JP2021076496A - Light quantity controller and light quantity control method - Google Patents

Light quantity controller and light quantity control method Download PDF

Info

Publication number
JP2021076496A
JP2021076496A JP2019204153A JP2019204153A JP2021076496A JP 2021076496 A JP2021076496 A JP 2021076496A JP 2019204153 A JP2019204153 A JP 2019204153A JP 2019204153 A JP2019204153 A JP 2019204153A JP 2021076496 A JP2021076496 A JP 2021076496A
Authority
JP
Japan
Prior art keywords
light
amount
value
difference
light amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019204153A
Other languages
Japanese (ja)
Inventor
亮輔 志田
Ryosuke Shida
亮輔 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2019204153A priority Critical patent/JP2021076496A/en
Publication of JP2021076496A publication Critical patent/JP2021076496A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

To provide a light quantity controller with which it is possible to control the emitted light quantity of a light source with high accuracy without exceeding a target value.SOLUTION: The light quantity controller comprises: a DA converter 11 for driving a semiconductor laser 2 in accordance with a light quantity set value DAS; a storage unit 28 in which the ratio, to the change amount ΔSda of the light quantity set value DAS, of the change amount ΔRad of received light quantity that is detected by a light quantity controlling light receiving unit 3a, is stored as a gradient a; a light quantity set value search unit (steps S7-S13) for changing the light quantity set value DAS(i) and searching for a light quantity set value with which light equivalent to a target emitted light quantity can be radiated; and a difference quantity calculation unit (step S9) for calculating a difference amount between the target emitted light quantity and a received light quantity. The light quantity set value search unit updates the light quantity set value DAS(i) using the difference amount and the gradient a so that the difference amount equals a predetermined threshold or smaller, and sets a light quantity set value when the difference amount is smaller than or equal to the threshold as a light quantity set value DAS with which light equivalent to the target emitted light quantity can be radiated.SELECTED DRAWING: Figure 8

Description

本発明は、光量制御装置及び光量制御方法に関する。 The present invention relates to a light amount control device and a light amount control method.

一般に、半導体レーザを駆動する半導体レーザ駆動装置(LDD:Laser Diode Driver)は、APC(Auto Power Control:自動電力制御)回路を備えている。APC回路は、半導体レーザが出力するレーザ光を、光電変換により検出してフィードバックさせた電圧(電流)レベルに基づいて、半導体レーザに供給する電流値の指示値を制御することにより、発光パワーの制御を行う。 Generally, a semiconductor laser diode driver (LDD) that drives a semiconductor laser includes an APC (Auto Power Control) circuit. The APC circuit controls the indicated value of the current value supplied to the semiconductor laser based on the voltage (current) level that is detected and fed back by the laser beam output by the semiconductor laser by photoelectric conversion. Control.

近年、半導体レーザは、測距用の光源としても用途が拡大されている。半導体レーザを用いて測距を行う場合、レーザ光が発光してから測定対象物で反射した反射光が、検出器で検出されるまでの時間を測定し、距離に換算している。半導体レーザを用いた測距においては、測距精度の向上のため、発光パワーの変動許容範囲が狭くなる傾向にある。そのため、APC回路による発光パワー制御の精度向上が求められている。また、測距可能範囲の拡大のために発光パワーが拡大される傾向にある反面、Eye Safety(眼に対する安全性)の観点から、制御過程において目標値を超える出力を防ぐ必要がある。 In recent years, semiconductor lasers have been expanded in use as light sources for distance measurement. When distance measurement is performed using a semiconductor laser, the time from when the laser beam is emitted until the reflected light reflected by the object to be measured is detected by the detector is measured and converted into a distance. In distance measurement using a semiconductor laser, the permissible range of fluctuation of light emission power tends to be narrowed in order to improve the distance measurement accuracy. Therefore, it is required to improve the accuracy of light emission power control by the APC circuit. Further, while the light emitting power tends to be increased in order to expand the distance measuring range, it is necessary to prevent the output exceeding the target value in the control process from the viewpoint of Eye Safety (safety to the eyes).

APC回路による発光パワー制御の精度向上を図る方法として、例えば、レーザを駆動する信号値として異なる2つの値を設定し、これら2つの値それぞれを信号値としてレーザを駆動したときのレーザの光量をそれぞれ検出し、これらに基づき、目標とする光量を得ることのできる、レーザ駆動用の信号値を検出する方法が提案されている(例えば、特許文献1参照。)。すなわち、図9に示すように、2つの信号値DAB1、DAB2と、各信号値で駆動したときのレーザの受光量ADA、ADBとをもとに、2つの信号値DAB1及びDABの差分と、レーザの受光量ADA及びADBの差分との比から、この比を傾きaとする、信号値とレーザの光量との関係を表す一次直線を求め、線形近似から、目標となる光量を得るために必要な信号値を算出している。 As a method for improving the accuracy of light emission power control by the APC circuit, for example, two different values are set as signal values for driving the laser, and the amount of light of the laser when the laser is driven with each of these two values as a signal value is used. A method of detecting a signal value for driving a laser, which can detect each of them and obtain a target amount of light based on these, has been proposed (see, for example, Patent Document 1). That is, as shown in FIG. 9, based on the two signal values DAB1 and DAB2 and the received amount ADA and ADB of the laser when driven by each signal value, the difference between the two signal values DAB1 and DAB and the difference between the two signal values DAB1 and DAB. To obtain the target light quantity from the linear approximation by obtaining a linear linear line representing the relationship between the signal value and the light quantity of the laser, where this ratio is the slope a, from the ratio of the light received amount of the laser to the difference between ADA and ADB. The required signal value is calculated.

特開2009−87502号公報Japanese Unexamined Patent Publication No. 2009-87502

しかしながら、レーザの出力特性が、非線形性を有する場合、或いは、温度特性やサンプルのばらつき等によって、レーザの出力特性が一次直線から外れる場合には、目標の光量を得るための信号値として算出した算出結果を信号値としてレーザを駆動したときに、得られる発光量が目標の光量からずれてしまう。また、2つの信号値から得られた一次直線の傾きが、実際のレーザの出力特性よりも小さく見積もられた場合、レーザの光量が目標とする光量よりも大きくなってしまう可能性がある。 However, if the output characteristics of the laser have non-linearity, or if the output characteristics of the laser deviate from the linear line due to temperature characteristics, sample variations, etc., it is calculated as a signal value for obtaining the target amount of light. When the laser is driven using the calculated result as a signal value, the obtained light emission amount deviates from the target light amount. Further, if the slope of the linear line obtained from the two signal values is estimated to be smaller than the actual output characteristics of the laser, the amount of light of the laser may be larger than the target amount of light.

そこで、この発明は、上記従来の未解決の課題に着目してなされたものであり、レーザの発光量を、目標値を超えることなく、より高精度に制御することの可能な光量制御装置及び光量制御方法を提供することを目的としている。 Therefore, the present invention has been made by paying attention to the above-mentioned conventional unsolved problems, and is a light quantity control device capable of controlling the light emission amount of a laser with higher accuracy without exceeding a target value. It is an object of the present invention to provide a light amount control method.

本発明の一実施形態に係る光量制御装置は、光量設定値に応じた光量の光を対象物に照射する光源と、前記対象物で反射された前記光を受光する測距用受光部と、を有し、当該測距用受光部の出力信号に基づき前記対象物との間の距離を算出する測距装置に適用され、前記光源の発光量を制御する光量制御装置であって、光量設定値に応じて前記光源を駆動する駆動部と、前記光源から照射される前記光を直接又は間接的に受光する光量制御用受光部と、前記光量設定値の変化量に対する、前記光量制御用受光部での前記光の受光量の変化量の比が傾きとして格納される記憶部と、目標発光量に相当する光を照射し得る前記光量設定値を探索する光量設定値探索部と、前記目標発光量と前記光量制御用受光部での前記受光量との差分量を算出する差分量算出部と、を備え、前記光量設定値探索部は、前記駆動部により前記光量設定値に応じて前記光源を駆動する処理と、前記光源から照射される前記光を前記光量制御用受光部で直接又は間接的に受光した受光量から前記差分量算出部により前記差分量を算出する処理と、前記差分量と前記傾きとを用いて、前記光量制御用受光部での前記受光量が前記目標発光量と一致するように前記光量設定値を更新する処理と、を含む一連の処理を繰り返し行い、前記差分量が閾値以下となるときの前記光量設定値を、前記目標発光量に相当する光を照射し得る光量設定値として設定することを特徴としている。 The light amount control device according to the embodiment of the present invention includes a light source that irradiates an object with a light amount corresponding to a light amount set value, a distance measuring light receiving unit that receives the light reflected by the object, and a distance measuring light receiving unit. It is a light amount control device that controls the amount of light emitted from the light source, and is applied to a distance measuring device that calculates the distance to the object based on the output signal of the light receiving unit for distance measuring. A drive unit that drives the light source according to a value, a light amount control light receiving unit that directly or indirectly receives the light emitted from the light source, and a light amount control light receiving unit with respect to a change in the light amount set value. A storage unit that stores the ratio of the amount of change in the amount of light received by the unit as a gradient, a light amount setting value search unit that searches for the light amount setting value that can irradiate light corresponding to the target light emission amount, and the target. The light amount setting value search unit includes a difference amount calculation unit that calculates a difference amount between the light emission amount and the light reception amount in the light amount control light receiving unit, and the light amount setting value search unit is described by the drive unit according to the light amount setting value. The difference between the process of driving the light source and the process of calculating the difference amount by the difference amount calculation unit from the light received directly or indirectly by the light amount control light receiving unit. Using the amount and the inclination, a series of processes including the process of updating the light amount set value so that the light received amount in the light amount control light receiving unit matches the target light emitting amount is repeated, and the process is repeated. The feature is that the light amount setting value when the difference amount is equal to or less than the threshold value is set as a light amount setting value capable of irradiating light corresponding to the target light emission amount.

また、本発明の他の実施形態に係る光量制御方法は、光量設定値に応じた光量の光を対象物に照射する光源と、前記対象物で反射された前記光を受光する測距用受光部と、を有し、当該測距用受光部の出力信号に基づき前記対象物との間の距離を算出する測距装置における光量制御方法であって、前記光量設定値が第一の光量設定値であるときの、前記光源から照射される光を光量制御用受光部で直接又は間接的に受光した受光量である第一の受光量と、前記光量設定値が前記第一の光量設定値とは異なる第二の光量設定値であるときの、前記光源から照射される光を前記光量制御用受光部で直接又は間接的に受光した受光量である第二の受光量と、を検出することと、前記第一の光量設定値と前記第二の光量設定値との差である差分値と、前記第一の受光量と前記第二の受光量との差である差分量との比を傾きとして検出することと、前記光量設定値として、前記第一の光量設定値及び前記第二の光量設定値とは異なる第三の光量設定値を設定する処理と、当該第三の光量設定値に応じて前記光源を駆動し、前記光源から照射される光を前記光量制御用受光部で直接又は間接的に受光した受光量と目標発光量との差分量を算出する処理と、当該差分量と前記傾きとを用いて、前記受光量が前記目標発光量と一致するように前記第三の光量設定値を更新する処理と、を含む一連の処理を繰り返し行うことと、前記差分量が閾値以下となるときの前記第三の光量設定値を、前記目標発光量相当の光を照射し得る光量設定値として設定することと、を備えることを特徴としている。 Further, the light amount control method according to another embodiment of the present invention includes a light source that irradiates an object with a light amount corresponding to a light amount set value, and a distance measuring receiver that receives the light reflected by the object. It is a light amount control method in a distance measuring device that has a unit and calculates a distance from the object based on an output signal of the distance measuring light receiving unit, and the light amount setting value is the first light amount setting. When it is a value, the first light receiving amount which is the light receiving amount directly or indirectly received by the light amount control light receiving unit and the light amount setting value is the first light amount setting value. When the second light amount setting value is different from the above, the second light receiving amount, which is the light receiving amount that the light emitted from the light source is directly or indirectly received by the light amount controlling light receiving unit, is detected. The ratio of the difference value, which is the difference between the first light amount set value and the second light amount set value, and the difference amount, which is the difference between the first light receiving amount and the second light receiving amount. Is detected as a tilt, a process of setting a third light amount setting value different from the first light amount setting value and the second light amount setting value as the light amount setting value, and the third light amount setting. A process of driving the light source according to the value and calculating the difference between the light receiving amount directly or indirectly received by the light amount control light receiving unit and the target light emitting amount, and the difference. A series of processes including a process of updating the third light amount set value so that the received light amount matches the target light emission amount by using the amount and the inclination are repeated, and the difference amount is It is characterized in that the third light amount setting value when the value is equal to or less than the threshold value is set as a light amount setting value capable of irradiating light corresponding to the target light emission amount.

本発明の一態様によれば、光源の発光量を、目標値を超えることなく、より高精度に制御することができる。 According to one aspect of the present invention, the amount of light emitted from the light source can be controlled with higher accuracy without exceeding the target value.

本発明に係る光量制御装置を適用した測距装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the ranging apparatus to which the light amount control apparatus which concerns on this invention is applied. 光量制御装置の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of a light amount control device. APC回路の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of an APC circuit. フェーズPH1の動作説明に供する説明図である。It is explanatory drawing which provides the operation explanation of a phase PH1. フェーズPH2の動作説明に供する説明図である。It is explanatory drawing which provides the operation explanation of a phase PH2. フェーズPH3の動作説明に供する説明図である。It is explanatory drawing provided to the operation explanation of a phase PH3. 光量制御装置の動作説明に供する説明図である。It is explanatory drawing provided to the operation explanation of the light amount control apparatus. 光量制御装置の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of a light amount control apparatus. 従来の光量制御装置の一例示す機能ブロック図である。It is a functional block diagram which shows an example of the conventional light quantity control apparatus.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものである。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Next, an embodiment of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, the drawings are schematic. In addition, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, and arrangement of constituent parts. Etc. are not specified as the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.

<測距装置の構成>
図1は、本発明の一実施形態に係る光量制御装置を適用した、測距装置の一例を示す概略構成図である。
測距装置1は、半導体レーザ(光源)2と、レーザ駆動装置を含んで構成され半導体レーザ2を駆動制御する光量制御装置3と、イメージセンサ(測距用受光部)4と、測距部5とを備える。イメージセンサ4は、例えばフォトダイオード等を含んで構成され、半導体レーザ2が発光した光が測定対象物OBで反射された反射光を受光すると共に、イメージセンサ4の露光開始信号に同期して半導体レーザ2を駆動するタイミングを、レーザ発光タイミングとして光量制御装置3に出力する。測距部5は、測定対象物OBまでの距離を測定するために必要な半導体レーザ2の光量の目標値(以後、目標発光量ともいう。)を光量制御装置3に出力すると共に、イメージセンサ4が露光期間中に受光した、レーザ光の測定対象物OBからの反射光量から、測定対象物OBまでの距離を計算する。
<Configuration of ranging device>
FIG. 1 is a schematic configuration diagram showing an example of a distance measuring device to which the light amount control device according to the embodiment of the present invention is applied.
The distance measuring device 1 includes a semiconductor laser (light source) 2, a light amount control device 3 including a laser driving device for driving and controlling the semiconductor laser 2, an image sensor (light receiving unit for distance measuring) 4, and a distance measuring unit. 5 and. The image sensor 4 is configured to include, for example, a photodiode, and the light emitted by the semiconductor laser 2 receives the reflected light reflected by the measurement object OB, and the semiconductor is synchronized with the exposure start signal of the image sensor 4. The timing for driving the laser 2 is output to the light amount control device 3 as the laser emission timing. The distance measuring unit 5 outputs a target value (hereinafter, also referred to as a target light emitting amount) of the light amount of the semiconductor laser 2 required for measuring the distance to the object to be measured OB to the light amount control device 3 and an image sensor. The distance to the measurement target OB is calculated from the amount of reflected light from the measurement target OB of the laser beam received by 4 during the exposure period.

光量制御装置3は、APC(Auto Power Control:自動電力制御)回路16と、例えばフォトダイオードで構成される光量制御用の受光部(以後、光量制御用受光部という。)3aとを含む。光量制御装置3は、APC回路16により、半導体レーザ2の発光量が、測距部5から入力した半導体レーザ2の目標発光量となるように半導体レーザ2の駆動信号を調整し、調整した駆動信号を用いて半導体レーザ2を駆動する。 The light amount control device 3 includes an APC (Auto Power Control) circuit 16 and, for example, a light amount control light receiving unit (hereinafter, referred to as a light amount control light receiving unit) 3a composed of a photodiode. The light amount control device 3 adjusts the drive signal of the semiconductor laser 2 so that the light emission amount of the semiconductor laser 2 becomes the target light emission amount of the semiconductor laser 2 input from the distance measuring unit 5 by the APC circuit 16. The signal is used to drive the semiconductor laser 2.

<光量制御装置の構成>
図2は、本発明の一実施形態に係る光量制御装置3の一例を示すブロック図である。
光量制御装置3は、半導体レーザ2を駆動するDA変換器(DAC)(駆動部)11と、光量制御用受光部3aで検出された受光量を表す受光信号を電流−電圧変換するI−V変換器12と、発光量の基準値と発光量の目標値(つまり目標発光量)とのうちのいずれか一方を選択するセレクタ13と、I−V変換器12の出力信号つまり受光量を表す受光信号を+端子に入力し、セレクタ13で選択された発光量の基準値または目標発光量を−端子に入力し、これらの差分をとる差分増幅器(差分量算出部)14と、差分増幅器14から出力される差分値をデジタル値に変換するAD変換器(ADC)15と、AD変換器15の出力をもとに、半導体レーザ2の発光量を決定する光量設定値を設定するAPC回路16と、を備える。APC回路16で設定された光量設定値DASがDA変換器11でアナログ信号に変換され、変換されたアナログ信号が駆動信号として半導体レーザ2に供給される。これによって、半導体レーザ2は、発光量が、光量設定値で設定した発光量となるように駆動される。
<Configuration of light intensity control device>
FIG. 2 is a block diagram showing an example of a light amount control device 3 according to an embodiment of the present invention.
The light amount control device 3 is an IV that converts a light receiving signal representing the light receiving amount detected by the DA converter (DAC) (driving unit) 11 for driving the semiconductor laser 2 and the light receiving unit 3a for light amount control into current-voltage. The converter 12, the selector 13 that selects one of the reference value of the light emission amount and the target value of the light emission amount (that is, the target light emission amount), and the output signal of the IV converter 12, that is, the received light amount. The difference amplifier (difference amount calculation unit) 14 and the difference amplifier 14 that input the received light signal to the + terminal, input the reference value or target light emission amount of the light emission amount selected by the selector 13 to the-terminal, and take the difference between them. An AD converter (ADC) 15 that converts the difference value output from the output to a digital value, and an APC circuit 16 that sets a light amount setting value that determines the light emission amount of the semiconductor laser 2 based on the output of the AD converter 15. And. The light amount set value DAS set in the APC circuit 16 is converted into an analog signal by the DA converter 11, and the converted analog signal is supplied to the semiconductor laser 2 as a drive signal. As a result, the semiconductor laser 2 is driven so that the light emission amount becomes the light emission amount set by the light amount set value.

<APC回路の構成>
APC回路16は、光量設定値DASとして、任意の発光量であるDAB1(第一の光量設定値)及びDAB2(第二の光量設定値)を設定したときの、光量制御用受光部3aで検出される発光量それぞれを取得するフェーズPH1と、フェーズPH1で取得した発光量をもとに、光量制御用受光部3aで検出される発光量が目標発光量と一致する光量設定値を探索するフェーズPH2と、測距を行うフェーズPH3とを有する。
<APC circuit configuration>
The APC circuit 16 detects the light amount control light receiving unit 3a when DAB1 (first light amount set value) and DAB2 (second light amount set value), which are arbitrary light emission amounts, are set as the light amount set value DAS. Phase PH1 for acquiring each of the light emission amounts to be generated, and a phase for searching for a light amount setting value in which the light emission amount detected by the light amount control light receiving unit 3a matches the target light emission amount based on the light emission amount acquired in phase PH1. It has a PH2 and a phase PH3 for performing distance measurement.

図3は、APC回路16の一例を示す機能ブロック図である。
APC回路16は、光量設定値DASとして任意に設定した値であるDAB1を保持するブロック21及び同様に任意に設定したDAB2を保持するブロック22と、光量設定値DASとしてDAB1を設定したときの光量制御用受光部3aで検出された検出信号をI−V変換(I−V変換器12)し、予め設定した発光量の基準値(セレクタ13)との差をとり(差分増幅器14)、求めた差分をデジタル値に変換した値(AD変換器15)である受光量相当値ADA(第一の受光量)を保持するブロック23と、同様に、光量設定値DASとしてDAB2を設定したときの光量制御用受光部3aで検出された検出信号をI−V変換し、基準値との差分をとり、デジタル値に変換した受光量相当値ADB(第二の受光量)を保持するブロック24と、を備える。また、ブロック21及び22で保持する光量設定値DAB1及びDAB2の差分を光量設定値の差分値(つまり光量設定値の変化量)ΔSdaとして演算する演算器25と、ブロック23及び24で保持する受光量相当値ADA及びADBの差分を受光量相当値の差分量(つまり受光量の変化量)ΔRadとして演算する演算器26と、演算器26で演算した受光量相当値の差分量ΔRadを演算器25で演算した光量設定値の差分値ΔSdaで除算(ΔRad/ΔSda)する除算器(演算部)27と、除算器27での除算結果を傾きaとして保持する、フリップフロップまたはEEPROM等の一時記憶手段で形成される記憶部28と、ブロック23に格納される受光量相当値ADA又はADBを、記憶部28に格納した傾きaで除算する除算器(算出部)29と、後述のブロック31に格納された光量設定値DAS(i)と除算器29の出力とを加減算する加減算器(更新部)30と、加減算器30の出力を光量設定値DAS(i)として保持するブロック31と、目標発光量の光を発光し得る光量設定値DASとして確定されたときのDAS(i)が記憶されるメモリ32と、を備える。さらに、ブロック21及び22で保持する光量設定値DAB1とDAB2とを切り替えて出力するセレクタ33と、セレクタ33で選択された光量設定値DAB1またはDAB2と、加算器30の出力であるDAS(i)と、メモリ32に格納されたDAS(i)とのいずれかを選択するセレクタ34と、を備える。
FIG. 3 is a functional block diagram showing an example of the APC circuit 16.
The APC circuit 16 includes a block 21 that holds DAB1 that is an arbitrarily set value as the light amount set value DAS, a block 22 that holds DAB2 that is also arbitrarily set, and a light amount when DAB1 is set as the light amount set value DAS. The detection signal detected by the control light receiving unit 3a is converted to IV (IV converter 12), and the difference from the preset reference value (selector 13) of the amount of light emitted is obtained (difference amplifier 14). Similarly, when the light amount setting value DAS is set to DAB2, the block 23 holds the light receiving amount equivalent value ADA (first light receiving amount) which is the value obtained by converting the difference into a digital value (AD converter 15). With the block 24 that holds the light receiving amount equivalent value ADB (second light receiving amount) converted into a digital value by converting the detection signal detected by the light amount control light receiving unit 3a into IV and taking a difference from the reference value. , Equipped with. Further, the arithmetic unit 25 that calculates the difference between the light amount set values DAB1 and DAB2 held by the blocks 21 and 22 as the difference value of the light amount set value (that is, the amount of change in the light amount set value) ΔSda, and the light receiving light held by the blocks 23 and 24. The arithmetic unit 26 that calculates the difference between the amount equivalent value ADA and ADB as the difference amount of the light receiving amount equivalent value (that is, the amount of change in the light receiving amount) ΔRad, and the arithmetic unit 26 that calculates the difference amount ΔRad of the light receiving amount equivalent value calculated by the arithmetic unit 26. A divider (calculation unit) 27 that divides (ΔRad / ΔSda) by the difference value ΔSda of the light amount set value calculated in 25, and a temporary storage such as a flip flop or EEPROM that holds the division result by the divider 27 as the inclination a. The storage unit 28 formed by the means, the divider (calculation unit) 29 that divides the light receiving amount equivalent value ADA or ADB stored in the block 23 by the inclination a stored in the storage unit 28, and the block 31 described later. An addition / subtractor (update unit) 30 that adds / subtracts the stored light amount set value DAS (i) and the output of the divider 29, a block 31 that holds the output of the adder / subtractor 30 as the light amount set value DAS (i), and a target. A memory 32 for storing the DAS (i) when the light amount set value DAS that can emit the light of the light emission amount is determined is provided. Further, the selector 33 that switches and outputs the light amount set values DAB1 and DAB2 held by the blocks 21 and 22, the light amount set value DAB1 or DAB2 selected by the selector 33, and the DAS (i) that is the output of the adder 30. And a selector 34 for selecting one of the DAS (i) stored in the memory 32.

フェーズPH1では、光量制御装置3は、図4に示すように、差分増幅器14の−入力を基準値に設定する。また、光量設定値DASとして任意の値であるDAB1を設定し、光量設定値DASをDAB1として半導体レーザ2を駆動したときの光量制御用受光部3aの検出信号をI−V変換し、基準値との差分をデジタル値に変換した値である受光量相当値ADAをブロック23で保持する。また、このときの光量設定値DASであるDAB1をブロック21で保持する。 In the phase PH1, the light amount control device 3 sets the − input of the difference amplifier 14 as a reference value as shown in FIG. Further, DAB1 which is an arbitrary value is set as the light amount set value DAS, and the detection signal of the light amount control light receiving unit 3a when the semiconductor laser 2 is driven with the light amount set value DAS as DAB1 is converted into IV to a reference value. The light receiving amount equivalent value ADA, which is a value obtained by converting the difference between the above and the digital value into a digital value, is held by the block 23. Further, the DAB1 which is the light amount set value DAS at this time is held by the block 21.

次に、光量設定値DASとしてDAB1とは異なる任意のDAB2を設定し、光量設定値DASをDAB2として半導体レーザ2を駆動したときの光量制御用受光部3aの検出信号をI−V変換し、基準値との差分をデジタル値に変換した値である受光量相当値ADBをブロック24で保持する。
そして、受光量相当値ADAとADBとの差分量ΔRadを光量設定値DAB1とDAB2との差分値ΔSdaで除算し、除算結果を傾きaとして保存する。
Next, an arbitrary DAB2 different from DAB1 is set as the light amount set value DAS, and the detection signal of the light amount control light receiving unit 3a when the semiconductor laser 2 is driven with the light amount set value DAS as DAB2 is converted to IV. The block 24 holds the light receiving amount equivalent value ADB, which is a value obtained by converting the difference from the reference value into a digital value.
Then, the difference amount ΔRad between the received light amount equivalent value ADA and ADB is divided by the difference value ΔSda between the light amount set values DAB1 and DAB2, and the division result is saved as the slope a.

ここで、基準値は、ADC15の入力信号のコモンレベルを決めるための値である。基準値は、一般的には、「0.5×ADC15の入力レンジ」に設定されるが、0.5に限る必要は無い。
また、DAB1及びDAB2は、半導体レーザ2の出力特性として、光量設定値と光量設定値で半導体レーザ2が駆動されたときの受光量との対応を一次直線で表したときの傾きを求めるために任意に設定された値である。光量設定値DAB1及びDAB2は、半導体レーザ2の出力特性において線形性を有すると予測される比較的低い範囲内の値に設定される。
Here, the reference value is a value for determining the common level of the input signal of the ADC 15. The reference value is generally set to "0.5 x ADC 15 input range", but it does not have to be limited to 0.5.
Further, DAB1 and DAB2 are used to obtain the slope of the output characteristic of the semiconductor laser 2 when the correspondence between the light amount set value and the received light amount when the semiconductor laser 2 is driven by the light amount set value is expressed by a linear straight line. This is an arbitrarily set value. The light intensity set values DAB1 and DAB2 are set to values within a relatively low range that is predicted to have linearity in the output characteristics of the semiconductor laser 2.

フェーズPH2では、光量制御装置3は、図5に示すように、光量設定値DASとして任意の値DAS(i)(第三の光量設定値)を設定し、光量設定値DASをDAS(i)として半導体レーザ2を駆動したときの光量制御用受光部3aの検出信号を取得し、検出信号をI−V変換した受光量と、目標発光量との差分を求め、差分結果をデジタル値に変換した値を差分量Δdasとして求める。
ここで、光量設定値DASとして設定される任意の値DAS(i)(初期値)は、光量設定値DAB1及びDAB2とは異なる値に設定される。DAS(i)の初期値は、例えば、光量制御装置3が定める最小電流設定値に設定される。
In the phase PH2, as shown in FIG. 5, the light amount control device 3 sets an arbitrary value DAS (i) (third light amount set value) as the light amount set value DAS, and sets the light amount set value DAS to DAS (i). The detection signal of the light amount control light receiving unit 3a when the semiconductor laser 2 is driven is acquired, the difference between the light receiving amount obtained by converting the detection signal into IV and the target light emitting amount is obtained, and the difference result is converted into a digital value. The value obtained is obtained as the difference amount Δdas.
Here, the arbitrary value DAS (i) (initial value) set as the light amount setting value DAS is set to a value different from the light amount setting values DAB1 and DAB2. The initial value of DAS (i) is set to, for example, the minimum current set value defined by the light amount control device 3.

そして、求めた差分量Δdasを、フェーズPH1で求めた傾きaで除算する。この除算結果εDASとこのときの光量設定値であるDAS(i)とを加算し、加算結果DAS(i)+εDASを新たなDAS(i)として更新設定する。つまり、除算結果εDASは、目標発光量とこのときの光量設定値DAS(i)で駆動したときの実際の発光量との差分相当の発光量の光を発生させるために必要な光量設定値を表す。すなわち、除算結果εDASは目標発光量で発光させるための、光量設定値DAS(i)の補正量とも言える。したがって、除算結果(以下、補正量ともいう。)εDASとこのときの光量設定値DAS(i)とを加算した値で、半導体レーザ2を駆動することによって、目標発光量と同等の発光量の光が発光されると推測される。 Then, the obtained difference amount Δdas is divided by the slope a obtained in the phase PH1. The division result εDAS and the light amount setting value DAS (i) at this time are added, and the addition result DAS (i) + εDAS is updated and set as a new DAS (i). That is, the division result εDAS is the light amount setting value required to generate the light amount equivalent to the difference between the target light emission amount and the actual light emission amount when driven by the light amount setting value DAS (i) at this time. Represent. That is, the division result εDAS can be said to be a correction amount of the light amount set value DAS (i) for emitting light at the target light emission amount. Therefore, by driving the semiconductor laser 2 with the value obtained by adding the division result (hereinafter, also referred to as the correction amount) εDAS and the light amount set value DAS (i) at this time, the light emission amount equivalent to the target light emission amount can be obtained. It is presumed that light is emitted.

そして、新たな光量設定値DAS(i)を用いて、同様にして、光量設定値がDAS(i)であるときの発光量を検出し、これらの差分量Δdasを算出し、傾きaで除算し、補正量εDASを算出する。この補正量εDASが略零とみなすことの可能な閾値以下となったとき、このときの光量設定値として設定したDAS(i)を、半導体レーザ2の発光量が目標発光量と同等となる光量設定値とみなし、ブロック31で保持するDAS(i)を、メモリ32に記憶する。 Then, using the new light quantity set value DAS (i), the light emission amount when the light quantity set value is DAS (i) is detected in the same manner, the difference amount Δdas thereof is calculated, and the difference is divided by the slope a. Then, the correction amount εDAS is calculated. When this correction amount εDAS becomes equal to or less than a threshold value that can be regarded as substantially zero, the light emission amount of the semiconductor laser 2 is equal to the target light emission amount of the DAS (i) set as the light amount setting value at this time. The DAS (i), which is regarded as a set value and is held in the block 31, is stored in the memory 32.

フェーズPH3では、光量制御装置3は、図6に示すように、メモリ32に記憶したDAS(i)を、光量設定値DASとして設定し、DA変換器11に出力する。これにより、半導体レーザ2の発光量は目標発光量と同等となる。なお、フェーズPH3では、光量制御用受光部3aは、半導体レーザ2の照射光を受光するが、光量制御装置3では、光量制御用受光部3aの検出信号に対しては処理を行わない。
なお、図4〜図6では、各フェーズにおいて利用しない機能ブロックは、点線で示している。
In the phase PH3, as shown in FIG. 6, the light amount control device 3 sets the DAS (i) stored in the memory 32 as the light amount set value DAS, and outputs the DAS (i) to the DA converter 11. As a result, the light emission amount of the semiconductor laser 2 becomes equivalent to the target light emission amount. In the phase PH3, the light amount control light receiving unit 3a receives the irradiation light of the semiconductor laser 2, but the light amount control device 3 does not process the detection signal of the light amount control light receiving unit 3a.
In FIGS. 4 to 6, functional blocks that are not used in each phase are indicated by dotted lines.

<測距時の動作>
次に、測距装置1の動作を説明する。
測距装置1では、測距を行う前に、目標発光量を得ることの可能な光量設定値DASを探索する。
まず、光量制御装置3により、図4に示すフェーズPH1を実行する。すなわち、セレクタ13で発光量の基準値を選択する。また、セレクタ33、34で、光量設定値としてDAB1及びDAB2を順に選択して、このときの発光量をそれぞれ検出し、受光量相当値ADA、ADBを取得する。そして、受光量相当値ADAとADBとの差分量ΔRadと、光量設定値DAB1とDAB2との差分値ΔSdaとから傾きaを算出する。
<Operation during distance measurement>
Next, the operation of the distance measuring device 1 will be described.
The distance measuring device 1 searches for a light amount set value DAS capable of obtaining a target light emission amount before performing distance measuring.
First, the light amount control device 3 executes the phase PH1 shown in FIG. That is, the selector 13 selects a reference value for the amount of light emitted. Further, the selectors 33 and 34 sequentially select DAB1 and DAB2 as the light amount setting values, detect the light emission amount at this time, and acquire the received light amount equivalent values ADA and ADB, respectively. Then, the slope a is calculated from the difference amount ΔRad between the received light amount equivalent values ADA and ADB and the difference value ΔSda between the light amount set values DAB1 and DAB2.

次に、光量制御装置3により、図5に示すフェーズPH2を実行し、セレクタ13で目標発光量を選択する。また、セレクタ34で加算器30の出力を選択する。光量設定値DASとして、任意のDAS(i)を設定し、このときの受光量を検出し、検出した発光量と目標発光量との差分量Δdasを算出する。この差分量Δdasを、フェーズPH1で算出した傾きaで除算して補正量εDASを算出し、光量設定値DASとして設定しているDAS(i)と、補正量εDASとを加算し、加算結果を新たなDAS(i)とする。
続いて、この新たなDAS(i)を光量設定値DASとして、同様の手順で受光量を取得し、目標発光量の差分から補正量εDASを算出する。
この処理を繰り返し行い、目標発光量と受光量との差分量Δdasが略零となったときの光量設定値DAS(i)を取得する。
Next, the light amount control device 3 executes the phase PH2 shown in FIG. 5, and the selector 13 selects the target light emission amount. Further, the output of the adder 30 is selected by the selector 34. An arbitrary DAS (i) is set as the light amount set value DAS, the received light amount at this time is detected, and the difference amount Δdas between the detected light emission amount and the target light emission amount is calculated. The difference amount Δdas is divided by the slope a calculated in the phase PH1 to calculate the correction amount εDAS, and the DAS (i) set as the light amount set value DAS and the correction amount εDAS are added to obtain the addition result. Let it be a new DAS (i).
Subsequently, using this new DAS (i) as the light amount set value DAS, the received light amount is acquired by the same procedure, and the correction amount εDAS is calculated from the difference in the target light emission amount.
This process is repeated to acquire the light amount set value DAS (i) when the difference amount Δdas between the target light emission amount and the light reception amount becomes substantially zero.

ここで、図7に示すように、横軸を光量設定値DASとし、縦軸を光量制御用受光部3aで検出した受光量をA/D変換した受光量ADとしたとき、光量設定値DASとして設定したDAB1、DAB2と、このときの受光量ADである、ADA、ADBとから、これら2つの点(DAB1,ADA)と(DAB2,ADB)を通る一次直線を想定することができ、その傾きaは、a=(ADB−ADA)/(DAB2−DAB1)で表すことができる。この一次直線は、半導体レーザ2の発光量の出力特性が線形性を有すると仮定したときの、光量設定値と受光量との関係を示す。 Here, as shown in FIG. 7, when the horizontal axis is the light amount set value DAS and the vertical axis is the light receiving amount AD detected by the light amount control light receiving unit 3a, the light amount set value DAS is used. From DAB1 and DAB2 set as, and ADA and ADB which are the received light amount AD at this time, a linear straight line passing through these two points (DAB1, ADA) and (DAB2, ADB) can be assumed. The slope a can be represented by a = (ADB-ADA) / (DAB2-DAB1). This linear line shows the relationship between the light quantity set value and the light reception amount when it is assumed that the output characteristic of the light emission amount of the semiconductor laser 2 has linearity.

一方、光量設定値DASとして、任意のDAS(i)を設定したときの受光量であるADx(i)と、目標発光量との差分量つまり、AD変換器15の出力であるΔdas(i)は、発光量の不足分相当値であり、この不足分相当だけより多く発光させる必要がある。そのため、発光量の不足分相当の光を発光させるために必要な補正量εDAS(i)を、このときの光量設定値DAS(i)に加算する。
そして、補正量εDASと光量設定値DAS(i)との加算結果をDAS(i+1)とすると、今度は、光量設定値をDAS(i+1)として半導体レーザ2が駆動される。同様にして、このときの受光量ADx(i+1)と目標発光量との差分量Δdas(i+1)を算出し、補正量εDAS(i+1)を光量設定値DAS(i+1)に加算する。この加算結果をDAS(i+2)とし、今度は、DAS(i+2)を光量設定値DASとして、半導体レーザ2が駆動される。
On the other hand, the difference between ADx (i), which is the amount of light received when an arbitrary DAS (i) is set as the light amount set value DAS, and the target light emission amount, that is, Δdas (i), which is the output of the AD converter 15. Is a value corresponding to the shortage of the amount of light emitted, and it is necessary to emit more light corresponding to the shortage. Therefore, the correction amount εDAS (i) required to emit light corresponding to the insufficient amount of light emission is added to the light amount set value DAS (i) at this time.
Then, assuming that the addition result of the correction amount εDAS and the light amount set value DAS (i) is DAS (i + 1), the semiconductor laser 2 is driven with the light amount set value as DAS (i + 1). Similarly, the difference amount Δdas (i + 1) between the received light amount ADx (i + 1) and the target light emission amount at this time is calculated, and the correction amount εDAS (i + 1) is added to the light amount set value DAS (i + 1). The semiconductor laser 2 is driven with the addition result as DAS (i + 2) and this time with DAS (i + 2) as the light intensity set value DAS.

ここで、光量設定値として設定されたDAS(i)は、図7に示すように、目標発光量と受光量との差分だけより多くの光量を発光する値に更新されるため、受光量は、目標発光量に近づいていくことになる。
そして、目標発光量と受光量との差分量Δdasが略零とみなすことが可能となったとき、このときの光量設定値DAS(i+n)は、受光量が目標発光量と略一致する値を意味する。
Here, as shown in FIG. 7, the DAS (i) set as the light amount setting value is updated to a value that emits a larger amount of light by the difference between the target light emission amount and the light reception amount, so that the light reception amount is , The target emission amount will be approached.
Then, when the difference amount Δdas between the target light emission amount and the light reception amount can be regarded as substantially zero, the light amount setting value DAS (i + n) at this time is a value at which the light reception amount substantially matches the target light emission amount. means.

したがって、このときの光量設定値DAS(i+n)をメモリ32に記憶しておき、測距を行うときには、図6のフェーズPH3に示すように、メモリ32に記憶したDAS(i+n)を光量設定値DASとして用いることによって、半導体レーザ2の発光量を、目標発光量に維持することができる。
これによって、半導体レーザ2は、目標発光量に相当する一定の発光量で光を照射する。そのため、発光量のばらつきに起因して測距精度が低下することが回避される。
Therefore, when the light amount setting value DAS (i + n) at this time is stored in the memory 32 and the distance measurement is performed, the DAS (i + n) stored in the memory 32 is stored in the memory amount setting value as shown in the phase PH3 of FIG. By using it as DAS, the light emission amount of the semiconductor laser 2 can be maintained at the target light emission amount.
As a result, the semiconductor laser 2 irradiates light with a constant light emission amount corresponding to the target light emission amount. Therefore, it is possible to avoid a decrease in distance measurement accuracy due to variations in the amount of light emitted.

図8は、光量制御装置3において、目標発光量を発光させるための光量設定値DASを探索する際の処理手順の一例を示すフローチャートである。
光量制御装置3では、まず、差分増幅器14の−入力として、発光量の基準値を設定する(ステップS1)。次に、DA変換器11に入力する光量設定値DASとして任意のDAB1を設定する(ステップS2)。
これにより、半導体レーザ2が駆動され、このときの受光量と発光量の基準値との差分が、受光量相当値ADAとして保持される(ステップS3)。
FIG. 8 is a flowchart showing an example of a processing procedure when searching for a light quantity set value DAS for emitting a target light emission amount in the light quantity control device 3.
In the light quantity control device 3, first, a reference value of the light emission amount is set as a negative input of the difference amplifier 14 (step S1). Next, an arbitrary DAB1 is set as the light amount setting value DAS to be input to the DA converter 11 (step S2).
As a result, the semiconductor laser 2 is driven, and the difference between the light receiving amount and the light emitting amount reference value at this time is held as the light receiving amount equivalent value ADA (step S3).

次に、DA変換器11に入力する光量設定値DASとして任意のDAB2を設定する(ステップS4)。
これにより、半導体レーザ2が駆動され、このときの受光量と発光量の基準値との差分が、受光量相当値ADBとして保持される(ステップS5)。
続いて、光量設定値DASとして設定したDAB1及びDAB2の差分と、そのときの受光量相当値ADA及びADBの差分とから、傾きaを演算する(ステップS6)。ここで、ステップS1からステップS6の処理が図4に示すフェーズPH1に対応している。
Next, an arbitrary DAB2 is set as the light amount setting value DAS to be input to the DA converter 11 (step S4).
As a result, the semiconductor laser 2 is driven, and the difference between the light receiving amount and the light emitting amount reference value at this time is held as the light receiving amount equivalent value ADB (step S5).
Subsequently, the slope a is calculated from the difference between the DAB1 and DAB2 set as the light amount set value DAS and the difference between the received light amount equivalent values ADA and ADB at that time (step S6). Here, the processes of steps S1 to S6 correspond to the phase PH1 shown in FIG.

続いて、差分増幅器14の−入力として目標値(目標発光量)を設定する(ステップS7)。また、DA変換器11に入力する光量設定値DASとして、任意のDAS(i)を設定する(ステップS8)。
これにより、半導体レーザ2が駆動され、このときの受光量と目標発光量との差分が、差分量Δdasとして演算される(ステップS9)。
ステップS9で演算した差分量Δdasが零でないとき、つまり、予め設定した閾値よりも大きく零でないとみなされるときには(ステップS10)、差分量Δdasを傾きaで除算し、補正量εDASを光量設定値DASとして設定したDAS(i)に加算し、加算結果を新たなDAS(i)として更新する(ステップS11)。
Subsequently, a target value (target light emission amount) is set as the − input of the difference amplifier 14 (step S7). Further, an arbitrary DAS (i) is set as the light amount setting value DAS to be input to the DA converter 11 (step S8).
As a result, the semiconductor laser 2 is driven, and the difference between the light receiving amount and the target light emitting amount at this time is calculated as the difference amount Δdas (step S9).
When the difference amount Δda calculated in step S9 is not zero, that is, when it is considered to be larger than the preset threshold value and not zero (step S10), the difference amount Δdas is divided by the slope a, and the correction amount εDAS is the light amount set value. It is added to the DAS (i) set as the DAS, and the addition result is updated as a new DAS (i) (step S11).

そして、新たなDAS(i)を光量設定値DASとして設定し(ステップS12)、ステップS9に戻る。つまり、新たなDAS(i)で半導体レーザ2が駆動されたときの受光量と目標発光量との差分が、差分量Δdasとして演算される。差分量Δdasが零になったとみなされるまでステップS9からステップS12の処理が繰り返し行われ、差分量Δdasが閾値を下回り、零となったとみなされる値になったとき、ステップS13に移行し、この時点におけるDAS(i)を、目標発光量相当の光照射を行うことの可能な値としてメモリ32に記憶し処理を終了する。ここで、ステップS7からステップS13の処理がフェーズPH2及び光量設定値探索部に対応している。 Then, a new DAS (i) is set as the light intensity set value DAS (step S12), and the process returns to step S9. That is, the difference between the light receiving amount and the target light emitting amount when the semiconductor laser 2 is driven by the new DAS (i) is calculated as the difference amount Δ das. The processing of steps S9 to S12 is repeated until the difference amount Δdas is considered to be zero, and when the difference amount Δdas falls below the threshold value and reaches a value considered to be zero, the process proceeds to step S13. The DAS (i) at the time point is stored in the memory 32 as a value capable of irradiating light corresponding to the target light emission amount, and the process is completed. Here, the processes from step S7 to step S13 correspond to the phase PH2 and the light amount set value search unit.

測距装置1では、このようにして、目標発光量相当の光照射を行うことの可能な光量設定値を演算した後、測距を行う。光量制御装置3では、測距を行うときには、メモリ32に記憶されたDAS(i)を光量設定値として設定する(図6 フェーズPH3)。これにより、半導体レーザ2の発光量は、目標発光量となるように制御されることになる。 In the distance measuring device 1, the distance is measured after calculating the light amount set value capable of irradiating the light equivalent to the target light emission amount in this way. When performing distance measurement, the light amount control device 3 sets the DAS (i) stored in the memory 32 as the light amount setting value (FIG. 6, phase PH3). As a result, the light emission amount of the semiconductor laser 2 is controlled so as to be the target light emission amount.

以上説明したように、測距装置1では、測距を行う前に、実際の発光量が目標発光量と一致し得る光量設定値DASを探索し、探索した光量設定値DASを用いて測距を行うようにしている。そのため、温度特性や、個体間のばらつき等に関係なく、半導体レーザ2の発光量を、目標発光量に一致させることができる。また、目標発光量相当の発光量を得ることの可能な光量設定値DASを探索する際には、半導体レーザ2の出力特性が、光量設定値DASとして任意に設定したDAS1及びDAS2を通る一次直線に沿って変化すると予測してこの一次直線の傾きを算出し、目標発光量と検出した受光量との差分量Δdasを、一次直線の傾きaで除算した値ずつ、光量設定値DASを変更して、受光量が目標発光量と一致し得る光量設定値DASを探索している。そのため、受光量が目標発光量よりも小さい状態から徐々に目標発光量に近づくように、光量設定値DASが探索されることになる。その結果、仮に、任意に設定したDAS1及びDAS2を通る一次直線の傾きaが実際の半導体レーザ2の出力特性における傾きよりも小さな値に見積もられたとしても、受光量が目標発光量を上回ることを回避することができ、Eye Safetyの観点から好ましい。 As described above, in the distance measuring device 1, before performing distance measurement, a light amount set value DAS in which the actual light emission amount can match the target light emission amount is searched, and the distance measurement is performed using the searched light amount set value DAS. I try to do. Therefore, the light emission amount of the semiconductor laser 2 can be made to match the target light emission amount regardless of the temperature characteristics, the variation among individuals, and the like. Further, when searching for a light amount set value DAS capable of obtaining a light emission amount equivalent to the target light emission amount, the output characteristic of the semiconductor laser 2 passes through DAS1 and DAS2 arbitrarily set as the light amount set value DAS. The slope of this linear line is calculated by predicting that it will change along the line, and the light amount setting value DAS is changed by the value obtained by dividing the difference amount Δdas between the target light emission amount and the detected light receiving amount by the slope a of the linear line. Therefore, we are searching for a light quantity set value DAS in which the light reception amount can match the target light emission amount. Therefore, the light amount set value DAS is searched so that the light receiving amount gradually approaches the target light emitting amount from a state where the received light amount is smaller than the target light emitting amount. As a result, even if the slope a of the linear line passing through the arbitrarily set DAS1 and DAS2 is estimated to be smaller than the slope in the actual output characteristics of the semiconductor laser 2, the amount of received light exceeds the target amount of light emitted. This can be avoided, which is preferable from the viewpoint of Eye Safety.

特に、半導体レーザは、駆動信号が小さい領域では線形性を有し、駆動信号が大きくなるほど、発光量の変化量が小さくなる非線形の出力特性を有するため、駆動信号の変化量が同一であっても、発光量が比較的小さい線形領域では傾きaは大きくなり、発光量が比較的大きい非線形領域では傾きaは小さくなる。したがって、一次直線の傾きaを求める際に光量設定値DASとして設定する任意のDAB1及びDAB2は、傾きaが比較的大きくなる線形性を有する領域内の値に設定することが好ましく、このように、線形性を有する領域内の値を通る一次直線から得た傾きaを用いて、光量設定値DAS(i)の補正量εDASを生成することで、発光量が目標発光量を超えることを回避することができ好適である。 In particular, the semiconductor laser has linearity in a region where the drive signal is small, and has a non-linear output characteristic in which the amount of change in the amount of light emitted decreases as the drive signal increases. Therefore, the amount of change in the drive signal is the same. However, the slope a becomes large in the linear region where the amount of light emitted is relatively small, and the slope a becomes small in the non-linear region where the amount of light emitted is relatively large. Therefore, it is preferable that any DAB1 and DAB2 set as the light amount set value DAS when obtaining the slope a of the linear straight line is set to a value within a region having a linearity in which the slope a becomes relatively large. By generating the correction amount εDAS of the light amount set value DAS (i) by using the slope a obtained from the linear straight line passing through the value in the region having linearity, it is possible to prevent the light emission amount from exceeding the target light emission amount. It is suitable because it can be used.

また、測距装置1が使用される温度環境や、測距装置1の個体のばらつき等によって、半導体レーザ2の出力特性が変化した場合であっても、上述の手順で、受光量が目標発光量と一致し得る光量設定値DASを探索し、探索した光量設定値DASを用いて半導体レーザ2を駆動することにより、半導体レーザ2を、その発光量が目標発光量となるように駆動することができる。そのため、半導体レーザ2の発光量が目標発光量と異なることに起因して生じる、測距装置1での測距精度の低下を抑制することができる。 Further, even if the output characteristics of the semiconductor laser 2 change due to the temperature environment in which the distance measuring device 1 is used, the individual variation of the distance measuring device 1, or the like, the amount of received light is targeted for light emission by the above procedure. By searching for the light amount set value DAS that can match the amount and driving the semiconductor laser 2 using the searched light amount set value DAS, the semiconductor laser 2 is driven so that the light emission amount becomes the target light emission amount. Can be done. Therefore, it is possible to suppress a decrease in the distance measurement accuracy of the distance measuring device 1 caused by the light emission amount of the semiconductor laser 2 being different from the target light emission amount.

例えば、出荷前に発光量が目標発光量と一致し得る光量設定値DASを探索してメモリ32に記憶しておき、出荷後、測距を行う場合には、メモリ32に記憶しておいた光量設定値DASを用いて測距を行うことで、個体のばらつき等の影響を受けることなく、一定の発光量で測距を行うことができる。また、例えば、測距を実行する前に、発光量が目標発光量となり得る光量設定値DASを探索し、測距を行う場合には、この探索した光量設定値DASを用いることで、測距装置1の置かれた周囲の温度環境、或いは、経年劣化等により半導体レーザ2の出力特性が変化した場合であっても、目標発光量相当の発光量で半導体レーザ2を発光させることができる。 For example, the light amount set value DAS whose light emission amount can match the target light emission amount is searched for and stored in the memory 32 before shipment, and stored in the memory 32 when distance measurement is performed after shipment. By performing distance measurement using the light amount set value DAS, distance measurement can be performed with a constant light emission amount without being affected by individual variations or the like. Further, for example, before performing distance measurement, a light amount setting value DAS in which the light emission amount can be a target light emission amount is searched, and when performing distance measurement, the distance measurement is performed by using the searched light amount setting value DAS. Even when the output characteristics of the semiconductor laser 2 change due to the temperature environment around the device 1 or deterioration over time, the semiconductor laser 2 can emit light with a light emission amount equivalent to the target light emission amount.

なお、上記実施形態においては、半導体レーザ2から照射されるレーザ光を直接光量制御用受光部3aで受光する場合について説明したが、これに限るものではなく、反射されたレーザ光を光量制御用受光部3aで受光し、この検出信号を用いて、目標発光量相当の光照射を行うことの可能な光量設定値を演算するようにしてもよい。 In the above embodiment, the case where the laser light emitted from the semiconductor laser 2 is directly received by the light amount control light receiving unit 3a has been described, but the present invention is not limited to this, and the reflected laser light is used for light amount control. The light receiving unit 3a may receive light, and the detection signal may be used to calculate a light amount setting value capable of irradiating light corresponding to the target light emission amount.

以上、本発明の実施形態を説明したが、上記実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Although the embodiment of the present invention has been described above, the above-described embodiment illustrates an apparatus or method for embodying the technical idea of the present invention, and the technical idea of the present invention is a component component. It does not specify the material, shape, structure, arrangement, etc. of The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.

1 測距装置
2 半導体レーザ
3 光量制御装置
3a 光量制御用受光部
4 イメージセンサ
5 測距部
11 DA変換器
12 I−V変換器
13 セレクタ
14 差分増幅器
15 AD変換器
16 自動電力制御回路(APC回路)
1 Distance measuring device 2 Semiconductor laser 3 Light amount control device 3a Light receiving part for light amount control 4 Image sensor 5 Distance measuring unit 11 DA converter 12 IV converter 13 Selector 14 Difference amplifier 15 AD converter 16 Automatic power control circuit (APC) circuit)

Claims (7)

光量設定値に応じた光量の光を対象物に照射する光源と、前記対象物で反射された前記光を受光する測距用受光部と、を有し、当該測距用受光部の出力信号に基づき前記対象物との間の距離を算出する測距装置に適用され、前記光源の発光量を制御する光量制御装置であって、
光量設定値に応じて前記光源を駆動する駆動部と、
前記光源から照射される前記光を直接又は間接的に受光する光量制御用受光部と、
前記光量設定値の変化量に対する、前記光量制御用受光部での前記光の受光量の変化量の比が傾きとして格納される記憶部と、
目標発光量に相当する光を照射し得る前記光量設定値を探索する光量設定値探索部と、
前記目標発光量と前記光量制御用受光部での前記受光量との差分量を算出する差分量算出部と、を備え、
前記光量設定値探索部は、前記駆動部により前記光量設定値に応じて前記光源を駆動する処理と、前記光源から照射される前記光を前記光量制御用受光部で直接又は間接的に受光した受光量から前記差分量算出部により前記差分量を算出する処理と、前記差分量と前記傾きとを用いて、前記光量制御用受光部での前記受光量が前記目標発光量と一致するように前記光量設定値を更新する処理と、を含む一連の処理を繰り返し行い、前記差分量が閾値以下となるときの前記光量設定値を、前記目標発光量に相当する光を照射し得る光量設定値として設定する光量制御装置。
It has a light source that irradiates an object with a light amount corresponding to a light amount set value, and a distance measuring light receiving unit that receives the light reflected by the object, and an output signal of the distance measuring light receiving unit. It is a light amount control device that is applied to a distance measuring device that calculates the distance to the object based on the above, and controls the amount of light emitted from the light source.
A drive unit that drives the light source according to the light intensity set value,
A light receiving unit for controlling the amount of light that directly or indirectly receives the light emitted from the light source.
A storage unit in which the ratio of the amount of change in the amount of light received by the light receiving unit for controlling the amount of light to the amount of change in the set value of light is stored as a slope, and a storage unit.
A light amount setting value search unit that searches for the light amount setting value that can irradiate light corresponding to the target light emission amount, and a light amount setting value search unit.
A difference amount calculation unit for calculating the difference amount between the target light emission amount and the light reception amount in the light amount control light receiving unit is provided.
The light quantity set value search unit receives the process of driving the light source according to the light quantity set value by the drive unit and the light emitted from the light source directly or indirectly by the light quantity control light receiving unit. By using the process of calculating the difference amount from the received light amount by the difference amount calculating unit and the difference amount and the inclination, the received light amount in the light amount control light receiving unit is made to match the target light emitting amount. A series of processes including the process of updating the light amount set value and the process of updating the light amount set value are repeated, and the light amount set value when the difference amount becomes equal to or less than the threshold value can be used to irradiate light corresponding to the target light emission amount. Light intensity control device to be set as.
前記光量設定値探索部は、前記差分量と前記傾きとから前記差分量に相当する発光量を得るために必要な前記光量設定値の補正値を算出する算出部と、
前記算出部で算出した前記補正値と当該補正値を算出したときの前記光量設定値とを加算し、加算結果を、新たな前記光量設定値として更新設定する更新部と、を備える請求項1に記載の光量制御装置。
The light amount setting value search unit includes a calculation unit that calculates a correction value of the light amount setting value necessary for obtaining a light emission amount corresponding to the difference amount from the difference amount and the inclination.
Claim 1 includes an update unit that adds the correction value calculated by the calculation unit and the light amount setting value when the correction value is calculated, and updates and sets the addition result as a new light amount setting value. The light intensity control device according to.
前記算出部は、前記差分量を前記傾きで除算した値を前記補正値として算出する請求項2に記載の光量制御装置。 The light amount control device according to claim 2, wherein the calculation unit calculates a value obtained by dividing the difference amount by the slope as the correction value. 第一の光量設定値が設定されたときの前記光量制御用受光部での前記受光量と前記第一の光量設定値とは異なる第二の光量設定値が設定されたときの前記光量制御用受光部での前記受光量との差である差分量と、前記第一の光量設定値と前記第二の光量設定値との差である差分値との比を前記傾きとして演算する傾き演算部を備える請求項1から請求項3のいずれか一項に記載の光量制御装置。 For the light amount control when a second light amount setting value different from the light reception amount in the light amount control light receiving unit when the first light amount setting value is set and the first light amount setting value is set. A tilt calculation unit that calculates the ratio of the difference amount, which is the difference between the light receiving amount and the light receiving amount, and the difference value, which is the difference between the first light amount set value and the second light amount set value, as the tilt. The light amount control device according to any one of claims 1 to 3. 前記光源は、発光量が低い領域で線形性を有する出力特性を有し、
前記第一の光量設定値及び前記第二の光量設定値は、前記第一の光量設定値及び前記第二の光量設定値が前記光量設定値として設定されたときの前記光源の出力が前記線形性を有する領域内の値である請求項4に記載の光量制御装置。
The light source has an output characteristic having linearity in a region where the amount of light emitted is low.
In the first light amount setting value and the second light amount setting value, the output of the light source when the first light amount setting value and the second light amount setting value are set as the light amount setting value is linear. The light quantity control device according to claim 4, which is a value within a region having a property.
光量設定値に応じた光量の光を対象物に照射する光源と、前記対象物で反射された前記光を受光する測距用受光部と、を有し、当該測距用受光部の出力信号に基づき前記対象物との間の距離を算出する測距装置における光量制御方法であって、
前記光量設定値が第一の光量設定値であるときの、前記光源から照射される光を光量制御用受光部で直接又は間接的に受光した受光量である第一の受光量と、前記光量設定値が前記第一の光量設定値とは異なる第二の光量設定値であるときの、前記光源から照射される光を前記光量制御用受光部で直接又は間接的に受光した受光量である第二の受光量と、を検出することと、
前記第一の光量設定値と前記第二の光量設定値との差である差分値と、前記第一の受光量と前記第二の受光量との差である差分量との比を傾きとして検出することと、
前記光量設定値として、前記第一の光量設定値及び前記第二の光量設定値とは異なる第三の光量設定値を設定する処理と、当該第三の光量設定値に応じて前記光源を駆動し、前記光源から照射される光を前記光量制御用受光部で直接又は間接的に受光した受光量と目標発光量との差分量を算出する処理と、当該差分量と前記傾きとを用いて、前記受光量が前記目標発光量と一致するように前記第三の光量設定値を更新する処理と、を含む一連の処理を繰り返し行うことと、
前記差分量が閾値以下となるときの前記第三の光量設定値を、前記目標発光量相当の光を照射し得る光量設定値として設定することと、を備える光量制御方法。
It has a light source that irradiates an object with a light amount corresponding to a light amount set value, and a distance measuring light receiving unit that receives the light reflected by the object, and an output signal of the distance measuring light receiving unit. A method for controlling the amount of light in a distance measuring device that calculates the distance to the object based on the above.
When the light amount set value is the first light amount set value, the first light receiving amount which is the received light amount directly or indirectly received by the light amount control light receiving unit and the light amount when the light emitted from the light source is received. This is the amount of light received directly or indirectly by the light amount control light receiving unit when the set value is a second light amount set value different from the first light amount set value. To detect the second amount of light received,
The ratio of the difference value, which is the difference between the first light amount set value and the second light amount set value, and the difference amount, which is the difference between the first light receiving amount and the second light receiving amount, is used as the slope. To detect and
A process of setting a third light amount setting value different from the first light amount setting value and the second light amount setting value as the light amount setting value, and driving the light source according to the third light amount setting value. Then, using the process of calculating the difference amount between the light reception amount directly or indirectly received by the light amount control light receiving unit and the target light emission amount, and the difference amount and the inclination. , Repeating a series of processes including the process of updating the third light amount set value so that the received light amount matches the target light emitting amount, and
A light amount control method comprising setting the third light amount setting value when the difference amount is equal to or less than a threshold value as a light amount setting value capable of irradiating light corresponding to the target light emission amount.
前記一連の処理を繰り返し行うことは、
前記差分量の発光量を得るために必要な前記光量設定値の補正値を算出し、当該補正値と、当該補正値を算出したときの前記光量設定値とを加算した値を、前記第三の光量設定値として更新設定することである請求項6に記載の光量制御方法。
Repeating the series of processes
The correction value of the light amount setting value required to obtain the light emission amount of the difference amount is calculated, and the value obtained by adding the correction value and the light amount setting value when the correction value is calculated is the third. The light amount control method according to claim 6, wherein the light amount setting value is updated and set.
JP2019204153A 2019-11-11 2019-11-11 Light quantity controller and light quantity control method Pending JP2021076496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019204153A JP2021076496A (en) 2019-11-11 2019-11-11 Light quantity controller and light quantity control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019204153A JP2021076496A (en) 2019-11-11 2019-11-11 Light quantity controller and light quantity control method

Publications (1)

Publication Number Publication Date
JP2021076496A true JP2021076496A (en) 2021-05-20

Family

ID=75897519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204153A Pending JP2021076496A (en) 2019-11-11 2019-11-11 Light quantity controller and light quantity control method

Country Status (1)

Country Link
JP (1) JP2021076496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074208A1 (en) * 2021-10-28 2023-05-04 株式会社デンソー Control device, control method, and control program
WO2023074206A1 (en) * 2021-10-28 2023-05-04 株式会社デンソー Control device, control method, and control program
WO2023074207A1 (en) * 2021-10-28 2023-05-04 株式会社デンソー Control device, control method, and control program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074208A1 (en) * 2021-10-28 2023-05-04 株式会社デンソー Control device, control method, and control program
WO2023074206A1 (en) * 2021-10-28 2023-05-04 株式会社デンソー Control device, control method, and control program
WO2023074207A1 (en) * 2021-10-28 2023-05-04 株式会社デンソー Control device, control method, and control program

Similar Documents

Publication Publication Date Title
JP2021076496A (en) Light quantity controller and light quantity control method
US7453554B2 (en) Phase measurement method and application thereof
US20150161926A1 (en) Laser projection/display apparatus
US6885685B2 (en) Control system for a laser diode and a method for controlling the same
JP2009252960A (en) Method of estimating lifetime of optical semiconductor device and drive device
US9497839B2 (en) Boosting/blanking the filament current of an X-ray tube
US20210270568A1 (en) Laser irradiation apparatus and laser irradiation method
JPH05198897A (en) System of predicting lifetime of laser
US7366080B2 (en) Laser control unit, laser control circuit, and laser-power adjustment method
US20180286629A1 (en) Charged particle beam apparatus
JP6819496B2 (en) Semiconductor laser drive circuit
KR101933008B1 (en) System for measuring flatness of a wafer and method for measuring flatness using the same
JP2738796B2 (en) Pulse laser equipment
US20230003851A1 (en) Measurement apparatus
KR100708933B1 (en) System and method of auto exposure control
JPH05145154A (en) Driver for semiconductor laser
CN110099768B (en) Laser processing apparatus
JP5612448B2 (en) Light emitting element driving method
JP2017183305A (en) Laser light beam device and laser scanning display
WO2024013948A1 (en) Semiconductor laser drive device
US11146337B2 (en) Optical transceiver device, optical modulator control method, and non-transitory computer readable medium storing optical modulator control program
CN117656926A (en) Battery management device
CN117031526A (en) Calibration method and calibration device for preheating filament of radiation source
JP2009236983A (en) Laser diode output adjustment method
JP3903493B2 (en) Automatic focus detection device