JP2021074733A - Shakeout machine and method for operating the same - Google Patents

Shakeout machine and method for operating the same Download PDF

Info

Publication number
JP2021074733A
JP2021074733A JP2019202078A JP2019202078A JP2021074733A JP 2021074733 A JP2021074733 A JP 2021074733A JP 2019202078 A JP2019202078 A JP 2019202078A JP 2019202078 A JP2019202078 A JP 2019202078A JP 2021074733 A JP2021074733 A JP 2021074733A
Authority
JP
Japan
Prior art keywords
vibration
trough
shaft
shakeout machine
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019202078A
Other languages
Japanese (ja)
Other versions
JP7211339B2 (en
Inventor
亮太 河野
Ryota Kono
亮太 河野
大野 泰嗣
Yasutsugu Ono
泰嗣 大野
一成 福嶋
Kazunari Fukushima
一成 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2019202078A priority Critical patent/JP7211339B2/en
Publication of JP2021074733A publication Critical patent/JP2021074733A/en
Application granted granted Critical
Publication of JP7211339B2 publication Critical patent/JP7211339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jigging Conveyors (AREA)

Abstract

To provide a shakeout machine having a simple structure and free from the generation of fluctuation and impossibility to transportation even if a long-length trough is used, and a method for operating the same.SOLUTION: In a shakeout machine, one edge of a vibration trough is supported by one place shaft, the other edge is supported by an elastic body, further, one vibration motor is fitted to the other edge of the vibration trough, and vibration is caused. Alternatively, one edge of a vibration trough is supported by one place shaft, the other edge is supported by an elastic body, further, two vibration motors are fitted to the other edge of the vibration trough so that lines connecting the centers of the respective vibration motors pass through the shaft, and the vibration motors are reversely rotated each other, thus the vibration force other than the one in a rotation direction can be canceled to reduce reaction force acting on the shaft as well.SELECTED DRAWING: Figure 1a

Description

本発明は、鋳物の連続生産ラインに用いられるシェイクアウトマシンとその運転方法に関するものである。 The present invention relates to a shakeout machine used in a continuous production line for castings and a method of operating the same.

鋳物の連続生産ラインにおいては、鋳型を破砕して鋳物と砂とを分離し、砂を回収するとともに鋳物を取り出すために、特許文献1に示されるようなシェイクアウトマシンが用いられている。図5a、図5bに示すように、従来のシェイクアウトマシン201は、振動トラフ207をコイルばね、空気ばね、ゴムばね、板ばね等の弾性体211によりフローティング状態に支持し、その幅方向の両側に2台の振動モータ210を並列に取付けた構造となっている。 In a continuous production line for castings, a shakeout machine as shown in Patent Document 1 is used to crush a mold to separate castings and sand, collect sand, and take out castings. As shown in FIGS. 5a and 5b, in the conventional shakeout machine 201, the vibration trough 207 is supported in a floating state by elastic bodies 211 such as coil springs, air springs, rubber springs, and leaf springs, and both sides in the width direction thereof. The structure is such that two vibration motors 210 are mounted in parallel.

これらの2台の振動モータ210を互いに反対方向に回転させることにより、それぞれの振動モータ210の加振力が互いに反対方向に作用して相殺され、2台の振動モータ210の加振力の方向が揃う方向、すなわちモータ回転軸、及び2台の振動モータ210をつなぐ線と直角方向の加振力のみが振動トラフ207に作用する。その様子を図6に示す。 By rotating these two vibration motors 210 in opposite directions, the exciting forces of the respective vibration motors 210 act in opposite directions to cancel each other out, and the directions of the exciting forces of the two vibration motors 210. Only the exciting force in the direction in which they are aligned, that is, in the direction perpendicular to the line connecting the motor rotation shaft and the two vibration motors 210, acts on the vibration trough 207. The situation is shown in FIG.

シェイクアウトマシンにおいては、2台の振動モータ210の配置により決定される振動方向を斜め上方に打ち上げる方向とし、振動トラフ207の長手方向であるX方向の分力を素材搬送力として用い、上下方向であるY方向の分力を砂鋳型破砕力として用いている。振動トラフ207をコイルばね、空気ばね、ゴムばね、板ばね等の弾性体211によりフローティング状態に支持した場合には、図6に示すように振動モータ210の加振力の作用点を振動トラフ207の重心と一致させる必要がある。その場合にのみ振動トラフの姿勢が揺動することなく、平行移動で振動させることができる。もし振動モータ210の加振力の作用点を振動トラフ207の重心と一致していない場合には、図7、図8に示すように振動トラフ207に回転力が発生する。 In the shakeout machine, the vibration direction determined by the arrangement of the two vibration motors 210 is set to launch diagonally upward, and the component force in the X direction, which is the longitudinal direction of the vibration trough 207, is used as the material transport force in the vertical direction. The component force in the Y direction is used as the sand mold crushing force. When the vibration trough 207 is supported in a floating state by an elastic body 211 such as a coil spring, an air spring, a rubber spring, or a leaf spring, the vibration trough 207 is the point of action of the exciting force of the vibration motor 210 as shown in FIG. It is necessary to match the center of gravity of. Only in that case, the posture of the vibration trough can be vibrated by translation without swinging. If the point of action of the exciting force of the vibration motor 210 does not coincide with the center of gravity of the vibration trough 207, a rotational force is generated in the vibration trough 207 as shown in FIGS. 7 and 8.

図7では加振力の作用点よりも振動トラフ207の重心が図面上の左側にあるため、振動トラフ207がシーソーの様な挙動で振動し、X方向の分力(素材搬送力)とY方向の分力(砂鋳型破砕力)とが振動トラフ207の各位置で変化する。そして振動トラフ207の出口側(右側)では搬送物の打ち上げ方向が逆になり、搬送不能となる。図8は加振力の作用点よりも振動トラフ207の重心が図面上の右側にある状態を示しており、やはり図7の場合と同様の問題を生じる。これらは振動トラフ207が長く、搬送物の投入量の変動、搬送物の偏積、付着、引っ掛かりがあるような場合に発生し易い。その結果、搬送不能となるリスクがある。 In FIG. 7, since the center of gravity of the vibrating trough 207 is on the left side of the drawing from the point of action of the exciting force, the vibrating trough 207 vibrates like a seesaw, and the component force (material transport force) in the X direction and Y The directional component force (sand mold crushing force) changes at each position of the vibrating trough 207. Then, on the outlet side (right side) of the vibrating trough 207, the launch direction of the transported object is reversed, and the transported object cannot be transported. FIG. 8 shows a state in which the center of gravity of the vibration trough 207 is on the right side of the drawing with respect to the point of action of the exciting force, which also causes the same problem as in the case of FIG. 7. These are likely to occur when the vibration trough 207 is long and there are fluctuations in the input amount of the transported object, uneven accumulation of the transported object, adhesion, and catching. As a result, there is a risk that it cannot be transported.

このような振動トラフの揺動を防止するために、振動トラフを平行リンクにより支持し、偏芯軸を回転させて振動方向を決めることも考えられる。しかし構造が複雑となり高加振力に耐えられないため、砂鋳型の破砕と素材の分離を目的とするシェイクアウトマシンに応用することはできない。 In order to prevent such vibration of the vibration trough, it is conceivable to support the vibration trough with a parallel link and rotate the eccentric shaft to determine the vibration direction. However, since the structure is complicated and cannot withstand high excitation force, it cannot be applied to a shakeout machine for the purpose of crushing a sand mold and separating materials.

特開平10−244360号公報Japanese Unexamined Patent Publication No. 10-244360

従って本発明の目的は上記した従来の問題点を解決し、構造が簡単、かつ強度を確保できる振動モータにて加振する構造でありながら、長尺トラフを用いても搬送物の投入量の変動、搬送物の偏積、付着、引っ掛かり等の影響にて、揺動や搬送不能を発生させることのないシェイクアウトマシンとその運転方法を提供することである。 Therefore, an object of the present invention is to solve the above-mentioned conventional problems, and although the structure is simple and the structure is vibrated by a vibration motor that can secure the strength, even if a long trough is used, the input amount of the transported object can be increased. It is an object of the present invention to provide a shakeout machine and an operation method thereof that do not cause swinging or inability to transport due to the influence of fluctuation, uneven accumulation of transported objects, adhesion, catching, etc.

上記の課題を解決するためになされた本発明のシェイクアウトマシンは、振動トラフの一方端を1箇所の軸で支持し、他方端を弾性体により支えるとともに、振動トラフの他方端に1台の振動モータを取付けて振動させたことを特徴とするものである。 In the shakeout machine of the present invention made to solve the above problems, one end of the vibration trough is supported by one shaft, the other end is supported by an elastic body, and one unit is supported at the other end of the vibration trough. It is characterized in that a vibration motor is attached and vibrated.

また上記の課題を解決するためになされた本発明の他のシェイクアウトマシンは、振動トラフの一方端を1箇所の軸で支持し、他方端を弾性体により支えるとともに、振動トラフの他方端に2台の振動モータを、各振動モータの中心を結ぶ線が前記軸を通るように取り付け、これらの振動モータを互いに逆回転させることにより、回転方向以外の振動力を相殺し、前記軸に作用する反力を低減したことを特徴とするものである。 Further, in another shakeout machine of the present invention made to solve the above problems, one end of the vibration trough is supported by one shaft, the other end is supported by an elastic body, and the other end of the vibration trough is supported. Two vibration motors are attached so that a line connecting the centers of each vibration motor passes through the shaft, and these vibration motors rotate in opposite directions to cancel out vibration forces other than the rotation direction and act on the shaft. It is characterized by reducing the reaction force.

さらに上記の課題を解決するためになされた本発明のシェイクアウトマシンの運転方法は、前記したシェイクアウトマシンの運転方法であって、振動トラフが1箇所の軸で支持された一方端を下流側とし、搬送物の破砕、分離及び搬送を行うことを特徴とするものである。 Further, the operation method of the shakeout machine of the present invention made to solve the above-mentioned problems is the above-mentioned operation method of the shakeout machine, in which one end of the vibration trough supported by one shaft is on the downstream side. It is characterized by crushing, separating and transporting the transported material.

本発明のシェイクアウトマシンは、構造が簡単であるために強度アップが容易であり、かつ安価に製造することができる。しかも長尺トラフを用いても振動トラフの揺動や搬送不能を発生させることがない。その他の効果については、実施形態とともに説明する。 Since the shakeout machine of the present invention has a simple structure, it is easy to increase the strength and can be manufactured at low cost. Moreover, even if a long trough is used, the vibration trough does not swing or cannot be transported. Other effects will be described with embodiments.

本発明のシェイクアウトマシンの正面図である。It is a front view of the shakeout machine of this invention. 本発明のシェイクアウトマシンの側面図(図1aのA−A矢視図)である。It is a side view (AA arrow view of FIG. 1a) of the shakeout machine of this invention. トラフを支持する軸の高さを調整可能としたシェイクアウトマシンの正面図である。It is a front view of the shakeout machine which made it possible to adjust the height of the shaft which supports a trough. 本発明のシェイクアウトマシンの加振力、振幅を説明する模式図である。It is a schematic diagram explaining the exciting force and the amplitude of the shakeout machine of this invention. 振動トラフ回転方向以外の振動力を相殺する構造のシェイクアウトマシンの正面図である。It is a front view of the shakeout machine of the structure which cancels the vibration force other than the vibration trough rotation direction. 従来構造のシェイクアウトマシンの正面図である。It is a front view of the shakeout machine of the conventional structure. 従来構造のシェイクアウトマシンの側面図(図5aのB−B矢視図)である。It is a side view (BB arrow view of FIG. 5a) of the shakeout machine of the conventional structure. 従来構造のシェイクアウトマシンの正常状態の加振力、振幅を説明する模式図である。It is a schematic diagram explaining the excitation force and the amplitude in a normal state of a shakeout machine of a conventional structure. 従来構造のシェイクアウトマシンの異常状態の加振力、振幅を説明する模式図1である。FIG. 1 is a schematic diagram illustrating the excitation force and the amplitude of an abnormal state of a shakeout machine having a conventional structure. 従来構造のシェイクアウトマシンの異常状態の加振力、振幅を説明する模式図2である。FIG. 2 is a schematic view 2 illustrating the excitation force and the amplitude of an abnormal state of a shakeout machine having a conventional structure.

以下に本発明の実施形態を説明する。
図1aに、本発明のシェイクアウトマシン1を用いた鋳造ラインの後処理設備2を示す。図1bは図1aのA−A矢視図である。この後処理設備2はシェイクアウトマシン1の上流側に振動コンベア3を配置し、シェイクアウトマシン1の格子4の上部の搬出側にエプロンコンベア5を配置し、シェイクアウトマシン1の格子4の下部の搬出側にベルトコンベヤ6を配置した構成である。
An embodiment of the present invention will be described below.
FIG. 1a shows the post-treatment equipment 2 of the casting line using the shakeout machine 1 of the present invention. FIG. 1b is a view taken along the line AA of FIG. 1a. In this aftertreatment facility 2, the vibration conveyor 3 is arranged on the upstream side of the shakeout machine 1, the apron conveyor 5 is arranged on the carry-out side of the upper part of the grid 4 of the shakeout machine 1, and the lower part of the grid 4 of the shakeout machine 1 is arranged. The belt conveyor 6 is arranged on the carry-out side of the above.

第1の実施形態のシェイクアウトマシン1は、振動トラフ7の下流側である一方端に振動トラフ7をピン支持する軸8と軸受9を配置し、振動トラフ7の上流側である他方端に回転軸を水平にした1台の振動モータ10と、コイルばね、空気ばね、ゴムばね、板ばね等の弾性体11を配置し、振動トラフ7を支えている。軸8と軸受9を用いる代わりに、軸をボスに圧入したゴムブッシュで支持する構造としてもよい。 In the shakeout machine 1 of the first embodiment, a shaft 8 and a bearing 9 for pin-supporting the vibration trough 7 are arranged at one end on the downstream side of the vibration trough 7, and at the other end on the upstream side of the vibration trough 7. A vibration motor 10 having a horizontal rotation axis and an elastic body 11 such as a coil spring, an air spring, a rubber spring, and a leaf spring are arranged to support the vibration trough 7. Instead of using the shaft 8 and the bearing 9, the shaft may be supported by a rubber bush press-fitted into the boss.

振動モータ10の回転により、振動トラフ7は軸8を回転中心として振動する。振動トラフ7の一方端に軸8と軸受9を配置することにより、従来構造では2台の振動モータが必要であった加振力を、本発明ではてこの原理にて1台の振動モータ10で得ることができる。その理由は後述する。 Due to the rotation of the vibration motor 10, the vibration trough 7 vibrates around the shaft 8 as the center of rotation. By arranging the shaft 8 and the bearing 9 at one end of the vibration trough 7, the exciting force that required two vibration motors in the conventional structure can be reduced by the principle of one vibration motor 10 in the present invention. Can be obtained at. The reason will be described later.

振動コンベア3から鋳物素材を内包した砂鋳型(図示せず)がシェイクアウトマシン1上に搬送され、シェイクアウトマシン1の格子4上で打ち上げられることにより、砂鋳型が破砕され、破砕された鋳物砂は格子4の下のベルトコンベヤ6に搬出される。格子4上に残った鋳物素材は、エプロンコンベア5にて搬出される。 A sand mold (not shown) containing a casting material is conveyed from the vibrating conveyor 3 onto the shakeout machine 1 and launched on the grid 4 of the shakeout machine 1, whereby the sand mold is crushed and the crushed casting. The sand is carried out to the belt conveyor 6 under the lattice 4. The casting material remaining on the lattice 4 is carried out by the apron conveyor 5.

図3に示すように、軸8と軸受9を振動トラフ7の下流側に配置することにより、振動トラフ7の上流側の振幅を大きく、下流側の振幅を小さくすることができる。これにより搬送物の投入側の砂鋳型の破砕性を大きくすることができ、また搬送物の搬出側の素材への打痕発生を低減することができる。軸8を中心に回転運動をさせることにより、振動トラフ7が長く、搬送物の投入にピークがある場合でも、振動トラフ7が従来のようにシーソーのような挙動をすることを防止することができる。 As shown in FIG. 3, by arranging the shaft 8 and the bearing 9 on the downstream side of the vibration trough 7, the amplitude on the upstream side of the vibration trough 7 can be increased and the amplitude on the downstream side can be decreased. As a result, the crushability of the sand mold on the loading side of the transported object can be increased, and the occurrence of dents on the material on the transport side of the transported object can be reduced. By rotating around the shaft 8, it is possible to prevent the vibrating trough 7 from behaving like a seesaw as in the conventional case even when the vibrating trough 7 is long and there is a peak in the loading of the conveyed object. it can.

また図3に示すように、振動モータ10を振動トラフ7の重心に対してオーバーハングした位置に取付けることにより、振動モータ10の加振力の低減が図れる。すなわち、1台の振動モータ10の加振力をFとし、軸8から振動モータ10の中心までの長さをLとすると、発生トルクMはM=F×Lとなり、重心における加振力FはF=M/(L/2)=F×L/(L/2)=2Fとなる。 Further, as shown in FIG. 3, by mounting the vibration motor 10 at a position overhanging the center of gravity of the vibration trough 7, the exciting force of the vibration motor 10 can be reduced. That is, assuming that the exciting force of one vibration motor 10 is F 0 and the length from the shaft 8 to the center of the vibration motor 10 is L, the generated torque M is M = F 0 × L, and the vibration at the center of gravity is excited. The force F is F = M / (L / 2) = F 0 × L / (L / 2) = 2F 0 .

なお、このような構造としたことにより、振動トラフ7の上流側の振幅が大きく、下流側の振幅が小さくなるため、素材の搬送能力が下流側程小さくなる。そこで図3に示すように振動トラフ7の下流側を下げた傾斜構造として、素材の搬送能力(搬送速度)を制御することができる。このため、図2に示すように振動トラフ7を支持する軸受9の上下方向の高さを調整可能にし、軸受9の取付高さを変えることにより振動トラフ7の傾斜角度を変更して素材の搬送能力(搬送速度)を制御するようにしてもよい。 With such a structure, the amplitude on the upstream side of the vibration trough 7 is large and the amplitude on the downstream side is small, so that the material transporting capacity is reduced toward the downstream side. Therefore, as shown in FIG. 3, the material transfer capacity (transport speed) can be controlled by using an inclined structure in which the downstream side of the vibration trough 7 is lowered. Therefore, as shown in FIG. 2, the height of the bearing 9 supporting the vibration trough 7 in the vertical direction can be adjusted, and the inclination angle of the vibration trough 7 can be changed by changing the mounting height of the bearing 9 to make the material. The transport capacity (transport speed) may be controlled.

図4に示す第2の実施形態は請求項2に対応するもので、2台の振動モータ310を使用した例である。振動トラフ307の一方端を一箇所の軸308と軸受309で支持し、振動トラフ307の他方端をコイルばね、空気ばね、ゴムばね、板ばね等の弾性体311で支える構造とし、互いに逆回転する2台の振動モータ310を各振動モータの中心を結ぶ線Aが軸308を通るように取付ける。この構造により振動トラフ307の回転方向以外の振動力を相殺する取り合いとし、軸308と軸受309への振動モータ310の反力を低減する。 The second embodiment shown in FIG. 4 corresponds to claim 2, and is an example in which two vibration motors 310 are used. One end of the vibration trough 307 is supported by one shaft 308 and a bearing 309, and the other end of the vibration trough 307 is supported by an elastic body 311 such as a coil spring, an air spring, a rubber spring, or a leaf spring. The two vibration motors 310 are attached so that the line A connecting the centers of the vibration motors passes through the shaft 308. With this structure, the vibration force other than the rotation direction of the vibration trough 307 is offset, and the reaction force of the vibration motor 310 to the shaft 308 and the bearing 309 is reduced.

この場合、1台の振動モータ310の加振力は第1の実施形態の振動モータ10の1/2でよい。 In this case, the exciting force of one vibration motor 310 may be 1/2 of that of the vibration motor 10 of the first embodiment.

以上に説明した本発明の効果を要約すると、次の通りである。
1、構造が単純なため、強度アップが容易。
2、構造が単純なため、安価。
3、振動トラフの一方端を軸で支持する事により、てこの原理にて2台の振動モータが必要な加振力を1台の振動モータで得られる。
4、軸支持の位置を振動トラフの下流側に配置し、振動トラフ上流側の振幅を大きく、振動トラフ下流側の振幅を小さくする事により、搬送物の投入側の砂鋳型の破砕性を大きくでき、搬送物の搬出側の素材への打痕発生を低減できる。
5、軸支持の位置を変更する事により、一般的な振動コンベアに応用する事も可能である。
6、請求項2の発明においては、振動トラフ回転方向以外の振動力を相殺する2モータ構造とする事で軸支持に加わる振動モータの反力を低減する事が可能となる。
The effects of the present invention described above can be summarized as follows.
1. Since the structure is simple, it is easy to increase the strength.
2. Because the structure is simple, it is inexpensive.
3. By supporting one end of the vibration trough with a shaft, the vibration force required by two vibration motors can be obtained by one vibration motor based on the principle of leverage.
4. By arranging the position of the shaft support on the downstream side of the vibration trough, increasing the amplitude on the upstream side of the vibration trough and decreasing the amplitude on the downstream side of the vibration trough, the crushability of the sand mold on the loading side of the transported object is increased. This makes it possible to reduce the occurrence of dents on the material on the carry-out side of the transported object.
5. By changing the position of the shaft support, it can be applied to a general vibrating conveyor.
6. In the invention of claim 2, it is possible to reduce the reaction force of the vibration motor applied to the shaft support by adopting a two-motor structure that cancels the vibration force other than the vibration trough rotation direction.

1 シェイクアウトマシン
2 後処理設備
3 振動コンベア
4 格子
5 エプロンコンベア
6 ベルトコンベア
7 振動トラフ
8 軸
9 軸受
10 振動モータ
11 弾性体
201 シェイクアウトマシン
207 振動トラフ
210 振動モータ
211 弾性体
307 振動トラフ
308 軸
309 軸受
310 振動モータ
311 弾性体
1 Shakeout machine 2 Post-processing equipment 3 Vibration conveyor 4 Lattice 5 Apron conveyor 6 Belt conveyor 7 Vibration trough 8 axes 9 Bearings 10 Vibration motor 11 Elastic body 201 Shakeout machine 207 Vibration trough 210 Vibration motor 211 Elastic body 307 Vibration trough 308 axis 309 Bearing 310 Vibration motor 311 Elastic body

Claims (3)

振動トラフの一方端を1箇所の軸で支持し、他方端を弾性体により支えるとともに、振動トラフの他方端に1台の振動モータを取付けて振動させたことを特徴とするシェイクアウトマシン。 A shakeout machine characterized in that one end of a vibration trough is supported by one shaft, the other end is supported by an elastic body, and one vibration motor is attached to the other end of the vibration trough to vibrate. 振動トラフの一方端を1箇所の軸で支持し、他方端を弾性体により支えるとともに、振動トラフの他方端に2台の振動モータを、各振動モータの中心を結ぶ線が前記軸を通るように取り付け、これらの振動モータを互いに逆回転させることにより、回転方向以外の振動力を相殺し、前記軸に作用する反力を低減したことを特徴とするシェイクアウトマシン。 One end of the vibration trough is supported by one shaft, the other end is supported by an elastic body, and two vibration motors are connected to the other end of the vibration trough so that a line connecting the centers of the vibration motors passes through the shaft. A shakeout machine characterized in that the vibration force other than the rotation direction is canceled and the reaction force acting on the shaft is reduced by rotating these vibration motors in opposite directions. 請求項1又は2に記載のシェイクアウトマシンの運転方法であって、振動トラフが1箇所の軸で支持された一方端を下流側とし、搬送物の破砕、分離及び搬送を行うことを特徴とするシェイクアウトマシンの運転方法。 The operation method of the shakeout machine according to claim 1 or 2, characterized in that one end of the vibration trough supported by one shaft is on the downstream side, and the transported object is crushed, separated, and transported. How to operate the shakeout machine.
JP2019202078A 2019-11-07 2019-11-07 Shakeout machine and how to operate it Active JP7211339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019202078A JP7211339B2 (en) 2019-11-07 2019-11-07 Shakeout machine and how to operate it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202078A JP7211339B2 (en) 2019-11-07 2019-11-07 Shakeout machine and how to operate it

Publications (2)

Publication Number Publication Date
JP2021074733A true JP2021074733A (en) 2021-05-20
JP7211339B2 JP7211339B2 (en) 2023-01-24

Family

ID=75897362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202078A Active JP7211339B2 (en) 2019-11-07 2019-11-07 Shakeout machine and how to operate it

Country Status (1)

Country Link
JP (1) JP7211339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115255338A (en) * 2022-08-31 2022-11-01 无锡锡南铸造机械股份有限公司 High-efficiency shakeout work part

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53160422U (en) * 1977-05-24 1978-12-15
JPS59225850A (en) * 1983-06-07 1984-12-18 Japan Steel Works Ltd:The Shake-out machine
JPH0523832A (en) * 1991-07-16 1993-02-02 Shinko Electric Co Ltd Apparatus for shaking out sand from casting
JPH1157986A (en) * 1997-08-22 1999-03-02 Sintokogio Ltd Device for cracking and separating snap flask mold
JPH11123530A (en) * 1997-10-24 1999-05-11 Sintokogio Ltd Vibrating screen type cast product taking-out device
JP2006055905A (en) * 2004-08-24 2006-03-02 Shiga Yamashita:Kk Vibrating sand shaking-out apparatus
US20100006253A1 (en) * 2008-07-08 2010-01-14 Newcomb Thomas P Method and system for internal cleaning of complex castings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53160422U (en) * 1977-05-24 1978-12-15
JPS59225850A (en) * 1983-06-07 1984-12-18 Japan Steel Works Ltd:The Shake-out machine
JPH0523832A (en) * 1991-07-16 1993-02-02 Shinko Electric Co Ltd Apparatus for shaking out sand from casting
JPH1157986A (en) * 1997-08-22 1999-03-02 Sintokogio Ltd Device for cracking and separating snap flask mold
JPH11123530A (en) * 1997-10-24 1999-05-11 Sintokogio Ltd Vibrating screen type cast product taking-out device
JP2006055905A (en) * 2004-08-24 2006-03-02 Shiga Yamashita:Kk Vibrating sand shaking-out apparatus
US20100006253A1 (en) * 2008-07-08 2010-01-14 Newcomb Thomas P Method and system for internal cleaning of complex castings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115255338A (en) * 2022-08-31 2022-11-01 无锡锡南铸造机械股份有限公司 High-efficiency shakeout work part
CN115255338B (en) * 2022-08-31 2024-04-09 无锡锡南铸造机械股份有限公司 High-efficiency shakeout work part

Also Published As

Publication number Publication date
JP7211339B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
USRE29512E (en) Vibratory material handling device with variable force
US8464861B2 (en) Vibratory conveyor
CN106269489B (en) A kind of unilateral drive-type swinging screen
JP5481687B2 (en) Vibrating sieve device
US7810648B2 (en) Screen assembly for separating material according to particle size
TWI457264B (en) Vibrating conveyor
US20150217217A1 (en) Vibrating screen
CN101298295B (en) Vibration type convey
US3528541A (en) Balanced oscillating conveyor
JP2021074733A (en) Shakeout machine and method for operating the same
CN201431961Y (en) Variable-elliptic-orbit equal-thickness vibrating screen
JP4532591B1 (en) Rotating vibrator and vibratory transfer device using the same
US9649665B2 (en) Vibrating equipment and method of processing material
JP4417718B2 (en) Sieve device
JP3093193B2 (en) Vibration conveyor with driver on the side
JP2010240602A (en) Vibrating screen
US9266683B1 (en) Single motor two mass bi-directional conveyor
CN105683613A (en) Vibrating assembly having rotating member
CN203972295U (en) Rubbish classifying screen
CN205060820U (en) Cubic material conveyor of permanent seal cooling
EP3992119A1 (en) Vibrating conveyor and method of controlling the operation of the vibrating conveyor
CN207746398U (en) A kind of process units of resin sand
CN211520721U (en) Novel electromagnetic vibration feeder
US2751068A (en) Haddox
RU2410316C2 (en) Vibrating conveyor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7211339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150