JP2021078226A - Stator - Google Patents

Stator Download PDF

Info

Publication number
JP2021078226A
JP2021078226A JP2019203216A JP2019203216A JP2021078226A JP 2021078226 A JP2021078226 A JP 2021078226A JP 2019203216 A JP2019203216 A JP 2019203216A JP 2019203216 A JP2019203216 A JP 2019203216A JP 2021078226 A JP2021078226 A JP 2021078226A
Authority
JP
Japan
Prior art keywords
support member
slot
coil
stator
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019203216A
Other languages
Japanese (ja)
Other versions
JP7380099B2 (en
Inventor
尚人 越野
Naohito Etsuno
尚人 越野
信吾 長井
Shingo Nagai
信吾 長井
啓友 河西
Keisuke Kasai
啓友 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019203216A priority Critical patent/JP7380099B2/en
Publication of JP2021078226A publication Critical patent/JP2021078226A/en
Application granted granted Critical
Publication of JP7380099B2 publication Critical patent/JP7380099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

To provide a stator capable of suppressing more than before, stagnation, in a slot, of coolant liquid flowing into a porous body in the slot more.SOLUTION: A stator core 20 includes an annular yoke 22 and a plurality of teeth 24 that protrude inward in a radial direction from an inner peripheral surface of the yoke 22 and are provided at intervals in a circumferential direction. A coil 30 is wound around the teeth 24. A support member 50 is inserted into a slot 26 between the adjacent teeth 24, 24 to fill the gap in the slot 26. Further, the support member 50 includes a porous body. Resin molds 40, each of which is a covering member, cover both ends of the coil 30 and the support member 50 in an axial direction of the stator core. Further, the stator 10 is formed with at least one of: each first flow path 28 that penetrates from a bottom surface 26A of the slot 26 to an outer peripheral surface 22A of the yoke 22; and each second flow path 42 that penetrates from a contact surface 40A of the resin mold 40 contacting the support member 50 to a facing surface 40B thereof.SELECTED DRAWING: Figure 1

Description

本発明は、車両駆動用の回転電機(モータ)に用いられるステータの構造に関する。 The present invention relates to the structure of a stator used in a rotary electric machine (motor) for driving a vehicle.

ハイブリッド車両や電気自動車の駆動源として、回転電機が用いられる。回転電機の固定子であるステータは、環状のヨークと、ヨーク内周面から径方向中心に突出し、周方向に間隔を空けて設けられた複数のティースを備える。それぞれのティースにはコイルが巻回される。 A rotary electric machine is used as a drive source for hybrid vehicles and electric vehicles. The stator, which is a stator of a rotary electric machine, includes an annular yoke and a plurality of teeth that project radially from the inner peripheral surface of the yoke and are provided at intervals in the circumferential direction. A coil is wound around each tooth.

また、隣り合うティース間のスロットには、支持部材が挿入される。スロット内の空隙が支持部材によって埋められることで、ティースからのコイルの抜けが抑制される。 Further, a support member is inserted into a slot between adjacent teeth. By filling the gap in the slot with the support member, the coil is prevented from coming off from the tooth.

例えば特許文献1、2では、支持部材は多孔質体を含む。多孔質体はその内部にATF(Automatic Transmission Fluid)等の冷却液が含浸可能となっており、これによりコイル及びステータコアの冷却が図られる。 For example, in Patent Documents 1 and 2, the support member includes a porous body. The inside of the porous body can be impregnated with a cooling liquid such as ATF (Automatic Transmission Fluid), whereby the coil and the stator core can be cooled.

特開2013−9499号公報Japanese Unexamined Patent Publication No. 2013-9499 特開2006−320171号公報Japanese Unexamined Patent Publication No. 2006-32171

本明細書で開示されるステータは、多孔質体内に流れ込む冷却液の、スロット内での滞留を従来よりも抑制可能とすることを目的とする。 An object of the stator disclosed in the present specification is to make it possible to suppress the retention of the coolant flowing into the porous body in the slot as compared with the conventional case.

本明細書で開示されるステータは、ステータコア、コイル、支持部材、及び被覆部材を備える。ステータコアは、環状のヨークと、ヨークの内周面から半径方向内側に突出し周方向に間隔を空けて設けられる複数のティースを備える。コイルは、ティースの周囲に巻回される。支持部材は、隣り合うティース間のスロットに挿入されスロット内の空隙を埋める。またこの支持部材は多孔質体を含む。被覆部材は、コイル及び支持部材の、ステータコア軸方向の両端を覆う。またステータには、スロットの底面からヨークの外周面まで貫通する第一流路、及び、被覆部材の、支持部材との当接面からその対向面まで貫通する第二流路の少なくとも一方が形成される。 The stator disclosed herein includes a stator core, a coil, a support member, and a covering member. The stator core includes an annular yoke and a plurality of teeth protruding inward in the radial direction from the inner peripheral surface of the yoke and provided at intervals in the circumferential direction. The coil is wound around the teeth. The support member is inserted into a slot between adjacent teeth to fill the gap in the slot. Further, this support member includes a porous body. The covering member covers both ends of the coil and the support member in the axial direction of the stator core. Further, the stator is formed with at least one of a first flow path penetrating from the bottom surface of the slot to the outer peripheral surface of the yoke and a second flow path penetrating from the contact surface of the covering member with the support member to the facing surface thereof. To.

本明細書で開示されるステータによれば、多孔質体内に流れ込む冷却液が、第一流路及び第二流路の少なくとも一方からステータ外部に排出されるので、そのような流路が形成されていない従来のステータよりも、スロット内の冷却液の滞留を抑制可能となる。 According to the stator disclosed in the present specification, the coolant flowing into the porous body is discharged to the outside of the stator from at least one of the first flow path and the second flow path, so that such a flow path is formed. It is possible to suppress the retention of the coolant in the slot as compared with the conventional stator.

本実施形態に係るステータの外形を例示する斜視図である。It is a perspective view which illustrates the outer shape of the stator which concerns on this embodiment. ステータコアを例示する斜視図である。It is a perspective view which illustrates the stator core. ステータコアのティースに巻回されるコイルを例示する斜視図である。It is a perspective view which illustrates the coil wound around the tooth of a stator core. スロット内に挿入される支持部材を例示する斜視図である。It is a perspective view which illustrates the support member inserted into a slot. 図1のA−A断面図である。FIG. 1 is a cross-sectional view taken along the line AA of FIG. 図5のB−B断面図である。FIG. 5 is a cross-sectional view taken along the line BB of FIG. コイルが分布巻きであるときの、A−A断面図である。FIG. 5 is a cross-sectional view taken along the line AA when the coil is a distributed winding.

以下、本実施形態に係るステータついて、図面を参照しながら説明する。図1を参照して、本実施形態に係るステータ10は、回転電機の固定子であって、ステータコア20、コイル30(図3参照)、支持部材50(図4参照)、及び被覆部材である樹脂モールド40を含んで構成される。 Hereinafter, the stator according to the present embodiment will be described with reference to the drawings. With reference to FIG. 1, the stator 10 according to the present embodiment is a stator of a rotary electric machine, and is a stator core 20, a coil 30 (see FIG. 3), a support member 50 (see FIG. 4), and a covering member. It is configured to include a resin mold 40.

以下の説明においては、図1に示すように、ステータコア20の環状部材であるヨーク22(図2参照)の周方向を「ステータコア周方向」、ステータコア20の半径方向を「ステータコア半径方向」、及びステータコア20の厚さ方向を「ステータコア軸方向」という。 In the following description, as shown in FIG. 1, the circumferential direction of the yoke 22 (see FIG. 2), which is an annular member of the stator core 20, is the “stator core circumferential direction”, the radial direction of the stator core 20 is the “stator core radial direction”, and The thickness direction of the stator core 20 is referred to as "stator core axial direction".

図2を参照して、ステータコア20は磁路を形成する磁気回路部材であって、例えば複数の電磁鋼板をステータコア軸方向に積層して製造される。または、磁性粉を加圧成形してステータコア20を製造してもよい。 With reference to FIG. 2, the stator core 20 is a magnetic circuit member forming a magnetic path, and is manufactured by, for example, laminating a plurality of electromagnetic steel sheets in the stator core axial direction. Alternatively, the stator core 20 may be manufactured by pressure molding the magnetic powder.

ステータコア20は、ヨーク22及び複数のティース24を備える。ヨーク22は環状部材であり、ティース24は、ヨーク22の内周面から半径方向内側に突出する。さらにティース24は、ステータコア周方向に間隔を空けて複数設けられる。隣り合うティース24,24間にスロット26が形成される。 The stator core 20 includes a yoke 22 and a plurality of teeth 24. The yoke 22 is an annular member, and the teeth 24 project inward in the radial direction from the inner peripheral surface of the yoke 22. Further, a plurality of teeth 24 are provided at intervals in the circumferential direction of the stator core. A slot 26 is formed between the adjacent teeth 24 and 24.

さらにステータコア20には、スロット26の底面26A、言い換えるとヨーク22の内周面から、ヨーク22の外周面22Aまで貫通する第一流路28が形成される。後述するように、第一流路28は、スロット26内に挿入された、多孔質体を含む支持部材50(図4参照)に流れ込んだ冷却液をステータ10の外部に排出するための排出口として機能する。 Further, the stator core 20 is formed with a first flow path 28 that penetrates from the bottom surface 26A of the slot 26, in other words, the inner peripheral surface of the yoke 22, to the outer peripheral surface 22A of the yoke 22. As will be described later, the first flow path 28 serves as a discharge port for discharging the cooling liquid that has flowed into the support member 50 (see FIG. 4) including the porous body inserted into the slot 26 to the outside of the stator 10. Function.

図2を参照して、第一流路28は、スロット底面26Aの、ステータコア周方向幅A1の中央部分に設けられてよい。後述するように、集中巻きのコイル30が用いられる場合、図5に例示されるように、スロット26内には、コイル30,30が隣り合って設けられる。またスロット26内には、コイル30,30の間に、スロット26の周方向中央部分の空隙を埋めるようにして、支持部材50が挿入される。スロット底面26Aのステータコア周方向幅A1の中央部分に第一流路28が形成されることで、支持部材50の径方向外側に第一流路28が接続されることになり、支持部材50内の冷却液がスムーズに第一流路28に排出される。 With reference to FIG. 2, the first flow path 28 may be provided in the central portion of the bottom surface 26A of the slot with the circumferential width A1 of the stator core. As will be described later, when the centrally wound coil 30 is used, the coils 30 and 30 are provided adjacent to each other in the slot 26 as illustrated in FIG. Further, in the slot 26, the support member 50 is inserted between the coils 30 and 30 so as to fill the gap in the central portion of the slot 26 in the circumferential direction. By forming the first flow path 28 in the central portion of the stator core circumferential width A1 of the slot bottom surface 26A, the first flow path 28 is connected to the radial outer side of the support member 50, and the inside of the support member 50 is cooled. The liquid is smoothly discharged to the first flow path 28.

図4を参照して、コイル30はティース24の周囲に巻回される。コイル30の巻回にはいくつかの方法があり、例えば図4では集中巻きの例が示される。集中巻きでは、予め四角筒状に巻回されたコイル30がティース24に差し込まれる。図4に例示されるように、スロット底面26Aとコイル30との間に絶縁部材34が挟み込まれてもよく、またティース24の半径方向内側端部にコイル30用の抜け止めリング32が固定されてもよい。 With reference to FIG. 4, the coil 30 is wound around the teeth 24. There are several methods for winding the coil 30, for example, FIG. 4 shows an example of concentrated winding. In the concentrated winding, the coil 30 previously wound in a square cylinder shape is inserted into the teeth 24. As illustrated in FIG. 4, the insulating member 34 may be sandwiched between the slot bottom surface 26A and the coil 30, and the retaining ring 32 for the coil 30 is fixed to the radial inner end of the tooth 24. You may.

また図5を参照して、コイル30は、導体であるコイル本体31と、コイル本体31の外周面を覆う絶縁被膜33を備える。 Further, referring to FIG. 5, the coil 30 includes a coil main body 31 which is a conductor and an insulating coating 33 which covers the outer peripheral surface of the coil main body 31.

図5に例示されるように、集中巻きでは、一つのスロット26に複数のコイル30が配置される。ティース24にコイル30を差し込む際に、差し込み済みの隣のコイル30との干渉を抑制するため、スロット26内ではコイル30,30間に空隙が設けられる。この空隙が支持部材50によって埋められる。 As illustrated in FIG. 5, in centralized winding, a plurality of coils 30 are arranged in one slot 26. When the coil 30 is inserted into the teeth 24, a gap is provided between the coils 30 and 30 in the slot 26 in order to suppress interference with the adjacent coil 30 that has already been inserted. This gap is filled with the support member 50.

図4及び図5を参照して、支持部材50はスロット26内に挿入される。例えばスロット26内にすべてのコイル30が差し込まれた後に、支持部材50が挿入される。支持部材50は例えば熱硬化性材料から構成され、ゲル状(粘性流体状)の支持部材50がスロット26内に挿入(充填)される。さらにこのステータの組立体を加熱処理することで支持部材50が硬化する。 With reference to FIGS. 4 and 5, the support member 50 is inserted into the slot 26. For example, the support member 50 is inserted after all the coils 30 have been inserted into the slots 26. The support member 50 is made of, for example, a thermosetting material, and a gel-like (viscous fluid-like) support member 50 is inserted (filled) into the slot 26. Further, the support member 50 is cured by heat-treating the assembly of the stator.

支持部材50は多孔質体を含む。例えば支持部材50の全体が多孔質体から構成されてもよい。例えば加熱処理の過程で支持部材50が発泡し、ステータコア径方向に沿って連通された連泡構造が形成される。後述するように、支持部材50が多孔質体を含むことで、当該多孔質体に冷却液が入り込み、コイル30及びステータコア20が冷却される。 The support member 50 includes a porous body. For example, the entire support member 50 may be composed of a porous body. For example, in the process of heat treatment, the support member 50 foams to form a continuous foam structure in which the support member 50 communicates along the radial direction of the stator core. As will be described later, when the support member 50 contains the porous body, the cooling liquid enters the porous body, and the coil 30 and the stator core 20 are cooled.

支持部材50によりスロット26内の空隙が埋められることで、コイル30のティース24からの抜けが抑制される。なお、確実なコイル30の固定のため、支持部材50が接着性を備えていてもよい。 By filling the gap in the slot 26 with the support member 50, the coil 30 is suppressed from coming off from the teeth 24. The support member 50 may have adhesiveness in order to securely fix the coil 30.

図1を参照して、ステータコア20、コイル30及び支持部材50を含むステータ組立体の、ステータコア軸方向両端に、被覆部材である樹脂モールド40が形成される。樹脂モールド40は、コイル30のコイルエンド部分、つまり、コイル30の、ステータコア軸方向両端部分及びこれに隣接する支持部材50の同軸方向両端部分を覆う、環状部材である。 With reference to FIG. 1, resin molds 40, which are covering members, are formed at both ends of the stator assembly including the stator core 20, the coil 30, and the support member 50 in the axial direction of the stator core. The resin mold 40 is an annular member that covers the coil end portion of the coil 30, that is, both ends of the coil 30 in the axial direction of the stator core and both ends of the support member 50 adjacent thereto in the coaxial direction.

樹脂モールド40が、コイル30及び支持部材50のステータコア軸方向両端部分、つまり、ステータコア20よりもステータコア軸方向両端にはみ出した部分を覆うことで、当該はみ出し部分が周辺部材から保護される。例えば樹脂モールド40はエポキシ樹脂またはワニスから構成されてよい。 The resin mold 40 covers both ends of the coil 30 and the support member 50 in the axial direction of the stator core, that is, the portions protruding from the stator core 20 to both ends in the axial direction of the stator core, so that the protruding portions are protected from the peripheral members. For example, the resin mold 40 may be made of epoxy resin or varnish.

樹脂モールド40には第二流路42が形成される。例えば硬化後の樹脂モールド40に第二流路が穿孔される。図1、図6を参照して、第二流路42は、支持部材50との当接面40Aからその対向面40Bまで貫通する。後述するように、支持部材50に流れ込んだ冷却液は、第二流路42からステータ10の外部に排出される。 A second flow path 42 is formed in the resin mold 40. For example, a second flow path is perforated in the cured resin mold 40. With reference to FIGS. 1 and 6, the second flow path 42 penetrates from the contact surface 40A with the support member 50 to the facing surface 40B thereof. As will be described later, the coolant that has flowed into the support member 50 is discharged from the second flow path 42 to the outside of the stator 10.

図5、図6を参照して、図示しないロータの遠心力等により、ステータ10の内周面に冷却液が供給される。冷却液は例えばATF(Automatic Transmission Fluid)であってよい。ステータ10の内周面に供給された冷却液は、図6の矢印に例示されるように、多孔質体を含む支持部材50内に入り込む(含浸する)。これによってコイル30及びステータコア20が冷却される。 With reference to FIGS. 5 and 6, the coolant is supplied to the inner peripheral surface of the stator 10 by centrifugal force or the like of a rotor (not shown). The coolant may be, for example, ATF (Automatic Transmission Fluid). As illustrated by the arrow in FIG. 6, the coolant supplied to the inner peripheral surface of the stator 10 enters (impregnates) the support member 50 including the porous body. This cools the coil 30 and the stator core 20.

さらに支持部材50内の冷却液は、第一流路28及び第二流路42からステータ10の外部に排出され、新たな冷却液が支持部材50内に入り込む。このように、支持部材50内の冷却液が入れ替わることで、コイル30及びステータコア20が継続的に冷却される。 Further, the coolant in the support member 50 is discharged from the first flow path 28 and the second flow path 42 to the outside of the stator 10, and a new coolant enters the support member 50. By exchanging the cooling liquid in the support member 50 in this way, the coil 30 and the stator core 20 are continuously cooled.

<他の実施形態>
図1、図6では、ステータ10に第一流路28及び第二流路42が形成されていたが、要するに支持部材50に滞留する冷却液がステータ10の外部に排出されればよいので、ステータ10には、第一流路28及び第二流路42の少なくとも一方が形成されていればよい。
<Other Embodiments>
In FIGS. 1 and 6, the first flow path 28 and the second flow path 42 are formed in the stator 10, but in short, the coolant staying in the support member 50 may be discharged to the outside of the stator 10, so that the stator At least one of the first flow path 28 and the second flow path 42 may be formed in 10.

また、例えば図5では、集中巻きのコイル30がティース24に巻回されていたが、本実施形態に係るステータ10はこの形態に限られない。例えば図7に例示されるように、分布巻きのコイル30においても、第一流路28及び第二流路42(図示せず)を備えたステータ10を構成可能である。 Further, for example, in FIG. 5, the centrally wound coil 30 is wound around the teeth 24, but the stator 10 according to the present embodiment is not limited to this embodiment. For example, as illustrated in FIG. 7, the distributed winding coil 30 can also be configured with a stator 10 having a first flow path 28 and a second flow path 42 (not shown).

なお、分布巻きにおいては、スロット26には、コイル30が一列のみティース24に巻回される。このような場合において、ステータコア径方向に沿って最も外側のコイル30が第一流路28を塞がないような構造とすることが好適である。例えば、コイル30の巻回に当たり、スロット26の底面26Aとは離間するように、コイル30がスロット26内に配置される。さらにコイル30とティース24の間に、支持部材50が挿入(充填)される。このようにすることで、支持部材50を流路として、コイル30とティース24の間に冷却液が通過し、コイル30及びティース24の冷却が図られる。また冷却後の冷却液は第一流路28及び第二流路42からステータ10外に排出される。 In the distributed winding, only one row of the coil 30 is wound around the teeth 24 in the slot 26. In such a case, it is preferable to have a structure in which the outermost coil 30 does not block the first flow path 28 along the stator core radial direction. For example, when winding the coil 30, the coil 30 is arranged in the slot 26 so as to be separated from the bottom surface 26A of the slot 26. Further, the support member 50 is inserted (filled) between the coil 30 and the teeth 24. By doing so, the cooling liquid passes between the coil 30 and the teeth 24 using the support member 50 as a flow path, and the coil 30 and the teeth 24 are cooled. Further, the cooling liquid after cooling is discharged to the outside of the stator 10 from the first flow path 28 and the second flow path 42.

10 ステータ、20 ステータコア、22 ヨーク、22A ヨーク外周面、24 ティース、26 スロット、26A スロット底面、28 第一流路、30 コイル、31 コイル本体、32 抜け止めリング、33 絶縁被膜、34 絶縁部材、40 樹脂モールド(被覆部材)、40A 当接面、40B 対向面、42 第二流路、50 支持部材。 10 stator, 20 stator core, 22 yoke, 22A yoke outer peripheral surface, 24 teeth, 26 slots, 26A slot bottom surface, 28 first flow path, 30 coils, 31 coil body, 32 retaining ring, 33 insulation coating, 34 insulation member, 40 Resin mold (covering member), 40A contact surface, 40B facing surface, 42 second flow path, 50 support member.

Claims (1)

環状のヨークと、前記ヨークの内周面から半径方向内側に突出し周方向に間隔を空けて設けられる複数のティースと、を備えるステータコアと、
前記ティースの周囲に巻回されたコイルと、
隣り合う前記ティース間のスロットに挿入され前記スロット内の空隙を埋める、多孔質体を含む支持部材と、
前記コイル及び前記支持部材の、ステータコア軸方向の両端を覆う被覆部材と、
を備え、
前記スロットの底面から前記ヨークの外周面まで貫通する第一流路、及び、前記被覆部材の、前記支持部材との当接面からその対向面まで貫通する第二流路の少なくとも一方が形成された、ステータ。
A stator core including an annular yoke and a plurality of teeth protruding inward in the radial direction from the inner peripheral surface of the yoke and provided at intervals in the circumferential direction.
A coil wound around the teeth and
A support member containing a porous body, which is inserted into a slot between adjacent teeth and fills a gap in the slot.
A covering member that covers both ends of the coil and the support member in the axial direction of the stator core, and
With
At least one of a first flow path penetrating from the bottom surface of the slot to the outer peripheral surface of the yoke and a second flow path of the covering member penetrating from the contact surface with the support member to the facing surface thereof was formed. , Stator.
JP2019203216A 2019-11-08 2019-11-08 stator Active JP7380099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203216A JP7380099B2 (en) 2019-11-08 2019-11-08 stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203216A JP7380099B2 (en) 2019-11-08 2019-11-08 stator

Publications (2)

Publication Number Publication Date
JP2021078226A true JP2021078226A (en) 2021-05-20
JP7380099B2 JP7380099B2 (en) 2023-11-15

Family

ID=75898661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203216A Active JP7380099B2 (en) 2019-11-08 2019-11-08 stator

Country Status (1)

Country Link
JP (1) JP7380099B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070199A (en) * 2001-08-27 2003-03-07 Hitachi Ltd Motor or dynamo and manufacturing method thereof
JP2004297924A (en) * 2003-03-27 2004-10-21 Nissan Motor Co Ltd Cooling structure of rotary electric machine
JP2006320171A (en) * 2005-05-16 2006-11-24 Toshiba Corp Method and device for fixing and supporting coil in electric rotating machine
JP2011167045A (en) * 2010-02-15 2011-08-25 Nsk Ltd Motor cooling structure and in-wheel motor
JP2012186880A (en) * 2011-03-03 2012-09-27 Hitachi Constr Mach Co Ltd Rotary electric machine provided with cooling structure and construction machine using rotary electric machine
JP2019009866A (en) * 2017-06-21 2019-01-17 トヨタ自動車株式会社 Rotor of rotary electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070199A (en) * 2001-08-27 2003-03-07 Hitachi Ltd Motor or dynamo and manufacturing method thereof
JP2004297924A (en) * 2003-03-27 2004-10-21 Nissan Motor Co Ltd Cooling structure of rotary electric machine
JP2006320171A (en) * 2005-05-16 2006-11-24 Toshiba Corp Method and device for fixing and supporting coil in electric rotating machine
JP2011167045A (en) * 2010-02-15 2011-08-25 Nsk Ltd Motor cooling structure and in-wheel motor
JP2012186880A (en) * 2011-03-03 2012-09-27 Hitachi Constr Mach Co Ltd Rotary electric machine provided with cooling structure and construction machine using rotary electric machine
JP2019009866A (en) * 2017-06-21 2019-01-17 トヨタ自動車株式会社 Rotor of rotary electric machine

Also Published As

Publication number Publication date
JP7380099B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
JP5681232B2 (en) Electric motor stator injecting resin by injection molding
JP5900662B2 (en) Bobbin structure of electric motor and manufacturing method thereof
CN110247485B (en) Stator of rotating electric machine
CN111448742B (en) Method for producing a stator of an electric machine
JP7115912B2 (en) Rotor manufacturing method
US10868453B2 (en) Rotor of rotating electric machine
US20220286005A1 (en) Dynamoelectric machine
US20190238009A1 (en) Stator for rotary electric machine
JP2017204984A (en) Rotor of rotary electric machine, rotary electric machine, and method of manufacturing rotor of rotary electric machine
CN113498572B (en) Electric machine with internal cooling passage
US20220200367A1 (en) Stator for electrical machines
US11323004B2 (en) Rotating electric machine
US11368059B2 (en) Rotating electric machine
US20150207387A1 (en) Rotary electric machine
JP7424842B2 (en) rotating electric machine
JP7380099B2 (en) stator
JP6374797B2 (en) Cooling structure of rotating electric machine
WO2020049831A1 (en) Liquid cooling structure of rotating electric machine
US20220385127A1 (en) Stator of an electric machine, method for producing same and electric machine
KR20220144322A (en) Electric motor vehicle traction motor
JP5330860B2 (en) Rotating electric machine
CN115136463A (en) Stator for motor, motor and vehicle
JP6776850B2 (en) Rotating machine
JP6569439B2 (en) Rotating electric machine stator
JP6477448B2 (en) Motor coil structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7380099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151