JP2021089894A - Anisotropically conducting film and connection structure - Google Patents

Anisotropically conducting film and connection structure Download PDF

Info

Publication number
JP2021089894A
JP2021089894A JP2021003132A JP2021003132A JP2021089894A JP 2021089894 A JP2021089894 A JP 2021089894A JP 2021003132 A JP2021003132 A JP 2021003132A JP 2021003132 A JP2021003132 A JP 2021003132A JP 2021089894 A JP2021089894 A JP 2021089894A
Authority
JP
Japan
Prior art keywords
conductive
adhesive layer
conductive particles
film
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021003132A
Other languages
Japanese (ja)
Inventor
敏光 森谷
Toshimitsu Moriya
敏光 森谷
晋 川上
Susumu Kawakami
晋 川上
征宏 有福
Masahiro Arifuku
征宏 有福
剛幸 市村
Takeyuki Ichimura
剛幸 市村
慧子 岩井
Keiko Iwai
慧子 岩井
豊 渡辺
Yutaka Watanabe
豊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Materials Co Ltd filed Critical Showa Denko Materials Co Ltd
Priority to JP2021003132A priority Critical patent/JP2021089894A/en
Publication of JP2021089894A publication Critical patent/JP2021089894A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an anisotropically-conducting film by which the connection reliability between opposing circuit members and the insulation of electrodes in the circuit members can be both achieved, and a connection structure.SOLUTION: With a connection structure 1, in an anisotropically-conducting film-cured product 4 which is a layer formed with an anisotropically-conducting film, 70% or more of conducting particles P are each separated from another conducting particle P adjacent thereto in a first region 9 arranged by curing a conducting adhesive layer. Thus the agglomeration of adjacent conducting particles P is suppressed in connecting circuit members 2 and 3, and therefore, the insulation between bump electrodes 6 and between circuit electrodes 8 can be ensured satisfactorily. Further, in the anisotropically-conducting film-cured product 4, the first region 9 has a thickness which is equal to or larger than 0.6 times and smaller than 1.0 time the average particle diameter of the conducting particles P. Because of this, the fluidity of the conducting particles P in press bonding is suppressed, the efficiency of capturing conducting particles P between the bump electrode 6 and circuit electrode 8 can be increased and the connection reliability of the circuit members 2 and 3 can be ensured.SELECTED DRAWING: Figure 1

Description

本発明は、異方導電性フィルム及び接続構造体に関する。 The present invention relates to an anisotropic conductive film and a connecting structure.

従来、例えば液晶ディスプレイとテープキャリアパッケージ(TCP)との接続や、フレキシブルプリント基板(FPC)とTCPとの接続、或いはFPCとプリント配線板との接続には、接着剤フィルム中に導電粒子を分散させた異方導電性フィルムが用いられている。また、半導体シリコンチップを基板に実装する場合にも、従来のワイヤーボンディングに代えて、半導体シリコンチップを基板に直接実装する、いわゆるチップオンガラス(COG)が行われており、ここでも異方導電性フィルムが用いられている。 Conventionally, for example, in the connection between a liquid crystal display and a tape carrier package (TCP), the connection between a flexible printed circuit board (FPC) and TCP, or the connection between an FPC and a printed wiring board, conductive particles are dispersed in an adhesive film. An anisotropic conductive film is used. Also, when mounting a semiconductor silicon chip on a substrate, so-called chip-on-glass (COG), in which the semiconductor silicon chip is directly mounted on the substrate, is performed instead of the conventional wire bonding, and this is also anisotropic conduction. Sex films are used.

近年では、電子機器の発達に伴い、配線の高密度化や回路の高機能化が進んでいる。その結果、接続電極間の間隔が例えば15μm以下となるような接続構造体が要求され、接続部材のバンプ電極も小面積化されてきている。小面積化されたバンプ接続において安定した電気的接続を得るためには、十分な数の導電粒子がバンプ電極と基板側の回路電極との間に介在している必要がある。 In recent years, with the development of electronic devices, the density of wiring and the sophistication of circuits have been increasing. As a result, a connection structure in which the distance between the connection electrodes is, for example, 15 μm or less is required, and the bump electrode of the connection member has also been reduced in area. In order to obtain a stable electrical connection in a bump connection with a small area, it is necessary that a sufficient number of conductive particles are interposed between the bump electrode and the circuit electrode on the substrate side.

このような課題に対し、例えば特許文献1,2では、異方導電性フィルム中の導電粒子を小径化して粒子密度を高める方法や、導電粒子を含む接着剤層と絶縁性の接着剤層との2層構造を有する異方導電性フィルムを用いる方法が行われている。また、例えば特許文献3,4では、異方導電性フィルム中の導電粒子の流動を妨げる壁や突起が基板に設けられ、バンプ電極と回路電極との間の導電粒子の捕捉効率の向上が図られている。さらに、特許文献5では、導電粒子の平均粒径等が規定されると共に、導電粒子が一定割合で基板側に偏在した接続構造体が開示されている。 In response to such problems, for example, in Patent Documents 1 and 2, a method of reducing the diameter of conductive particles in an anisotropic conductive film to increase the particle density, and an adhesive layer containing conductive particles and an insulating adhesive layer are used. A method using an anisotropic conductive film having the two-layer structure of the above is performed. Further, for example, in Patent Documents 3 and 4, walls and protrusions that hinder the flow of conductive particles in the anisotropic conductive film are provided on the substrate, and the efficiency of capturing the conductive particles between the bump electrode and the circuit electrode is improved. Has been done. Further, Patent Document 5 discloses a connection structure in which the average particle size of the conductive particles is defined and the conductive particles are unevenly distributed on the substrate side at a constant ratio.

特開平6−45024号公報Japanese Unexamined Patent Publication No. 6-45024 特開2003−49152号公報Japanese Unexamined Patent Publication No. 2003-49152 特開2010−027847号公報Japanese Unexamined Patent Publication No. 2010-0274847 特開2012−191015号公報Japanese Unexamined Patent Publication No. 2012-191015 特開2011−109156号公報Japanese Unexamined Patent Publication No. 2011-109156

しかしながら、上述した従来の手法では、バンプ電極間又は回路電極間に導電粒子が二次凝集し、導電粒子の分布に粗密が生じて絶縁性が損なわれる可能性があった。また、接着時の異方導電性フィルムの流動にばらつきが生じ、基板間の樹脂の充填ムラに起因して剥離や接続抵抗の低下といった問題が生じるおそれがあった。 However, in the conventional method described above, there is a possibility that the conductive particles are secondarily agglutinated between the bump electrodes or between the circuit electrodes, and the distribution of the conductive particles becomes coarse and dense, resulting in impaired insulation. Further, the flow of the anisotropic conductive film at the time of bonding varies, and there is a possibility that problems such as peeling and a decrease in connection resistance may occur due to uneven filling of the resin between the substrates.

本発明は、上記課題の解決のためになされたものであり、対向する回路部材間の接続信頼性の確保と、回路部材内の電極同士の絶縁性の確保とを両立できる異方導電性フィルム及び接続構造体を提供することを目的とする。 The present invention has been made to solve the above problems, and is an anisotropic conductive film capable of both ensuring connection reliability between opposing circuit members and ensuring insulation between electrodes in the circuit members. And to provide a connection structure.

上記課題の解決のため、本発明に係る異方導電性フィルムは、導電粒子及び接着剤成分を含んで構成される異方導電性フィルムであって、前記導電粒子が分散された接着剤層からなる導電性接着剤層と、導電性接着剤層上に積層され、導電粒子が分散されていない接着剤層からなる絶縁性接着剤層と、を備え、導電性接着剤層の厚みは、導電粒子の平均粒径の0.6倍以上1.0倍未満であり、導電性接着剤層において、導電粒子の70%以上が隣接する他の導電粒子と離間した状態となっていることを特徴としている。 In order to solve the above problems, the anisotropic conductive film according to the present invention is an anisotropic conductive film composed of conductive particles and an adhesive component, and is formed from an adhesive layer in which the conductive particles are dispersed. The thickness of the conductive adhesive layer is such that the conductive adhesive layer is provided with an insulating adhesive layer composed of an adhesive layer laminated on the conductive adhesive layer and in which conductive particles are not dispersed, and the thickness of the conductive adhesive layer is conductive. The average particle size of the particles is 0.6 times or more and less than 1.0 times, and in the conductive adhesive layer, 70% or more of the conductive particles are separated from other adjacent conductive particles. It is supposed to be.

この異方電電性フィルムでは、導電性接着剤層において、導電粒子の70%以上が隣接する他の導電粒子と離間した状態となっている。このため、回路部材の接続にあたって隣接する導電粒子同士の凝集が抑えられ、回路部材内の電極同士の絶縁性を良好に確保できる。また、この異方導電性フィルムでは、導電性接着剤層の厚みは、導電粒子の平均粒径の0.6倍以上1.0倍未満となっている。これにより、圧着時における導電粒子の流動性が抑えられ、対向する回路部材の電極間での導電粒子の捕捉効率を向上できる。したがって、回路部材間の接続信頼性を確保できる。 In this anisotropic electric film, in the conductive adhesive layer, 70% or more of the conductive particles are separated from other adjacent conductive particles. Therefore, agglutination of adjacent conductive particles is suppressed when connecting the circuit members, and good insulation between the electrodes in the circuit member can be ensured. Further, in this anisotropic conductive film, the thickness of the conductive adhesive layer is 0.6 times or more and less than 1.0 times the average particle size of the conductive particles. As a result, the fluidity of the conductive particles during crimping can be suppressed, and the efficiency of capturing the conductive particles between the electrodes of the opposing circuit members can be improved. Therefore, the connection reliability between the circuit members can be ensured.

また、導電性接着剤層において、導電粒子は、絶縁性接着剤層と反対側の面に露出せず、導電粒子と導電性接着剤層の表面との間に存在する導電性接着剤層の厚みが、0μmより大きく1μm以下であることが好ましい。この場合、回路部材に異方導電性フィルムを配置する際に、導電粒子の凹凸によって回路部材と異方導電性フィルムとの間に隙間が生じてしまうことを防止できる。 Further, in the conductive adhesive layer, the conductive particles are not exposed on the surface opposite to the insulating adhesive layer, and the conductive adhesive layer exists between the conductive particles and the surface of the conductive adhesive layer. The thickness is preferably larger than 0 μm and 1 μm or less. In this case, when the anisotropic conductive film is arranged on the circuit member, it is possible to prevent a gap from being generated between the circuit member and the anisotropic conductive film due to the unevenness of the conductive particles.

また、導電粒子の平均粒径が2.5μm以上6.0μm以下であり、導電粒子の粒子密度が5000個/mm以上50000個/mm以下であることが好ましい。この範囲を満たすことにより、対向する回路部材間の接続信頼性の確保と、回路部材内の電極同士の絶縁性の確保とをより好適に両立できる。 The average particle diameter of the conductive particles is not less 2.5μm or 6.0μm or less, the particle density of the conductive particles is preferably 5000 / mm 2 or more 50000 / mm 2 or less. By satisfying this range, it is possible to more preferably secure the connection reliability between the opposing circuit members and the insulation between the electrodes in the circuit member.

また、導電性接着剤層の厚みが1.5μm以上6.0μm以下であることが好ましい。この範囲を満たすことにより、対向する回路部材間の接続信頼性の確保と、回路部材内の電極同士の絶縁性の確保とをより好適に両立できる。 Further, the thickness of the conductive adhesive layer is preferably 1.5 μm or more and 6.0 μm or less. By satisfying this range, it is possible to more preferably secure the connection reliability between the opposing circuit members and the insulation between the electrodes in the circuit member.

また、導電粒子は、ニッケルを含むことが好ましい。ニッケルは、強磁性体であり、かつ十分な導電性を有する。したがって、磁場の印加等の手段により、導電粒子が他の導電粒子と離間した状態を容易に形成できる。 Further, the conductive particles preferably contain nickel. Nickel is a ferromagnet and has sufficient conductivity. Therefore, it is possible to easily form a state in which the conductive particles are separated from other conductive particles by means such as applying a magnetic field.

また、本発明に係る接続構造体は、バンプ電極が設けられた第1の回路部材と、バンプ電極に対応する回路電極が設けられた第2の回路部材とを、上記異方導電性フィルムを介して接続してなることを特徴としている。 Further, in the connection structure according to the present invention, the first circuit member provided with the bump electrode and the second circuit member provided with the circuit electrode corresponding to the bump electrode are formed by forming the anisotropic conductive film. It is characterized by being connected via.

この接続構造体によれば、異方導電性フィルムの導電性接着剤層において、導電粒子の70%以上が隣接する他の導電粒子と離間した状態となっている。このため、回路部材の接続にあたって隣接する導電粒子同士の凝集が抑えられ、回路部材内の電極同士の絶縁性を良好に確保できる。また、この接続構造体では、異方導電性フィルムの導電性接着剤層の厚みは、導電粒子の平均粒径の0.6倍以上1.0倍未満となっている。これにより、圧着時における導電粒子の流動性が抑えられ、対向する回路部材の電極間での導電粒子の捕捉効率を向上できる。したがって、回路部材間の接続信頼性を確保できる。 According to this connection structure, in the conductive adhesive layer of the anisotropic conductive film, 70% or more of the conductive particles are separated from other adjacent conductive particles. Therefore, agglutination of adjacent conductive particles is suppressed when connecting the circuit members, and good insulation between the electrodes in the circuit member can be ensured. Further, in this connection structure, the thickness of the conductive adhesive layer of the anisotropic conductive film is 0.6 times or more and less than 1.0 times the average particle size of the conductive particles. As a result, the fluidity of the conductive particles during crimping can be suppressed, and the efficiency of capturing the conductive particles between the electrodes of the opposing circuit members can be improved. Therefore, the connection reliability between the circuit members can be ensured.

本発明によれば、対向する回路部材間の接続信頼性の確保と、回路部材内の電極同士の絶縁性の確保とを両立できる。 According to the present invention, it is possible to secure both the connection reliability between the opposing circuit members and the insulation between the electrodes in the circuit members.

本発明に係る接続構造体の一実施形態を示す模式的断面図である。It is a schematic cross-sectional view which shows one Embodiment of the connection structure which concerns on this invention. 図1に示した接続構造体に用いられる異方導電性フィルムの一実施形態を示す模式的断面図である。It is a schematic cross-sectional view which shows one Embodiment of the anisotropic conductive film used for the connection structure shown in FIG. 図1に示した接続構造体の製造工程を示す模式的断面図である。It is a schematic cross-sectional view which shows the manufacturing process of the connection structure shown in FIG. 図3の後続の工程を示す模式的断面図である。It is a schematic cross-sectional view which shows the subsequent process of FIG. 図2に示した異方導電性フィルムの製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the anisotropic conductive film shown in FIG. 磁場印加工程の様子を示す模式図である。It is a schematic diagram which shows the state of the magnetic field application process. 磁場印加工程及び乾燥工程を経た後の異方導電性フィルムの状態を示す模式的断面図である。It is a schematic cross-sectional view which shows the state of the anisotropic conductive film after undergoing a magnetic field application process and a drying process. 図7に後続する積層工程を示す模式的断面図である。It is a schematic cross-sectional view which shows the laminating process which follows FIG. 従来製法における導電粒子の分散の様子を示す顕微鏡写真である。It is a micrograph which shows the state of dispersion of the conductive particle in the conventional manufacturing method. 本製法における導電粒子の分散の様子を示す顕微鏡写真である。It is a micrograph which shows the state of dispersion of the conductive particle in this manufacturing method. 異方導電性フィルムにおける導電粒子の分散性に関する評価試験結果を示す図である。It is a figure which shows the evaluation test result about the dispersibility of the conductive particle in an anisotropic conductive film. 異方導電性フィルムを用いた接続構造体における導電粒子の捕捉率及び抵抗特性に関する評価試験結果を示す図である。It is a figure which shows the evaluation test result about the capture rate and resistance property of the conductive particle in the connection structure using an anisotropic conductive film.

以下、図面を参照しながら、本発明の一側面に係る異方導電性フィルム及び接続構造体の好適な実施形態について詳細に説明する。
[接続構造体の構成]
Hereinafter, preferred embodiments of the anisotropic conductive film and the connecting structure according to one aspect of the present invention will be described in detail with reference to the drawings.
[Structure of connection structure]

図1は、本発明に係る接続構造体の一実施形態を示す模式的断面図である。同図に示すように、接続構造体1は、互いに対向する第1の回路部材2及び第2の回路部材3と、これらの回路部材2,3を接続する異方導電性フィルムの硬化物4とを備えて構成されている。 FIG. 1 is a schematic cross-sectional view showing an embodiment of a connection structure according to the present invention. As shown in the figure, the connection structure 1 is a cured product 4 of an anisotropic conductive film connecting the first circuit member 2 and the second circuit member 3 facing each other and the circuit members 2 and 3. It is configured with and.

第1の回路部材2は、例えばテープキャリアパッケージ(TCP)、プリント配線板、半導体シリコンチップ等である。第1の回路部材2は、本体部5の実装面5a側に複数のバンプ電極6を有している。バンプ電極6は、例えば平面視で矩形状をなしており、厚みは例えば3μm以上18μm未満となっている。バンプ電極6の形成材料には、例えばAu等が用いられ、異方導電性フィルムの硬化物4に含まれる導電粒子Pよりも変形し易くなっている。なお、実装面5aにおいて、バンプ電極6が形成されていない部分には、絶縁層が形成されていてもよい。 The first circuit member 2 is, for example, a tape carrier package (TCP), a printed wiring board, a semiconductor silicon chip, or the like. The first circuit member 2 has a plurality of bump electrodes 6 on the mounting surface 5a side of the main body 5. The bump electrode 6 has, for example, a rectangular shape in a plan view, and has a thickness of, for example, 3 μm or more and less than 18 μm. For example, Au or the like is used as the material for forming the bump electrode 6, and the bump electrode 6 is more easily deformed than the conductive particles P contained in the cured product 4 of the anisotropic conductive film. An insulating layer may be formed on the mounting surface 5a where the bump electrode 6 is not formed.

第2の回路部材3は、例えば液晶ディスプレイに用いられるITO、IZO、若しくは金属等で回路が形成されたガラス基板又はプラスチック基板、フレキシブルプリント基板(FPC)、セラミック配線板などである。第2の回路部材3は、図1に示すように、本体部7の実装面7a側にバンプ電極6に対応する複数の回路電極8を有している。回路電極8は、バンプ電極6と同様に、例えば平面視で矩形状をなしており、厚みは例えば100nm程度となっている。回路電極8の表面は、例えば金、銀、銅、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、インジウム錫酸化物(ITO)、及びインジウム亜鉛酸化物(IZO)から選ばれる1種或いは2種以上の材料で構成されている。なお、実装面7aにおいても、回路電極8が形成されていない部分に絶縁層が形成されていてもよい。 The second circuit member 3 is, for example, a glass substrate or a plastic substrate in which a circuit is formed of ITO, IZO, metal or the like used for a liquid crystal display, a flexible printed circuit board (FPC), a ceramic wiring board, or the like. As shown in FIG. 1, the second circuit member 3 has a plurality of circuit electrodes 8 corresponding to the bump electrodes 6 on the mounting surface 7a side of the main body 7. Like the bump electrode 6, the circuit electrode 8 has a rectangular shape in a plan view, and has a thickness of, for example, about 100 nm. The surface of the circuit electrode 8 is one selected from, for example, gold, silver, copper, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, indium tin oxide (ITO), and indium zinc oxide (IZO). It is composed of two or more kinds of materials. The mounting surface 7a may also have an insulating layer formed on a portion where the circuit electrode 8 is not formed.

異方導電性フィルムの硬化物4は、後述の異方導電性フィルム11(図2参照)を用いて形成された層であり、導電性接着剤層13を硬化してなる第1の領域9と、絶縁性接着剤層14を硬化してなる第2の領域10とを有している。本実施形態では、第1の領域9が第2の回路部材3側に位置し、第2の領域10が第1の回路部材2側に位置している。なお、本実施形態では、説明の便宜上、導電粒子Pが分散された層を導電性接着剤層と称し、導電粒子Pが分散されていない層を絶縁性接着剤層と称するが、両層を構成している接着剤成分自体は非導電性である。 The cured product 4 of the anisotropic conductive film is a layer formed by using the anisotropic conductive film 11 (see FIG. 2) described later, and is a first region 9 formed by curing the conductive adhesive layer 13. And a second region 10 formed by curing the insulating adhesive layer 14. In the present embodiment, the first region 9 is located on the second circuit member 3 side, and the second region 10 is located on the first circuit member 2 side. In the present embodiment, for convenience of explanation, the layer in which the conductive particles P are dispersed is referred to as a conductive adhesive layer, and the layer in which the conductive particles P are not dispersed is referred to as an insulating adhesive layer. The constituent adhesive components themselves are non-conductive.

導電粒子Pは、第2の回路部材3側に偏在した状態となっており、圧着によって僅かに扁平に変形した状態でバンプ電極6と回路電極8との間に介在している。これにより、バンプ電極6と回路電極8との間の電気的な接続が実現されている。また、隣接するバンプ電極6,6間及び隣接する回路電極8,8間では、導電粒子Pが離間した状態となっており、隣接するバンプ電極6,6間及び隣接する回路電極8,8間の電気的な絶縁が実現されている。
[異方導電性フィルムの構成]
The conductive particles P are unevenly distributed on the side of the second circuit member 3, and are interposed between the bump electrode 6 and the circuit electrode 8 in a state of being slightly flattened by crimping. As a result, an electrical connection between the bump electrode 6 and the circuit electrode 8 is realized. Further, the conductive particles P are separated between the adjacent bump electrodes 6 and 6 and between the adjacent circuit electrodes 8 and 8, and between the adjacent bump electrodes 6 and 6 and between the adjacent circuit electrodes 8 and 8. Electrical insulation is realized.
[Construction of anisotropic conductive film]

図2は、図1に示した接続構造体に用いられる異方導電性フィルムの一実施形態を示す模式的断面図である。同図に示すように、異方導電性フィルム11は、剥離フィルム12と、導電粒子Pが分散された接着剤層からなる導電性接着剤層13と、導電粒子Pが分散されていない接着剤層からなる絶縁性接着剤層14とがこの順で積層されて構成されている。 FIG. 2 is a schematic cross-sectional view showing an embodiment of an anisotropic conductive film used for the connection structure shown in FIG. As shown in the figure, the anisotropic conductive film 11 includes a release film 12, a conductive adhesive layer 13 composed of an adhesive layer in which conductive particles P are dispersed, and an adhesive in which conductive particles P are not dispersed. The insulating adhesive layer 14 composed of layers is laminated in this order.

剥離フィルム12は、例えばポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン等によって形成されている。剥離フィルム12には、任意の充填剤を含有させてもよい。また、剥離フィルム12の表面には、離型処理やプラズマ処理等が施されていてもよい。 The release film 12 is made of, for example, polyethylene terephthalate (PET), polyethylene, polypropylene, or the like. The release film 12 may contain an arbitrary filler. Further, the surface of the release film 12 may be subjected to a mold release treatment, a plasma treatment, or the like.

導電性接着剤層13及び絶縁性接着剤層14を形成する接着剤層は、いずれも、硬化剤、モノマー、及びフィルム形成材を含有している。エポキシ樹脂モノマーを用いる場合は、硬化剤として、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化すると、可使時間が延長されるため、好適である。一方、アクリルモノマーを用いる場合は、硬化剤として、過酸化化合物、アゾ系化合物等の加熱により分解して遊離ラジカルを発生するものが挙げられる。 The adhesive layer forming the conductive adhesive layer 13 and the insulating adhesive layer 14 both contains a curing agent, a monomer, and a film forming material. When an epoxy resin monomer is used, examples of the curing agent include imidazole type, hydrazide type, boron trifluoride-amine complex, sulfonium salt, amineimide, polyamine salt, dicyandiamide and the like. It is preferable to coat the curing agent with a polyurethane-based or polyester-based polymer substance and microencapsulate it because the pot life is extended. On the other hand, when an acrylic monomer is used, examples of the curing agent include those that decompose by heating a peroxide compound, an azo compound, or the like to generate free radicals.

エポキシモノマーを用いた場合の硬化剤は、目的とする接続温度、接続時間、保存安定性等により適宜選定される。硬化剤は、高反応性の点から、エポキシ樹脂組成物とのゲルタイムが所定の温度で10秒以内であることが好ましく、保存安定性の点から、40℃で10日間恒温槽に保管後にエポキシ樹脂組成物とのゲルタイムに変化がないことが好ましい。このような点から、硬化剤は、スルホニウム塩であることが好ましい。 When an epoxy monomer is used, the curing agent is appropriately selected depending on the target connection temperature, connection time, storage stability, and the like. The curing agent preferably has a gel time of 10 seconds or less at a predetermined temperature from the viewpoint of high reactivity, and is epoxy after being stored in a constant temperature bath at 40 ° C. for 10 days from the viewpoint of storage stability. It is preferable that there is no change in gel time with the resin composition. From this point of view, the curing agent is preferably a sulfonium salt.

アクリルモノマーを用いた場合の硬化剤は、目的とする接続温度、接続時間、保存安定性等により適宜選定される。高反応性と保存安定性の点から、半減期10時間の温度が40℃以上かつ半減期1分の温度が180℃以下の有機過酸化物又はアゾ系化合物が好ましく、半減期10時間の温度が60℃以上かつ半減期1分の温度が170℃以下の有機過酸化物又はアゾ系化合物がより好ましい。これらの硬化剤は、単独または混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。 When an acrylic monomer is used, the curing agent is appropriately selected depending on the target connection temperature, connection time, storage stability, and the like. From the viewpoint of high reactivity and storage stability, an organic peroxide or azo compound having a half-life of 10 hours of 40 ° C. or higher and a half-life of 1 minute of 180 ° C. or lower is preferable, and a temperature having a half-life of 10 hours is preferable. More preferably, an organic peroxide or an azo compound having a temperature of 60 ° C. or higher and a half-life of 1 minute or lower is 170 ° C. or lower. These curing agents can be used alone or in combination, and decomposition accelerators, inhibitors and the like may be mixed and used.

エポキシモノマー及びアクリルモノマーのいずれを用いた場合においても、接続時間を10秒以下とした場合、十分な反応率を得るために、硬化剤の配合量は、後述のモノマーと後述のフィルム形成材との合計100質量部に対して、0.1質量部〜40質量部とすることが好ましく、1質量部〜35質量部とすることがより好ましい。硬化剤の配合量が0.1質量部未満では、十分な反応率を得ることができず、良好な接着強度や小さな接続抵抗が得られにくくなる傾向にある。一方、硬化剤の配合量が40質量部を超えると、接着剤の流動性が低下したり、接続抵抗が上昇したり、接着剤の保存安定性が低下する傾向にある。 Regardless of whether an epoxy monomer or an acrylic monomer is used, when the connection time is 10 seconds or less, the amount of the curing agent to be blended is the monomer described below and the film forming material described below in order to obtain a sufficient reaction rate. It is preferably 0.1 part by mass to 40 parts by mass, and more preferably 1 part by mass to 35 parts by mass with respect to 100 parts by mass in total. If the blending amount of the curing agent is less than 0.1 parts by mass, a sufficient reaction rate cannot be obtained, and it tends to be difficult to obtain good adhesive strength and small connection resistance. On the other hand, when the blending amount of the curing agent exceeds 40 parts by mass, the fluidity of the adhesive tends to decrease, the connection resistance tends to increase, and the storage stability of the adhesive tends to decrease.

また、モノマーとしては、エポキシ樹脂モノマーを用いる場合は、エピクロルヒドリンとビスフェノールAやビスフェノールF、ビスフェノールAD等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂やグリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を用いることができる。 When an epoxy resin monomer is used as the monomer, the bisphenol type epoxy resin derived from epichlorohydrin and bisphenol A, bisphenol F, bisphenol AD, etc., and the epoxy novolac resin or glycidyl derived from epichlorohydrin and phenol novolac or cresol novolac. Various epoxy compounds having two or more glycidyl groups in one molecule such as amine, glycidyl ether, biphenyl, and alicyclic type can be used.

アクリルモノマーを用いる場合は、ラジカル重合性化合物は、ラジカルにより重合する官能基を有する物質であることが好ましい。かかるラジカル重合性化合物としては、(メタ)アクリレート、マレイミド化合物、スチレン誘導体等が挙げられる。また、ラジカル重合性化合物は、モノマー又はオリゴマーのいずれの状態でも使用することができ、モノマーとオリゴマーとを混合して使用してもよい。これらのモノマーは、1種を単独で使用してもよく、2種以上を混合して使用してもよい。 When an acrylic monomer is used, the radically polymerizable compound is preferably a substance having a functional group that is polymerized by radicals. Examples of such radically polymerizable compounds include (meth) acrylates, maleimide compounds, and styrene derivatives. Further, the radically polymerizable compound can be used in either a monomer or an oligomer state, and the monomer and the oligomer may be mixed and used. One of these monomers may be used alone, or two or more of these monomers may be mixed and used.

フィルム形成材は、上記の硬化剤及びモノマーを含む粘度の低い組成物の取り扱いを容易にする作用を有するポリマーである。フィルム形成材を用いることによって、フィルムが容易に裂けたり、割れたり、べたついたりすることを抑制し、取り扱いが容易な異方導電性フィルム11が得られる。 The film-forming material is a polymer having an action of facilitating the handling of a low-viscosity composition containing the above-mentioned curing agent and monomer. By using the film forming material, it is possible to obtain an anisotropic conductive film 11 which is easy to handle by suppressing the film from being easily torn, cracked or sticky.

フィルム形成材としては、熱可塑性樹脂が好適に用いられ、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリエステルウレタン樹脂等が挙げられる。さらに、これらのポリマー中には、シロキサン結合やフッ素置換基が含まれていてもよい。これらの樹脂は、単独あるいは2種類以上を混合して用いることができる。上記の樹脂の中でも、接着強度、相溶性、耐熱性、及び機械強度の観点から、フェノキシ樹脂を用いることが好ましい。 As the film forming material, a thermoplastic resin is preferably used, and phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin, polyacrylic resin, polyester urethane resin and the like are used. Can be mentioned. Furthermore, these polymers may contain siloxane bonds and fluorine substituents. These resins can be used alone or in admixture of two or more. Among the above resins, it is preferable to use a phenoxy resin from the viewpoint of adhesive strength, compatibility, heat resistance, and mechanical strength.

熱可塑性樹脂の分子量が大きいほどフィルム形成性が容易に得られ、また、異方導電性フィルムの流動性に影響する溶融粘度を広範囲に設定できる。熱可塑性樹脂の分子量は、重量平均分子量で5000〜150000であることが好ましく、10000〜80000であることが特に好ましい。重量平均分子量を5000以上とすることで良好なフィルム形成性が得られやすく、150000以下とすることで他の成分との良好な相溶性が得られやすい。 The larger the molecular weight of the thermoplastic resin, the easier it is to obtain film formability, and the melt viscosity that affects the fluidity of the anisotropic conductive film can be set in a wide range. The molecular weight of the thermoplastic resin is preferably 5000 to 150,000, and particularly preferably 1000 to 80,000 in terms of weight average molecular weight. When the weight average molecular weight is 5000 or more, good film formability can be easily obtained, and when it is 150,000 or less, good compatibility with other components can be easily obtained.

なお、本発明において、重量平均分子量は、下記の条件に従って、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した値をいう。
(測定条件)
装置:東ソー株式会社製 GPC−8020
検出器:東ソー株式会社製 RI−8020
カラム:日立化成株式会社製 Gelpack GLA160S+GLA150S
試料濃度:120mg/3mL
溶媒:テトラヒドロフラン
注入量:60μL
圧力:2.94×106Pa(30kgf/cm
流量:1.00mL/min
In the present invention, the weight average molecular weight refers to a value measured by a gel permeation chromatograph (GPC) using a calibration curve using standard polystyrene according to the following conditions.
(Measurement condition)
Equipment: GPC-8020 manufactured by Tosoh Corporation
Detector: RI-8020 manufactured by Tosoh Corporation
Column: Gelpack GLA160S + GLA150S manufactured by Hitachi Kasei Co., Ltd.
Sample concentration: 120 mg / 3 mL
Solvent: Tetrahydrofuran Injection amount: 60 μL
Pressure: 2.94 x 106 Pa (30 kgf / cm 2 )
Flow rate: 1.00 mL / min

また、フィルム形成材の含有量は、硬化剤、モノマー、及びフィルム形成材の総量を基準として5重量%〜80重量%であることが好ましく、15重量%〜70重量%であることがより好ましい。5重量%以上とすることで良好なフィルム形成性が得られやすく、また、80重量%以下とすることで硬化性組成物が良好な流動性を示す傾向にある。 The content of the film forming material is preferably 5% by weight to 80% by weight, more preferably 15% by weight to 70% by weight, based on the total amount of the curing agent, the monomer, and the film forming material. .. When it is 5% by weight or more, good film formability is easily obtained, and when it is 80% by weight or less, the curable composition tends to show good fluidity.

また、導電性接着剤層13及び絶縁性接着剤層14を形成する接着剤層は、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤及びフェノール樹脂やメラミン樹脂、イソシアネート類等を更に含有していてもよい。 Further, the adhesive layer forming the conductive adhesive layer 13 and the insulating adhesive layer 14 is a filler, a softening agent, an accelerator, an antiaging agent, a coloring agent, a flame retardant, a thixotropic agent, and a coupling. It may further contain an agent, a phenol resin, a melamine resin, an isocyanate, and the like.

充填剤を含有する場合、接続信頼性の向上が更に期待できる。充填剤の最大径は、導電粒子の粒径未満であることが好ましく、充填剤の含有量は、接着剤層100体積部に対して5体積部〜60体積部であることが好ましい。60体積部を超えると信頼性向上の効果が飽和することがあり、5体積部未満では添加の効果が少ない。 When a filler is contained, further improvement in connection reliability can be expected. The maximum diameter of the filler is preferably less than the particle size of the conductive particles, and the content of the filler is preferably 5 parts by volume to 60 parts by volume with respect to 100 parts by volume of the adhesive layer. If it exceeds 60 parts by volume, the effect of improving reliability may be saturated, and if it is less than 5 parts by volume, the effect of addition is small.

導電粒子Pは、導電性接着剤層13において、導電粒子Pの70%以上が隣接する他の導電粒子Pと離間した状態となっている。このような分散状態は、後述の磁場印加工程によって形成される。導電粒子Pとしては、磁場印加工程による分散化を実施する観点から、ニッケルを含有する粒子が好適に用いられる。一般的に、鉄・コバルト・ニッケルは強磁性体であり、外部磁場によって磁化することが知られているが、この中でもニッケルを用いることが導電性及び磁場印加による分散性を両立できる点で有意である。また、導電粒子Pの保存安定性を得るため、導電粒子Pの表層は、ニッケルではなく、金、銀のような白金属の貴金属類としてもよい。また、ニッケルの表面をAu等の貴金属類で被覆してもよい。さらに、非導電性のガラス、セラミック、プラスチック等を上記金属等の導電物質で被覆したものを用いてもよく、この場合にもニッケル層を設けて多層構造とすることも可能である。 The conductive particles P are in a state in which 70% or more of the conductive particles P are separated from other adjacent conductive particles P in the conductive adhesive layer 13. Such a dispersed state is formed by a magnetic field application step described later. As the conductive particles P, nickel-containing particles are preferably used from the viewpoint of carrying out dispersion by a magnetic field application step. Generally, iron, cobalt, and nickel are ferromagnets and are known to be magnetized by an external magnetic field. Among them, the use of nickel is significant in that both conductivity and dispersibility by applying a magnetic field can be achieved. Is. Further, in order to obtain storage stability of the conductive particles P, the surface layer of the conductive particles P may be a white metal noble metal such as gold or silver instead of nickel. Further, the surface of nickel may be coated with a noble metal such as Au. Further, a non-conductive glass, ceramic, plastic or the like coated with a conductive substance such as the above metal may be used, and in this case as well, a nickel layer may be provided to form a multilayer structure.

また、ニッケルの磁性は、ニッケルめっき中に含有するリン濃度に影響されるため、磁場による導電粒子Pの分散に必要な磁性は適時調整することが好ましい。導電粒子Pの磁性は、例えば試料振動型磁力計(VSM:Vibrating Sample Magnetmeter)によって飽和磁化を測定することが可能である。外部磁場によって導電粒子Pを分散するためには、VSM測定にて飽和磁化が5.0emu/g〜50emu/gの範囲であることが好ましい。5.0emu/g未満であると、磁場を印加しても導電粒子Pの分散を行うことができない場合がある。一方、50emu/gを超えると、導電粒子Pの磁化が大きくなりすぎて、導電粒子Pが導電性接着剤層13の厚み方向に結合し、導電粒子Pの分散性が低下する場合がある。 Further, since the magnetism of nickel is affected by the phosphorus concentration contained in the nickel plating, it is preferable to adjust the magnetism required for dispersion of the conductive particles P by a magnetic field in a timely manner. The magnetism of the conductive particles P can be measured for saturation magnetization by, for example, a sample vibrating sample magnetometer (VSM). In order to disperse the conductive particles P by an external magnetic field, the saturation magnetization is preferably in the range of 5.0 emu / g to 50 emu / g in VSM measurement. If it is less than 5.0 emu / g, the conductive particles P may not be dispersed even if a magnetic field is applied. On the other hand, if it exceeds 50 emu / g, the magnetization of the conductive particles P becomes too large, and the conductive particles P may be bonded in the thickness direction of the conductive adhesive layer 13 to reduce the dispersibility of the conductive particles P.

導電粒子Pの平均粒径は、2.5μm以上6.0μm以下であることが好ましい。導電粒子Pの平均粒径が2.5μm未満である場合には、剥離フィルム12への塗工精度の問題から導電粒子Pを導電性接着剤層13に良好に分散することが困難となり、導電粒子Pの平均粒径が6.0μmを超える場合には、接続構造体1の隣接する回路電極8,8間での絶縁性が低下するおそれがある。導電粒子Pの良好な分散性を得るためには、導電粒子Pの平均粒径は、2.7μm以上であることがより好ましく、3μm以上であることが更に好ましい。一方、接続構造体1の隣接する回路電極8,8間での絶縁性の確保の観点から、導電粒子Pの平均粒径は、5.5μm以下であることがより好ましく、5μm以下であることが更に好ましい。 The average particle size of the conductive particles P is preferably 2.5 μm or more and 6.0 μm or less. When the average particle size of the conductive particles P is less than 2.5 μm, it becomes difficult to disperse the conductive particles P well in the conductive adhesive layer 13 due to the problem of coating accuracy on the release film 12, and the conductive particles P become conductive. If the average particle size of the particles P exceeds 6.0 μm, the insulating property between the adjacent circuit electrodes 8 and 8 of the connecting structure 1 may decrease. In order to obtain good dispersibility of the conductive particles P, the average particle size of the conductive particles P is more preferably 2.7 μm or more, and further preferably 3 μm or more. On the other hand, from the viewpoint of ensuring the insulating property between the adjacent circuit electrodes 8 and 8 of the connection structure 1, the average particle size of the conductive particles P is more preferably 5.5 μm or less, and more preferably 5 μm or less. Is more preferable.

導電粒子Pの配合量は、導電性接着剤層の導電粒子P以外の成分100体積部に対して1体積部〜100体積部とすることが好ましい。導電粒子Pが過剰に存在することによる隣接する回路電極8,8の短絡を防止する観点から、導電粒子Pの配合量は、10体積部〜50体積部とすることがより好ましい。さらに、導電粒子の平均粒径が2.5μm以上6.0μm以下の範囲において、導電粒子の粒子密度が5000個/mm以上50000個/mm以下であることが好ましい。この場合、導電粒子Pの分散性と隣接する回路電極8,8間での絶縁性とをより好適に両立できる。 The blending amount of the conductive particles P is preferably 1 part by volume to 100 parts by volume with respect to 100 parts by volume of the components other than the conductive particles P in the conductive adhesive layer. From the viewpoint of preventing short circuits of the adjacent circuit electrodes 8 and 8 due to the excessive presence of the conductive particles P, the blending amount of the conductive particles P is more preferably 10 parts by volume to 50 parts by volume. Furthermore, to the extent the average particle size of 2.5μm or more 6.0μm or less of the conductive particles, it is preferred particle density of the conductive particles is 5000 / mm 2 or more 50000 / mm 2 or less. In this case, the dispersibility of the conductive particles P and the insulating property between the adjacent circuit electrodes 8 and 8 can be more preferably compatible with each other.

導電粒子Pの平均粒径と導電性接着剤層13の厚みとの関係について、導電性接着剤層13の厚みは、導電粒子Pの平均粒径の0.6倍以上1.0倍未満であることが好ましい。導電性接着剤層13の厚みが導電粒子Pの平均粒径に対して0.6倍未満となる場合は,導電粒子Pの粒子密度が低下し、バンプ電極6と回路電極8との間の接続不良が生じるおそれがある。また、導電性接着剤層13の厚みが導電粒子Pの平均粒径に対して1.0倍以上となる場合は、隣接する導電粒子P,P同士が凝集し、隣接する回路電極8,8間での短絡が生じるおそれがある。より良好な分散性を得るためには、導電性接着剤層13の厚みは、導電粒子Pの平均粒径に対して0.7倍以上0.9倍以下にすることが好ましい。また、導電性接着剤層13の厚みは、1.5μm以上6.0以下であることが好ましい。 Regarding the relationship between the average particle size of the conductive particles P and the thickness of the conductive adhesive layer 13, the thickness of the conductive adhesive layer 13 is 0.6 times or more and less than 1.0 times the average particle size of the conductive particles P. It is preferable to have. When the thickness of the conductive adhesive layer 13 is less than 0.6 times the average particle size of the conductive particles P, the particle density of the conductive particles P decreases, and the distance between the bump electrode 6 and the circuit electrode 8 is reduced. Poor connection may occur. When the thickness of the conductive adhesive layer 13 is 1.0 times or more the average particle size of the conductive particles P, the adjacent conductive particles P and P are aggregated with each other, and the adjacent circuit electrodes 8 and 8 are present. There is a risk of short circuits between them. In order to obtain better dispersibility, the thickness of the conductive adhesive layer 13 is preferably 0.7 times or more and 0.9 times or less with respect to the average particle size of the conductive particles P. The thickness of the conductive adhesive layer 13 is preferably 1.5 μm or more and 6.0 or less.

このような関係を満たす結果、導電粒子Pの一部は、絶縁性接着剤層14側に突出した状態となっており、隣り合う導電粒子P,Pの離間部分には、絶縁性接着剤層14と導電性接着剤層13との境界Sが位置している。また、導電粒子Pは、導電性接着剤層13における絶縁性接着剤層14の反対面(すなわち剥離フィルム12側の面)には露出しておらず、反対面は平坦面となっている。導電粒子Pと導電性接着剤層13の表面との間に存在する導電性接着剤層13の厚みは、0μmより大きく1μm以下となっていることが好ましい。 As a result of satisfying such a relationship, a part of the conductive particles P is in a state of protruding toward the insulating adhesive layer 14, and the insulating adhesive layer is formed at the separated portion of the adjacent conductive particles P and P. The boundary S between 14 and the conductive adhesive layer 13 is located. Further, the conductive particles P are not exposed on the opposite surface (that is, the surface on the release film 12 side) of the insulating adhesive layer 14 in the conductive adhesive layer 13, and the opposite surface is a flat surface. The thickness of the conductive adhesive layer 13 existing between the conductive particles P and the surface of the conductive adhesive layer 13 is preferably larger than 0 μm and 1 μm or less.

絶縁性接着剤層14と導電性接着剤層13との境界Sは、異方導電性フィルム11の断面観察により確認することが可能である。絶縁性接着剤層14と導電性接着剤層13への配合物の組成の違いから、FIB、SEM、TEMなどの加工・観察装置における観察像の違いにより、絶縁性接着剤層14と導電性接着剤層13の境界Sを判断することも可能である。 The boundary S between the insulating adhesive layer 14 and the conductive adhesive layer 13 can be confirmed by observing the cross section of the anisotropic conductive film 11. Due to the difference in the composition of the formulation on the insulating adhesive layer 14 and the conductive adhesive layer 13, the difference in the observation image in the processing / observation equipment such as FIB, SEM, and TEM causes the insulating adhesive layer 14 and the conductive adhesive layer 14 to be conductive. It is also possible to determine the boundary S of the adhesive layer 13.

絶縁性接着剤層14と導電性接着剤層13とが互いに相溶し難い場合は、境界Sは界面として確認することが可能である。絶縁性接着剤層14と導電性接着剤層13の組成が類似しており、後述する積層工程において界面が消失する場合は、絶縁性接着剤層14と導電性接着剤層13が混合された境界層として観察されることがある。 When the insulating adhesive layer 14 and the conductive adhesive layer 13 are difficult to be compatible with each other, the boundary S can be confirmed as an interface. When the compositions of the insulating adhesive layer 14 and the conductive adhesive layer 13 are similar and the interface disappears in the laminating step described later, the insulating adhesive layer 14 and the conductive adhesive layer 13 are mixed. It may be observed as a boundary layer.

一方、絶縁性接着剤層14の厚みは、適宜設定可能である。導電性接着剤層13及び絶縁性接着剤層14の厚みの合計は、例えば5μm〜30μmとなっている。また、通常、導電性接着剤層13及び絶縁性接着剤層14の厚みの合計と、接続構造体1における第1の回路部材2の実装面5aから第2の回路部材3の実装面7aまでの距離との差は、0μm〜10μmであることが好ましい。回路部材2,3間を異方導電性接着剤層4で充填する観点からは、上記の差を0.5μm〜8.0μmとすることが好ましく、1.0μm〜5.0μmとすることがより好ましい。 On the other hand, the thickness of the insulating adhesive layer 14 can be appropriately set. The total thickness of the conductive adhesive layer 13 and the insulating adhesive layer 14 is, for example, 5 μm to 30 μm. In addition, usually, the total thickness of the conductive adhesive layer 13 and the insulating adhesive layer 14 and the mounting surface 5a of the first circuit member 2 to the mounting surface 7a of the second circuit member 3 in the connection structure 1 The difference from the distance is preferably 0 μm to 10 μm. From the viewpoint of filling the space between the circuit members 2 and 3 with the anisotropic conductive adhesive layer 4, the above difference is preferably 0.5 μm to 8.0 μm, and 1.0 μm to 5.0 μm. More preferred.

差が0μm未満となる場合、第1の回路部材2と第2の回路部材3との間が異方導電性接着剤層4で充填されなくなるおそれがあり、剥離や耐湿試験後の接続信頼性の低下の要因となる。一方、差が10μmを超える場合、第1の回路部材2及び第2の回路部材3の圧着時に、樹脂の排除が不十分となり、バンプ電極6と回路電極8との間の導通が取れなくなる可能性がある。
[接続構造体の製造方法]
If the difference is less than 0 μm, the space between the first circuit member 2 and the second circuit member 3 may not be filled with the anisotropic conductive adhesive layer 4, and the connection reliability after peeling or moisture resistance test may not be satisfied. It becomes a factor of the decrease of. On the other hand, when the difference exceeds 10 μm, the resin may not be sufficiently removed at the time of crimping the first circuit member 2 and the second circuit member 3, and the continuity between the bump electrode 6 and the circuit electrode 8 may not be obtained. There is sex.
[Manufacturing method of connection structure]

図3は、図1に示した接続構造体の製造工程を示す模式的断面図である。接続構造体1の形成にあたっては、まず、異方導電性フィルム11から剥離フィルム12を剥離し、導電性接着剤層13側が実装面7aと対向するようにして異方導電性フィルム11を第2の回路部材3上にラミネートする。次に、図4に示すように、バンプ電極6と回路電極8とが対向するように、異方導電性フィルム11がラミネートされた第2の回路部材3上に第1の回路部材2を配置する。そして、異方導電性フィルム11を加熱しながら第1の回路部材2と第2の回路部材3とを厚み方向に加圧する。 FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the connection structure shown in FIG. In forming the connection structure 1, first, the release film 12 is peeled from the anisotropic conductive film 11, and the anisotropic conductive film 11 is secondly formed so that the conductive adhesive layer 13 side faces the mounting surface 7a. Laminate on the circuit member 3 of. Next, as shown in FIG. 4, the first circuit member 2 is arranged on the second circuit member 3 on which the anisotropic conductive film 11 is laminated so that the bump electrode 6 and the circuit electrode 8 face each other. To do. Then, while heating the anisotropic conductive film 11, the first circuit member 2 and the second circuit member 3 are pressed in the thickness direction.

これにより、異方導電性フィルム11の接着剤成分が流動し、バンプ電極6と回路電極8との距離が縮まって導電粒子Pが噛合した状態で、導電性接着剤層及び絶縁性接着剤層14が硬化する。導電性接着剤層及び絶縁性接着剤層14の硬化により、バンプ電極6と回路電極8とが電気的に接続され、かつ隣接するバンプ電極6,6同士及び隣接する回路電極8,8同士が電気的に絶縁された状態で異方導電性フィルムの硬化物4が形成され、図1に示した接続構造体1が得られる。得られた接続構造体1では、異方導電性フィルムの硬化物4によってバンプ電極6と回路電極8との間の距離の経時的変化が十分に防止されると共に、電気的特性の長期信頼性も確保できる。 As a result, the adhesive component of the anisotropic conductive film 11 flows, the distance between the bump electrode 6 and the circuit electrode 8 is shortened, and the conductive particles P are meshed with each other, and the conductive adhesive layer and the insulating adhesive layer are engaged. 14 cures. By curing the conductive adhesive layer and the insulating adhesive layer 14, the bump electrode 6 and the circuit electrode 8 are electrically connected, and the adjacent bump electrodes 6, 6 and the adjacent circuit electrodes 8 and 8 are connected to each other. A cured product 4 of the isotropically conductive film is formed in an electrically insulated state, and the connection structure 1 shown in FIG. 1 is obtained. In the obtained connection structure 1, the cured product 4 of the anisotropic conductive film sufficiently prevents the distance between the bump electrode 6 and the circuit electrode 8 from changing with time, and the long-term reliability of the electrical characteristics is maintained. Can also be secured.

なお、異方導電性フィルム11の加熱温度は、硬化剤において重合活性種が発生し、重合モノマーの重合が開始される温度以上であることが好ましい。この加熱温度は、例えば80℃〜200℃であり、好ましくは100℃〜180℃である。また、加熱時間は、例えば0.1秒〜30秒、好ましくは1秒〜20秒である。加熱温度が80℃未満であると硬化速度が遅くなり、200℃を超えると望まない副反応が進行しやすい。また、加熱時間が0.1秒未満では硬化反応が十分に進行せず、30秒を超えると硬化物の生産性が低下し、更に望まない副反応も進みやすい。
[異方導電性フィルムの製造方法]
The heating temperature of the anisotropic conductive film 11 is preferably equal to or higher than the temperature at which the polymerization active species is generated in the curing agent and the polymerization of the polymerization monomer is started. This heating temperature is, for example, 80 ° C. to 200 ° C., preferably 100 ° C. to 180 ° C. The heating time is, for example, 0.1 seconds to 30 seconds, preferably 1 second to 20 seconds. If the heating temperature is less than 80 ° C, the curing rate will be slower, and if it exceeds 200 ° C, unwanted side reactions will easily proceed. Further, if the heating time is less than 0.1 seconds, the curing reaction does not proceed sufficiently, and if it exceeds 30 seconds, the productivity of the cured product decreases, and further unwanted side reactions are likely to proceed.
[Manufacturing method of anisotropic conductive film]

図5は、図2に示した異方導電性フィルムの製造工程を示す概略図である。同図に示す例では、長尺の剥離フィルム12を繰出ローラ21及び巻取ローラ22によって所定の速度で搬送している。剥離フィルム12の搬送経路上には、導電性接着剤層13の形成材料となる接着剤ペーストWを塗布するコータ23が配置されており、コータ23によって導電粒子Pが分散された接着剤ペーストWが剥離フィルム12上に塗布される(塗布工程)。コータ23によって剥離フィルム12上に塗布される接着剤ペーストWの厚みは、樹脂組成物中に含まれる溶剤の割合によって適時変動するが、導電粒子Pの平均粒径の1.6倍未満となっていることが好適である。 FIG. 5 is a schematic view showing a manufacturing process of the anisotropic conductive film shown in FIG. In the example shown in the figure, the long release film 12 is conveyed at a predetermined speed by the feeding roller 21 and the winding roller 22. A coater 23 for applying the adhesive paste W, which is a material for forming the conductive adhesive layer 13, is arranged on the transport path of the release film 12, and the adhesive paste W in which the conductive particles P are dispersed by the coater 23 is arranged. Is coated on the release film 12 (coating step). The thickness of the adhesive paste W applied on the release film 12 by the coater 23 varies from time to time depending on the proportion of the solvent contained in the resin composition, but is less than 1.6 times the average particle size of the conductive particles P. Is preferable.

接着剤ペーストWの粘度は、用途、塗布方法に応じて変動させることができるが、通常は、10mPa・s〜10000mPa・sとすることが好ましい。接着剤ペーストW中の配合物の分離の抑制や相溶性向上の観点から、50mPa・s〜5000mPa・sとすることがより好ましい。また、異方導電性フィルム11の外観向上のためには、100mPa・s〜3000mPa・sとすることが好ましい。10000mPa・sを超えると、後続する磁場印加工程での導電粒子Pの分散が抑制されるおそれがあり、10mPa・s未満では接着剤ペーストWの配合物の分離が生じるおそれがある。 The viscosity of the adhesive paste W can be varied depending on the application and coating method, but is usually preferably 10 mPa · s to 10000 mPa · s. From the viewpoint of suppressing separation of the compound in the adhesive paste W and improving compatibility, it is more preferably 50 mPa · s to 5000 mPa · s. Further, in order to improve the appearance of the anisotropic conductive film 11, it is preferably 100 mPa · s to 3000 mPa · s. If it exceeds 10000 mPa · s, the dispersion of the conductive particles P in the subsequent magnetic field application step may be suppressed, and if it is less than 10 mPa · s, the composition of the adhesive paste W may be separated.

接着剤ペーストWの塗工方法は、上記に限られず、公知の方法を利用することができる。例えばスピンコート法、ローラーコート法、バーコート法、ディップコート法、マイクログラビアコート法、カーテンコート法、ダイコート法、スプレーコート法、ドクターコート法、ニーダーコート法、フローコーティング法、スクリーン印刷法、キャスト法などが挙げられる。バーコート法、ダイコート法、マイクログラビアコート法などが異方導電性フィルム11の作製に適しており,フィルム膜厚の精度の観点からは、マイクログラビアコート法が特に好適である。 The method for applying the adhesive paste W is not limited to the above, and a known method can be used. For example, spin coating method, roller coating method, bar coating method, dip coating method, micro gravure coating method, curtain coating method, die coating method, spray coating method, doctor coating method, kneader coating method, flow coating method, screen printing method, cast. The law etc. can be mentioned. The bar coating method, the die coating method, the microgravure coating method and the like are suitable for producing the anisotropic conductive film 11, and the microgravure coating method is particularly suitable from the viewpoint of the accuracy of the film thickness.

コータ23の後段側には、剥離フィルム12を挟むように一対の磁石24,25が上下に対向配置されている。本実施形態では、図6に示すように、上側に配置された磁石24がN極、下側に配置された磁石25がS極となっており、磁石24から磁石25に向かう略垂直方向に磁場が形成されている。したがって、磁石24,25間に剥離フィルム12が搬送されると、接着剤ペーストW中の導電粒子Pが磁化され、斥力によって導電粒子P,P同士が接着剤ペーストWの面内方向に離間した状態が形成される(磁場印加工程)。 On the rear side of the coater 23, a pair of magnets 24 and 25 are arranged vertically facing each other so as to sandwich the release film 12. In the present embodiment, as shown in FIG. 6, the magnet 24 arranged on the upper side has an N pole and the magnet 25 arranged on the lower side has an S pole, and the magnet 24 is directed toward the magnet 25 in a substantially vertical direction. A magnetic field is formed. Therefore, when the release film 12 is conveyed between the magnets 24 and 25, the conductive particles P in the adhesive paste W are magnetized, and the conductive particles P and P are separated from each other in the in-plane direction of the adhesive paste W by a repulsive force. A state is formed (magnetic field application step).

また、磁場印加工程における導電粒子Pの離間状態を保持するため、剥離フィルム12が磁石24,25間を通過している間に熱風等によって接着剤ペーストWの乾燥を行う(乾燥工程)。これにより、接着剤ペーストWの粘度が上昇し、図7に示すように、導電粒子Pの70%以上が隣接する他の導電粒子Pと離間した状態となった導電性接着剤層13が剥離フィルム12上に形成される。また、乾燥工程によって接着剤ペーストWの厚みが減少していき、上述したように、接着剤ペーストWの厚みを導電粒子Pの平均粒径の1.6倍未満としておくことで、導電性接着剤層13の厚みを導電粒子Pの平均粒径の0.6倍以上1.0倍未満とすることが可能となる。 Further, in order to maintain the separated state of the conductive particles P in the magnetic field application step, the adhesive paste W is dried by hot air or the like while the release film 12 passes between the magnets 24 and 25 (drying step). As a result, the viscosity of the adhesive paste W increases, and as shown in FIG. 7, the conductive adhesive layer 13 in which 70% or more of the conductive particles P are separated from other adjacent conductive particles P is peeled off. It is formed on the film 12. Further, the thickness of the adhesive paste W decreases due to the drying step, and as described above, by setting the thickness of the adhesive paste W to less than 1.6 times the average particle size of the conductive particles P, conductive adhesion is performed. The thickness of the agent layer 13 can be made 0.6 times or more and less than 1.0 times the average particle size of the conductive particles P.

なお、接着剤ペーストWの乾燥温度は、例えば20℃〜80℃であることが好ましい。また、剥離フィルム12の搬送速度は、例えば30mm/s〜160mm/sであることが好ましい。接着剤ペーストWの厚みは、例えば平均粒径が3μmの導電粒子Pを用いる場合には、5μm〜10μmであることが好ましい。剥離フィルム12の搬送速度が上記範囲未満である場合、導電粒子Pが離間する前に接着剤ペーストWが乾燥してしまい、分散が不十分となる可能性がある。剥離フィルム12の搬送速度が上記範囲を超えている場合、乾燥前に磁場の印加が終了し、導電粒子Pが再凝集してしまうおそれがある。また、接着剤ペーストWの厚みが上記範囲未満である場合、コータ23のギャップが不足し、導電性接着剤層13中の導電粒子Pの数が不足するおそれがあり、接着剤ペーストWの厚みが上記範囲を超えている場合、コータ23のギャップが過剰となり、導電性接着剤層13中の導電粒子Pの数が過剰となるおそれがある。 The drying temperature of the adhesive paste W is preferably, for example, 20 ° C to 80 ° C. The transport speed of the release film 12 is preferably, for example, 30 mm / s to 160 mm / s. The thickness of the adhesive paste W is preferably 5 μm to 10 μm, for example, when conductive particles P having an average particle size of 3 μm are used. If the transport speed of the release film 12 is less than the above range, the adhesive paste W may be dried before the conductive particles P are separated, resulting in insufficient dispersion. If the transport speed of the release film 12 exceeds the above range, the application of the magnetic field is completed before drying, and the conductive particles P may reaggregate. If the thickness of the adhesive paste W is less than the above range, the gap of the coater 23 may be insufficient, and the number of conductive particles P in the conductive adhesive layer 13 may be insufficient, so that the thickness of the adhesive paste W may be insufficient. If it exceeds the above range, the gap of the coater 23 may become excessive, and the number of conductive particles P in the conductive adhesive layer 13 may become excessive.

導電性接着剤層13の形成の後、図8に示すように、別途作成した絶縁性接着剤層14を導電性接着剤層13上にラミネートする(積層工程)。これにより、図2に示した異方導電性フィルム11が得られる。なお、絶縁性接着剤層14のラミネートには、例えばホットロールラミネータを用いることができる。また、ラミネートに限られず、絶縁性接着剤層14の材料となる接着剤ペーストを導電性接着剤層13上に塗布・乾燥してもよい。 After forming the conductive adhesive layer 13, as shown in FIG. 8, the separately prepared insulating adhesive layer 14 is laminated on the conductive adhesive layer 13 (lamination step). As a result, the anisotropic conductive film 11 shown in FIG. 2 is obtained. For laminating the insulating adhesive layer 14, for example, a hot roll laminator can be used. Further, the present invention is not limited to laminating, and an adhesive paste used as a material for the insulating adhesive layer 14 may be applied and dried on the conductive adhesive layer 13.

以上説明したように、異方導電性フィルム11では、導電性接着剤層13において、導電粒子Pの70%以上が隣接する他の導電粒子Pと離間した状態となっている。このため、第1の回路部材2と第2の回路部材3との接続にあたって隣接する導電粒子P,P同士の凝集が抑えられ、隣接するバンプ電極6,6同士及び隣接する回路電極8,8同士の絶縁性を良好に確保できる。また、この異方導電性フィルム11では、導電性接着剤層13の厚みが導電粒子Pの平均粒径の0.6倍以上1.0倍未満となっている。これにより、圧着時における導電粒子Pの流動が抑えられ、バンプ電極6と回路電極8との間の導電粒子Pの捕捉効率を向上できる。したがって、第1の回路部材2と第2の回路部材3との間の接続信頼性を確保できる。 As described above, in the anisotropic conductive film 11, in the conductive adhesive layer 13, 70% or more of the conductive particles P are separated from other adjacent conductive particles P. Therefore, in connecting the first circuit member 2 and the second circuit member 3, the agglutination of the conductive particles P and P adjacent to each other is suppressed, and the adjacent bump electrodes 6 and 6 and the adjacent circuit electrodes 8 and 8 are suppressed. Good insulation between each other can be ensured. Further, in the anisotropic conductive film 11, the thickness of the conductive adhesive layer 13 is 0.6 times or more and less than 1.0 times the average particle size of the conductive particles P. As a result, the flow of the conductive particles P during crimping is suppressed, and the capture efficiency of the conductive particles P between the bump electrode 6 and the circuit electrode 8 can be improved. Therefore, the connection reliability between the first circuit member 2 and the second circuit member 3 can be ensured.

図9は、従来製法における導電粒子の分散の様子を示す顕微鏡写真であり、図10は、本製法における導電粒子の分散の様子を示す顕微鏡写真である。図9に示すように、従来製法では、隣接する導電粒子と離間した導電粒子も散在しているものの、大多数の導電粒子が隣接する導電粒子と接触・凝集した状態となっている。これに対し、図10に示すように、本製法では、ほぼ全ての導電粒子が隣接する導電粒子と離間した状態を保持している。 FIG. 9 is a micrograph showing the state of dispersion of the conductive particles in the conventional manufacturing method, and FIG. 10 is a micrograph showing the state of dispersion of the conductive particles in the present manufacturing method. As shown in FIG. 9, in the conventional manufacturing method, although the conductive particles separated from the adjacent conductive particles are also scattered, the majority of the conductive particles are in contact with and aggregated with the adjacent conductive particles. On the other hand, as shown in FIG. 10, in this manufacturing method, almost all the conductive particles are kept separated from the adjacent conductive particles.

したがって、本実施形態に係る異方導電性フィルム11の製造方法のように、剥離フィルム12に塗布された接着剤ペーストWに磁場を印加する手法により、斥力によって導電粒子Pが他の導電粒子Pと離間した状態を容易に形成できることが確認できる。また、この異方導電性フィルム11の製造方法では、塗布工程において、接着剤ペーストWの厚みが導電粒子Pの平均粒径の1.6倍未満となるように接着剤ペーストWを塗布している。これにより、接着剤ペーストWが乾燥したときに、導電性接着剤層13の厚みを導電粒子Pの平均粒径の0.6倍以上1.0倍未満とすることができる。したがって、上述した効果を奏する異方導電性フィルム11を容易に得ることができる。
[実施例]
Therefore, as in the method for producing the anisotropic conductive film 11 according to the present embodiment, the conductive particles P are changed to the other conductive particles P by the repulsive force by the method of applying a magnetic field to the adhesive paste W applied to the release film 12. It can be confirmed that a state separated from the above can be easily formed. Further, in the method for producing the anisotropic conductive film 11, in the coating step, the adhesive paste W is applied so that the thickness of the adhesive paste W is less than 1.6 times the average particle size of the conductive particles P. There is. As a result, when the adhesive paste W is dried, the thickness of the conductive adhesive layer 13 can be made 0.6 times or more and less than 1.0 times the average particle size of the conductive particles P. Therefore, the anisotropic conductive film 11 having the above-mentioned effect can be easily obtained.
[Example]

以下、本発明の実施例及び比較例について説明する。
(実施例1)
Hereinafter, examples and comparative examples of the present invention will be described.
(Example 1)

4,4’−(9−フルオレニリデン)−ジフェノール45g(シグマアルドリッチジャパン株式会社製)、及び3,3’,5,5’−テトラメチルビフェノールジグリシジルエーテル50g(三菱化学株式会社製:YX−4000H)を、ジムロート冷却管、塩化カルシウム管、及び攪拌モーターに接続されたテフロン攪拌棒を装着した3000mLの3つ口フラスコ中でN−メチルピロリドン1000mLに溶解して反応液とした。これに炭酸カリウム21gを加え、マントルヒーターで110℃に加熱しながら攪拌した。3時間攪拌後、1000mLのメタノールが入ったビーカーに反応液を滴下し、生成した沈殿物を吸引ろ過することによってろ取した。ろ取した沈殿物をさらに300mLのメタノールで3回洗浄して、フェノキシ樹脂aを75g得た。 4,4'-(9-fluorenylidene) -diphenol 45 g (manufactured by Sigma Aldrich Japan Co., Ltd.) and 3,3', 5,5'-tetramethylbiphenol diglycidyl ether 50 g (manufactured by Mitsubishi Chemical Corporation: YX-) 4000H) was dissolved in 1000 mL of N-methylpyrrolidone in a 3000 mL three-necked flask equipped with a Dimroth condenser, a calcium chloride tube, and a Teflon stirring rod connected to a stirring motor to prepare a reaction solution. 21 g of potassium carbonate was added thereto, and the mixture was stirred while heating at 110 ° C. with a mantle heater. After stirring for 3 hours, the reaction solution was added dropwise to a beaker containing 1000 mL of methanol, and the generated precipitate was collected by suction filtration. The precipitate collected by filtration was further washed 3 times with 300 mL of methanol to obtain 75 g of phenoxy resin a.

その後、フェノキシ樹脂aの分子量を東ソー株式会社製高速液体クロマトグラフGP8020を用いて測定した(カラム:日立化成株式会社製GelpakGLA150S及びGLA160S、溶媒:テトラヒドロフラン、流速:1.0mL/min)。その結果、ポリスチレン換算でMn=15769、Mw=38045、Mw/Mn=2.413であった。 Then, the molecular weight of the phenoxy resin a was measured using a high performance liquid chromatograph GP8020 manufactured by Tosoh Corporation (column: Gelpac GLA150S and GLA160S manufactured by Hitachi Kasei Co., Ltd., solvent: tetrahydrofuran, flow velocity: 1.0 mL / min). As a result, it was Mn = 15769, Mw = 38045, and Mw / Mn = 2.413 in terms of polystyrene.

次に、導電性接着剤層用の接着剤ペーストの形成にあたって、エポキシ化合物としてビスフェノールA型エポキシ樹脂(三菱化学株式会社製:jER828)を固形分で50質量部、硬化剤として4−ヒドロキシフェニルメチルベンジルスルホニウムヘキサフルオロアンチモネートを固形分で5部質量部、フィルム形成材としてフェノキシ樹脂aを固形分で50質量部を配合した。また、導電粒子について、ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、平均粒径3.3μm、比重2.5の導電粒子を作製し,この導電粒子を80質量部で樹脂組成物に配合した。そして、厚み50μmのPET樹脂フィルムにコータを用いて塗布し、樹脂組成物の乾燥を行うと共に磁場印加を実施し、厚みが2.7μmの導電性接着剤層を得た。 Next, in forming the adhesive paste for the conductive adhesive layer, bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation: jER828) was used as an epoxy compound in an amount of 50 parts by mass as a solid content and 4-hydroxyphenylmethyl as a curing agent. A solid content of 5 parts by mass of benzylsulfonium hexafluoroantimonate and a solid content of 50 parts by mass of phenoxy resin a as a film forming material were blended. Further, regarding the conductive particles, a nickel layer having a thickness of 0.2 μm is provided on the surface of the particles having polystyrene as the core to prepare conductive particles having an average particle size of 3.3 μm and a specific gravity of 2.5, and the conductive particles are 80 mass by mass. In the part, it was blended into the resin composition. Then, it was applied to a PET resin film having a thickness of 50 μm using a coater, the resin composition was dried, and a magnetic field was applied to obtain a conductive adhesive layer having a thickness of 2.7 μm.

次に、絶縁性接着剤層用の接着剤ペーストの形成にあたって、エポキシ化合物としてビスフェノールF型エポキシ樹脂(三菱化学株式会社製:jER807)を固形分で45質量部、硬化剤として4−ヒドロキシフェニルメチルベンジルスルホニウムヘキサフルオロアンチモネートを固形分で5質量部、フィルム形成材としてMw50000・Tg70℃のフェノキシ樹脂bを固形分で55質量部配合した。そして、厚み50μmのPET樹脂フィルムにコータを用いて塗布し、70℃で5分間熱風乾燥することによって厚みが16μmの絶縁性接着剤層を得た。その後、導電性接着剤層と絶縁性接着剤層とを40℃に加熱してホットロールラミネータで貼り合わせ、実施例1に係る異方導電性フィルムを得た。
(実施例2)
Next, in forming the adhesive paste for the insulating adhesive layer, bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation: jER807) was used as an epoxy compound in an amount of 45 parts by mass as a solid content and 4-hydroxyphenylmethyl as a curing agent. 5 parts by mass of benzylsulfonium hexafluoroantimonate was blended in solid content, and 55 parts by mass of phenoxy resin b having Mw50000 and Tg of 70 ° C. as a film forming material was blended. Then, it was applied to a PET resin film having a thickness of 50 μm using a coater, and dried with hot air at 70 ° C. for 5 minutes to obtain an insulating adhesive layer having a thickness of 16 μm. Then, the conductive adhesive layer and the insulating adhesive layer were heated to 40 ° C. and bonded with a hot roll laminator to obtain an anisotropic conductive film according to Example 1.
(Example 2)

導電性接着剤層の厚みを2.1μmとした以外は実施例1と同様にし、実施例2に係る異方導電フィルムを作製した。
(実施例3)
The anisotropic conductive film according to Example 2 was produced in the same manner as in Example 1 except that the thickness of the conductive adhesive layer was 2.1 μm.
(Example 3)

ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、平均粒径3.6μm、比重2.5の導電粒子を用いた点、及び導電性接着剤層の厚みを3.1μmとした点以外は実施例1と同様にし、実施例3に係る異方導電フィルムを作製した。
(実施例4)
2. A nickel layer having a thickness of 0.2 μm was provided on the surface of the polystyrene-core particles, and conductive particles having an average particle size of 3.6 μm and a specific gravity of 2.5 were used, and the thickness of the conductive adhesive layer was set to 3. The anisotropic conductive film according to Example 3 was produced in the same manner as in Example 1 except that the particle size was 1 μm.
(Example 4)

ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、平均粒径4.1μm、比重2.4の導電粒子を用いた点、及び導電性接着剤層の厚みを3.4μmとした点以外は実施例1と同様にし、実施例4に係る異方導電フィルムを作製した。
(実施例5)
2. A nickel layer having a thickness of 0.2 μm was provided on the surface of the polystyrene-core particles, and conductive particles having an average particle size of 4.1 μm and a specific density of 2.4 were used, and the thickness of the conductive adhesive layer was 3. The anisotropic conductive film according to Example 4 was produced in the same manner as in Example 1 except that the particle size was 4 μm.
(Example 5)

ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、平均粒径5.1μm、比重2.3の導電粒子を用いた点、及び導電性接着剤層の厚みを3.9μmとした点以外は実施例1と同様にし、実施例5に係る異方導電フィルムを作製した。
(比較例1)
A nickel layer having a thickness of 0.2 μm was provided on the surface of the polystyrene-core particles, and conductive particles having an average particle size of 5.1 μm and a specific gravity of 2.3 were used, and the thickness of the conductive adhesive layer was set to 3. The anisotropic conductive film according to Example 5 was produced in the same manner as in Example 1 except that the particle size was 9 μm.
(Comparative Example 1)

導電性接着剤層の厚みを1.8μmとした点以外は実施例1と同様にし、比較例1に係る異方導電フィルムを作製した。
(比較例2)
The anisotropic conductive film according to Comparative Example 1 was produced in the same manner as in Example 1 except that the thickness of the conductive adhesive layer was 1.8 μm.
(Comparative Example 2)

導電性接着剤層の厚みを3.5μmとした点以外は実施例1と同様にし、比較例2に係る異方導電フィルムを作製した。
(比較例3)
The anisotropic conductive film according to Comparative Example 2 was produced in the same manner as in Example 1 except that the thickness of the conductive adhesive layer was 3.5 μm.
(Comparative Example 3)

磁場印加を行わない点以外は実施例1と同様にし、比較例3に係る異方導電フィルムを作製した。
(異方導電性フィルム中の導電粒子の密度算出)
The anisotropic conductive film according to Comparative Example 3 was produced in the same manner as in Example 1 except that no magnetic field was applied.
(Density calculation of conductive particles in anisotropic conductive film)

実施例1〜5及び比較例1〜3の異方導電性フィルムについて、2500μm(50μm×50μm)当たりの導電粒子数を20か所で金属顕微鏡にて実測し、その平均値を1mmに換算した。
(導電粒子の単分散率の評価)
For the anisotropic conductive films of Examples 1 to 5 and Comparative Examples 1 to 3, the number of conductive particles per 2500 μm 2 (50 μm × 50 μm) was measured at 20 places with a metallurgical microscope, and the average value was set to 1 mm 2 . Converted.
(Evaluation of monodispersity of conductive particles)

実施例1〜5及び比較例1〜3の異方導電性フィルムについて、導電粒子の単分散率(導電粒子が隣接する他の導電粒子と離間した状態(単分散状態)で存在している比率)を評価した。単分散率は、単分散率(%)=(2500μm中の単分散状態の導電粒子数/2500μm中の導電粒子数)×100、を用いて求められる。導電粒子の実測には、金属顕微鏡を用いて200倍の倍率で観察した。 With respect to the anisotropic conductive films of Examples 1 to 5 and Comparative Examples 1 to 3, the monodispersity of the conductive particles (the ratio at which the conductive particles exist in a state of being separated from other adjacent conductive particles (monodisperse state)). ) Was evaluated. Monodispersion ratio, the monodispersion ratio (%) = (2500μm 2 in conductive particle number monodisperse / 2500 [mu] m conductive particle count in 2) × 100, is determined using. The conductive particles were actually measured using a metallurgical microscope at a magnification of 200 times.

図11は、評価実験結果を示す図である。同図に示すように、実施例1〜5に係る異方導電性フィルムでは、いずれも19000個/mm以上の導電粒子密度を保ちつつ、単分散率が80%を超え、良好な単分散性が得られている。一方、比較例1に係る異方導電性フィルムでは、導電粒子の平均粒径に対する導電性接着剤層が薄くなりすぎ、単分散率は85%となっているものの、導電粒子密度が9000個/mm程度であった。 FIG. 11 is a diagram showing the results of the evaluation experiment. As shown in the figure, in each of the anisotropic conductive films according to Examples 1 to 5, the monodispersity exceeds 80% while maintaining the conductive particle density of 19000 particles / mm 2 or more, and the monodispersity is good. Sex has been obtained. On the other hand, in the anisotropic conductive film according to Comparative Example 1, the conductive adhesive layer was too thin with respect to the average particle size of the conductive particles, and the monodispersity was 85%, but the density of the conductive particles was 9000 particles /. It was about mm 2.

また、比較例2に係る異方導電性フィルムでは、導電粒子の平均粒径に対する導電性接着剤層が厚くなりすぎ、導電粒子密度が35000個/mmと高いものの、単分散率は14%にとどまった。また、比較例3に係る異方導電性フィルムでは、磁場印加を行わなかった結果、単分散率が34%程度であった。
(接続構造体の作製)
Further, in the anisotropic conductive film according to Comparative Example 2, the conductive adhesive layer is too thick with respect to the average particle size of the conductive particles, and the conductive particle density is as high as 35,000 particles / mm 2 , but the monodispersity is 14%. Stayed at. Further, in the anisotropic conductive film according to Comparative Example 3, as a result of not applying a magnetic field, the monodispersity was about 34%.
(Preparation of connection structure)

第1の回路部材として、バンプ電極を一列に配列したストレート配列構造を有するICチップ(外形2mm×20mm、厚み0.55mm、バンプ電極の大きさ100μm×30μm、バンプ電極間距離8μm、バンプ電極厚み15μm)を準備した。また、第2の回路部材として、ガラス基板(コーニング社製:#1737、38mm×28mm、厚み0.3mm)の表面にITOの配線パターン(パターン幅21μm、電極間スペース17μm)を形成したものを準備した。 As the first circuit member, an IC chip having a straight array structure in which bump electrodes are arranged in a row (outer diameter 2 mm × 20 mm, thickness 0.55 mm, bump electrode size 100 μm × 30 μm, bump electrode distance 8 μm, bump electrode thickness). 15 μm) was prepared. Further, as the second circuit member, an ITO wiring pattern (pattern width 21 μm, space between electrodes 17 μm) formed on the surface of a glass substrate (Corning Inc .: # 1737, 38 mm × 28 mm, thickness 0.3 mm) is formed. Got ready.

ICチップとガラス基板との接続には、セラミックヒータからなるステージ(150mm×150mm)及びツール(3mm×20mm)から構成される熱圧着装置を用いた。まず、実施例1〜5及び比較例1〜3に係る異方導電性フィルム(2.5mm×25mm)の導電性接着剤層上の剥離フィルムを剥離し、導電性接着剤層側の面をガラス基板に80℃・0.98MPa(10kgf/cm)の条件で2秒間加熱及び加圧して貼り付けた。 For the connection between the IC chip and the glass substrate, a thermocompression bonding device composed of a stage (150 mm × 150 mm) composed of a ceramic heater and a tool (3 mm × 20 mm) was used. First, the release film on the conductive adhesive layer of the anisotropic conductive film (2.5 mm × 25 mm) according to Examples 1 to 5 and Comparative Examples 1 to 3 is peeled off, and the surface on the conductive adhesive layer side is removed. It was attached to a glass substrate by heating and pressurizing for 2 seconds under the conditions of 80 ° C. and 0.98 MPa (10 kgf / cm 2).

次に、異方導電性フィルムの絶縁性接着剤層上の剥離フィルムを剥離し、ICチップのバンプ電極とガラス基板の回路電極との位置合わせを行った後、異方導電性フィルムの実測最高到達温度170℃、及びバンプ電極での面積換算圧力70MPaの条件で5秒間加熱及び加圧して絶縁性接着剤層をICチップに貼り付けた。
(導電粒子の捕捉率及び抵抗特性の評価)
Next, the release film on the insulating adhesive layer of the anisotropic conductive film is peeled off, the bump electrode of the IC chip and the circuit electrode of the glass substrate are aligned, and then the measurement of the anisotropic conductive film is the highest. The insulating adhesive layer was attached to the IC chip by heating and pressurizing for 5 seconds under the conditions of an ultimate temperature of 170 ° C. and an area conversion pressure of 70 MPa at the bump electrode.
(Evaluation of capture rate and resistance characteristics of conductive particles)

実施例1〜5及び比較例1〜3の各異方導電性フィルムを用いて得られた接続構造体において、バンプ電極と回路電極との間の導電粒子の捕捉率、バンプ電極と回路電極との間の抵抗値、及び隣接する回路電極間の絶縁抵抗を評価した。捕捉率は、異方導電性フィルム中の導電粒子の密度に対するバンプ電極上の導電粒子の密度の比であり、捕捉率(%)=(バンプ電極上の導電粒子数の平均/バンプ電極面積/異方導電性フィルムの単位面積当たりの導電粒子数)×100、によって求められる。 In the connection structure obtained by using each of the heterogeneous conductive films of Examples 1 to 5 and Comparative Examples 1 to 3, the capture rate of conductive particles between the bump electrode and the circuit electrode, and the bump electrode and the circuit electrode The resistance value between them and the insulation resistance between adjacent circuit electrodes were evaluated. The capture rate is the ratio of the density of the conductive particles on the bump electrode to the density of the conductive particles in the isotropic conductive film, and the capture rate (%) = (average number of conductive particles on the bump electrode / bump electrode area / It is determined by (the number of conductive particles per unit area of the isotropic conductive film) × 100.

また、抵抗値の評価は、四端子測定法にて実施し、14箇所の測定の平均値を用いた。絶縁抵抗の評価では、実施例1〜5及び比較例1〜3の各異方導電性フィルムを用いて得られた接続構造体に50Vの電圧を印加し、計1440か所の回路電極間の絶縁抵抗を一括で測定した。絶縁抵抗については、10Ωより大きい場合をA判定、10Ω以下の場合をB判定とした。 The resistance value was evaluated by the four-terminal measurement method, and the average value of the measurements at 14 points was used. In the evaluation of the insulation resistance, a voltage of 50 V was applied to the connection structure obtained by using the anisotropic conductive films of Examples 1 to 5 and Comparative Examples 1 to 3, and a total of 1440 circuit electrodes were evaluated. The insulation resistance was measured all at once. For insulation resistance, a greater than 10 8 Omega A determination was the case of the following 10 8 Omega and B determined.

図12は、評価実験結果を示す図である。同図に示すように、実施例1〜5に係る接続構造体では、導電粒子の捕捉率が50%前後であり、抵抗値及び絶縁抵抗が共に良好であった。一方、比較例1に係る接続構造体では、導電粒子密度が小さいため、導電粒子の捕捉率は実施例1〜5と同等に得られたものの、抵抗値が実施例1〜5に比べて上昇した。また、比較例2,3では、導電粒子の単分散率が低いため、絶縁抵抗が実施例1〜5に比べて低下した。 FIG. 12 is a diagram showing the results of the evaluation experiment. As shown in the figure, in the connection structures according to Examples 1 to 5, the capture rate of conductive particles was around 50%, and both the resistance value and the insulation resistance were good. On the other hand, in the connection structure according to Comparative Example 1, since the density of the conductive particles was small, the capture rate of the conductive particles was obtained to be the same as that of Examples 1 to 5, but the resistance value was higher than that of Examples 1 to 5. did. Further, in Comparative Examples 2 and 3, since the monodispersity of the conductive particles was low, the insulation resistance was lower than that in Examples 1 to 5.

1…接続構造体、2…第1の回路部材、3…第2の回路部材、6…バンプ電極、8…回路電極、11…異方導電性フィルム、12…剥離フィルム、13…導電性接着剤層、14…絶縁性接着剤層、P…導電粒子、W…接着剤ペースト。 1 ... connection structure, 2 ... first circuit member, 3 ... second circuit member, 6 ... bump electrode, 8 ... circuit electrode, 11 ... anisotropic conductive film, 12 ... release film, 13 ... conductive adhesive Agent layer, 14 ... Insulating adhesive layer, P ... Conductive particles, W ... Adhesive paste.

Claims (6)

導電粒子及び接着剤成分を含んで構成される異方導電性フィルムであって、
前記導電粒子が分散された接着剤層からなる導電性接着剤層と、
前記導電性接着剤層上に積層され、前記導電粒子が分散されていない接着剤層からなる絶縁性接着剤層と、を備え、
前記導電性接着剤層の厚みが、前記導電粒子の平均粒径の0.6倍以上1.0倍未満であり、
前記導電性接着剤層において、前記導電粒子の70%以上が隣接する他の導電粒子と離間した状態となっていることを特徴とする異方導電性フィルム。
An anisotropic conductive film composed of conductive particles and an adhesive component.
A conductive adhesive layer composed of an adhesive layer in which the conductive particles are dispersed, and
An insulating adhesive layer composed of an adhesive layer laminated on the conductive adhesive layer and in which the conductive particles are not dispersed.
The thickness of the conductive adhesive layer is 0.6 times or more and less than 1.0 times the average particle size of the conductive particles.
An anisotropic conductive film, wherein 70% or more of the conductive particles are separated from other adjacent conductive particles in the conductive adhesive layer.
前記導電性接着剤層において、前記導電粒子は、前記絶縁性接着剤層と反対側の面に露出せず、前記導電粒子と前記導電性接着剤層の表面との間に存在する前記導電性接着剤層の厚みが、0μmより大きく1μm以下であることを特徴とする請求項1記載の異方導電性フィルム。 In the conductive adhesive layer, the conductive particles are not exposed on the surface opposite to the insulating adhesive layer, and are present between the conductive particles and the surface of the conductive adhesive layer. The isotropically conductive film according to claim 1, wherein the thickness of the adhesive layer is larger than 0 μm and 1 μm or less. 前記導電粒子の平均粒径が2.5μm以上6.0μm以下であり、前記導電粒子の密度が5000個/mm以上50000個/mm以下であることを特徴とする請求項1又は2記載の異方導電性フィルム。 The average particle size of the conductive particles is at 2.5μm or 6.0μm or less, according to claim 1 or 2, wherein the density of the conductive particles is equal to or is 5000 / mm 2 or more 50000 / mm 2 or less Heteroconductive film. 前記導電性接着剤層の厚みが1.5μm以上6.0μm以下であることを特徴とする請求項1〜3のいずれか一項記載の異方導電性フィルム。 The anisotropic conductive film according to any one of claims 1 to 3, wherein the thickness of the conductive adhesive layer is 1.5 μm or more and 6.0 μm or less. 前記導電粒子は、ニッケルを含むことを特徴とする請求項1〜4のいずれか一項記載の異方導電性フィルム。 The anisotropic conductive film according to any one of claims 1 to 4, wherein the conductive particles contain nickel. バンプ電極が設けられた第1の回路部材と、前記バンプ電極に対応する回路電極が設けられた第2の回路部材とを、請求項1〜5のいずれか一項に記載の異方導電性フィルムを介して接続してなることを特徴とする接続構造体。 The anisotropic conductivity according to any one of claims 1 to 5, wherein the first circuit member provided with the bump electrode and the second circuit member provided with the circuit electrode corresponding to the bump electrode are provided. A connection structure characterized by being connected via a film.
JP2021003132A 2021-01-12 2021-01-12 Anisotropically conducting film and connection structure Pending JP2021089894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021003132A JP2021089894A (en) 2021-01-12 2021-01-12 Anisotropically conducting film and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021003132A JP2021089894A (en) 2021-01-12 2021-01-12 Anisotropically conducting film and connection structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019186998A Division JP2020035751A (en) 2019-10-10 2019-10-10 Anisotropically conductive film and connection structure

Publications (1)

Publication Number Publication Date
JP2021089894A true JP2021089894A (en) 2021-06-10

Family

ID=76220777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021003132A Pending JP2021089894A (en) 2021-01-12 2021-01-12 Anisotropically conducting film and connection structure

Country Status (1)

Country Link
JP (1) JP2021089894A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394647A (en) * 1986-09-05 1988-04-25 アメリカン テレフォン アンド テレグラフ カムパニー Device containing anisotropic conductive medium and manufacture of the same
JP2009076431A (en) * 2007-01-31 2009-04-09 Tokai Rubber Ind Ltd Anisotropic conductive film and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394647A (en) * 1986-09-05 1988-04-25 アメリカン テレフォン アンド テレグラフ カムパニー Device containing anisotropic conductive medium and manufacture of the same
JP2009076431A (en) * 2007-01-31 2009-04-09 Tokai Rubber Ind Ltd Anisotropic conductive film and its manufacturing method

Similar Documents

Publication Publication Date Title
TWI402321B (en) An adhesive composition and a circuit connecting material using the same, and a method of connecting a circuit member and a circuit connecting body
JP2015167106A (en) Anisotropic conductive film, and connection structure
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
US20110256342A1 (en) Film adhesive and anisotropic conductive adhesive
CN104106182B (en) Anisotropic conductive connecting material, connection structural bodies, the manufacturing method of connection structural bodies and connection method
JP2009074020A (en) Anisotropic conductive film
JP4605225B2 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JP6237855B2 (en) Adhesive film, circuit member connection structure, and circuit member connection method
JP6326867B2 (en) Connection structure manufacturing method and connection structure
JP2002201450A (en) Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JP2010067360A (en) Anisotropic conductive film and its use method
KR20140035993A (en) Circuit-connecting material and connected circuit board structure
JP2007317563A (en) Circuit connecting adhesive
JP6535989B2 (en) Method of manufacturing anisotropically conductive film and connection structure
JP6601533B2 (en) Anisotropic conductive film, connection structure, method for manufacturing anisotropic conductive film, and method for manufacturing connection structure
JP2021089894A (en) Anisotropically conducting film and connection structure
JP2020035751A (en) Anisotropically conductive film and connection structure
KR20200080337A (en) Connection material
JP5143329B2 (en) Manufacturing method of circuit connection body
JP2011175846A (en) Circuit member connecting adhesive film, and circuit member connecting structure and method of manufacturing the same
JP7077963B2 (en) Insulation coated conductive particles, anisotropic conductive film, method for manufacturing anisotropic conductive film, connection structure and method for manufacturing connection structure
JP6705516B2 (en) Method for producing anisotropically conductive film
JP6398416B2 (en) Connection structure manufacturing method and connection structure
JP6900741B2 (en) Growing method of anisotropic conductive film, connection structure and connection structure
JP2008084545A (en) Adhesive for electrode connection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220816