by applying an ultraviolet curable resin composition by spin coating or the like and then irradiating with light.

<利点>
当該光情報記録媒体は、本発明の光情報記録媒体用記録層2を備えるので、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる。また、当該光情報記録媒体は、保護層3が誘電体であるので、信号強度を高めることができ、その基本特性をさらに向上できる。
<Advantage>
Since the optical information recording medium includes the recording layer 2 for the optical information recording medium of the present invention, it is excellent in basic characteristics such as modulation degree and C / N ratio, and is also excellent in power margin. Further, in the optical information recording medium, since the protective layer 3 is a dielectric material, the signal strength can be increased and the basic characteristics thereof can be further improved.

[その他の実施形態]
なお、本発明は、上記実施形態に限定されるものではない。
[Other Embodiments]
The present invention is not limited to the above embodiment.

上記実施形態では、光情報記録媒体用記録層の表面及び裏面に保護層を積層した光情報記録媒体について説明したが、光情報記録媒体用記録層は、片方の面のみに保護層が積層されていてもよく、あるいはこのような保護層を有さなくともよい。なお、光情報記録媒体が保護層を有さない場合は、光情報記録媒体用記録層の裏面に金属製の反射層を設けることが好ましい。このように反射層を設けることで信号強度を高めることができる。この反射層を構成する金属としては、Ag、Au、Cu、Al、Ni、Cr、Ti等の金属や、これらの合金を挙げることができる。 In the above embodiment, the optical information recording medium in which the protective layer is laminated on the front surface and the back surface of the recording layer for the optical information recording medium has been described, but in the recording layer for the optical information recording medium, the protective layer is laminated on only one surface. It may or may not have such a protective layer. When the optical information recording medium does not have a protective layer, it is preferable to provide a metal reflective layer on the back surface of the recording layer for the optical information recording medium. By providing the reflective layer in this way, the signal strength can be increased. Examples of the metal constituting this reflective layer include metals such as Ag, Au, Cu, Al, Ni, Cr, and Ti, and alloys thereof.

光情報記録媒体用記録層の表面及び裏面に保護層を設けず、単層で用いる場合、光情報記録媒体用記録層の平均厚さの下限としては、10nmが好ましく、20nmがより好ましく、30nmがさらに好ましい。一方、光情報記録媒体用記録層の平均厚さの上限としては、60nmが好ましく、50nmがより好ましく、45nmがさらに好ましい。光情報記録媒体用記録層の平均厚さが上記下限未満であると、照射したレーザ光の読み取りに必要な反射率が得られないおそれがある。逆に、光情報記録媒体用記録層の平均厚さが上記上限を超えると、光情報記録媒体用記録層が不要に厚くなるため、光情報記録媒体用記録層の形成に時間がかかり、生産性が低下するおそれや、記録に必要なレーザパワーが大きくなり過ぎるおそれがある。 When a single layer is used without providing protective layers on the front and back surfaces of the recording layer for an optical information recording medium, the lower limit of the average thickness of the recording layer for an optical information recording medium is preferably 10 nm, more preferably 20 nm, and more preferably 30 nm. Is even more preferable. On the other hand, the upper limit of the average thickness of the recording layer for an optical information recording medium is preferably 60 nm, more preferably 50 nm, and even more preferably 45 nm. If the average thickness of the recording layer for the optical information recording medium is less than the above lower limit, the reflectance required for reading the irradiated laser beam may not be obtained. On the contrary, when the average thickness of the recording layer for the optical information recording medium exceeds the above upper limit, the recording layer for the optical information recording medium becomes unnecessarily thick, so that it takes time to form the recording layer for the optical information recording medium, and the production There is a risk that the property will deteriorate and the laser power required for recording will become too large.

また、当該光情報記録媒体は、保護層に加え、光情報記録媒体用記録層の表面側又は裏面側に、酸化物、窒化物、硫化物等の光学調整層を設けてもよい。このように光学調整層を設けることで、光情報記録媒体用記録層の耐久性を改善できると共に、記録特性をさらに高めることができる。 Further, in addition to the protective layer, the optical information recording medium may be provided with an optical adjustment layer such as an oxide, a nitride, or a sulfide on the front surface side or the back surface side of the optical information recording medium recording layer. By providing the optical adjustment layer in this way, the durability of the recording layer for an optical information recording medium can be improved, and the recording characteristics can be further improved.

上記実施形態では、光情報記録媒体用記録層及び光透過層が各1層ずつ形成された単層の光情報記録媒体を説明したが、2層以上の光情報記録媒体用記録層及び光透過層を有する多層の光情報記録媒体とすることもできる。 In the above embodiment, a single-layer optical information recording medium in which one recording layer for an optical information recording medium and one light transmission layer are formed has been described, but two or more recording layers for an optical information recording medium and light transmission have been described. It can also be a multi-layered optical information recording medium having layers.

多層の光情報記録媒体では、光情報記録媒体用記録層と必要に応じて積層される光学調整層や保護層とから構成される記録層群が、透明中間層を介して光情報記録媒体の厚さ方向に積層される。この透明中間層としては、例えば紫外線硬化樹脂やポリカーボネート等の透明樹脂を用いることができる。このような多層構成の光情報記録媒体では、レーザ照射時に厚さ方向にレーザの焦点位置を調整することで、情報を記録される層が選択され、多層記録が実現される。なお、この透明中間層の厚さは、上下層に配設される記録層群間でクロストークが生じないように適宜決定される。 In a multi-layer optical information recording medium, a recording layer group composed of a recording layer for an optical information recording medium and an optical adjustment layer and a protective layer laminated as needed is formed on the optical information recording medium via a transparent intermediate layer. Stacked in the thickness direction. As the transparent intermediate layer, for example, a transparent resin such as an ultraviolet curable resin or polycarbonate can be used. In such a multi-layered optical information recording medium, the layer on which information is recorded is selected by adjusting the focal position of the laser in the thickness direction during laser irradiation, and multi-layer recording is realized. The thickness of the transparent intermediate layer is appropriately determined so that crosstalk does not occur between the recording layers arranged in the upper and lower layers.

上記実施形態では、光情報記録媒体用記録層を形成するためのスパッタリングターゲットとして、少なくともMn及びWと共にSn又はTaを金属元素として含み、金属元素の合計原子数に対するMnの原子数割合が3atm%以上40atm%以下であるスパッタリングターゲットを用いる場合を説明したが、他のスパッタリングターゲットを用いて光情報記録媒体用記録層を形成することもできる。他のスパッタリングターゲットとしては、例えば、単体の金属Mn及び金属Wと共に金属Sn又は金属Taを用いることができる。あるいは、スパッタリングターゲットとして、単体のMn酸化物及びW酸化物と共にSn酸化物又はTa酸化物を用いてもよく、上述の金属ターゲットと酸化物ターゲットとの混合物を用いることもできる。 In the above embodiment, Sn or Ta is contained as a metal element together with at least Mn and W as a sputtering target for forming a recording layer for an optical information recording medium, and the ratio of the number of atoms of Mn to the total number of atoms of the metal element is 3 atm%. Although the case where a sputtering target having a content of 40 atm% or less is used has been described above, a recording layer for an optical information recording medium can also be formed by using another sputtering target. As another sputtering target, for example, metal Sn or metal Ta can be used together with a simple substance metal Mn and metal W. Alternatively, as the sputtering target, Sn oxide or Ta oxide may be used together with Mn oxide and W oxide as a simple substance, or a mixture of the above-mentioned metal target and oxide target may be used.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

[実施例1]
光情報記録媒体の基板として、ポリカーボネート製の基板(直径120mm、平均厚さ1.1mm、トラックピッチ0.32μm、溝深さ約33nm)を準備した。
[Example 1]
As a substrate for the optical information recording medium, a polycarbonate substrate (diameter 120 mm, average thickness 1.1 mm, track pitch 0.32 μm, groove depth about 33 nm) was prepared.

この基板に裏面側保護層、光情報記録媒体用記録層(以下、単に「記録層」ともいう)及び表面側保護層をこの順に積層した。 A back surface side protective layer, a recording layer for an optical information recording medium (hereinafter, also simply referred to as “recording layer”), and a front surface side protective layer were laminated in this order on this substrate.

表面側保護層及び裏面側保護層は、常法のDCマグネトロンスパッタリング法により形成した。保護層の材質は、表面側、裏面側共に、Sn、Zn及びZrを原子数割合でそれぞれ40atm%、40atm%、20atm%含む金属酸化物とし、その平均厚さは14nmとした。なお、スパッタリング時の雰囲気ガスとしては、Ar流量を20sccm、O流量を1sccmとした。 The front surface side protective layer and the back surface side protective layer were formed by a conventional DC magnetron sputtering method. The material of the protective layer was a metal oxide containing Sn, Zn and Zr in the atomic number ratios of 40 atm%, 40 atm% and 20 atm%, respectively, on both the front surface side and the back surface side, and the average thickness thereof was 14 nm. As the atmospheric gas during sputtering, the Ar flow rate was 20 sccm and the O 2 flow rate was 1 sccm.

記録層の形成にはスパッタリングターゲットとして、金属Mn、金属Sn、金属Wを準備し、多元スパッタ法により表1に示す組成となるよう制御を行った。このときのスパッタリング条件としては、Ar流量を10sccm、O流量を10sccmとし、ガス圧0.26Pa、基板温度25℃(室温)とし、スパッタ電力は、目標とする組成に応じて0.2W/cm以上3W/cm以下の範囲で調整した。なお、記録層の平均厚さは32nmとした。 For the formation of the recording layer, metal Mn, metal Sn, and metal W were prepared as sputtering targets, and the composition was controlled by the multiple sputtering method so as to have the composition shown in Table 1. The sputtering conditions at this time were an Ar flow rate of 10 sccm, an O 2 flow rate of 10 sccm, a gas pressure of 0.26 Pa, a substrate temperature of 25 ° C. (room temperature), and a sputtering power of 0.2 W / W / according to the target composition. It was adjusted with cm 2 or more 3W / cm 2 or less. The average thickness of the recording layer was 32 nm.

このようにしてスパッタリング法により積層した積層体の表面(表面側保護層の表面)に、光透過層を積層した。光透過層は、紫外線硬化性樹脂組成物(日本化薬株式会社の「BRD−864」)をスピンコートした後、紫外線を照射して形成した。なお、光透過層の平均厚さは、0.1mmとした。 The light transmitting layer was laminated on the surface of the laminated body (the surface of the surface side protective layer) laminated by the sputtering method in this way. The light transmitting layer was formed by spin-coating an ultraviolet curable resin composition (“BRD-864” of Nippon Kayaku Co., Ltd.) and then irradiating with ultraviolet rays. The average thickness of the light transmitting layer was 0.1 mm.

このようにして実施例1の光情報記録媒体を得た。 In this way, the optical information recording medium of Example 1 was obtained.

[実施例2〜4]
記録層の形成において、表1に示す組成となるよう制御を行った以外は、実施例1と同様にして実施例2〜4の光情報記録媒体を得た。
[Examples 2 to 4]
The optical information recording media of Examples 2 to 4 were obtained in the same manner as in Example 1 except that the composition of the recording layer was controlled so as to have the composition shown in Table 1.

[実施例5、6]
記録層の形成において、さらに金属Znを準備し、表1に示す組成となるよう制御を行った以外は、実施例1と同様にして実施例5、6の光情報記録媒体を得た。
[Examples 5 and 6]
In the formation of the recording layer, the optical information recording media of Examples 5 and 6 were obtained in the same manner as in Example 1 except that the metal Zn was further prepared and controlled so as to have the composition shown in Table 1.

[実施例7、8]
記録層の形成において、さらに金属Taを準備し、表1に示す組成となるよう制御を行った以外は、実施例5と同様にして実施例7、8の光情報記録媒体を得た。
[Examples 7 and 8]
In the formation of the recording layer, the optical information recording media of Examples 7 and 8 were obtained in the same manner as in Example 5 except that the metal Ta was further prepared and controlled so as to have the composition shown in Table 1.

[比較例1〜4]
記録層の形成において、表1に示す組成となるよう制御を行った以外は、実施例1と同様にして比較例1〜4の光情報記録媒体を得た。
[Comparative Examples 1 to 4]
The optical information recording media of Comparative Examples 1 to 4 were obtained in the same manner as in Example 1 except that the composition of the recording layer was controlled so as to have the composition shown in Table 1.

なお、表1において「記録層の金属酸化物中の金属原子数」欄の「−」は、その原子を含めていないことを意味する。具体的には、該当するスパッタリングターゲットを装填せずにスパッタリングを行った。また、比較例3では、InのスパッタリングターゲットとしてInを新たに追加してスパッタリングを行った。 In Table 1, "-" in the "Number of metal atoms in the metal oxide of the recording layer" column means that the atom is not included. Specifically, sputtering was performed without loading the corresponding sputtering target. Further, in Comparative Example 3, In 2 O 3 was newly added as an In sputtering target to perform sputtering.

<組成の確認>
実施例1〜8及び比較例1〜4の記録層の金属原子数を蛍光X線分析装置(XRF)を用いて確認した。具体的には、リガク社製の卓上波長分散型蛍光X線分析装置「ZSX−MIN」を用い、対象とする元素について蛍光X線強度から原子数比を算出した。結果を表1に示す。
<Confirmation of composition>
The number of metal atoms in the recording layers of Examples 1 to 8 and Comparative Examples 1 to 4 was confirmed using a fluorescent X-ray analyzer (XRF). Specifically, the atomic number ratio was calculated from the fluorescent X-ray intensity for the target element using a desktop wavelength dispersive fluorescent X-ray analyzer "ZSX-MIN" manufactured by Rigaku. The results are shown in Table 1.

[光情報記録媒体の評価]
実施例1〜8及び比較例1〜4の光情報記録媒体について、変調度、ジッター、及びパワーマージンの評価を行った(ただし、比較例4の変調度を除く)。
[Evaluation of optical information recording medium]
The modulation degree, jitter, and power margin of the optical information recording media of Examples 1 to 8 and Comparative Examples 1 to 4 were evaluated (however, the modulation degree of Comparative Example 4 was excluded).

<評価装置>
光情報記録媒体の記録信号特性の評価にはパルステック工業株式会社製の「ODU−1000」(記録レーザ中心波長:405nm、NA(開口数):0.85)を用い、基準クロック66MHzの再生・記録レーザを照射し、光情報記録媒体に対して記録及び読み出しを行った。記録動作は、RLL(Run Length Limited)(1,7)PP変調(Parity preserve/Prohibit rmtr(repeated minimum transition runlength))で行い、隣接する5トラックに信号を記録し、中心トラックの信号特性を評価した。なお、光情報記録媒体の線速度は、4.92m/s、再生時のレーザパワーは0.7mWとした。
<Evaluation device>
"ODU-1000" (recording laser center wavelength: 405 nm, NA (numerical aperture): 0.85) manufactured by Pulsetech Industries, Ltd. was used to evaluate the recording signal characteristics of the optical information recording medium, and the reference clock was reproduced at 66 MHz. -The recording laser was irradiated, and recording and reading were performed on the optical information recording medium. The recording operation is performed by RLL (Run Length Limited) (1,7) PP modulation (Parity presserve / Prohibit rmtr (repeated minimum transmission runlength)), the signal is recorded on the adjacent 5 tracks, and the signal characteristics of the center track are evaluated. did. The linear velocity of the optical information recording medium was 4.92 m / s, and the laser power during reproduction was 0.7 mW.

<変調度>
変調度は、横河電機株式会社製デジタルオシロスコープ「DL1640」を用い、信号が記録されている部分の最大反射率及び最小反射率を測定し、下記計算式(1)により算出した。
変調度=(最大反射率−最小反射率)/最大反射率 ・・・(1)
<Modulation degree>
The degree of modulation was calculated by the following formula (1) by measuring the maximum reflectance and the minimum reflectance of the portion where the signal was recorded using a digital oscilloscope "DL1640" manufactured by Yokogawa Electric Corporation.
Modulation degree = (maximum reflectance-minimum reflectance) / maximum reflectance ... (1)

この変調度は、図2に示すように記録時のレーザパワーを変化させることで変化する。そこで、後述するジッターが最小となるレーザパワーで記録を行ったときの変調度を各光情報記録媒体の変調度とした。なお、図2のグラフでは、ジッターが最小となるレーザパワーでレーザパワーを規格化しているため、各光情報記録媒体の変調度は、レーザパワー=1における変調度に相当する。結果を表1に示す。 This degree of modulation changes by changing the laser power at the time of recording as shown in FIG. Therefore, the degree of modulation when recording is performed with the laser power that minimizes the jitter described later is defined as the degree of modulation of each optical information recording medium. In the graph of FIG. 2, since the laser power is standardized by the laser power that minimizes the jitter, the modulation degree of each optical information recording medium corresponds to the modulation degree at the laser power = 1. The results are shown in Table 1.

この変調度は数値が大きいほど反射光の変動が大きく読み取り易いことを意味する。ここでは、変調度が0.5以上のものを変調度に優れると判断した。 The larger the value of this modulation degree, the larger the fluctuation of the reflected light and the easier it is to read. Here, it was judged that those having a degree of modulation of 0.5 or more were excellent in the degree of modulation.

<ジッター>
ジッターは、横河電機株式会社製タイムインターバルアナライザ「TA520」を用いて測定した。ジッターは、図3に示すように記録時のレーザパワーにより変化し、あるパワーにおいて最小値となる。この最小値を各光情報記録媒体のジッターとした。結果を表1に示す。
<Jitter>
The jitter was measured using a time interval analyzer "TA520" manufactured by Yokogawa Electric Corporation. As shown in FIG. 3, the jitter changes depending on the laser power at the time of recording, and becomes the minimum value at a certain power. This minimum value was taken as the jitter of each optical information recording medium. The results are shown in Table 1.

ジッターは、数値が小さいほど読み取り精度が高まる。ここでは、ジッターが6.5%以下のものをジッターに優れると判断した。 For jitter, the smaller the value, the higher the reading accuracy. Here, it was judged that the one having a jitter of 6.5% or less was excellent in the jitter.

<パワーマージン>
パワーマージンは、以下の手順により算出した。まず、レーザパワーをジッターが最小となるレーザパワーにより規格化した(図3参照)。このレーザパワーを規格化した結果から、ジッターが8.5%となる規格化レーザパワーを求めた。各光情報記録媒体のジッターの最小値は8.5%未満であるので、このレーザパワーは2箇所存在する。それぞれを低パワー側及び高パワー側として表1に示す。
<Power margin>
The power margin was calculated by the following procedure. First, the laser power was standardized by the laser power that minimizes jitter (see FIG. 3). From the result of standardizing this laser power, a standardized laser power having a jitter of 8.5% was obtained. Since the minimum value of jitter of each optical information recording medium is less than 8.5%, there are two laser powers. Table 1 shows each as a low power side and a high power side.

パワーマージンは、規格化後の値で、低パワー側(常に1未満)は1より小さいほど優れ、高パワー側(常に1超)は1より大きいほど優れることとなる。ここでは、低パワー側が0.85以下であり、高パワー側が1.15以上であるものをパワーマージンに優れると判断した。 The power margin is a value after standardization, and the lower the power side (always less than 1) is, the better it is, and the higher the power side (always more than 1) is, the better it is. Here, it was judged that the one having 0.85 or less on the low power side and 1.15 or more on the high power side was excellent in power margin.

Figure 2021093229
Figure 2021093229

なお、表1で比較例4の変調度の「−」は、変調度が未測定であることを意味する。 In Table 1, the “−” of the modulation degree of Comparative Example 4 means that the modulation degree has not been measured.

表1から、記録層としてMn酸化物とW酸化物と共にSn酸化物又はTa酸化物を含む金属酸化物を有する実施例1〜8の光情報記録媒体は、比較例1〜4の光情報記録媒体と比較して、ジッター及びパワーマージン、特に低パワー側のパワーマージンに優れ、変調度は同等である。 From Table 1, the optical information recording media of Examples 1 to 8 having a metal oxide containing Sn oxide or Ta oxide together with Mn oxide and W oxide as a recording layer are used for optical information recording of Comparative Examples 1 to 4. Compared with the medium, it is excellent in jitter and power margin, especially the power margin on the low power side, and the degree of modulation is the same.

これに対し、記録層がMn酸化物に加え、Ta酸化物を有さず、かつW酸化物とSn酸化物とのいずれか一方しか有さない比較例2及び比較例4の光情報記録媒体では、低パワー側のパワーマージンに劣り、比較例4の光情報記録媒体ではさらにジッターも劣る。また、記録層がTa酸化物とW酸化物とSn酸化物とを全て有さない比較例1及び比較例3の光情報記録媒体では、低パワー側及び高パワー側共にパワーマージンに劣る。このことから、記録層としてMn酸化物とW酸化物と共にSn酸化物又はTa酸化物を含むことで、光情報記録媒体のパワーマージンを向上できることが分かる。 On the other hand, the optical information recording media of Comparative Example 2 and Comparative Example 4 in which the recording layer does not have Ta oxide in addition to Mn oxide and has only one of W oxide and Sn oxide. Then, the power margin on the low power side is inferior, and the jitter is further inferior in the optical information recording medium of Comparative Example 4. Further, the optical information recording media of Comparative Example 1 and Comparative Example 3 in which the recording layer does not have all Ta oxide, W oxide, and Sn oxide are inferior in power margin on both the low power side and the high power side. From this, it can be seen that the power margin of the optical information recording medium can be improved by including Sn oxide or Ta oxide together with Mn oxide and W oxide as the recording layer.

さらに詳細にみると、実施例5及び実施例6の光情報記録媒体は、実施例1〜4の光情報記録媒体に比べてジッターが小さく、低パワー側のパワーマージンに優れる。このことから、記録層の金属酸化物にZn酸化物を含めることで、さらにパワーマージンを向上できることが分かる。 More specifically, the optical information recording media of Examples 5 and 6 have smaller jitter than the optical information recording media of Examples 1 to 4, and are excellent in power margin on the low power side. From this, it can be seen that the power margin can be further improved by including the Zn oxide in the metal oxide of the recording layer.

以上説明したように、本発明の光情報記録媒体用記録層及び光情報記録媒体は、変調度やC/N比といった基本特性に優れると共に、パワーマージンに優れる。 As described above, the recording layer for an optical information recording medium and the optical information recording medium of the present invention are excellent in basic characteristics such as a degree of modulation and a C / N ratio, and are also excellent in a power margin.

1 基板
2 光情報記録媒体用記録層
3 保護層
4 光透過層
1 Substrate 2 Recording layer for optical information recording medium 3 Protective layer 4 Light transmitting layer

Claims (8)

レーザ光の照射により情報信号を記録可能な光情報記録媒体用記録層であって、
Mn酸化物とW酸化物と共にSn酸化物又はTa酸化物を含む金属酸化物を有し、
上記金属酸化物を構成する金属元素の合計原子数に対するMnの原子数割合が3atm%以上40atm%以下である光情報記録媒体用記録層。
A recording layer for an optical information recording medium capable of recording an information signal by irradiation with a laser beam.
It has a metal oxide containing Sn oxide or Ta oxide together with Mn oxide and W oxide.
A recording layer for an optical information recording medium in which the ratio of the number of atoms of Mn to the total number of atoms of the metal elements constituting the metal oxide is 3 atm% or more and 40 atm% or less.
上記金属酸化物を構成する金属元素の合計原子数に対するWの原子数割合が10atm%以上65atm%以下である請求項1に記載の光情報記録媒体用記録層。 The recording layer for an optical information recording medium according to claim 1, wherein the ratio of the number of atoms of W to the total number of atoms of the metal elements constituting the metal oxide is 10 atm% or more and 65 atm% or less. 上記金属酸化物を構成する金属元素の合計原子数に対するSn又はTaの原子数割合が5atm%以上である請求項1又は請求項2に記載の光情報記録媒体用記録層。 The recording layer for an optical information recording medium according to claim 1 or 2, wherein the ratio of the number of atoms of Sn or Ta to the total number of atoms of the metal elements constituting the metal oxide is 5 atm% or more. 上記金属酸化物がZn酸化物をさらに含む請求項1、請求項2又は請求項3に記載の光情報記録媒体用記録層。 The recording layer for an optical information recording medium according to claim 1, claim 2 or claim 3, wherein the metal oxide further contains a Zn oxide. 請求項1から請求項4のいずれか1項に記載の光情報記録媒体用記録層と、
上記光情報記録媒体用記録層の表面及び裏面に積層される保護層とを備え、
上記保護層が誘電体である光情報記録媒体。
The recording layer for an optical information recording medium according to any one of claims 1 to 4,
A protective layer laminated on the front surface and the back surface of the recording layer for an optical information recording medium is provided.
An optical information recording medium in which the protective layer is a dielectric material.
レーザ光の照射により情報信号を記録可能な光情報記録媒体用記録層を形成するためのスパッタリングターゲットであって、
金属元素として少なくともMn及びWと共にSn又はTaを含み、
上記金属元素の合計原子数に対するMnの原子数割合が3atm%以上40atm%以下であるスパッタリングターゲット。
A sputtering target for forming a recording layer for an optical information recording medium capable of recording an information signal by irradiation with a laser beam.
It contains Sn or Ta as a metal element together with at least Mn and W.
A sputtering target in which the ratio of the number of atoms of Mn to the total number of atoms of the metal elements is 3 atm% or more and 40 atm% or less.
上記金属元素の合計原子数に対するWの原子数割合が10atm%以上65atm%以下である請求項6に記載のスパッタリングターゲット。 The sputtering target according to claim 6, wherein the ratio of the number of atoms of W to the total number of atoms of the metal elements is 10 atm% or more and 65 atm% or less. 上記金属元素の合計原子数に対するSn又はTaの原子数割合が5atm%以上である請求項6又は請求項7に記載のスパッタリングターゲット。 The sputtering target according to claim 6 or 7, wherein the ratio of the number of atoms of Sn or Ta to the total number of atoms of the metal element is 5 atm% or more.
JP2019222445A 2019-12-09 2019-12-09 Recording layer for optical information recording medium, optical information recording medium, and sputtering target Pending JP2021093229A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019222445A JP2021093229A (en) 2019-12-09 2019-12-09 Recording layer for optical information recording medium, optical information recording medium, and sputtering target
PCT/JP2020/043470 WO2021117470A1 (en) 2019-12-09 2020-11-20 Recording layer for optical information recording medium, optical information recording medium, and sputtering target
TW109142303A TW202122351A (en) 2019-12-09 2020-12-02 Recording layer for optical information recording medium, optical information recording medium, and sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019222445A JP2021093229A (en) 2019-12-09 2019-12-09 Recording layer for optical information recording medium, optical information recording medium, and sputtering target

Publications (1)

Publication Number Publication Date
JP2021093229A true JP2021093229A (en) 2021-06-17

Family

ID=76312619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222445A Pending JP2021093229A (en) 2019-12-09 2019-12-09 Recording layer for optical information recording medium, optical information recording medium, and sputtering target

Country Status (3)

Country Link
JP (1) JP2021093229A (en)
TW (1) TW202122351A (en)
WO (1) WO2021117470A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159561A1 (en) * 2016-03-14 2017-09-21 パナソニックIpマネジメント株式会社 Information recording medium, and method for producing information recording medium
JP2018106794A (en) * 2012-06-04 2018-07-05 ソニー株式会社 Information recording medium
JP2019077907A (en) * 2017-10-23 2019-05-23 デクセリアルズ株式会社 Mn-Zn-W-O-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD THEREOF
JP2020045521A (en) * 2018-09-19 2020-03-26 デクセリアルズ株式会社 Mn-Ta-W-Cu-O-BASED SPUTTERING TARGET, AND PRODUCTION METHOD THEREFOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106794A (en) * 2012-06-04 2018-07-05 ソニー株式会社 Information recording medium
WO2017159561A1 (en) * 2016-03-14 2017-09-21 パナソニックIpマネジメント株式会社 Information recording medium, and method for producing information recording medium
JP2019077907A (en) * 2017-10-23 2019-05-23 デクセリアルズ株式会社 Mn-Zn-W-O-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD THEREOF
JP2020045521A (en) * 2018-09-19 2020-03-26 デクセリアルズ株式会社 Mn-Ta-W-Cu-O-BASED SPUTTERING TARGET, AND PRODUCTION METHOD THEREFOR

Also Published As

Publication number Publication date
TW202122351A (en) 2021-06-16
WO2021117470A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP4969625B2 (en) Optical information recording medium
WO2011034153A1 (en) Recording layer for optical information recording medium, optical information recording medium, and sputtering target
WO2017175580A1 (en) Optical recording medium, method for producing same and recording layer for optical recording media
JP4778300B2 (en) Write-once optical recording medium
JP5346915B2 (en) Recording layer for optical information recording medium and optical information recording medium
JP5662874B2 (en) Recording film for optical information recording medium, optical information recording medium, and sputtering target used for forming the recording film
JP2011042070A (en) Optical recording medium
JP5399836B2 (en) Recording layer for optical information recording medium, optical information recording medium, and sputtering target
JP2012161941A (en) Optical information recording medium, method to manufacture same and recording layer for optical information recording
WO2021117470A1 (en) Recording layer for optical information recording medium, optical information recording medium, and sputtering target
TWI541800B (en) Optical information recording medium
JP7130447B2 (en) Recording layer for optical information recording medium, optical information recording medium, and sputtering target
WO2010055865A1 (en) Recording layer for optical information recording medium, optical information recording medium, and sputtering target
JP5276557B2 (en) Recording layer for optical information recording medium and optical information recording medium
JP5399184B2 (en) Optical information recording medium and sputtering target
WO2022186117A1 (en) Optical recording medium, method for producing same, recording material for optical recording medium, and sputtering target for optical recording medium
WO2020158680A1 (en) Optical recording medium, recording layer, and sputtering target for forming recording layer
JP6781679B2 (en) Recording layer, optical information recording medium and sputtering target
JP2023101049A (en) Information recording medium and manufacturing method thereof
JP2009301623A (en) Write-once type optical recording medium
JP2012020530A (en) Recording layer for optical information-recording medium, optical information-recording medium, and sputtering target
JP2007141419A (en) Write-once type optical recording medium and its manufacturing method
JP2011194617A (en) Optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210824