JP2021080494A - Method for producing non-oriented magnetic steel sheet - Google Patents

Method for producing non-oriented magnetic steel sheet Download PDF

Info

Publication number
JP2021080494A
JP2021080494A JP2019206627A JP2019206627A JP2021080494A JP 2021080494 A JP2021080494 A JP 2021080494A JP 2019206627 A JP2019206627 A JP 2019206627A JP 2019206627 A JP2019206627 A JP 2019206627A JP 2021080494 A JP2021080494 A JP 2021080494A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
mass
content
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019206627A
Other languages
Japanese (ja)
Other versions
JP7415134B2 (en
Inventor
鉄州 村川
Tesshu Murakawa
鉄州 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019206627A priority Critical patent/JP7415134B2/en
Publication of JP2021080494A publication Critical patent/JP2021080494A/en
Application granted granted Critical
Publication of JP7415134B2 publication Critical patent/JP7415134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a method for producing non-oriented magnetic steel sheet in which an excellent magnetic property can be obtained on the whole circumference average (omnidirectional average).SOLUTION: The method includes: performing a hot rolling, a cold rolling, and a first annealing on a steel material that has a chemical composition capable of causing α-γ transformation and containing, in mass%, C: 0.010% or less, Si: 1.50% to 4.00%, sol.Al: 0.0001% to 1.0%, S: 0.010% or less, N: 0.010% or less, and one or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, Au: 2.50% to 5.00% in total and the balance consisting of Fe and impurities; performing the final pass of finish rolling at a temperature of Ar1 or more; and, setting the sheet thickness after passing the final pass as tf, the sheet thickness before passing the final pass as t1, and the sheet thickness before passing the pass immediately before the final pass as t2, performing the finish rolling so that 0.4<tf/t1<0.8 and 0.4<t1/t2<0.8 are satisfied.SELECTED DRAWING: None

Description

本発明は、無方向性電磁鋼板の製造方法に関する。 The present invention relates to a method for manufacturing a non-oriented electrical steel sheet.

無方向性電磁鋼板は、例えばモータの鉄心に使用され、無方向性電磁鋼板には、その板面に平行なすべての方向の平均(以下、「板面内の全周平均(全方向平均)」ということがある)において優れた磁気特性、例えば低鉄損及び高磁束密度が要求される。これまで種々の技術が提案されているが、板面内の全方向において十分な磁気特性を得ることは困難である。例えば、板面内のある特定の方向で十分な磁気特性が得られるとしても、他の方向では十分な磁気特性が得られないことがある。 The non-oriented electrical steel sheet is used for the iron core of a motor, for example, and for the non-oriented electrical steel sheet, the average in all directions parallel to the plate surface (hereinafter, "overall circumference average in the plate surface (omnidirectional average)). ”), Which requires excellent magnetic properties, such as low iron loss and high magnetic flux density. Although various techniques have been proposed so far, it is difficult to obtain sufficient magnetic characteristics in all directions in the plate surface. For example, even if sufficient magnetic characteristics can be obtained in a specific direction within the plate surface, sufficient magnetic characteristics may not be obtained in other directions.

特許第4029430号公報Japanese Patent No. 4029430 特許第6319465号公報Japanese Patent No. 6319465

本発明は前述の問題点を鑑み、全周平均(全方向平均)で優れた磁気特性を得ることができる無方向性電磁鋼板の製造方法を提供することを目的とする。 In view of the above-mentioned problems, it is an object of the present invention to provide a method for manufacturing a non-oriented electrical steel sheet capable of obtaining excellent magnetic characteristics with an all-around average (omnidirectional average).

本発明者らは、上記課題を解決すべく鋭意検討を行った。この結果、全方向に対して優れた磁気特性を得ることができる無方向性電磁鋼板の製造には、α−γ変態系の化学組成を前提とし、熱間圧延時にオーステナイトからフェライトへの変態で組織を微細化し、熱間圧延での仕上げ圧延の最終パスおよびその前のパスを通過する鋼板の板厚を制御して動的再結晶という現象を利用し、さらに微細な組織とすることが重要であることが明らかになった。さらに冷間圧延を所定の圧下率とし、中間焼鈍の温度を所定の範囲内に制御して張出再結晶(以下、バルジング)を発生させることによって、通常は発達しにくい{100}結晶粒を発達させやすくすることが重要であることも明らかになった。 The present inventors have made diligent studies to solve the above problems. As a result, in the production of non-oriented electrical steel sheets that can obtain excellent magnetic properties in all directions, the chemical composition of α-γ transformation system is premised, and austenite is transformed into ferrite during hot rolling. It is important to refine the structure and control the thickness of the steel sheet that passes through the final pass of finish rolling in hot rolling and the pass before it to utilize the phenomenon of dynamic recrystallization to make the structure even finer. It became clear that. Furthermore, by setting cold rolling to a predetermined rolling ratio and controlling the temperature of intermediate annealing within a predetermined range to generate overhang recrystallization (hereinafter referred to as bulging), {100} crystal grains that are normally difficult to develop can be produced. It also became clear that it was important to facilitate development.

本発明者らは、このような知見に基づいて更に鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。 As a result of further diligent studies based on such findings, the present inventors have come up with various aspects of the invention shown below.

(1)
質量%で、
C:0.010%以下、
Si:1.50%〜4.00%、
sol.Al:0.0001%〜1.0%、
S:0.010%以下、
N:0.010%以下、
Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%〜5.00%、
Sn:0.000%〜0.400%、
Sb:0.000%〜0.400%、
P:0.000%〜0.400%、及び
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000%〜0.0100%を含有し、
Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
残部がFeおよび不純物からなる化学組成を有する鋼材に対して熱間圧延を行い、熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、
前記第1の冷間圧延の後に第1の焼鈍を行う工程と、を有し、
前記熱間圧延時の仕上げ圧延の最終パスをAr1以上の温度で行い、前記最終パスを通過した後の板厚をtf、前記最終パスを通過する前の板厚をt1、前記最終パスの1つ前のパスを通過する前の板厚をt2とした場合に、以下の(2)式および(3)式を満たすように前記仕上げ圧延を行うことを特徴とする無方向性電磁鋼板の製造方法。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])−([Si]+[sol.Al])>0% ・・・(1)
0.4<tf/t1<0.8 ・・・(2)
0.4<t1/t2<0.8 ・・・(3)
(1)
By mass%
C: 0.010% or less,
Si: 1.50% to 4.00%,
sol. Al: 0.0001% to 1.0%,
S: 0.010% or less,
N: 0.010% or less,
One or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, Au: 2.50% to 5.00% in total,
Sn: 0.000% to 0.400%,
Sb: 0.000% to 0.400%,
P: 0.000% to 0.400%, and one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% in total Contains 0.0100%,
Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content The amount (mass%) is [Pb], the Cu content (mass%) is [Cu], the Au content (mass%) is [Au], the Si content (mass%) is [Si], sol. The Al content (% by mass) was changed to [sol. When [Al] is set, the following equation (1) is satisfied.
A process of hot-rolling a steel material having a chemical composition in which the balance is composed of Fe and impurities to obtain a hot-rolled steel sheet.
The step of performing the first cold rolling on the hot-rolled steel sheet and
It has a step of performing a first annealing after the first cold rolling.
The final pass of finish rolling during hot rolling is performed at a temperature of Ar1 or higher, the plate thickness after passing through the final pass is tf, the plate thickness before passing through the final pass is t1, and 1 of the final pass. Manufacture of non-oriented electrical steel sheet characterized by performing the finish rolling so as to satisfy the following equations (2) and (3) when the plate thickness before passing through the previous pass is t2. Method.
([Mn] + [Ni] + [Co] + [Pt] + [Pb] + [Cu] + [Au])-([Si] + [sol.Al])> 0% ... (1)
0.4 <tf / t1 <0.8 ... (2)
0.4 <t1 / t2 <0.8 ... (3)

(2)
前記鋼材は、質量%で、
Sn:0.020%〜0.400%、
Sb:0.020%〜0.400%、及び、
P:0.020%〜0.400%からなる群から選ばれる1種以上を含有することを特徴とする上記(1)に記載の無方向性電磁鋼板の製造方法。
(2)
The steel material is by mass%
Sn: 0.020% to 0.400%,
Sb: 0.020% to 0.400%, and
P: The method for producing a non-oriented electrical steel sheet according to (1) above, which contains one or more selected from the group consisting of 0.020% to 0.400%.

(3)
前記鋼材は、質量%で、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0005%〜0.0100%を含有することを特徴とする上記(1)又は(2)に記載の無方向性電磁鋼板の製造方法。
(3)
The steel material is one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd in mass%: 0.0005% to 0.0100% in total. The method for producing a non-directional electromagnetic steel sheet according to the above (1) or (2), which comprises containing the non-directional electromagnetic steel sheet.

(4)
前記第1の焼鈍は、Ac1未満の温度で行うことを特徴とする上記(1)〜(3)のいずれかに記載の無方向性電磁鋼板の製造方法。
(4)
The method for producing a non-oriented electrical steel sheet according to any one of (1) to (3) above, wherein the first annealing is performed at a temperature lower than Ac1.

(5)
前記焼鈍の後に第2の冷間圧延を行う工程をさらに有し、
前記第1の冷間圧延を行う工程においては、圧下率80%〜92%で冷間圧延を行い、
前記第2の冷間圧延を行う工程においては、圧下率5%〜25%で冷間圧延を行って前記無方向性電磁鋼板を得ることを特徴とする上記(1)〜(4)のいずれかに記載の無方向性電磁鋼板の製造方法。
(5)
It further comprises a step of performing a second cold rolling after the annealing.
In the first cold rolling step, cold rolling is performed at a rolling reduction of 80% to 92%.
Any of the above (1) to (4), wherein in the second cold rolling step, cold rolling is performed at a rolling reduction of 5% to 25% to obtain the non-oriented electrical steel sheet. Method for manufacturing non-oriented electrical steel sheet described in Crab.

(6)
前記第2の冷間圧延の後に第2の焼鈍を行う工程をさらに有し、
前記第2の冷間圧延の後の第2の焼鈍では、焼鈍温度をAc1未満とすることを特徴とする上記(5)に記載の無方向性電磁鋼板の製造方法。
(6)
It further comprises a step of performing a second annealing after the second cold rolling.
The method for producing a non-oriented electrical steel sheet according to (5) above, wherein in the second annealing after the second cold rolling, the annealing temperature is set to less than Ac1.

本発明によれば、全周特性の優れた磁気特性を得ることができる無方向性電磁鋼板の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a non-oriented electrical steel sheet capable of obtaining excellent magnetic characteristics in all circumference characteristics.

まず、本発明の実施形態に係る無方向性電磁鋼板及びその製造方法で用いられる鋼材の化学組成について説明する。以下の説明において、無方向性電磁鋼板又は鋼材に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る無方向性電磁鋼板及び鋼材は、フェライト−オーステナイト変態(以下、α−γ変態)が生じ得る化学組成であって、C:0.010%以下、Si:1.50%〜4.00%、sol.Al:0.0001%〜1.0%、S:0.010%以下、N:0.010%以下、Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%〜5.00%、Sn:0.000%〜0.400%、Sb:0.000%〜0.400%、P:0.000%〜0.400%、及びMg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000%〜0.0100%を含有し、残部がFeおよび不純物からなる化学組成を有する。さらに、Mn、Ni、Co、Pt、Pb、Cu、Au、Siおよびsol.Alの含有量が後述する所定の条件を満たす。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。 First, the chemical composition of the non-oriented electrical steel sheet according to the embodiment of the present invention and the steel material used in the manufacturing method thereof will be described. In the following description, "%", which is a unit of the content of each element contained in non-oriented electrical steel sheets or steel materials, means "mass%" unless otherwise specified. The non-oriented electrical steel sheet and steel material according to the present embodiment have a chemical composition capable of causing a ferrite-austenite transformation (hereinafter, α-γ transformation), and have a C: 0.010% or less and Si: 1.50% to. 4.00%, sol. Al: 0.0001% to 1.0%, S: 0.010% or less, N: 0.010% or less, Mn, Ni, Co, Pt, Pb, Cu, Au One or more selected from the group : Total 2.50% to 5.00%, Sn: 0.000% to 0.400%, Sb: 0.000% to 0.400%, P: 0.000% to 0.400%, and One or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: Containing a total of 0.0000% to 0.0100%, the balance being Fe and impurities. It has a chemical composition consisting of. Furthermore, Mn, Ni, Co, Pt, Pb, Cu, Au, Si and sol. The Al content satisfies a predetermined condition described later. Examples of impurities include those contained in raw materials such as ore and scrap, and those contained in the manufacturing process.

(C:0.010%以下)
Cは、鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.010%超で顕著である。このため、C含有量は0.010%以下とする。C含有量の低減は、板面内の全方向における磁気特性の均一な向上にも寄与する。なお、C含有量の下限は特に限定しないが、精錬時の脱炭処理のコストを踏まえ、0.0005%以上とすることが好ましい。
(C: 0.010% or less)
C increases iron loss and causes magnetic aging. Therefore, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.010%. Therefore, the C content is set to 0.010% or less. The reduction of the C content also contributes to the uniform improvement of the magnetic properties in all directions in the plate surface. Although the lower limit of the C content is not particularly limited, it is preferably 0.0005% or more in consideration of the cost of decarburization treatment at the time of refining.

(Si:1.50%〜4.00%)
Siは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き加工性を向上したりする。Si含有量が1.50%未満では、これらの作用効果を十分に得られない。従って、Si含有量は1.50%以上とする。一方、Si含有量が4.00%超では、磁束密度が低下したり、硬度の過度な上昇により打ち抜き加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.00%以下とする。
(Si: 1.50% to 4.00%)
Si increases the electrical resistance, reduces the eddy current loss, reduces the iron loss, increases the yield ratio, and improves the punching workability to the iron core. If the Si content is less than 1.50%, these effects cannot be sufficiently obtained. Therefore, the Si content is 1.50% or more. On the other hand, when the Si content exceeds 4.00%, the magnetic flux density decreases, the punching workability decreases due to an excessive increase in hardness, and cold rolling becomes difficult. Therefore, the Si content is set to 4.00% or less.

(sol.Al:0.0001%〜1.0%)
sol.Alは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する。sol.Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。ここで、磁束密度B50とは、5000A/mの磁場における磁束密度である。sol.Al含有量が0.0001%未満では、これらの作用効果を十分に得られない。また、Alには製鋼での脱硫促進効果もある。従って、sol.Al含有量は0.0001%以上とする。一方、sol.Al含有量が1.0%超では、磁束密度が低下したり、降伏比を低下させて、打ち抜き加工性を低下させたりする。従って、sol.Al含有量は1.0%以下とする。
(Sol.Al: 0.0001% to 1.0%)
sol. Al increases electrical resistance, reduces eddy current loss, and reduces iron loss. sol. Al also contributes to the improvement of the relative magnitude of the magnetic flux density B50 with respect to the saturation magnetic flux density. Here, the magnetic flux density B50 is the magnetic flux density in a magnetic field of 5000 A / m. sol. If the Al content is less than 0.0001%, these effects cannot be sufficiently obtained. Al also has a desulfurization promoting effect in steelmaking. Therefore, sol. The Al content is 0.0001% or more. On the other hand, sol. When the Al content exceeds 1.0%, the magnetic flux density is lowered, the yield ratio is lowered, and the punching workability is lowered. Therefore, sol. The Al content is 1.0% or less.

(S:0.010%以下)
Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、微細なMnSの析出により、焼鈍における再結晶及び結晶粒の成長を阻害する。従って、S含有量は低ければ低いほどよい。このような再結晶及び結晶粒成長の阻害による鉄損の増加および磁束密度の低下は、S含有量が0.010%超で顕著である。このため、S含有量は0.010%以下とする。なお、S含有量の下限は特に限定しないが、精錬時の脱硫処理のコストを踏まえ、0.0003%以上とすることが好ましい。
(S: 0.010% or less)
S is not an essential element and is contained as an impurity in steel, for example. S inhibits recrystallization and grain growth during annealing due to the precipitation of fine MnS. Therefore, the lower the S content, the better. The increase in iron loss and the decrease in magnetic flux density due to the inhibition of recrystallization and grain growth are remarkable when the S content exceeds 0.010%. Therefore, the S content is set to 0.010% or less. Although the lower limit of the S content is not particularly limited, it is preferably 0.0003% or more in consideration of the cost of desulfurization treatment at the time of refining.

(N:0.010%以下)
NはCと同様に、磁気特性を劣化させるので、N含有量は低ければ低いほどよい。したがって、N含有量は0.010%以下とする。なお、N含有量の下限は特に限定しないが、精錬時の脱窒処理のコストを踏まえ、0.0010%以上とすることが好ましい。
(N: 0.010% or less)
Since N deteriorates the magnetic properties as in C, the lower the N content, the better. Therefore, the N content is 0.010% or less. Although the lower limit of the N content is not particularly limited, it is preferably 0.0010% or more in consideration of the cost of denitrification treatment at the time of refining.

(Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%〜5.00%)
これらの元素は、α−γ変態を生じさせるために必要な元素であることから、これらの元素の少なくとも1種を総計で2.50%以上含有させる必要がある。一方で、総計で5.00%を超えると、コスト高となり、磁束密度が低下する場合もある。したがって、これらの元素の少なくとも1種を総計で5.00%以下とする。
(One or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, Au: 2.50% to 5.00% in total)
Since these elements are elements necessary for causing α-γ transformation, it is necessary to contain at least one of these elements in a total of 2.50% or more. On the other hand, if the total exceeds 5.00%, the cost becomes high and the magnetic flux density may decrease. Therefore, at least one of these elements should be 5.00% or less in total.

また、α−γ変態が生じ得る条件として、さらに以下の条件を満たしているものとする。つまり、Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、質量%で、以下の(1)式を満たすものとする。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])−([Si]+[sol.Al])>0% ・・・(1)
Further, it is assumed that the following conditions are further satisfied as the conditions under which the α-γ transformation can occur. That is, the Mn content (mass%) is [Mn], the Ni content (mass%) is [Ni], the Co content (mass%) is [Co], and the Pt content (mass%) is [Pt]. Pb content (mass%) is [Pb], Cu content (mass%) is [Cu], Au content (mass%) is [Au], Si content (mass%) is [Si], sol. The Al content (% by mass) was changed to [sol. When it is set to [Al], it is assumed that the following equation (1) is satisfied in terms of mass%.
([Mn] + [Ni] + [Co] + [Pt] + [Pb] + [Cu] + [Au])-([Si] + [sol.Al])> 0% ... (1)

前述の(1)式を満たさない場合には、α−γ変態が生じないため、磁束密度が低くなる。 If the above equation (1) is not satisfied, the α-γ transformation does not occur, so that the magnetic flux density becomes low.

(Sn:0.000%〜0.400%、Sb:0.000%〜0.400%、P:0.000%〜0.400%)
SnやSbは冷間圧延、再結晶後の集合組織を改善して、その磁束密度を向上させる。そのため、これらの元素を必要に応じて含有させてもよいが、過剰に含まれると鋼を脆化させる。したがって、Sn含有量、Sb含有量はいずれも0.400%以下とする。また、Pは再結晶後の鋼板の硬度を確保するために含有させてもよいが、過剰に含まれると鋼の脆化を招く。したがって、P含有量は0.400%以下とする。以上のように磁気特性等のさらなる効果を付与する場合には、0.020%〜0.400%のSn、0.020%〜0.400%のSb、及び0.020%〜0.400%のPからなる群から選ばれる1種以上を含有することが好ましい。
(Sn: 0.000% to 0.400%, Sb: 0.000% to 0.400%, P: 0.000% to 0.400%)
Sn and Sb improve the texture after cold rolling and recrystallization, and improve the magnetic flux density thereof. Therefore, these elements may be contained if necessary, but if they are contained in an excessive amount, the steel is embrittled. Therefore, both the Sn content and the Sb content are set to 0.400% or less. Further, P may be contained in order to secure the hardness of the steel sheet after recrystallization, but if it is excessively contained, it causes embrittlement of the steel. Therefore, the P content is set to 0.400% or less. In the case of imparting further effects such as magnetic properties as described above, 0.020% to 0.400% Sn, 0.020% to 0.400% Sb, and 0.020% to 0.400%. It preferably contains at least one selected from the group consisting of% P.

(Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000%〜0.0100%)
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdは、溶鋼の鋳造時に溶鋼中のSと反応して硫化物若しくは酸硫化物又はこれらの両方の析出物を生成する。以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdを総称して「粗大析出物生成元素」ということがある。粗大析出物生成元素の析出物の粒径は1μm〜2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。このため、これら微細析出物は粗大析出物生成元素の析出物に付着し、中間焼鈍などの焼鈍における再結晶及び結晶粒の成長を阻害しにくくなる。これらの作用効果を十分に得るためには、これらの元素の総計が0.0005%以上であることが好ましい。但し、これらの元素の総計が0.0100%を超えると、硫化物若しくは酸硫化物又はこれらの両方の総量が過剰となり、中間焼鈍などの焼鈍における再結晶及び結晶粒の成長が阻害される。従って、粗大析出物生成元素の含有量は総計で0.0100%以下とする。
(One or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% to 0.0100% in total)
Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd react with S in the molten steel during casting to form sulfides, acid sulfides or both precipitates. Hereinafter, Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd may be collectively referred to as "coarse precipitate-forming element". The particle size of the precipitate of the coarse precipitate-forming element is about 1 μm to 2 μm, which is much larger than the particle size of fine precipitates such as MnS, TiN, and AlN (about 100 nm). Therefore, these fine precipitates adhere to the precipitates of coarse precipitate-forming elements, and it becomes difficult to inhibit recrystallization and growth of crystal grains in annealing such as intermediate annealing. In order to sufficiently obtain these effects, the total amount of these elements is preferably 0.0005% or more. However, if the total amount of these elements exceeds 0.0100%, the total amount of sulfide, acid sulfide, or both of them becomes excessive, and recrystallization and grain growth in annealing such as intermediate annealing are inhibited. Therefore, the total content of the coarse precipitate-forming element is 0.0100% or less.

次に、本実施形態に係る無方向性電磁鋼板の集合組織について説明する。製造方法の詳細については後述するが、本実施形態に係る無方向性電磁鋼板はα−γ変態が生じ得る化学組成であり、熱間圧延での仕上げ圧延において最終パスおよびその前のパスを通過する際の板厚の条件を所定の条件として組織を微細化することによって{100}結晶粒が成長した組織となる。これにより、本実施形態に係る無方向性電磁鋼板は例えば{100}<011>方位の集積強度が5以上となり、圧延方向に対して45°方向の磁束密度B50が特に高くなる。このように特定の方向で磁束密度が高くなるが、全体的に全方向平均で高い磁束密度が得られる。{100}<011>方位の集積強度が5未満になると、磁束密度を低下させる{111}<112>方位の集積強度が高くなり、全体的に磁束密度が低下してしまう。 Next, the texture of the non-oriented electrical steel sheets according to the present embodiment will be described. The details of the manufacturing method will be described later, but the non-oriented electrical steel sheet according to the present embodiment has a chemical composition capable of causing α-γ transformation, and passes through the final pass and the pass before it in the finish rolling in hot rolling. By refining the structure under the predetermined condition of the plate thickness at the time of rolling, the structure in which {100} crystal grains have grown is obtained. As a result, the non-oriented electrical steel sheet according to the present embodiment has, for example, an integrated strength of 5 or more in the {100} <011> direction, and a magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is particularly high. In this way, the magnetic flux density increases in a specific direction, but an overall high magnetic flux density can be obtained on average in all directions. When the integrated strength in the {100} <011> orientation is less than 5, the integrated strength in the {111} <112> orientation, which reduces the magnetic flux density, increases, and the magnetic flux density decreases as a whole.

{100}<011>方位の集積強度は、X線回折法又は電子線後方散乱回折(electron backscatter diffraction:EBSD)法により測定することができる。X線及び電子線の試料からの反射角等が結晶方位毎に異なるため、ランダム方位試料を基準にしてこの反射強度等で結晶方位強度を求めることができる。 The accumulation intensity of the {100} <011> orientation can be measured by an X-ray diffraction method or an electron backscatter diffraction (EBSD) method. Since the angle of reflection of X-rays and electron beams from the sample differs depending on the crystal orientation, the crystal orientation intensity can be obtained from the reflection intensity or the like with reference to the random orientation sample.

次に、本実施形態に係る無方向性電磁鋼板の磁気特性について説明する。磁気特性を調べる際には、本実施形態に係る無方向性電磁鋼板に対して、さらに800℃で2時間の条件で焼鈍を施した後に磁束密度を測定する。この無方向性電磁鋼板は、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向において、磁気特性が最も優れる。一方、圧延方向となす角度が0°、90°の2つの方向において、磁気特性が最も劣る。ここで、当該45°は、理論的な値であり、実際の製造に際しては45°に一致させることが容易でない場合がある。したがって、理論的には、磁気特性が最も優れる方向が、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向であれば、実際の無方向性電磁鋼板においては、当該45°は、(厳密に)45°に一致していないものも含むものとする。このことは、当該0°、90°においても同じである。また、理論的には、磁気特性が最も優れる2つの方向の磁気特性は同じになるが、実際の製造に際しては当該2つの方向の磁気特性を同じにすることが容易でない場合がある。したがって、理論的には、磁気特性が最も優れる2つの方向の磁気特性が同じであれば、当該同じは、(厳密に)同じでないものも含むものとする。このことは、磁気特性が最も劣る2つの方向においても同じである。尚、以上の角度は、時計回りおよび反時計回りの何れの向きの角度も正の値を有するものとして表記したものである。時計回りの方向を負の方向とし、反時計回りの方向を正の方向とする場合、前述した圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、前述した圧延方向となす角度のうち絶対値の小さい方の角度が45°、−45°となる2つの方向となる。また、前述した圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、圧延方向となす角度が45°、135°となる2つの方向とも表記できる。本実施形態において磁束密度を測定すると、圧延方向に対して45°方向の磁束密度B50が1.8T以上となる。なお、圧延方向に対して45°方向の磁束密度が高いものの、全周平均(全方向平均)でも高い磁束密度が得られる。 Next, the magnetic characteristics of the non-oriented electrical steel sheet according to the present embodiment will be described. When investigating the magnetic characteristics, the magnetic flux density is measured after the non-oriented electrical steel sheet according to the present embodiment is further annealed at 800 ° C. for 2 hours. This non-oriented electrical steel sheet has the best magnetic properties in two directions in which the smaller angle of the rolling direction is 45 °. On the other hand, the magnetic characteristics are the worst in the two directions in which the angles formed with the rolling direction are 0 ° and 90 °. Here, the 45 ° is a theoretical value, and it may not be easy to match it with 45 ° in actual manufacturing. Therefore, theoretically, if the directions in which the magnetic characteristics are the best are the two directions in which the smaller angle of the rolling direction is 45 °, the actual non-oriented electrical steel sheet is said to be 45. ° shall include those that do not (exactly) match 45 °. This is the same at 0 ° and 90 °. Further, theoretically, the magnetic characteristics in the two directions having the best magnetic characteristics are the same, but in actual manufacturing, it may not be easy to make the magnetic characteristics in the two directions the same. Therefore, theoretically, if the magnetic properties in the two directions having the best magnetic properties are the same, the same includes those that are not (strictly) the same. This is also the case in the two directions with the worst magnetic properties. It should be noted that the above angles are expressed assuming that the angles in both the clockwise and counterclockwise directions have positive values. When the clockwise direction is a negative direction and the counterclockwise direction is a positive direction, the two directions in which the smaller angle of the above-mentioned rolling directions is 45 ° are the above-mentioned rolling directions. Of the angles to be formed, the angle with the smaller absolute value is 45 ° and −45 ° in two directions. Further, the two directions in which the smaller angle formed with the rolling direction is 45 ° can be described as two directions in which the angles formed with the rolling direction are 45 ° and 135 °. When the magnetic flux density is measured in the present embodiment, the magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is 1.8 T or more. Although the magnetic flux density in the 45 ° direction with respect to the rolling direction is high, a high magnetic flux density can be obtained even in the all-around average (omnidirectional average).

磁束密度の測定は、圧延方向に対して45°、0°方向等から55mm角の試料を切り出し,単板磁気測定装置を用いて行うことができる。 The magnetic flux density can be measured by cutting out a 55 mm square sample from 45 °, 0 °, etc. with respect to the rolling direction and using a single plate magnetic measuring device.

次に、本実施形態に係る無方向性電磁鋼板の製造方法について説明する。本実施形態では、熱間圧延、冷間圧延、中間焼鈍、スキンパス圧延、焼鈍等を行う。 Next, a method for manufacturing the non-oriented electrical steel sheet according to the present embodiment will be described. In the present embodiment, hot rolling, cold rolling, intermediate annealing, skin pass rolling, annealing and the like are performed.

まず、上述した鋼材を加熱し、熱間圧延を施す。鋼材は、例えば通常の連続鋳造によって製造されるスラブである。熱間圧延の粗圧延および仕上げ圧延はγ域(Ar1以上)の温度で行う。つまり、仕上げ圧延の仕上温度がAr1以上となるように熱間圧延を行う。これにより、その後の冷却によってオーステナイトからフェライトへ変態することにより組織は微細化する。微細化された状態でその後冷間圧延を施すと、張出再結晶(以下、バルジング)が発生しやすく、通常は成長しにくい{100}結晶粒を成長させやすくすることができる。 First, the above-mentioned steel material is heated and hot-rolled. The steel material is, for example, a slab manufactured by ordinary continuous casting. Rough rolling and finish rolling of hot rolling are performed at a temperature in the γ region (Ar1 or higher). That is, hot rolling is performed so that the finishing temperature of the finish rolling is Ar1 or higher. As a result, the structure is refined by transforming austenite to ferrite by subsequent cooling. When cold rolling is subsequently performed in the finely divided state, overhang recrystallization (hereinafter referred to as bulging) is likely to occur, and {100} crystal grains that are normally difficult to grow can be easily grown.

また、本実施形態では、さらに最終パスを通過した後の板厚をtf、最終パスを通過する前の板厚をt1、最終パスの1つ前のパスを通過する前の板厚をt2とした場合に、以下の(2)式および(3)式を満たすように仕上げ圧延を行う。
0.4<tf/t1<0.8 ・・・(2)
0.4<t1/t2<0.8 ・・・(3)
Further, in the present embodiment, the plate thickness after passing the final pass is tf, the plate thickness before passing the final pass is t1, and the plate thickness before passing the pass immediately before the final pass is t2. If this is the case, finish rolling is performed so as to satisfy the following equations (2) and (3).
0.4 <tf / t1 <0.8 ... (2)
0.4 <t1 / t2 <0.8 ... (3)

tf/t1、t1/t2のいずれかが0.4以下となると、1つのパスで高い歪を与えることになり、この高い歪によって鋼板が反ってしまい、熱間圧延時に鋼板の制御が難しくなる。また、たとえ熱間圧延工程を完了したとしても、板形状が悪いままだと、後工程での鋼板制御が困難なため、レベラーや軽圧下ミル等の装置を用いて形状矯正のため、増工程が必要な場合があり、操業上支障をきたす。一方、tf/t1、t1/t2のいずれかが0.8以上であると、歪を十分に与えることができず、動的再結晶という現象によって熱間圧延後の結晶粒径を十分に小さくすることができない。ここで、動的再結晶とは、圧延加工中に再結晶する現象のことである。一般的に熱間圧延では、仕上げ圧延時の圧下率が低いため、与える歪量が少なく、加工後に再結晶する静的再結晶という現象が起こる。動的再結晶では再結晶粒の核となる箇所が多い一方で、静的再結晶では再結晶粒の核となる箇所が少ないという特徴がある。そのため、動的再結晶は静的再結晶よりも結晶粒径が小さくなる。具体的には動的再結晶を活用することで、熱間圧延鋼板で10μm以下の平均結晶粒径を実現できる。以上のように動的再結晶を利用すると、熱間圧延後の結晶粒径をより微細化することができるため、バルジングが発生しやすくすることができる。 If either tf / t1 or t1 / t2 is 0.4 or less, a high strain is given in one pass, and this high strain causes the steel sheet to warp, making it difficult to control the steel sheet during hot rolling. .. In addition, even if the hot rolling process is completed, if the plate shape remains poor, it is difficult to control the steel plate in the subsequent process. May be necessary, which hinders operation. On the other hand, if either tf / t1 or t1 / t2 is 0.8 or more, the strain cannot be sufficiently applied, and the crystal grain size after hot rolling is sufficiently reduced by the phenomenon of dynamic recrystallization. Can not do it. Here, the dynamic recrystallization is a phenomenon of recrystallization during rolling. Generally, in hot rolling, since the rolling reduction during finish rolling is low, the amount of strain applied is small, and a phenomenon called static recrystallization occurs in which recrystallization occurs after processing. Dynamic recrystallization has many cores of recrystallized grains, while static recrystallization has few cores of recrystallized grains. Therefore, dynamic recrystallization has a smaller grain size than static recrystallization. Specifically, by utilizing dynamic recrystallization, it is possible to realize an average crystal grain size of 10 μm or less in a hot-rolled steel sheet. When dynamic recrystallization is used as described above, the crystal grain size after hot rolling can be made finer, so that bulging can be easily generated.

その後、熱間圧延板焼鈍は行わずに巻き取り、酸洗を経て、熱間圧延鋼板に対して冷間圧延を行う。冷間圧延では圧下率を80%〜92%とすることが好ましい。なお、圧下率が高いほどその後のバルジングによって{100}結晶粒が成長しやすくなるが、熱間圧延鋼板の巻取りが困難になり、操業が困難になりやすくなる。 After that, the hot-rolled sheet is wound without annealing, pickled, and then cold-rolled on the hot-rolled steel sheet. In cold rolling, the rolling reduction is preferably 80% to 92%. The higher the rolling reduction ratio, the easier it is for {100} crystal grains to grow due to subsequent bulging, but it becomes more difficult to wind the hot-rolled steel sheet and the operation becomes more difficult.

冷間圧延が終了すると、続いて中間焼鈍を行う。本実施形態では、オーステナイトへ変態しない温度で中間焼鈍を行う。つまり、中間焼鈍の温度をAc1未満とすることが好ましい。このように中間焼鈍を行うことによってバルジングが生じ、{100}結晶粒が成長しやすくなる。また、中間焼鈍の時間は、5〜60秒とすることが好ましい。 When the cold rolling is completed, intermediate annealing is subsequently performed. In this embodiment, intermediate annealing is performed at a temperature that does not transform into austenite. That is, it is preferable that the intermediate annealing temperature is less than Ac1. By performing the intermediate annealing in this way, bulging occurs, and {100} crystal grains are likely to grow. The intermediate annealing time is preferably 5 to 60 seconds.

中間焼鈍が終了すると、次にスキンパス圧延を行うことが好ましい。上述したようにバルジングが発生した状態で圧延を行うと、バルジングが発生した部分を起点に{100}結晶粒がさらに成長する。スキンパス圧延の圧下率は5%〜25%とすることが好ましい。 After the intermediate annealing is completed, it is preferable to perform skin pass rolling next. When rolling is performed in a state where bulging has occurred as described above, {100} crystal grains are further grown starting from the portion where bulging has occurred. The rolling reduction of skin pass rolling is preferably 5% to 25%.

スキンパス圧延が終了すると、次に焼鈍を行うことが好ましい。この焼鈍では、焼鈍温度をAc1未満とすることが好ましい。この焼鈍によってスキンパス圧延で与えた歪を駆動力に結晶粒が粗大になる歪誘起粒界移動を起こさせる。歪誘起粒界移動によって、バルジングで発生した{100}結晶粒を更に選択的に粗大化させることが出来る。 After the skin pass rolling is finished, it is preferable to perform annealing next. In this annealing, the annealing temperature is preferably less than Ac1. The strain applied by skin pass rolling by this annealing causes strain-induced grain boundary movement in which the crystal grains become coarse. By the strain-induced grain boundary movement, the {100} crystal grains generated by bulging can be further selectively coarsened.

なお、スキンパス圧延後の焼鈍としては、短時間焼鈍(仕上げ焼鈍)を行ってもよく、長時間焼鈍(歪取焼鈍)を行ってもよく、その両方を行ってもよい。短時間焼鈍を行う場合には、Ac1未満の温度で1時間以下焼鈍を行うことが好ましい。長時間焼鈍を行う場合は、焼鈍前に鋼板の打抜き加工を行い、打抜き加工の後にAc1未満の温度で1時間以上焼鈍を行うことが好ましい。また、短時間焼鈍および長時間焼鈍の両方を行う場合は、短時間焼鈍の後に打抜き加工を行い、その後長時間焼鈍を行うものとする。 As the annealing after skin pass rolling, short-time annealing (finish annealing) may be performed, long-term annealing (strain relief annealing) may be performed, or both may be performed. When annealing for a short time, it is preferable to perform annealing at a temperature lower than Ac1 for 1 hour or less. When annealing for a long time, it is preferable that the steel sheet is punched before annealing, and after the punching, annealing is performed at a temperature lower than Ac1 for 1 hour or more. When both short-time annealing and long-time annealing are performed, punching is performed after short-time annealing, and then long-time annealing is performed.

以上のように本実施形態に係る無方向性電磁鋼板を製造することができる。 As described above, the non-oriented electrical steel sheet according to the present embodiment can be manufactured.

次に、本発明の実施形態に係る無方向性電磁鋼板の製造方法について、実施例を示しながら具体的に説明する。以下に示す実施例は、本発明の実施形態に係る無方向性電磁鋼板の製造方法のあくまでも一例にすぎず、本発明に係る無方向性電磁鋼板の製造方法が下記の例に限定されるものではない。 Next, the method for manufacturing the non-oriented electrical steel sheet according to the embodiment of the present invention will be specifically described with reference to examples. The examples shown below are merely examples of the method for manufacturing grain-oriented electrical steel sheets according to the embodiment of the present invention, and the method for manufacturing grain-oriented electrical steel sheets according to the present invention is limited to the following examples. is not it.

(第1の実施例)
溶鋼を鋳造することにより、以下の表1に示す成分のインゴットを作製した。ここで、式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、板厚が2.5mmになるように圧延した。この時の、熱間圧延の仕上げ圧延の最終パスを通過した後の板厚tf、最終パスを通過する前の板厚t1、最終パスの1つ前のパスを通過する前の板厚t2を表1に示す。また、仕上げ圧延の最終パスの段階での温度(仕上温度)は800℃であり、すべてAr1より大きい温度だった。そして、仕上げ圧延終了後に水冷して500℃まで冷却した。この時、熱間圧延鋼板の反りを測定するため、熱間圧延鋼板を巻き取らずに1m長さ分だけ切断し、1mに切断した鋼板の中央部(両端から0.5mの箇所)を地面に押さえつけ、両端の浮上り量を測定した。測定値の高い方の値を板の反り(mm)として表1に示す。
(First Example)
By casting molten steel, ingots with the components shown in Table 1 below were produced. Here, the left side of the equation represents the value of the left side of the above equation (1). Then, the produced ingot was heated to 1150 ° C. and hot-rolled, and rolled so that the plate thickness became 2.5 mm. At this time, the plate thickness tf after passing through the final pass of the finish rolling of hot rolling, the plate thickness t1 before passing through the final pass, and the plate thickness t2 before passing through the pass immediately before the final pass are obtained. It is shown in Table 1. The temperature (finishing temperature) at the final pass stage of finish rolling was 800 ° C., which was higher than Ar1. Then, after the finish rolling was completed, it was water-cooled and cooled to 500 ° C. At this time, in order to measure the warp of the hot-rolled steel sheet, the hot-rolled steel sheet was cut by a length of 1 m without winding, and the central part (0.5 m from both ends) of the steel sheet cut to 1 m was grounded. And the amount of levitation at both ends was measured. The higher value of the measured value is shown in Table 1 as the warp (mm) of the plate.

次に、熱間圧延鋼板において酸洗によりスケールを除去し、85%の圧下率で板厚が0.385mmになるまで冷間圧延を行った。そして、無酸化雰囲気中でAc1よりも低い700℃まで加熱して中間焼鈍を行った。次いで、9%の圧下率で板厚が0.35mmになるまで2回目の冷間圧延(スキンパス圧延)を行った。 Next, the scale was removed from the hot-rolled steel sheet by pickling, and cold rolling was performed at a rolling reduction of 85% until the sheet thickness became 0.385 mm. Then, intermediate annealing was performed by heating to 700 ° C., which is lower than Ac1, in a non-oxidizing atmosphere. Then, a second cold rolling (skin pass rolling) was performed until the plate thickness became 0.35 mm at a rolling reduction of 9%.

次に、磁気特性を調べるために2回目の冷間圧延(スキンパス圧延)の後に800℃で2時間の歪取焼鈍を行い、磁束密度B50を測定した。測定試料は55mm角の試料を圧延方向に0°と45°の2種類の方向に採取した。そして、この2種類の試料を測定し、圧延方向に対して、45°方向の値を45°方向の磁束密度B50とし、圧延方向に対して、0°、45°、90°、135°の平均値を磁束密度B50の全周平均とした。 Next, in order to investigate the magnetic characteristics, after the second cold rolling (skin pass rolling), strain relief annealing was performed at 800 ° C. for 2 hours, and the magnetic flux density B50 was measured. As the measurement sample, a 55 mm square sample was taken in two directions of 0 ° and 45 ° in the rolling direction. Then, these two types of samples are measured, and the value in the 45 ° direction with respect to the rolling direction is set to the magnetic flux density B50 in the 45 ° direction, and the values are 0 °, 45 °, 90 °, and 135 ° with respect to the rolling direction. The average value was taken as the all-around average of the magnetic flux density B50.

Figure 2021080494
Figure 2021080494

表1中の下線は、本発明の範囲から外れた条件を示している。発明例であるNo.101〜No.109は、板形状及び45°方向及び全周平均共に磁束密度B50は良好な値であった。一方、比較例であるNo.110、No.111は圧下率が高すぎたため、反りが高く、板形状が悪かった。この二つの材料は熱間圧延後にレベラーという装置にかけて板形状を平坦に矯正した後、後工程に供した。このことから、単独で優れた磁気特性を有する鋼板を製造できたとしても、操業上支障をきたすものと判断した。比較例であるNo.112〜No.114は圧下率が低すぎたため、動的再結晶が起きず、熱間圧延鋼板の結晶粒径が発明例よりも粗大となり、発明例よりも磁束密度B50が低く、磁気特性が劣っていた。 The underline in Table 1 shows the conditions outside the scope of the present invention. No. which is an example of the invention. 101-No. In 109, the magnetic flux density B50 was a good value in both the plate shape and the 45 ° direction and the average all around. On the other hand, No. 110, No. Since the reduction rate of 111 was too high, the warp was high and the plate shape was bad. After hot rolling, these two materials were subjected to a device called a leveler to flatten the plate shape, and then used in a post-process. From this, it was judged that even if a steel sheet having excellent magnetic properties could be manufactured by itself, it would hinder the operation. No. which is a comparative example. 112-No. Since the rolling reduction of 114 was too low, dynamic recrystallization did not occur, the crystal grain size of the hot-rolled steel sheet was coarser than that of the invention example, the magnetic flux density B50 was lower than that of the invention example, and the magnetic characteristics were inferior.

(第2の実施例)
溶鋼を鋳造することにより、以下の表2に示す成分のインゴットを作製した。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、板厚が2.5mmになるように圧延した。この時の、熱間圧延の仕上げ圧延の最終パスを通過した後の板厚tf、最終パスを通過する前の板厚t1、最終パスの1つ前のパスを通過する前の板厚t2を表3に示す。また、仕上げ圧延の最終パスの段階での温度(仕上温度)は800℃であり、すべてAr1より大きい温度だった。そして、仕上げ圧延終了後に水冷して500℃まで冷却した。この時、熱間圧延鋼板の反りを測定するため、熱間圧延鋼板を巻き取らずに1m長さ分だけ切断し、1mに切断した鋼板の中央部(両端から0.5mの箇所)を地面に押さえつけ、両端の浮上り量を測定した。測定値の高い方の値を板の反りとして表3に示す。
(Second Example)
By casting molten steel, ingots with the components shown in Table 2 below were produced. Then, the produced ingot was heated to 1150 ° C. and hot-rolled, and rolled so that the plate thickness became 2.5 mm. At this time, the plate thickness tf after passing through the final pass of the finish rolling of hot rolling, the plate thickness t1 before passing through the final pass, and the plate thickness t2 before passing through the pass immediately before the final pass are obtained. It is shown in Table 3. The temperature (finishing temperature) at the final pass stage of finish rolling was 800 ° C., which was higher than Ar1. Then, after the finish rolling was completed, it was water-cooled and cooled to 500 ° C. At this time, in order to measure the warp of the hot-rolled steel sheet, the hot-rolled steel sheet was cut by a length of 1 m without winding, and the central part (0.5 m from both ends) of the steel sheet cut to 1 m was grounded. And the amount of levitation at both ends was measured. The higher value of the measured value is shown in Table 3 as the warp of the plate.

次に、熱間圧延鋼板において酸洗によりスケールを除去し、85%の圧下率で板厚が0.385mmになるまで冷間圧延を行った。そして、無酸化雰囲気中でAc1よりも低い700℃まで加熱して中間焼鈍を行った。次いで、9%の圧下率で板厚が0.35mmになるまで2回目の冷間圧延(スキンパス圧延)を行った。 Next, the scale was removed from the hot-rolled steel sheet by pickling, and cold rolling was performed at a rolling reduction of 85% until the sheet thickness became 0.385 mm. Then, intermediate annealing was performed by heating to 700 ° C., which is lower than Ac1, in a non-oxidizing atmosphere. Then, a second cold rolling (skin pass rolling) was performed until the plate thickness became 0.35 mm at a rolling reduction of 9%.

次に、磁気特性を調べるために2回目の冷間圧延(スキンパス圧延)の後に800℃で2時間の歪取焼鈍を行い、磁束密度B50および鉄損W10/400を測定した。磁束密度B50に関しては第1の実施例と同様の手順で測定した。一方で鉄損W10/400は、最大磁束密度が1.0Tになるように400Hzの交流磁場をかけた時に試料に生じる全周平均のエネルギーロス(W/kg)として測定した。 Next, in order to investigate the magnetic characteristics, after the second cold rolling (skin pass rolling), strain relief annealing was performed at 800 ° C. for 2 hours, and the magnetic flux density B50 and the iron loss W10 / 400 were measured. The magnetic flux density B50 was measured in the same procedure as in the first embodiment. On the other hand, the iron loss W10 / 400 was measured as the energy loss (W / kg) of the whole circumference average generated in the sample when an alternating magnetic field of 400 Hz was applied so that the maximum magnetic flux density was 1.0 T.

Figure 2021080494
Figure 2021080494

Figure 2021080494
Figure 2021080494

No.201〜No.214は全て発明例であり、いずれも磁気特性が良好であった。特に、No.202〜No.204はNo.201、No.205〜No.214よりも磁束密度B50が高く、No.205〜No.214はNo.201〜No.204よりも鉄損W10/400が低かった。 No. 2001-No. All 214 were invention examples, and all had good magnetic characteristics. In particular, No. 202-No. 204 is No. 201, No. No. 205-No. The magnetic flux density B50 is higher than that of 214, and No. No. 205-No. 214 is No. 2001-No. The iron loss W10 / 400 was lower than that of 204.

Claims (6)

質量%で、
C:0.010%以下、
Si:1.50%〜4.00%、
sol.Al:0.0001%〜1.0%、
S:0.010%以下、
N:0.010%以下、
Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%〜5.00%、
Sn:0.000%〜0.400%、
Sb:0.000%〜0.400%、
P:0.000%〜0.400%、及び
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000%〜0.0100%を含有し、
Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
残部がFeおよび不純物からなる化学組成を有する鋼材に対して熱間圧延を行い、熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、
前記第1の冷間圧延の後に第1の焼鈍を行う工程と、を有し、
前記熱間圧延時の仕上げ圧延の最終パスをAr1以上の温度で行い、前記最終パスを通過した後の板厚をtf、前記最終パスを通過する前の板厚をt1、前記最終パスの1つ前のパスを通過する前の板厚をt2とした場合に、以下の(2)式および(3)式を満たすように前記仕上げ圧延を行うことを特徴とする無方向性電磁鋼板の製造方法。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])−([Si]+[sol.Al])>0% ・・・(1)
0.4<tf/t1<0.8 ・・・(2)
0.4<t1/t2<0.8 ・・・(3)
By mass%
C: 0.010% or less,
Si: 1.50% to 4.00%,
sol. Al: 0.0001% to 1.0%,
S: 0.010% or less,
N: 0.010% or less,
One or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, Au: 2.50% to 5.00% in total,
Sn: 0.000% to 0.400%,
Sb: 0.000% to 0.400%,
P: 0.000% to 0.400%, and one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% in total Contains 0.0100%,
Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content The amount (mass%) is [Pb], the Cu content (mass%) is [Cu], the Au content (mass%) is [Au], the Si content (mass%) is [Si], sol. The Al content (% by mass) was changed to [sol. When [Al] is set, the following equation (1) is satisfied.
A process of hot-rolling a steel material having a chemical composition in which the balance is composed of Fe and impurities to obtain a hot-rolled steel sheet.
The step of performing the first cold rolling on the hot-rolled steel sheet and
It has a step of performing a first annealing after the first cold rolling.
The final pass of finish rolling during hot rolling is performed at a temperature of Ar1 or higher, the plate thickness after passing through the final pass is tf, the plate thickness before passing through the final pass is t1, and 1 of the final pass. Manufacture of non-oriented electrical steel sheet characterized by performing the finish rolling so as to satisfy the following equations (2) and (3) when the plate thickness before passing through the previous pass is t2. Method.
([Mn] + [Ni] + [Co] + [Pt] + [Pb] + [Cu] + [Au])-([Si] + [sol.Al])> 0% ... (1)
0.4 <tf / t1 <0.8 ... (2)
0.4 <t1 / t2 <0.8 ... (3)
前記鋼材は、質量%で、
Sn:0.020%〜0.400%、
Sb:0.020%〜0.400%、及び、
P:0.020%〜0.400%からなる群から選ばれる1種以上を含有することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。
The steel material is by mass%
Sn: 0.020% to 0.400%,
Sb: 0.020% to 0.400%, and
P: The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the non-oriented electrical steel sheet is contained at least one selected from the group consisting of 0.020% to 0.400%.
前記鋼材は、質量%で、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0005%〜0.0100%を含有することを特徴とする請求項1又は2に記載の無方向性電磁鋼板の製造方法。 The steel material is one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd in mass%: 0.0005% to 0.0100% in total. The method for producing a non-directional electromagnetic steel sheet according to claim 1 or 2, wherein the non-directional electromagnetic steel sheet is contained. 前記第1の焼鈍は、Ac1未満の温度で行うことを特徴とする請求項1〜3のいずれか1項に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to any one of claims 1 to 3, wherein the first annealing is performed at a temperature lower than Ac1. 前記第1の焼鈍の後に第2の冷間圧延を行う工程をさらに有し、
前記第1の冷間圧延を行う工程においては、圧下率80%〜92%で冷間圧延を行い、
前記第2の冷間圧延を行う工程においては、圧下率5%〜25%で冷間圧延を行って前記無方向性電磁鋼板を得ることを特徴とする請求項1〜4のいずれか1項に記載の無方向性電磁鋼板の製造方法。
It further comprises a step of performing a second cold rolling after the first annealing.
In the first cold rolling step, cold rolling is performed at a rolling reduction of 80% to 92%.
Any one of claims 1 to 4, wherein in the second cold rolling step, cold rolling is performed at a rolling reduction of 5% to 25% to obtain the non-oriented electrical steel sheet. A method for manufacturing a non-oriented electrical steel sheet according to.
前記第2の冷間圧延の後に第2の焼鈍を行う工程をさらに有し、
前記第2の冷間圧延の後の第2の焼鈍では、焼鈍温度をAc1未満とすることを特徴とする請求項5に記載の無方向性電磁鋼板の製造方法。
It further comprises a step of performing a second annealing after the second cold rolling.
The method for producing a non-oriented electrical steel sheet according to claim 5, wherein in the second annealing after the second cold rolling, the annealing temperature is set to less than Ac1.
JP2019206627A 2019-11-15 2019-11-15 Manufacturing method of non-oriented electrical steel sheet Active JP7415134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019206627A JP7415134B2 (en) 2019-11-15 2019-11-15 Manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206627A JP7415134B2 (en) 2019-11-15 2019-11-15 Manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2021080494A true JP2021080494A (en) 2021-05-27
JP7415134B2 JP7415134B2 (en) 2024-01-17

Family

ID=75964326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206627A Active JP7415134B2 (en) 2019-11-15 2019-11-15 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7415134B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181743A (en) * 1999-10-14 2001-07-03 Nippon Steel Corp Method for producing hot rolled silicon steel sheet excellent in magnetism
JP2017145462A (en) * 2016-02-17 2017-08-24 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018115362A (en) * 2017-01-17 2018-07-26 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and method for producing the same
JP2018141206A (en) * 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2019019355A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP2019052360A (en) * 2017-09-19 2019-04-04 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for producing the same
JP2019178380A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Electromagnetic steel sheet, and manufacturing method of electromagnetic steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181743A (en) * 1999-10-14 2001-07-03 Nippon Steel Corp Method for producing hot rolled silicon steel sheet excellent in magnetism
JP2017145462A (en) * 2016-02-17 2017-08-24 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018115362A (en) * 2017-01-17 2018-07-26 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and method for producing the same
JP2018141206A (en) * 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2019019355A (en) * 2017-07-13 2019-02-07 新日鐵住金株式会社 Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP2019052360A (en) * 2017-09-19 2019-04-04 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for producing the same
JP2019178380A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Electromagnetic steel sheet, and manufacturing method of electromagnetic steel sheet

Also Published As

Publication number Publication date
JP7415134B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP7352082B2 (en) Non-oriented electrical steel sheet
JP7415135B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415134B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415136B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415138B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7047983B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7428873B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
JP7288215B2 (en) Non-oriented electrical steel sheet
JP7295465B2 (en) Non-oriented electrical steel sheet
KR20230145142A (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20230144606A (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R151 Written notification of patent or utility model registration

Ref document number: 7415134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151