JP2021080799A - Connection structure of structure and design method of structure - Google Patents

Connection structure of structure and design method of structure Download PDF

Info

Publication number
JP2021080799A
JP2021080799A JP2019211286A JP2019211286A JP2021080799A JP 2021080799 A JP2021080799 A JP 2021080799A JP 2019211286 A JP2019211286 A JP 2019211286A JP 2019211286 A JP2019211286 A JP 2019211286A JP 2021080799 A JP2021080799 A JP 2021080799A
Authority
JP
Japan
Prior art keywords
seismic
building
seismic isolation
connecting member
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019211286A
Other languages
Japanese (ja)
Other versions
JP7400173B2 (en
Inventor
夏輝 飯野
Natsuki Iino
夏輝 飯野
鈴木 庸介
Yasusuke Suzuki
庸介 鈴木
周作 前田
Shusaku Maeda
周作 前田
山本 雅史
Masafumi Yamamoto
雅史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2019211286A priority Critical patent/JP7400173B2/en
Publication of JP2021080799A publication Critical patent/JP2021080799A/en
Application granted granted Critical
Publication of JP7400173B2 publication Critical patent/JP7400173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide connection structure of a structure and a design method of a structure that effectively exhibit a base isolation effect by a seismic isolator.SOLUTION: Connection structure of a structure comprises a non base-isolated structure (an earthquake-resistant building 20), a lower structure (a lower layer section 32), a seismic isolator 34 arranged above the lower structure, and a base-isolated structure (a base-isolated building 30) arranged above the seismic isolator 34 and provided with an upper structure (an upper layer section 36) not structurally connected with the non base-isolated structure and a connection member 40 connecting the non base-isolated structure and the lower structure.SELECTED DRAWING: Figure 1

Description

本発明は、構造物の連結構造及び構造物の設計方法に関する。 The present invention relates to a connected structure of a structure and a method of designing the structure.

下記特許文献1には、耐震構造の第1の建物と免震構造の第2の建物とが、接合部材で接合された制震建物が記載されている。この接合部材は、第2の建物の免震層より上部に接合されている。 Patent Document 1 below describes a seismic control building in which a first building having a seismic structure and a second building having a seismic isolation structure are joined by a joining member. This joining member is joined above the seismic isolation layer of the second building.

特開2010−174513号公報Japanese Unexamined Patent Publication No. 2010-174513

上記特許文献1の制震建物では、第1の建物を第2の建物の免震層より上部で拘束することによって、第1の建物の地震時の応答低減を図っている。しかし、第2の建物における免震層より上部の構造が第1の建物によって拘束されているため、免震装置による免震効果を有効に発揮し難い。 In the seismic control building of Patent Document 1, the response of the first building at the time of an earthquake is reduced by restraining the first building above the seismic isolation layer of the second building. However, since the structure above the seismic isolation layer in the second building is restrained by the first building, it is difficult to effectively exert the seismic isolation effect of the seismic isolation device.

本発明は、上記事実を考慮して、免震装置による免震効果を有効に発揮できる構造物の連結構造及び構造物の設計方法を提供することを目的とする。 An object of the present invention is to provide a connected structure of a structure and a method for designing the structure, which can effectively exert the seismic isolation effect of the seismic isolation device in consideration of the above facts.

請求項1の構造物の連結構造は、非免震構造物と、下部構造体、前記下部構造体の上方に配置された免震装置、及び、前記免震装置の上方に配置され前記非免震構造物と構造的に非連結とされた上部構造体を備えた免震構造物と、前記非免震構造物と前記下部構造体とを連結する連結部材と、を有する。 The connected structure of the structure according to claim 1 is a non-seismic isolation structure, a substructure, a seismic isolation device arranged above the substructure, and the non-seismic isolation device arranged above the seismic isolation device. It has a seismic isolation structure having a superstructure that is structurally unconnected to the seismic structure, and a connecting member that connects the non-seismic isolation structure and the substructure.

請求項1の構造物の連結構造では、非免震構造物と免震構造物の下部構造体とが連結部材で連結されている。一方、免震構造物の上部構造体は非免震構造物と連結されていない。このため上部構造体は、地震時に非免震構造物によって変位を拘束されない。これにより、免震装置による免震効果を有効に発揮できる。 In the connecting structure of the structure of claim 1, the non-seismic isolation structure and the substructure of the seismic isolation structure are connected by a connecting member. On the other hand, the superstructure of the seismic isolation structure is not connected to the non-seismic isolation structure. Therefore, the superstructure is not constrained by the non-seismic isolation structure during an earthquake. As a result, the seismic isolation effect of the seismic isolation device can be effectively exhibited.

また、免震構造物の下部構造体は、非免震構造物と連結されるため剛性が高くなり揺れが短周期となる。これにより免震装置による上部構造体の応答抑制効果が高くなる。さらに、非免震構造物に作用する層せん断力が、免震構造物の下部構造体へ流れる。このため、非免震構造物に作用する層せん断力を低減できる。 Further, since the substructure of the seismic isolation structure is connected to the non-seismic isolation structure, the rigidity is high and the shaking has a short cycle. As a result, the effect of suppressing the response of the superstructure by the seismic isolation device is enhanced. Further, the layer shear force acting on the non-seismic isolation structure flows to the substructure of the seismic isolation structure. Therefore, the layer shear force acting on the non-seismic isolation structure can be reduced.

請求項2の構造物の連結構造は、請求項1に記載の構造物の連結構造において、前記連結部材は剛性部材である。 The connecting structure of the structure according to claim 2 is the connecting structure of the structure according to claim 1, wherein the connecting member is a rigid member.

請求項2の構造物の連結構造では、連結部材が剛性部材とされている。このため、非免震構造物において連結部材で連結された部分の層間変形角が、免震構造物の下部構造体の層間変形角に近づいて、小さくなる。これに対して、例えば連結部材としてオイルダンパー等を設けた場合、オイルダンパーは変位に依存しない粘性部材であるため連結しても非免震構造物と免震構造物の層間変形角は近づきにくい。 In the connecting structure of the structure of claim 2, the connecting member is a rigid member. Therefore, the interlayer deformation angle of the portion of the non-seismic isolation structure connected by the connecting member approaches the interlayer deformation angle of the lower structure of the seismic isolation structure and becomes smaller. On the other hand, for example, when an oil damper or the like is provided as a connecting member, since the oil damper is a viscous member that does not depend on displacement, the inter-story deformation angle between the non-seismic isolation structure and the seismic isolation structure is difficult to approach even if they are connected. ..

請求項3の構造物の設計方法は、非免震構造物と、下部構造体、前記下部構造体の上方に配置された免震装置、及び、前記免震装置の上方に配置され前記非免震構造物と構造的に非連結とされた上部構造体を備えた免震構造物と、前記非免震構造物と前記下部構造体とを連結する連結部材と、を有する構造物の連結構造において、前記連結部材の剛性をパラメータとして入力する工程と、入力された前記パラメータに基づいて所定の地震波における前記免震構造物及び前記非免震構造物それぞれの応答を算出する工程と、複数の前記パラメータに基づいて算出された複数の応答から、前記連結部材の剛性を決定する工程と、を備えている。 The structure design method according to claim 3 is a non-seismic isolation structure, a substructure, a seismic isolation device arranged above the substructure, and the non-exemption device arranged above the seismic isolation device. A connecting structure of a structure having a seismic isolation structure having an upper structure structurally unconnected to the seismic structure and a connecting member connecting the non-seismic structure and the lower structure. In the step of inputting the rigidity of the connecting member as a parameter, and the step of calculating the response of each of the seismic isolation structure and the non-seismic isolation structure in a predetermined seismic wave based on the input parameter. It includes a step of determining the rigidity of the connecting member from a plurality of responses calculated based on the parameters.

請求項3の構造物の設計方法では、非免震構造物と免震構造物の下部構造体とが連結部材で連結されている。一方、免震構造物の上部構造体は非免震構造物と連結されていない。このため上部構造体は、地震時に非免震構造物によって拘束されない。これにより、免震装置による免震効果を有効に発揮できる。 In the structure design method of claim 3, the non-seismic isolation structure and the substructure of the seismic isolation structure are connected by a connecting member. On the other hand, the superstructure of the seismic isolation structure is not connected to the non-seismic isolation structure. Therefore, the superstructure is not constrained by the non-seismic isolation structure during an earthquake. As a result, the seismic isolation effect of the seismic isolation device can be effectively exhibited.

また、免震構造物の下部構造体は、非免震構造物と連結されるため剛性が高くなり揺れが短周期となる。このため免震効果を向上できる。さらに、非免震構造物に作用する層せん断力が、免震構造物の下部構造体へ流れる。このため、非免震構造物に作用する層せん断力を低減できる。 Further, since the substructure of the seismic isolation structure is connected to the non-seismic isolation structure, the rigidity is high and the shaking has a short cycle. Therefore, the seismic isolation effect can be improved. Further, the layer shear force acting on the non-seismic isolation structure flows to the substructure of the seismic isolation structure. Therefore, the layer shear force acting on the non-seismic isolation structure can be reduced.

またさらに、請求項3の構造物の設計方法では、連結部材の剛性に基づいて、所定の地震波における免震構造物及び非免震構造物それぞれの応答が算出される。そして、複数の応答算出結果から、連結部材の剛性が決定される。このため、免震構造物及び非免震構造物それぞれの応答を最適化できる連結部材の剛性を設定することができる。 Furthermore, in the structure design method of claim 3, the responses of the seismic isolated structure and the non-seismic isolated structure in a predetermined seismic wave are calculated based on the rigidity of the connecting member. Then, the rigidity of the connecting member is determined from the plurality of response calculation results. Therefore, it is possible to set the rigidity of the connecting member that can optimize the response of each of the seismic isolation structure and the non-seismic isolation structure.

本発明によると、免震装置による免震効果を有効に発揮できる。 According to the present invention, the seismic isolation effect of the seismic isolation device can be effectively exhibited.

本発明の実施形態に係る構造物の連結構造の一例を示す模式図である。It is a schematic diagram which shows an example of the connection structure of the structure which concerns on embodiment of this invention. (A)は本発明の実施形態に係る構造物の連結構造が適用される前の状態の非免震構造物の一例を示す立面図であり、(B)は非免震構造物と離間して免震構造物を構築した状態を示す立面図であり、(C)は非免震構造物と免震構造物とを連結した状態を示す立面図である。(A) is an elevational view showing an example of a non-seismic isolation structure in a state before the connected structure of the structure according to the embodiment of the present invention is applied, and (B) is a distance from the non-seismic isolation structure. It is an elevation view which shows the state which constructed the seismic isolation structure, and (C) is the elevation view which shows the state which connected the non-seismic isolation structure and the seismic isolation structure. 本発明の実施形態に係る連結部材の軸剛性と、非免震構造物及び免震構造物の層間変形角との関係を示すグラフである。It is a graph which shows the relationship between the axial rigidity of the connecting member which concerns on embodiment of this invention, and the interlayer deformation angle of a non-seismic isolation structure and a seismic isolation structure. (A)は本発明の実施形態に係る非免震構造物と免震構造物とを連結した状態及び連結していない状態における、各構造物の各層毎の加速度を示すグラフであり、(B)は各構造物の各層毎の層せん断力を示すグラフであり、(C)は各構造物の各層毎の変位を示すグラフであり、(D)は各構造物の各層毎の層間変形角を示すグラフである。(A) is a graph showing the acceleration of each layer of each structure in the state where the non-seismic structure and the seismic isolation structure according to the embodiment of the present invention are connected and not connected, and (B). ) Is a graph showing the layer shear force of each layer of each structure, (C) is a graph showing the displacement of each layer of each structure, and (D) is an interlayer deformation angle of each layer of each structure. It is a graph which shows. (A)は本発明の実施形態に係る構造物の連結構造において、免震構造物の下部構造体における複数階と非免震構造物とを連結部材で連結した変形例を示す模式図であり、(B)は免震構造物の下部構造体において互いに離間した複数階と非免震構造物とを連結部材で連結した変形例を示す模式図であり、(C)は異なる地盤面に建つ免震構造物と非免震構造物とを連結部材で連結した変形例を示す模式図である。(A) is a schematic diagram showing a modified example of connecting a plurality of floors of a substructure of a seismic isolation structure and a non-seismic isolation structure with a connecting member in the connecting structure of the structure according to the embodiment of the present invention. , (B) is a schematic view showing a modified example in which a plurality of floors separated from each other and a non-seismic isolation structure are connected by a connecting member in the substructure of the seismic isolation structure, and (C) is built on a different ground surface. It is a schematic diagram which shows the modification which connected the seismic isolation structure and the non-seismic isolation structure by the connecting member. 本発明の実施形態に係る連結部材として、地震時にせん断力が入力される連結部材を用いた変形例を示す立面図である。FIG. 5 is an elevational view showing a modified example using a connecting member to which a shear force is input at the time of an earthquake as the connecting member according to the embodiment of the present invention. 本発明の実施形態に係る連結部材として、地震時に曲げ変形する連結部材を用いた変形例を示す立面図である。It is an elevation view which shows the deformation example which used the connecting member which bends and deforms at the time of an earthquake as the connecting member which concerns on embodiment of this invention.

以下、本発明の実施形態に係る構造物の連結構造及び構造物の設計方法について、図面を参照しながら説明する。各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。また、各図面において重複する構成及び符号については、説明を省略する場合がある。なお、本発明は以下の実施形態に限定されるものではなく、本発明の目的の範囲内において構成を省略する又は異なる構成と入れ替える等、適宜変更を加えて実施することができる。 Hereinafter, the connecting structure of the structure and the design method of the structure according to the embodiment of the present invention will be described with reference to the drawings. The components shown by using the same reference numerals in each drawing mean that they are the same components. In addition, description of overlapping configurations and symbols in the drawings may be omitted. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications such as omitting the configuration or replacing it with a different configuration within the scope of the object of the present invention.

<構造物の連結構造>
本発明の実施形態における構造物の連結構造は、図1に示すように、非免震構造物の一例としての耐震建物20と、免震構造物の一例としての免震建物30と、を連結する構造である。耐震建物20と免震建物30とは、連結部材40で連結されている。
<Connected structure of structure>
As shown in FIG. 1, the connected structure of the structure in the embodiment of the present invention connects the seismic isolation building 20 as an example of the non-seismic isolation structure and the seismic isolation building 30 as an example of the seismic isolation structure. It is a structure to be isolated. The seismic-resistant building 20 and the seismic isolated building 30 are connected by a connecting member 40.

図1においては、耐震建物20と免震建物30とを、質点モデル(多質点モデル)で表現している。質点モデルにおいては、建物の1層を1つの質点として表現する。耐震建物20及び免震建物30の階数は特に限定されるものではないが、一例として、耐震建物20は4階建てとされ、免震建物30は7階建てとされている。 In FIG. 1, the seismic-resistant building 20 and the seismic isolated building 30 are represented by a mass point model (multi-mass point model). In the mass point model, one layer of a building is expressed as one mass point. The number of floors of the seismic building 20 and the seismic isolation building 30 is not particularly limited, but as an example, the seismic building 20 has four floors and the seismic isolation building 30 has seven floors.

(耐震建物)
耐震建物20は、免震建物30と離間して構築されている。耐震建物20の下層部22(本実施形態においては1階)は、免震建物30の下層部32と連結部材40を介して連結されている。耐震建物20の上層部24(2階以上の部分)は、免震建物とは構造的に非連結とされている。耐震建物20は、免震建物30と比較して、建物全体としてみたときの剛性が高く、固有周期が短い構造体である。
(Earthquake-resistant building)
The seismic building 20 is constructed so as to be separated from the seismic isolated building 30. The lower layer 22 (first floor in this embodiment) of the seismic building 20 is connected to the lower layer 32 of the seismic isolated building 30 via a connecting member 40. The upper 24 (second floor and above) of the seismic building 20 is structurally unconnected to the seismic isolated building. The seismic-resistant building 20 is a structure having higher rigidity and a shorter natural period when viewed as a whole building as compared with the seismic isolated building 30.

(免震建物)
免震建物30は、下層部32と、免震装置34と、上層部36と、を備えて構成された、所謂中間層免震建物とされている。下層部32は、本発明の下部構造体の一例であり、連結部材40を介して耐震建物20の下層部22と連結されている。免震装置34は、例えば積層ゴム支承を備えて形成され、下層部32の上部に載置されている。上層部36は、本発明の上部構造体の一例であり、免震装置34の上方に配置され、耐震建物20とは構造的に非連結とされている。
(Seismic isolated building)
The seismic isolation building 30 is a so-called intermediate-story seismic isolation building including a lower layer 32, a seismic isolation device 34, and an upper layer 36. The lower layer 32 is an example of the lower structure of the present invention, and is connected to the lower layer 22 of the seismic building 20 via a connecting member 40. The seismic isolation device 34 is formed, for example, with a laminated rubber bearing, and is placed on the upper portion of the lower layer portion 32. The upper layer 36 is an example of the upper structure of the present invention, is arranged above the seismic isolation device 34, and is structurally unconnected to the seismic building 20.

(連結部材)
連結部材40は、剛性部材によって形成されている。「剛性部材」とは、一例として軸剛性が所定値以上の部材である。「所定値」とは天然積層ゴムの初期剛性であり、本実施形態においては一例として50[ton/cm]とされている。
(Connecting member)
The connecting member 40 is formed of a rigid member. The "rigid member" is, for example, a member having an axial rigidity of a predetermined value or more. The "predetermined value" is the initial rigidity of the natural laminated rubber, which is 50 [ton / cm] as an example in the present embodiment.

また、連結部材40は、耐震建物20の下層部22に接合され、免震建物30の下層部32に接合されている。 Further, the connecting member 40 is joined to the lower layer portion 22 of the seismic building 20 and is joined to the lower layer portion 32 of the seismic isolated building 30.

なお、連結部材40を形成する剛性部材としては、鋼材を組み合わせることで所望の剛性を備えた部材(ダンパーではない硬い部材)を用いてもよいし、建物の制振装置としての履歴系ダンパーを用いることもできる。さらに剛性部材としては、免震積層ゴム、ブレース材、コイルばね、皿ばね等を用いることもできる。 As the rigid member forming the connecting member 40, a member having a desired rigidity by combining steel materials (a hard member other than a damper) may be used, or a history damper as a vibration damping device for a building may be used. It can also be used. Further, as the rigid member, seismic isolated laminated rubber, brace material, coil spring, disc spring or the like can also be used.

<構造物の連結方法>
図2(A)〜(C)には、本実施形態の構造物の連結方法の具体的な一例が示されている。
<Structure connection method>
2 (A) to 2 (C) show a specific example of the method of connecting the structures of the present embodiment.

図2(A)に示す耐震建物20は、鉄道駅と商業ビルとの複合施設である。耐震建物20の下層部22は、軌道に跨って構築された駅舎を構成している。また、上層部24は、駅舎と一体化された商業ビルを構成している。 The seismic building 20 shown in FIG. 2 (A) is a complex facility of a railway station and a commercial building. The lower layer 22 of the seismic building 20 constitutes a station building constructed across tracks. In addition, the upper part 24 constitutes a commercial building integrated with the station building.

図2(B)に示すように、この耐震建物20に隣接して、免震建物30が構築される。本実施形態の構造物の連結方法は、図2(C)に示すように、既存建物である耐震建物20と新築建物である免震建物30とを連結する際に適用される。 As shown in FIG. 2B, a seismic isolated building 30 is constructed adjacent to the seismic building 20. As shown in FIG. 2C, the structure connecting method of the present embodiment is applied when connecting the seismic building 20 which is an existing building and the seismic isolation building 30 which is a new building.

免震建物30は、鉄道駅とオフィスビルとの複合施設である。免震建物30の下層部32は、軌道に跨って構築された駅舎を構成している。また、上層部36は、駅舎と一体化されたオフィスビルを構成している。 The seismic isolated building 30 is a complex facility of a railway station and an office building. The lower part 32 of the seismic isolated building 30 constitutes a station building constructed so as to straddle the track. In addition, the upper layer 36 constitutes an office building integrated with the station building.

既存駅舎である耐震建物20の下層部22は、補強部材22Aによって補強される。この補強部材22Aと、拡張された新築駅舎である免震建物30の下層部32とは、連結部材40を用いて連結される。連結部材40は、下層部22における補強部材22A及び下層部32にそれぞれ接合される。また、既存の商業ビルである耐震建物20の下層部22と、新築されたオフィスビルである免震建物30の上層部36とは、ペデストリアンデッキ22B、36A及び後述するエキスパンションジョイント42を介して歩行者の往来が可能とされる。 The lower layer 22 of the seismic building 20, which is an existing station building, is reinforced by the reinforcing member 22A. The reinforcing member 22A and the lower layer 32 of the seismic isolated building 30, which is an expanded new station building, are connected by using a connecting member 40. The connecting member 40 is joined to the reinforcing member 22A and the lower layer portion 32 in the lower layer portion 22, respectively. Further, the lower part 22 of the earthquake-resistant building 20 which is an existing commercial building and the upper part 36 of the seismic isolated building 30 which is a newly built office building walk through the pedestrian decks 22B and 36A and the expansion joint 42 described later. People can come and go.

なお、ペデストリアンデッキ22B、36Aは、それぞれ下層部22、上層部36を形成するスラブのうちのひとつである。または、ペデストリアンデッキ22B、36Aは、それぞれ下層部22、上層部36を形成するスラブと一体的に形成された構造物である。 The pedestrian decks 22B and 36A are one of the slabs forming the lower layer 22 and the upper layer 36, respectively. Alternatively, the pedestrian decks 22B and 36A are structures integrally formed with the slab forming the lower layer portion 22 and the upper layer portion 36, respectively.

ペデストリアンデッキ22B、36Aは、互いに隙間を空けて形成され、構造的に切り離されている。また、この隙間はエキスパンションジョイント42によって塞がれており、ペデストリアンデッキ22B、36Aとの間で歩行者の往来が可能とされている。 The pedestrian decks 22B and 36A are formed with a gap from each other and are structurally separated from each other. Further, this gap is closed by an expansion joint 42, and pedestrians can come and go between the pedestrian decks 22B and 36A.

なお、本発明における「非免震構造物と構造的に非連結とされた上部構造体」とは、ペデストリアンデッキ36Aを備えた上層部36のように、非免震構造物(耐震建物20)と構造的に切り離されているものを指す。また、上部構造体は、非免震構造物に対して、エキスパンションジョイント42のように応力を伝達しない部材を用いて接続されていてもよい。 The "superstructure structurally unconnected to the non-seismic isolation structure" in the present invention is a non-seismic isolation structure (seismic isolation building 20) such as the upper layer 36 provided with the pedestrian deck 36A. Refers to something that is structurally separated from. Further, the superstructure may be connected to the non-seismic isolation structure by using a member that does not transmit stress, such as an expansion joint 42.

なお、耐震建物20の上層部24及び免震建物30の上層部36は、それぞれ商業ビル及びオフィスビルに限定されるものではない。上層部24、36は、何れも、商業ビル、オフィスビル、住宅、公共施設等、任意の用途に用いることができる。耐震建物20の下層部22及び免震建物30の下層部32についても同様であり、その用途は駅舎に限定されるものではない。 The upper 24 of the seismic building 20 and the upper 36 of the seismic isolated building 30 are not limited to commercial buildings and office buildings, respectively. The upper layers 24 and 36 can be used for any purpose such as commercial buildings, office buildings, houses, and public facilities. The same applies to the lower layer 22 of the seismic building 20 and the lower layer 32 of the seismic isolated building 30, and its use is not limited to the station building.

また、本実施形態では、耐震建物20の下層部22を補強部材22Aによって補強し、この補強部材22Aと免震建物30の下層部32とを、連結部材40を用いて連結している。この実施形態は、耐震建物20の下層部22(ペデストリアンデッキ22B)と免震建物30の下層部32とのレベル差が大きい場合に適用されるものであるが、本発明の実施形態はこれに限らない。 Further, in the present embodiment, the lower layer portion 22 of the seismic building 20 is reinforced by the reinforcing member 22A, and the reinforcing member 22A and the lower layer portion 32 of the seismic isolated building 30 are connected by using the connecting member 40. This embodiment is applied when the level difference between the lower layer 22 (pedestrian deck 22B) of the seismic building 20 and the lower layer 32 of the seismic isolated building 30 is large, but the embodiment of the present invention applies to this. Not exclusively.

例えば耐震建物20の下層部22に補強部材22Aを設けず、ペデストリアンデッキ22Bと免震建物30の下層部32とを連結部材40を用いて連結してもよい。この場合、連結部材40が傾斜して取り付けられる場合や、エキスパンションジョイント42が傾斜して取り付けられる場合がある。すなわち、連結部材40の耐震建物20に対する連結箇所は、適宜選択することができる。 For example, the pedestrian deck 22B and the lower layer 32 of the seismic isolated building 30 may be connected by using the connecting member 40 without providing the reinforcing member 22A on the lower layer 22 of the seismic building 20. In this case, the connecting member 40 may be attached at an inclination, or the expansion joint 42 may be attached at an inclination. That is, the connection location of the connecting member 40 to the seismic building 20 can be appropriately selected.

<剛性の決定方法>
図3には、連結部材40の軸剛性[ton/cm]と、耐震建物20及び免震建物30の層間変形角と、の関係がグラフで示されている。層間変形角は、耐震建物20における下層部22、上層部24、免震建物30における下層部32及び上層部36毎に、それぞれ曲線22E、24E、32E、36Eで示されている。
<Method of determining rigidity>
FIG. 3 is a graph showing the relationship between the axial rigidity [ton / cm] of the connecting member 40 and the interlayer deformation angle of the seismic building 20 and the seismic isolated building 30. The inter-story deformation angles are shown by curves 22E, 24E, 32E, and 36E for each of the lower layer portion 22, the upper layer portion 24, and the lower layer portion 32 and the upper layer portion 36 of the seismic isolated building 30.

曲線22E、24E、32E、36Eで示される層間変形角は図示しないコンピュータを用いて算出される。コンピュータは、例えばCPU(Central Processing Unit:プロセッサ)、一時記憶領域としてのメモリ、不揮発性の記憶部、キーボードとマウス等の入力部、液晶ディスプレイ等の表示部、媒体読み書き装置(R/W)、通信インタフェース(I/F)部及び外部I/F部等を備えている。媒体読み書き装置は、記録媒体に書き込まれている情報の読み出し及び記録媒体への情報の書き込みを行う。 The interlayer deformation angles shown by the curves 22E, 24E, 32E, and 36E are calculated using a computer (not shown). A computer includes, for example, a CPU (Central Processing Unit), a memory as a temporary storage area, a non-volatile storage unit, an input unit such as a keyboard and a mouse, a display unit such as a liquid crystal display, a medium reading / writing device (R / W), and the like. It is provided with a communication interface (I / F) unit, an external I / F unit, and the like. The medium reading / writing device reads out the information written on the recording medium and writes the information on the recording medium.

層間変形角を求めるためには、まず、設計者がコンピュータに、所定の地震波、耐震建物20及び免震建物30の構造条件、連結部材40の軸剛性等をパラメータとして入力する。 In order to obtain the interlayer deformation angle, the designer first inputs to the computer the predetermined seismic wave, the structural conditions of the seismic building 20 and the seismic isolated building 30, the axial rigidity of the connecting member 40, and the like as parameters.

次に、コンピュータが、入力されたパラメータに基づいて耐震建物20及び免震建物30それぞれの応答(層間変形角)を算出する。具体的には、コンピュータは記憶部に記憶された「層間変形角計算プログラム」を読み出してメモリに展開し、層間変形角計算プログラムが有するプロセスを順次実行する。これにより、各層間変形角が算出される。 Next, the computer calculates the response (interlayer deformation angle) of each of the seismic building 20 and the seismic isolated building 30 based on the input parameters. Specifically, the computer reads out the "interlayer deformation angle calculation program" stored in the storage unit, expands it in the memory, and sequentially executes the process of the interlayer deformation angle calculation program. As a result, each interlayer deformation angle is calculated.

そして、コンピュータが、これらの(軸剛性、算出された層間変形角)の組み合わせを平面上に出力することで、図3のグラフが作成される。なお、このグラフに示された曲線22E、24E、32E、36Eは、複数の算出結果を基に作成した近似曲線である。 Then, the computer outputs the combination of these (axial rigidity, calculated interlayer deformation angle) on a plane, so that the graph of FIG. 3 is created. The curves 22E, 24E, 32E, and 36E shown in this graph are approximate curves created based on a plurality of calculation results.

コンピュータによって作成された図3のグラフには、所定の地震波による耐震建物20及び免震建物30の応答特性が、連結部材40の軸剛性を調整することでどのように変化するかが示される。設計者は、このグラフを分析することにより、連結部材40の軸剛性を決定することができる。 The graph of FIG. 3 created by a computer shows how the response characteristics of the seismic building 20 and the seismic isolated building 30 due to a predetermined seismic wave are changed by adjusting the axial rigidity of the connecting member 40. The designer can determine the axial rigidity of the connecting member 40 by analyzing this graph.

具体的には、連結部材40の軸剛性を大きくすると、剛性が大きい耐震建物20における下層部22の層間変形角が小さくなる(曲線22E)。一方で、剛性が小さい(耐震建物20と比較して小さい)免震建物30における下層部32の層間変形角が大きくなる(曲線32E)。 Specifically, when the axial rigidity of the connecting member 40 is increased, the interlayer deformation angle of the lower layer portion 22 in the seismic building 20 having high rigidity becomes smaller (curve 22E). On the other hand, the inter-story deformation angle of the lower layer 32 in the seismic isolated building 30 having low rigidity (smaller than the seismic building 20) becomes large (curve 32E).

設計者は、一例として、免震建物30における下層部32の層間変形角が過度に大きくならない範囲で、耐震建物20における下層部22の層間変形角を所望の範囲に低減できる連結部材40の軸剛性を決定する。例えば設計者は50[ton/cm]以上300[ton/cm]未満の範囲内において、下層部22の層間変形角を最小化できる連結部材40の軸剛性として、N(≒120)[ton/cm]を選択する。 As an example, the designer can reduce the interlayer deformation angle of the lower layer portion 22 of the seismic isolated building 20 to a desired range within a range where the interlayer deformation angle of the lower layer portion 32 of the seismic isolated building 30 does not become excessively large. Determine stiffness. For example, the designer determines that the axial rigidity of the connecting member 40 capable of minimizing the interlayer deformation angle of the lower layer portion 22 within the range of 50 [ton / cm] or more and less than 300 [ton / cm] is N (≈120) [ton / cm] is selected.

なお、コンピュータには、「所定の地震波」として、所定の地震によって耐震建物20及び免震建物30が地盤から加えられる加速度を入力する。この加速度としては、例えばS波(主要動)の最大値を入力する。あるいは、経時的に変化する加速度を断続的に入力する。所定の地震波としては、一例として、1995年の阪神淡路大震災の際に神戸海洋気象台で観測された地震波が挙げられる。また別の一例として、2004年の新潟県中越地震の際に小千谷で観測された地震波が挙げられる。これらの地震波は、予めコンピュータの記憶部に記憶されている。設計者は入力装置を用いて、計算に用いる地震波を適宜選択することができる。 In addition, the acceleration applied to the seismic building 20 and the seismic isolated building 30 from the ground by the predetermined earthquake is input to the computer as the "predetermined seismic wave". As this acceleration, for example, the maximum value of the S wave (main motion) is input. Alternatively, the acceleration that changes with time is input intermittently. An example of a predetermined seismic wave is a seismic wave observed at the Kobe Marine Meteorological Observatory during the Great Hanshin-Awaji Earthquake in 1995. Another example is the seismic wave observed in Ojiya during the 2004 Mid Niigata Prefecture Earthquake. These seismic waves are stored in advance in the storage unit of the computer. The designer can appropriately select the seismic wave to be used for the calculation by using the input device.

また、「耐震建物20及び免震建物30の構造条件」とは、地震力に対する耐震建物20及び免震建物30の変形特性を示す諸条件である。具体的には、耐震建物20及び免震建物30における各層の質量や剛性等が挙げられる。なお、構造条件として、これらの建物を構成する柱及び梁の軸剛性、せん断剛性、柱と梁との接合形式等をコンピュータに入力する場合もある。 Further, the "structural conditions of the seismic building 20 and the seismic isolated building 30" are various conditions indicating the deformation characteristics of the seismic building 20 and the seismic isolated building 30 with respect to the seismic force. Specifically, the mass and rigidity of each layer in the seismic building 20 and the seismic isolated building 30 can be mentioned. As structural conditions, the axial rigidity, shear rigidity, joint type of columns and beams, etc. of the columns and beams constituting these buildings may be input to the computer.

また、コンピュータは、入力されたパラメータに基づいて、上述したように耐震建物20及び免震建物30それぞれの層間変形角を算出できることに加えて、以下に示すようにそれぞれの加速度、層せん断力、変位を算出することもできる。 In addition to being able to calculate the inter-story displacement angles of the seismic building 20 and the seismic isolated building 30 as described above, the computer can calculate the respective accelerations and layer shear forces as shown below. The displacement can also be calculated.

図4(A)には、耐震建物20及び免震建物30における各層の加速度(所定の地震波が加えられた時の加速度)[gal]がプロットされている。黒丸で示された各点は、免震建物30における各層の加速度を示している。また、耐震建物20と連結されていない独立時における各層の加速度(比較例)を示す各点は、破線によって連結して示されている。一方、耐震建物20と連結された連結時(連結部材40の軸剛性は120[ton/cm])における各層の加速度(実施例)を示す各点は、実線によって連結して示されている。 In FIG. 4A, the acceleration (acceleration when a predetermined seismic wave is applied) [gal] of each layer in the seismic building 20 and the seismic isolated building 30 is plotted. Each point indicated by a black circle indicates the acceleration of each layer in the seismic isolated building 30. Further, each point showing the acceleration (comparative example) of each layer at the time of independence, which is not connected to the seismic building 20, is shown by being connected by a broken line. On the other hand, each point indicating the acceleration (Example) of each layer at the time of connection with the seismic building 20 (the axial rigidity of the connecting member 40 is 120 [ton / cm]) is shown by being connected by a solid line.

同様に、白丸で示された各点は、耐震建物20における各層の加速度を示している。また、免震建物30と連結されていない独立時における各層の加速度(比較例)を示す各点は、破線によって連結して示されている。一方、免震建物30と連結された連結時における各層の加速度(実施例)を示す各点は、実線によって連結して示されている。 Similarly, each point indicated by a white circle indicates the acceleration of each layer in the seismic building 20. Further, each point showing the acceleration (comparative example) of each layer at the time of independence, which is not connected to the seismic isolated building 30, is shown by being connected by a broken line. On the other hand, each point indicating the acceleration (Example) of each layer at the time of connection with the seismic isolated building 30 is shown by being connected by a solid line.

図4(B)には、耐震建物20及び免震建物30における各層の層せん断力(所定の地震波が加えられた時の層せん断力)[kN]がプロットされている。黒丸、白丸、破線、実線については図4(A)の説明における「加速度」を「層せん断力」に読み替えることで説明される。 In FIG. 4B, the layer shear force (layer shear force when a predetermined seismic wave is applied) [kN] of each layer in the seismic building 20 and the seismic isolated building 30 is plotted. Black circles, white circles, broken lines, and solid lines are explained by replacing "acceleration" in the explanation of FIG. 4A with "layer shearing force".

また、図4(C)には、耐震建物20及び免震建物30における各層の変位(所定の地震波が加えられた時の変位)[cm]がプロットされている。黒丸、白丸、破線、実線については図4(A)の説明における「加速度」を「変位」に読み替えることで説明される。 Further, in FIG. 4C, the displacement (displacement when a predetermined seismic wave is applied) [cm] of each layer in the seismic building 20 and the seismic isolated building 30 is plotted. Black circles, white circles, broken lines, and solid lines will be described by replacing "acceleration" with "displacement" in the explanation of FIG. 4 (A).

また、図4(D)には、耐震建物20及び免震建物30における各層の層間変形角(所定の地震波が加えられた時の層間変形角)[×(1/1000)rad]がプロットされている。黒丸、白丸、破線、実線については図4(A)の説明における「加速度」を「層間変形角」に読み替えることで説明される。 Further, in FIG. 4D, the interlayer deformation angle (interlayer deformation angle when a predetermined seismic wave is applied) [× (1/1000) rad] of each layer in the seismic building 20 and the seismic isolated building 30 is plotted. ing. Black circles, white circles, broken lines, and solid lines will be described by replacing "acceleration" in the explanation of FIG. 4A with "interlayer deformation angle".

設計者は、「層間変形角」の計算結果だけでなく、図4(A)〜(C)に示した「加速度」、「層せん断力」又は「変位」の計算結果を総合的に踏まえて、連結部材40の軸剛性を決定することができる。「加速度」、「層せん断力」及び「変位」を計算するプログラムも、コンピュータの記憶部に記憶されている。 The designer comprehensively considers not only the calculation result of "interlayer deformation angle" but also the calculation result of "acceleration", "layer shear force" or "displacement" shown in FIGS. , The axial rigidity of the connecting member 40 can be determined. Programs for calculating "acceleration", "layer shear force" and "displacement" are also stored in the storage unit of the computer.

<作用・効果>
本実施形態に係る構造物の連結構造では、図1に示すように、耐震建物20の下層部22と免震建物30の下層部32とが連結部材40で連結されている。一方、免震建物30の上層部36は耐震建物20と構造的に連結されていない。このため上層部36は、地震時に耐震建物20によって変位を拘束されない。これにより、免震装置34による免震効果を有効に発揮できる。
<Action / effect>
In the connecting structure of the structure according to the present embodiment, as shown in FIG. 1, the lower layer 22 of the seismic building 20 and the lower layer 32 of the seismic isolated building 30 are connected by the connecting member 40. On the other hand, the upper layer 36 of the seismic isolated building 30 is not structurally connected to the seismic building 20. Therefore, the displacement of the upper layer 36 is not constrained by the seismic building 20 during an earthquake. As a result, the seismic isolation effect of the seismic isolation device 34 can be effectively exhibited.

具体的には、上層部36が耐震建物20と連結されていると、上層部36は、免震建物の長所である長周期化の効果が失われてしまうため、免震装置34があるにも関わらず上層部36は振動し易い。 Specifically, if the upper layer 36 is connected to the seismic building 20, the upper layer 36 loses the effect of lengthening the period, which is an advantage of the seismic isolation building. Nevertheless, the upper layer 36 tends to vibrate.

これに対して、上層部36が耐震建物20と連結されていなければ、耐震建物20が揺れても、この揺れの影響を受けない。これにより、地盤の揺れを免震装置34によって有効に抑制することができる。 On the other hand, if the upper layer 36 is not connected to the seismic building 20, even if the seismic building 20 shakes, it is not affected by this shaking. As a result, the shaking of the ground can be effectively suppressed by the seismic isolation device 34.

また、免震建物30の下層部32は、耐震建物20の下層部22と連結されるため剛性が高くなり揺れが短周期となる。このため、免震装置34による上層部36の応答抑制効果が高くなる。さらに、耐震建物20に作用する層せん断力が、免震建物30の下層部32へ流れる。このため、図4(B)に示すように、耐震建物20に作用する層せん断力を低減できる。 Further, since the lower layer 32 of the seismic isolated building 30 is connected to the lower layer 22 of the seismic building 20, the rigidity becomes high and the shaking becomes a short cycle. Therefore, the effect of suppressing the response of the upper layer 36 by the seismic isolation device 34 is enhanced. Further, the layer shear force acting on the seismic building 20 flows to the lower layer 32 of the seismic isolated building 30. Therefore, as shown in FIG. 4B, the layer shear force acting on the seismic building 20 can be reduced.

また、本実施形態に係る構造物の連結構造では、連結部材40が剛性部材とされている。このため、図3及び図4(D)に示すように、耐震建物20における下層部22の層間変形角が、免震建物30における下層部32の層間変形角に近づいて、小さくなる。これに対して、例えば連結部材としてオイルダンパー等を設けた場合、オイルダンパーは変位に依存しない粘性部材であるため連結しても耐震建物20と免震建物30の層間変形角は近づきにくい。 Further, in the connecting structure of the structure according to the present embodiment, the connecting member 40 is a rigid member. Therefore, as shown in FIGS. 3 and 4 (D), the interlayer deformation angle of the lower layer portion 22 in the seismic building 20 approaches the interlayer deformation angle of the lower layer portion 32 in the seismic isolated building 30 and becomes smaller. On the other hand, for example, when an oil damper or the like is provided as a connecting member, the inter-story deformation angle between the seismic building 20 and the seismic isolated building 30 is difficult to approach even if the oil damper is a viscous member that does not depend on displacement.

また、本実施形態に係る構造物の設計方法では、図3を用いて説明したように、連結部材40の剛性(軸剛性)に基づいて、所定の地震波における免震建物30及び耐震建物20それぞれの応答(層間変形角)が算出される。そして、複数の応答算出結果から、連結部材40の剛性が決定される。このため、免震建物30及び耐震建物20それぞれの応答を最適化できる連結部材40の剛性を設定することができる。 Further, in the structure design method according to the present embodiment, as described with reference to FIG. 3, each of the seismic isolated building 30 and the seismic resistant building 20 in a predetermined seismic wave is based on the rigidity (axial rigidity) of the connecting member 40. Response (interlayer deformation angle) is calculated. Then, the rigidity of the connecting member 40 is determined from the plurality of response calculation results. Therefore, the rigidity of the connecting member 40 that can optimize the response of each of the seismic isolated building 30 and the seismic building 20 can be set.

<その他の実施形態>
本実施形態においては連結部材40を形成する剛性部材を「軸剛性」が所定値以上の部材として説明しているが、本発明の実施形態はこれに限らない。例えば剛性部材は「せん断剛性」や「曲げ剛性」が所定値以上の部材としてもよい。
<Other Embodiments>
In the present embodiment, the rigid member forming the connecting member 40 is described as a member having "axial rigidity" of a predetermined value or more, but the embodiment of the present invention is not limited to this. For example, the rigid member may be a member having "shear rigidity" or "flexural rigidity" of a predetermined value or more.

せん断剛性が所定値以上の剛性部材は、例えば図6に示す連結部材44のように、地震時にせん断力が入力される連結部材として用いられる。また、曲げ剛性が所定値以上の剛性部材は、例えば図7に示す連結部材46のように、地震時に曲げ変形する連結部材として用いられる。この連結部材46は、免震建物30及び耐震建物20との連結部が略水平に形成されており(水平部)、それぞれの水平部の間が湾曲して形成されている(湾曲部)。これにより地震時には、免震建物30及び耐震建物20にはそれぞれ軸力(略水平方向の力)が入力される一方、連結部材46の湾曲部が曲げ変形して地震力に抵抗する。 A rigid member having a shear rigidity of a predetermined value or more is used as a connecting member to which a shear force is input at the time of an earthquake, for example, as in the connecting member 44 shown in FIG. Further, a rigid member having a bending rigidity of a predetermined value or more is used as a connecting member that bends and deforms at the time of an earthquake, for example, as the connecting member 46 shown in FIG. 7. In the connecting member 46, the connecting portion between the seismic isolated building 30 and the seismic building 20 is formed substantially horizontally (horizontal portion), and the connecting portion between the horizontal portions is curved (curved portion). As a result, in the event of an earthquake, axial forces (forces in the substantially horizontal direction) are input to the seismic isolated buildings 30 and the seismic-resistant buildings 20, respectively, while the curved portions of the connecting members 46 are bent and deformed to resist the seismic forces.

また、本実施形態においては連結部材40として剛性部材を用いているが、本発明の実施形態はこれに限らない。例えば剛性部材に代えて、オイルダンパー等を用いてもよい。このような場合においても、「層間変形角」、「加速度」、「層せん断力」、「変位」等の計算結果に基づいて、適切なダンパー量を決定することができる。 Further, in the present embodiment, a rigid member is used as the connecting member 40, but the embodiment of the present invention is not limited to this. For example, an oil damper or the like may be used instead of the rigid member. Even in such a case, an appropriate damper amount can be determined based on the calculation results such as "interlayer deformation angle", "acceleration", "layer shear force", and "displacement".

また、本実施形態の構造物の連結構造を適用することができる非免震構造物は、耐震建物20に限定されない。例えば制振建物としてもよい。非免震構造物として制振建物を適用しても、当該制振建物の応答を低減することができる。 Further, the non-seismic isolation structure to which the connected structure of the structure of the present embodiment can be applied is not limited to the seismic building 20. For example, it may be a vibration damping building. Even if the damping building is applied as a non-seismic isolation structure, the response of the damping building can be reduced.

また、本実施形態において、免震建物30及び耐震建物20はそれぞれ1階部分だけが連結部材40によって連結されているものとしたが、本発明の実施形態はこれに限らない。例えば図5(A)に示す免震建物30は中間層免震の構造物とされ、免震装置34は免震建物30の3階と4階との間に設けられている。このように、免震装置34の下方の下層部32が複数層で形成されている場合、これらの層のうち2層以上と耐震建物20とを、連結部材40で連結してもよい。 Further, in the present embodiment, it is assumed that only the first floor portion of the seismic isolated building 30 and the seismic resistant building 20 is connected by the connecting member 40, but the embodiment of the present invention is not limited to this. For example, the seismic isolation building 30 shown in FIG. 5A is a middle-story seismic isolation structure, and the seismic isolation device 34 is provided between the third and fourth floors of the seismic isolation building 30. When the lower layer 32 below the seismic isolation device 34 is formed of a plurality of layers in this way, two or more of these layers and the seismic building 20 may be connected by a connecting member 40.

また、免震建物30の下層部32のうちの2層以上と耐震建物20とを連結する場合、これらの連結階は必ずしも上下方向に隣接する必要はない。例えば図5(B)に示すように、上下方向に離間した階を連結階とすることができる。 Further, when connecting two or more floors of the lower layer 32 of the seismic isolated building 30 and the seismic building 20, these connecting floors do not necessarily have to be adjacent to each other in the vertical direction. For example, as shown in FIG. 5B, floors separated in the vertical direction can be designated as connecting floors.

また、本実施形態において、連結部材40によって連結される免震建物30及び耐震建物20はそれぞれ等しい地盤面に建つ建物とされているが、本発明の実施形態はこれに限らない。例えば図5(C)に示すように、異なる地盤面に建つ免震建物30及び耐震建物20を連結部材40によって連結してもよい。このように、本発明は様々な態様で実施できる。 Further, in the present embodiment, the seismic isolation building 30 and the seismic-resistant building 20 connected by the connecting member 40 are buildings that are built on the same ground surface, but the embodiment of the present invention is not limited to this. For example, as shown in FIG. 5C, seismic isolation buildings 30 and seismic-resistant buildings 20 built on different ground surfaces may be connected by connecting members 40. As described above, the present invention can be implemented in various aspects.

20 耐震建物(非免震構造物)
32 下層部(下部構造体)
34 免震装置
36 上層部(上部構造体)
40 連結部材
44 連結部材
20 Earthquake-resistant buildings (non-seismic isolation structures)
32 Lower layer (substructure)
34 Seismic isolation device 36 Upper layer (superstructure)
40 Connecting member 44 Connecting member

Claims (3)

非免震構造物と、
下部構造体、前記下部構造体の上方に配置された免震装置、及び、前記免震装置の上方に配置され前記非免震構造物と構造的に非連結とされた上部構造体を備えた免震構造物と、
前記非免震構造物と前記下部構造体とを連結する連結部材と、
を有する構造物の連結構造。
With non-seismic isolation structures
It includes a lower structure, a seismic isolation device arranged above the lower structure, and an upper structure arranged above the seismic isolation device and structurally disconnected from the non-seismic isolation structure. Seismic isolation structure and
A connecting member that connects the non-seismic isolation structure and the substructure,
A connected structure of a structure having.
前記連結部材は剛性部材である、請求項1に記載の構造物の連結構造。 The connecting structure of the structure according to claim 1, wherein the connecting member is a rigid member. 非免震構造物と、
下部構造体、前記下部構造体の上方に配置された免震装置、及び、前記免震装置の上方に配置され前記非免震構造物と構造的に非連結とされた上部構造体を備えた免震構造物と、
前記非免震構造物と前記下部構造体とを連結する連結部材と、
を有する構造物の連結構造において、
前記連結部材の剛性をパラメータとして入力する工程と、
入力された前記パラメータに基づいて所定の地震波における前記免震構造物及び前記非免震構造物それぞれの応答を算出する工程と、
複数の前記パラメータに基づいて算出された複数の応答から、前記連結部材の剛性を決定する工程と、
を備えた、構造物の設計方法。
With non-seismic isolation structures
It includes a lower structure, a seismic isolation device arranged above the lower structure, and an upper structure arranged above the seismic isolation device and structurally disconnected from the non-seismic isolation structure. Seismic isolation structure and
A connecting member that connects the non-seismic isolation structure and the substructure,
In the connected structure of the structure having
The process of inputting the rigidity of the connecting member as a parameter and
A step of calculating the response of each of the seismic isolation structure and the non-seismic isolation structure in a predetermined seismic wave based on the input parameters, and
A step of determining the rigidity of the connecting member from a plurality of responses calculated based on the plurality of parameters, and
A method of designing a structure.
JP2019211286A 2019-11-22 2019-11-22 Structure connection structure and structure design method Active JP7400173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211286A JP7400173B2 (en) 2019-11-22 2019-11-22 Structure connection structure and structure design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211286A JP7400173B2 (en) 2019-11-22 2019-11-22 Structure connection structure and structure design method

Publications (2)

Publication Number Publication Date
JP2021080799A true JP2021080799A (en) 2021-05-27
JP7400173B2 JP7400173B2 (en) 2023-12-19

Family

ID=75964462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211286A Active JP7400173B2 (en) 2019-11-22 2019-11-22 Structure connection structure and structure design method

Country Status (1)

Country Link
JP (1) JP7400173B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252967A (en) * 1994-03-10 1995-10-03 Shimizu Corp Vibration prevention structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102530A (en) 2009-10-15 2011-05-26 Ohbayashi Corp Vibration control building

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252967A (en) * 1994-03-10 1995-10-03 Shimizu Corp Vibration prevention structure

Also Published As

Publication number Publication date
JP7400173B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
Giresini et al. One-sided rocking analysis of corner mechanisms in masonry structures: Influence of geometry, energy dissipation, boundary conditions
Kappos et al. A deformation-based seismic design method for 3D R/C irregular buildings using inelastic dynamic analysis
Bento et al. Seismic evaluation of old masonry buildings. Part II: Analysis of strengthening solutions for a case study
Maleki Deck modeling for seismic analysis of skewed slab-girder bridges
Banerjee et al. Analysis of bridge performance under the combined effect of earthquake and flood-induced scour
Ghosh et al. Seismic and wind design of concrete buildings
Adam et al. Assessment of structural condition of a historic masonry minaret in Egypt
Chenna et al. Damage assessment due to pounding between adjacent structures with equal and unequal heights
Guo et al. Pounding performance between a seismic-isolated long-span girder bridge and its approaches
JP2009146256A (en) Method for designing vibration-controlled building
MacRae et al. Review of NZ building codes of practice
Javed et al. Behavior of masonry structures during the Kashmir 2005 earthquake
JP7400173B2 (en) Structure connection structure and structure design method
Moehle et al. Seismic design of cast-in-place concrete diaphragms, chords, and collectors
JP2007231523A (en) Base-isolated floor structure
Lemos Modelling stone masonry dynamics with 3DEC
Mohamed et al. Progressive collapse of RC box girder bridges due to seismic actions
JP7395806B2 (en) How to connect buildings
Shashikumar et al. Seismic performance of braced framed structure with floating column
Atmaca et al. Determination of bearing type effect on elastomeric bearing selection with SREI-CAD
JP7141585B2 (en) Design method of seismic isolation structure
Javanmardi Seismic Behaviour Investigation of a Cablestayed Bridge with Hybrid Passive Control System
Patil et al. Development and analysis of passive hybrid energy dissipation system for steel moment resisting frame
Penzien Earthquake Engineering for Transportation Structures—Past, Present, and Future
JP7055985B2 (en) Construction method of seismic isolation structure and connection structure of seismic isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7400173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150