JP2021071573A - Imaging apparatus and control method therefor - Google Patents

Imaging apparatus and control method therefor Download PDF

Info

Publication number
JP2021071573A
JP2021071573A JP2019197648A JP2019197648A JP2021071573A JP 2021071573 A JP2021071573 A JP 2021071573A JP 2019197648 A JP2019197648 A JP 2019197648A JP 2019197648 A JP2019197648 A JP 2019197648A JP 2021071573 A JP2021071573 A JP 2021071573A
Authority
JP
Japan
Prior art keywords
focus detection
image sensor
image
imaging device
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019197648A
Other languages
Japanese (ja)
Other versions
JP2021071573A5 (en
JP7397626B2 (en
Inventor
斎藤 潤一
Junichi Saito
潤一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019197648A priority Critical patent/JP7397626B2/en
Priority to US17/082,846 priority patent/US11496665B2/en
Publication of JP2021071573A publication Critical patent/JP2021071573A/en
Publication of JP2021071573A5 publication Critical patent/JP2021071573A5/ja
Application granted granted Critical
Publication of JP7397626B2 publication Critical patent/JP7397626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/671Focus control based on electronic image sensor signals in combination with active ranging signals, e.g. using light or sound signals emitted toward objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

To enable an appropriate low-pass filter effect to be obtained utilizing a shake correction mechanism even when a frame rate is high.SOLUTION: An imaging apparatus comprises: an imaging device in which a plurality of pixels are arrayed, the pixel including a focus detection pixel outputting a signal in such a manner that a pair of focus detection signals having parallax can be acquired, on the basis of a luminous flux having passed through pupil areas different from each other of an imaging optical system; shift means causing the incident position of the luminous flux in the imaging device to be shifted; and focus detection means performing focus detection of phase contrast method using the pair of focus detection signals. The shift means causes the incident position of the luminous flux to shift a predetermined distance of less than or equal to the focus detection pixels of the imaging device that correspond to the pair of focus detection signals to be shifted during the charge accumulation time of the imaging device for acquiring the image used for focus detection in a direction in which a phase contrast is detected.SELECTED DRAWING: Figure 3

Description

本発明は、撮像装置及びその制御方法に関する。 The present invention relates to an image pickup apparatus and a control method thereof.

従来、CCDやCMOS等の撮像素子の入射面側に光学ローパスフィルタを配置することにより、折り返し歪みを緩和する技術が知られている。 Conventionally, there is known a technique for alleviating folding distortion by arranging an optical low-pass filter on the incident surface side of an image pickup device such as a CCD or CMOS.

図8は、一般的に撮像素子で取得される画像の空間周波数とその応答特性を模式的に示した図である。図8において、横軸は、サンプリング周波数(画素間隔)を1としたときの画像の空間周波数を、縦軸はその応答を示す。実線は、撮像素子で得られる画像の応答特性を示している。ここで示す応答特性は、被写体光を撮像素子上に結像するための撮影光学系の光学特性としてのMTF特性も加味しているため、サンプリング周波数である1に向かって右肩下がりの応答特性となっている。 FIG. 8 is a diagram schematically showing the spatial frequency of an image generally acquired by an image sensor and its response characteristics. In FIG. 8, the horizontal axis represents the spatial frequency of the image when the sampling frequency (pixel spacing) is 1, and the vertical axis represents the response. The solid line shows the response characteristics of the image obtained by the image sensor. Since the response characteristics shown here also take into account the MTF characteristics as the optical characteristics of the photographing optical system for forming the subject light on the image sensor, the response characteristics are declining toward the sampling frequency of 1. It has become.

光学ローパスフィルタを配置していない場合、画素開口と撮影光学系によるローパスフィルタ効果のみとなり、例えば周波数Fのような比較的高い周波数も応答が大きくなる。この周波数Fにおける応答は、サンプリング定理から、ナイキスト周波数0.5を中心に折り返され、周波数Fでの応答のように誤って認識されてしまうことが知られている。焦点検出のために位相差を算出する際に、この周波数Fのような帯域を抽出している場合、この折り返りの影響が無視できず、場合によっては大きな誤検出を招くこととなってしまう。そのため、従来は、ナイキスト周波数よりも高域での応答を点線のように小さくするように、光学ローパスフィルタを配置することが一般的である。 If not disposed an optical low-pass filter, it is only the low-pass filter effect due to the pixel aperture of the imaging optical system, the greater the response relatively high frequency such as frequency F H. Response in this frequency F H from the sampling theorem, is folded around the Nyquist frequency 0.5, it is known that would be recognized by mistake as the response at the frequency F L. When calculating the phase difference for focus detection, if you have extracted the band, such as the frequency F L, not negligible the influence of the aliasing, sometimes becomes possible to lead to significant false positives It ends up. Therefore, conventionally, it is common to arrange an optical low-pass filter so that the response at a frequency higher than the Nyquist frequency is made as small as a dotted line.

一方、デジタルカメラなどの撮像装置において、CMOSセンサなどの撮像素子や撮影光学系の一部の光学素子を光軸に対して直交する方向に移動させることで、装置に加わる振れの影響を補正する手振れ補正技術が多く開示されている。 On the other hand, in an image pickup device such as a digital camera, the influence of vibration applied to the device is corrected by moving an image pickup element such as a CMOS sensor or a part of the optical element of the photographing optical system in a direction orthogonal to the optical axis. Many camera shake correction techniques are disclosed.

特許文献1には、この手振れ補正技術のための機構を活かして、撮像中に所定の駆動を行うことで光学的なローパスフィルタに相当する効果を得る振動型ローパスフィルタについての技術が開示されている。特許文献1では、露光動作期間中に少なくとも2周期以上、振動型ローパスフィルタを撮像素子の水平方向、垂直方向に0から数画素分の微小量を駆動して、得られる画像データの解像度を調整することが開示されている。この露光動作期間中の振動型ローパスフィルタによって、撮影される画像へのモアレの影響などが排除され、適切な光学ローパスフィルタ効果を得ることができる。 Patent Document 1 discloses a technique for a vibration type low-pass filter that obtains an effect equivalent to an optical low-pass filter by performing a predetermined drive during imaging by utilizing the mechanism for this camera shake correction technique. There is. In Patent Document 1, the resolution of the obtained image data is adjusted by driving a vibration type low-pass filter in a minute amount of 0 to several pixels in the horizontal direction and the vertical direction of the image sensor for at least two cycles during the exposure operation period. It is disclosed to do. The vibrating low-pass filter during the exposure operation period eliminates the influence of moire on the captured image, and an appropriate optical low-pass filter effect can be obtained.

被写体の高空間周波数成分の折り返しが悪影響を与えるのは、記録に用いられる画像だけでなく、撮影準備状態で焦点検出に用いられる画像に対しても同様である。そのため、焦点検出用画素から得られる信号間の位相差情報から焦点検出を行う撮像面位相差方式や、ライブビュー画像のコントラスト評価結果から焦点検出を行うコントラスト方式の焦点検出処理においても、振動型ローパスフィルタの効果を同様に得ることができる。 The wrapping of the high spatial frequency component of the subject has an adverse effect not only on the image used for recording but also on the image used for focus detection in the ready-to-shoot state. Therefore, the vibration type is also used in the imaging surface phase difference method in which the focus is detected from the phase difference information between the signals obtained from the focus detection pixels and the contrast method in which the focus is detected from the contrast evaluation result of the live view image. The effect of the low-pass filter can be obtained in the same way.

特開2012−209968号公報Japanese Unexamined Patent Publication No. 2012-209868

しかしながら、特許文献1に記載された駆動方法には、以下のような課題がある。焦点検出を行うために得られる画像のフレームレートは、焦点検出の高速化のために近年大幅に高速化されており、そのフレームレートに応じて振動型ローパスフィルタの周波数を上げる必要がある。このように、焦点検出周期が短くなるにつれて、より高速に撮像素子を高速に往復動作させることとなる。しかしながら、手振れ補正機構を活かした振動型ローパスフィルタの場合、振動の周波数を上げるのには限界がある。また、撮像素子の高速な往復動作は、不快な音や振動の発生につながるだけでなく、フレームレートによっては撮像素子の往復動作で応答できない帯域となり、得たいローパスフィルタ効果が得られなくなってしまうおそれがある。 However, the driving method described in Patent Document 1 has the following problems. The frame rate of the image obtained for focusing detection has been significantly increased in recent years in order to speed up focus detection, and it is necessary to increase the frequency of the vibration type low-pass filter according to the frame rate. In this way, as the focus detection cycle becomes shorter, the image sensor is reciprocated at a higher speed. However, in the case of a vibration type low-pass filter utilizing the image stabilization mechanism, there is a limit to increasing the vibration frequency. Further, the high-speed reciprocating operation of the image sensor not only leads to the generation of unpleasant sound and vibration, but also becomes a band that cannot be responded to by the reciprocating operation of the image sensor depending on the frame rate, and the desired low-pass filter effect cannot be obtained. There is a risk.

本発明は上記問題点を鑑みてなされたものであり、フレームレートが高い場合にも、振れ補正機構を利用して、適切なローパスフィルタ効果が得られるようにすることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to use a runout correction mechanism to obtain an appropriate low-pass filter effect even when the frame rate is high.

上記目的を達せするために、本発明の撮像装置は、撮影光学系の互いに異なる瞳領域を通過した光束に基づいて、視差を有する一対の焦点検出信号を取得可能に信号を出力する焦点検出画素を含む複数の画素が配列された撮像素子と、前記撮像素子における前記光束の入射位置をシフトさせるシフト手段と、前記一対の焦点検出信号を用いて位相差方式の焦点検出を行う焦点検出手段と、を有し、前記シフト手段は、前記焦点検出に用いる画像を取得するための前記撮像素子の電荷蓄積時間の間に、位相差を検出する方向に、前記一対の焦点検出信号に対応する前記撮像素子の焦点検出画素の間隔以下の予め決められた距離をシフトさせることを特徴とする。 In order to achieve the above object, the image sensor of the present invention outputs a focus detection pixel capable of acquiring a pair of focus detection signals having a difference based on light beams passing through different pupil regions of the photographing optical system. An image sensor in which a plurality of pixels including the above are arranged, a shift means for shifting the incident position of the light beam in the image sensor, and a focus detection means for performing phase difference type focus detection using the pair of focus detection signals. The shift means corresponds to the pair of focus detection signals in the direction of detecting the phase difference during the charge accumulation time of the image sensor for acquiring the image used for the focus detection. It is characterized by shifting a predetermined distance equal to or less than the distance between the focus detection pixels of the image sensor.

本発明によれば、フレームレートが高い場合にも、振れ補正機構を利用して、適切なローパスフィルタ効果を得ることができる。 According to the present invention, an appropriate low-pass filter effect can be obtained by utilizing the runout correction mechanism even when the frame rate is high.

本発明の実施形態における撮像システムの中央断面図および概略構成を示すブロック図。A block diagram showing a central sectional view and a schematic configuration of an imaging system according to an embodiment of the present invention. 第1の実施形態における画素の配列の一例を示す平面図。The plan view which shows an example of the arrangement of the pixel in 1st Embodiment. 第1の実施形態における振動型ローパスフィルタの周期駆動制御の一例を示す模式図。The schematic diagram which shows an example of the periodic drive control of the vibration type low-pass filter in 1st Embodiment. 第1の実施形態の変形例1における振動型ローパスフィルタの周期駆動制御の一例を示す模式図。The schematic diagram which shows an example of the periodic drive control of the vibration type low-pass filter in the modification 1 of the 1st Embodiment. 第1の実施形態の変形例2における振動型ローパスフィルタの周期駆動制御の一例を示す模式図。The schematic diagram which shows an example of the periodic drive control of the vibration type low-pass filter in the modification 2 of the 1st Embodiment. 第1の実施形態の変形例3におけるマスクを利用した画素の配列の一例を示す平面図。The plan view which shows an example of the arrangement of the pixel using the mask in the modification 3 of the 1st Embodiment. 第1の実施形態の変形例3における振動型ローパスフィルタの周期駆動制御の一例を示す模式図。The schematic diagram which shows an example of the periodic drive control of the vibration type low-pass filter in the modification 3 of the 1st Embodiment. 従来の撮像素子の空間周波数についての応答特性を示す模式図。The schematic diagram which shows the response characteristic about the spatial frequency of the conventional image sensor.

以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims. Although a plurality of features are described in the embodiment, not all of the plurality of features are essential to the invention, and the plurality of features may be arbitrarily combined. Further, in the attached drawings, the same or similar configurations are designated by the same reference numbers, and duplicate explanations are omitted.

<第1の実施形態>
図1は、本発明の第1の実施形態に係る像振れ補正装置を含む撮像システム100の構成を示すブロック図であり、図1(a)は本発明の撮像システム100の中央断面図、図1(b)は概略構成を示すブロック図である。
<First Embodiment>
FIG. 1 is a block diagram showing a configuration of an imaging system 100 including an image shake correction device according to a first embodiment of the present invention, and FIG. 1A is a central sectional view and a view of the imaging system 100 of the present invention. 1 (b) is a block diagram showing a schematic configuration.

図1(a)に示すように、本発明の撮像システム100は、カメラボディ1と、カメラボディ1に着脱可能なレンズユニット2から成る。レンズユニット2は、防振レンズユニット19を含む複数のレンズからなる撮影光学系3を有する。なお、点線4は、撮影光学系3の光軸を示している。また、カメラボディ1は、撮像素子6及び、表示装置10の一部を構成する、EVFとも呼ばれる電子ビューファインダー10aを包含する。カメラボディ1とレンズユニット2は、電気接点14を介して通信可能に接続される。 As shown in FIG. 1A, the imaging system 100 of the present invention includes a camera body 1 and a lens unit 2 that can be attached to and detached from the camera body 1. The lens unit 2 has a photographing optical system 3 composed of a plurality of lenses including the anti-vibration lens unit 19. The dotted line 4 indicates the optical axis of the photographing optical system 3. Further, the camera body 1 includes an image sensor 6 and an electronic viewfinder 10a, which is also called an EVF, which constitutes a part of the display device 10. The camera body 1 and the lens unit 2 are communicably connected via the electrical contacts 14.

図1(b)は、撮像システム100の概略構成を示すブロック図である。カメラボディ1およびレンズユニット2からなる撮像システム100は、大きく分けて、撮像系、画像処理系、記録再生系、制御系を有する。撮像系は、撮影光学系3、撮像素子6を含み、画像処理系は、画像処理部7、焦点検出部11を含む。また、記録再生系は、メモリ8、表示装置10を含み、制御系は、カメラシステム制御部5、カメラ操作部9、焦点検出部11、レンズシステム制御部15、レンズ振れ補正部18、焦点調節部22を含む。 FIG. 1B is a block diagram showing a schematic configuration of the imaging system 100. The image pickup system 100 including the camera body 1 and the lens unit 2 is roughly divided into an image pickup system, an image processing system, a recording / reproduction system, and a control system. The image pickup system includes a photographing optical system 3 and an image pickup element 6, and the image processing system includes an image processing unit 7 and a focus detection unit 11. The recording / playback system includes a memory 8 and a display device 10, and the control system includes a camera system control unit 5, a camera operation unit 9, a focus detection unit 11, a lens system control unit 15, a lens shake correction unit 18, and a focus adjustment. Includes part 22.

レンズユニット2は、図1(a)に示す構成に加えて、更に、レンズシステム制御部15、防振レンズユニット19を駆動させて像振れを補正するレンズ振れ補正部18、レンズ振れ検出部20を含む。また、撮影光学系3に含まれるフォーカスレンズを駆動する焦点調節部22を含む。 In addition to the configuration shown in FIG. 1A, the lens unit 2 further has a lens system control unit 15, a vibration-proof lens unit 19, a lens shake correction unit 18 for correcting image shake, and a lens shake detection unit 20. including. It also includes a focus adjusting unit 22 that drives the focus lens included in the photographing optical system 3.

本実施形態では、レンズ振れ検出部20はコリオリ力を利用した振動ジャイロを用いるものとし、レンズユニット2に加わる回転振れを検知する。レンズ振れ検出部20は、ユーザの手振れ等により生じたレンズユニット2の振れを検出して、該レンズ振れを表すレンズ振れ検出信号をレンズシステム制御部15に出力する。レンズシステム制御部15は、レンズ振れ検出信号を用いてレンズ振れによる像振れを低減(相殺)するための防振レンズユニット19のシフト量(補正量)を演算し、該シフト量を含む防振指示をレンズ振れ補正部18に出力する。レンズ振れ補正部18は、レンズシステム制御部15からの防振指示に基づいて防振レンズユニット19の移動を制御する。具体的には、防振指示に応じてシフト機構に含まれるアクチュエータを制御することで、算出したシフト量だけ防振レンズユニット19を駆動することにより、レンズ防振が行われる。 In the present embodiment, the lens shake detection unit 20 uses a vibration gyro that utilizes the Coriolis force, and detects rotational shake applied to the lens unit 2. The lens shake detection unit 20 detects the shake of the lens unit 2 caused by the user's camera shake or the like, and outputs a lens shake detection signal representing the lens shake to the lens system control unit 15. The lens system control unit 15 calculates a shift amount (correction amount) of the anti-vibration lens unit 19 for reducing (cancelling) image shake due to lens shake using a lens shake detection signal, and vibration-proof including the shift amount. The instruction is output to the lens shake correction unit 18. The lens shake correction unit 18 controls the movement of the vibration isolation lens unit 19 based on the vibration isolation instruction from the lens system control unit 15. Specifically, the lens vibration isolation is performed by driving the vibration isolation lens unit 19 by the calculated shift amount by controlling the actuator included in the shift mechanism in response to the vibration isolation instruction.

レンズシステム制御部15は、上述した防振制御の他にも、焦点調節部22を介して不図示のフォーカスレンズを駆動したり、不図示の絞り機構やズームレンズ等の駆動制御することが可能である。 In addition to the vibration isolation control described above, the lens system control unit 15 can drive a focus lens (not shown) via the focus adjustment unit 22, and can drive and control an aperture mechanism (not shown), a zoom lens, and the like. Is.

カメラボディ1は、図1(a)に示す構成に加えて、更に、カメラシステム制御部5、画像処理部7、メモリ8、カメラ操作部9、表示装置10、焦点検出部11、カメラ振れ補正部12、カメラ振れ検出部13を有する。表示装置10は、電子ビューファインダー10aの他に、不図示の背面表示装置やカメラボディ1の上面に設けられた撮影情報を表示する不図示の小型表示パネルを包含する。 In addition to the configuration shown in FIG. 1A, the camera body 1 further includes a camera system control unit 5, an image processing unit 7, a memory 8, a camera operation unit 9, a display device 10, a focus detection unit 11, and a camera shake correction. It has a unit 12 and a camera shake detection unit 13. In addition to the electronic viewfinder 10a, the display device 10 includes a rear display device (not shown) and a small display panel (not shown) provided on the upper surface of the camera body 1 for displaying shooting information.

図2は、本実施形態における撮像素子6の画素配列の一例を示す図であり、撮像素子6として用いられる2次元CMOSセンサの画素配列を、撮像画素の4列×4行の範囲で示したものである。 FIG. 2 is a diagram showing an example of the pixel arrangement of the image pickup element 6 in the present embodiment, and the pixel arrangement of the two-dimensional CMOS sensor used as the image pickup element 6 is shown in the range of 4 columns × 4 rows of the image pickup pixels. It is a thing.

本実施形態において、画素群200は2列×2行の画素からなり、ベイヤー配列のカラーフィルタにより覆われているものとする。そして、各画素群200において、R(赤)の分光感度を有する画素200Rが左上の位置に、G(緑)の分光感度を有する画素200Gが右上と左下の位置に、B(青)の分光感度を有する画素200Bが右下の位置に配置されている。さらに、本実施形態の撮像素子6は、撮像面位相差方式の焦点検出を行うために、各画素は、1つのマイクロレンズ215に対し、複数のフォトダイオード(光電変換部)を有している。本実施形態では、各画素、2列×1行に配列された2つのフォトダイオード211,212により構成されているものとする。以下、このような構成を有する画素を「焦点検出画素」と呼ぶ。 In the present embodiment, it is assumed that the pixel group 200 is composed of 2 columns × 2 rows of pixels and is covered with a Bayer array color filter. Then, in each pixel group 200, the pixel 200R having the spectral sensitivity of R (red) is in the upper left position, and the pixel 200G having the spectral sensitivity of G (green) is in the upper right and lower left positions, and the B (blue) spectroscopy is performed. The sensitive pixel 200B is arranged at the lower right position. Further, the image sensor 6 of the present embodiment has a plurality of photodiodes (photoelectric conversion units) for one microlens 215 in order to perform focus detection by the imaging surface phase difference method. .. In this embodiment, it is assumed that each pixel is composed of two photodiodes 211 and 212 arranged in two columns × one row. Hereinafter, a pixel having such a configuration is referred to as a “focus detection pixel”.

撮像素子6は、図2に示す2列×2行の焦点検出画素(4列×2行のフォトダイオード)からなる画素群200を撮像面上に多数配置することで、撮像信号及び焦点検出信号の取得を可能としている。 The image pickup element 6 arranges a large number of pixel groups 200 composed of 2 columns × 2 rows of focus detection pixels (4 columns × 2 rows of photodiodes) shown in FIG. 2 on the image pickup surface, thereby forming an image pickup signal and a focus detection signal. It is possible to obtain.

このような構成を有する各焦点検出画素では、異なる瞳領域を通過した光束をマイクロレンズ215で分離し、フォトダイオード211,212に結像する。そして、2つのフォトダイオード211,212からの信号を加算した信号(A+B信号)を撮像信号、個々のフォトダイオード211,212からそれぞれ読み出した2つの信号(A信号、B信号)を焦点検出信号対として用いる。なお、撮像信号と焦点検出信号とをそれぞれ読み出してもよいが、処理負荷を考慮して、次のようにしてもよい。即ち、撮像信号(A+B信号)と、フォトダイオード211,212のいずれか一方の焦点検出信号(例えばA信号)とを読み出し、差分を取ることで、視差を有するもう一方の焦点検出信号(例えばB信号)を取得する。 In each focus detection pixel having such a configuration, the light flux passing through different pupil regions is separated by the microlens 215 and imaged on the photodiodes 211 and 212. Then, the signal (A + B signal) obtained by adding the signals from the two photodiodes 211 and 212 is the imaging signal, and the two signals (A signal and B signal) read from the individual photodiodes 211 and 212 are the focus detection signal pair. Used as. The image pickup signal and the focus detection signal may be read out, respectively, but the following may be performed in consideration of the processing load. That is, by reading out the imaging signal (A + B signal) and the focus detection signal (for example, A signal) of either of the photodiodes 211 and 212 and taking the difference, the other focus detection signal having parallax (for example, B). Signal) is acquired.

そして、複数の画素から出力された複数のA信号と複数のB信号をそれぞれ集めることで、撮像面位相差検出方式によるAFに用いられる一対の像信号(A像信号、B像信号)を得る。そして、該一対の像信号の相対位置をずらしながら重ね合わせ、各ずらし位置において、例えば、波形の差異部分の面積量(相関量)を求める相関演算を行う。この相関量がもっとも小さくなるずらし位置、即ち、最も相関が取れているずれ量である位相差(以下、「像ずれ量」という。)を求め、さらに算出した像ずれ量から撮影光学系のデフォーカス量及びデフォーカス方向を算出する。 Then, by collecting the plurality of A signals and the plurality of B signals output from the plurality of pixels, a pair of image signals (A image signal, B image signal) used for AF by the imaging surface phase difference detection method is obtained. .. Then, the pair of image signals are superposed while being shifted, and at each shifted position, for example, a correlation calculation is performed to obtain the area amount (correlation amount) of the difference portion of the waveform. The shift position where this correlation amount is the smallest, that is, the phase difference (hereinafter, referred to as "image shift amount") which is the most correlated shift amount is obtained, and the image shift amount calculated is used to decipher the imaging optical system. Calculate the focus amount and defocus direction.

このような構造の撮像素子6を用いることで、リアルタイムに撮像素子6が受光して、被写体像を観察することのできるライブビュー撮影が行えると共に、被写体光線の分割機構無しに、位相差方式の焦点検出が可能となる。 By using the image sensor 6 having such a structure, the image sensor 6 receives light in real time, and live view shooting capable of observing the subject image can be performed, and a phase difference method can be performed without a mechanism for dividing the subject light beam. Focus detection is possible.

上記構成を有する撮像素子6は、撮影光学系3を介して入射する被写体からの光を光電変換処理により電気信号に変換して出力し、画像処理部7に入力される。 The image pickup device 6 having the above configuration converts the light from the subject incident through the photographing optical system 3 into an electric signal by photoelectric conversion processing, outputs the light, and inputs the light to the image processing unit 7.

画像処理部7は、内部にA/D変換器、ホワイトバランス調整回路、ガンマ補正回路、補間演算回路等を有しており、記録用の画像を生成することができる。色補間処理回路も画像処理部7に備えられており、ベイヤ配列の信号から色補間(デモザイキング)処理を施してカラー画像を生成する。また、画像処理部7は、予め定められた方法を用いて画像、動画、音声などの圧縮を行う。画像処理部7はこのような撮像のための処理だけでなく、焦点検出部11と連携して焦点検出画素からの画素信号を処理する、いわゆる焦点検出処理を撮影と撮影の間に行う。 The image processing unit 7 has an A / D converter, a white balance adjustment circuit, a gamma correction circuit, an interpolation calculation circuit, and the like inside, and can generate an image for recording. The image processing unit 7 is also provided with a color interpolation processing circuit, and performs color interpolation (demosizing) processing from the signals of the Bayer array to generate a color image. Further, the image processing unit 7 compresses an image, a moving image, an audio, or the like by using a predetermined method. The image processing unit 7 not only performs such processing for imaging, but also performs so-called focus detection processing, which processes a pixel signal from the focus detection pixel in cooperation with the focus detection unit 11, between shootings.

焦点検出部11は、画像処理部7と連携し、撮像素子6に含まれる焦点検出画素からの出力に基づいて、光学像の位相差を検出し、公知の手法によりデフォーカス量に換算する。カメラシステム制御部5は、焦点検出部11から出力されたデフォーカス量に基づいて、レンズシステム制御部15に焦点調節情報を送信し、レンズシステム制御部15は焦点調節部22を介してフォーカスレンズを光軸4の方向に駆動する。 The focus detection unit 11 cooperates with the image processing unit 7, detects the phase difference of the optical image based on the output from the focus detection pixel included in the image sensor 6, and converts it into the defocus amount by a known method. The camera system control unit 5 transmits focus adjustment information to the lens system control unit 15 based on the defocus amount output from the focus detection unit 11, and the lens system control unit 15 transmits the focus adjustment information via the focus adjustment unit 22. Is driven in the direction of the optical axis 4.

また、カメラシステム制御部5は、画像処理部7により得られた画像データを用いて所定の演算処理を行うことで、適正露光量を取得し、これに基づいて、撮影光学系3に含まれる絞り及び撮像素子6の露光時間を制御する。このように、適切に撮影光学系3を調整することで、適切な光量の被写体光で撮像素子6を露光するとともに、撮像素子6近傍で被写体像が結像される。 Further, the camera system control unit 5 acquires an appropriate exposure amount by performing a predetermined arithmetic process using the image data obtained by the image processing unit 7, and is included in the photographing optical system 3 based on this. The exposure time of the aperture and the image sensor 6 is controlled. By appropriately adjusting the photographing optical system 3 in this way, the image pickup device 6 is exposed with the subject light of an appropriate amount of light, and the subject image is formed in the vicinity of the image pickup device 6.

カメラ振れ検出部13は、本実施形態ではコリオリ力を利用した振動ジャイロを用いるものとし、カメラボディ1に加わる回転振れを検知する。カメラ振れ検出部13は、ユーザの手振れ等により生じたカメラボディ1の振れ(以下、「カメラ振れ」という。)を検出して、該カメラ振れを表すカメラ振れ検出信号をカメラシステム制御部5に出力する。カメラシステム制御部5は、カメラ振れ検出信号からカメラ振れによる像振れを低減(相殺)するための撮像素子6のシフト量(補正量)を演算し、該シフト量を含む防振指示をカメラ振れ補正部12に出力する。カメラ振れ補正部12は、カメラシステム制御部5からの防振指示に応じてシフト機構に含まれるアクチュエータを制御することで、撮像素子6を光軸4と直交する面内で上記シフト量だけシフト駆動する。これにより、センサ防振が行われる。 In the present embodiment, the camera shake detection unit 13 uses a vibration gyro that utilizes the Coriolis force, and detects rotational shake applied to the camera body 1. The camera shake detection unit 13 detects the shake of the camera body 1 (hereinafter referred to as “camera shake”) caused by the user's camera shake or the like, and sends a camera shake detection signal representing the camera shake to the camera system control unit 5. Output. The camera system control unit 5 calculates a shift amount (correction amount) of the image sensor 6 for reducing (cancelling) image shake due to camera shake from the camera shake detection signal, and issues an anti-vibration instruction including the shift amount to the camera shake. Output to the correction unit 12. The camera shake correction unit 12 shifts the image sensor 6 by the shift amount in a plane orthogonal to the optical axis 4 by controlling the actuator included in the shift mechanism in response to the vibration isolation instruction from the camera system control unit 5. Drive. As a result, sensor vibration isolation is performed.

また、カメラ振れ補正部12は、手振れの補正制御だけでなく、被写体の高空間周波数成分の折り返りによって生じるモアレの影響を軽減するように、カメラシステム制御部5の制御に基づいて撮像素子6を周期駆動制御する。これにより、本実施形態における振動型ローパスフィルタとしての機能を実現する。 Further, the camera shake correction unit 12 not only controls the camera shake, but also controls the image sensor 6 based on the control of the camera system control unit 5 so as to reduce the influence of moire caused by the folding back of the high spatial frequency component of the subject. Is periodically driven and controlled. Thereby, the function as the vibration type low-pass filter in this embodiment is realized.

次に、本実施形態における振動型ローパスフィルタの周期駆動制御について説明する。本実施形態においては、図3に示す周期駆動制御をカメラ振れ補正部12が撮像素子6に対して行う。 Next, the periodic drive control of the vibration type low-pass filter in the present embodiment will be described. In the present embodiment, the camera shake correction unit 12 performs the periodic drive control shown in FIG. 3 on the image sensor 6.

図3は、本実施形態における、光学ローパスフィルタ効果を得るための撮像素子6の駆動方法について説明した図である。図3の上部には、撮像素子6を構成する画素のうち、ベイヤ配列のR(赤)G(緑)行の一部を示している。また、説明の簡略化のために、水平方向へシフトする場合を示している。画素の左側のフォトダイオードに対応する領域を便宜的にA領域、画素の右側のフォトダイオードに対応する領域を便宜的にB領域とし、R画素及びG画素のA領域をそれぞれRA及びGA、R画素及びG画素のB領域をそれぞれRB及びGBとして示している。 FIG. 3 is a diagram illustrating a method of driving the image pickup device 6 for obtaining the optical low-pass filter effect in the present embodiment. The upper part of FIG. 3 shows a part of the R (red) G (green) rows of the Bayer array among the pixels constituting the image sensor 6. Further, for the sake of simplification of the explanation, the case of shifting in the horizontal direction is shown. The region corresponding to the photodiode on the left side of the pixel is conveniently referred to as the A region, the region corresponding to the photodiode on the right side of the pixel is conveniently referred to as the B region, and the A region of the R pixel and the G pixel is RA, GA, and R, respectively. The B region of the pixel and the G pixel is shown as RB and GB, respectively.

図3の下部は、▼で示したGA画素の位置の時間変化を示したもので、縦軸は時間経過を下向きで表しており、横軸は位置を示している。時間方向の点線は、垂直同期期間すなわち焦点検出周期TAFを示しており、焦点検出処理はこの焦点検出周期TAFの時間内に1度実施される。また、位置の方向の一点鎖線は、焦点検出画素の間隔dAFを表している。図3に示すGA画素の位置の変化は、撮像素子6を水平方向に移動することで実現することができる。 The lower part of FIG. 3 shows the time change of the position of the GA pixel indicated by ▼, the vertical axis represents the passage of time downward, and the horizontal axis represents the position. The dotted line in the time direction indicates the vertical synchronization period, that is, the focus detection cycle T AF , and the focus detection process is performed once within the time of this focus detection cycle T AF. The alternate long and short dash line in the direction of the position represents the distance d AF of the focus detection pixels. The change in the position of the GA pixel shown in FIG. 3 can be realized by moving the image sensor 6 in the horizontal direction.

このように、焦点検出期間TAFの間に、1焦点検出画素の間隔dAF分、位相差を検出する方向に撮像素子6を移動させることで、ナイキスト周波数よりも高い帯域については、ほぼ通過しない様にすることができる。そのため、焦点状態の誤検出を防止することが可能となる。 Thus, during the focus detection period T AF, 1 focus detection pixel distance d AF content of, by moving the image pickup device 6 in a direction for detecting a phase difference, the higher band than the Nyquist frequency is approximately pass You can avoid it. Therefore, it is possible to prevent erroneous detection of the focal state.

また、2焦点検出周期TAFをかけて撮像素子6を往復駆動制御するため、不要な音や振動の発生を抑えることができると共に、より高いフレームレートに対応することが可能となる。また、不要な消費電力の増大を防ぐことができる。 Further, since the image sensor 6 is reciprocally driven and controlled by applying the bifocal detection cycle TAF , it is possible to suppress the generation of unnecessary sounds and vibrations and to cope with a higher frame rate. In addition, it is possible to prevent an unnecessary increase in power consumption.

なお、本実施形態においては、カメラ振れ補正部12が撮像素子6のシフト駆動制御を行う場合について説明したが、本発明はこれに限られるものでは無く、レンズ振れ補正部18が防振レンズユニット19を駆動することにより行ってもよい。
即ち、撮像素子6上における光束の入射位置をシフトできる構成であれば良い。
In the present embodiment, the case where the camera shake correction unit 12 controls the shift drive of the image sensor 6 has been described, but the present invention is not limited to this, and the lens shake correction unit 18 is the vibration isolation lens unit. This may be done by driving 19.
That is, the configuration may be such that the incident position of the light flux on the image sensor 6 can be shifted.

また、本実施形態においては、カメラ振れ補正部12は周期駆動制御のみを実施している状態で説明を行ったが、カメラに加わる手振れを補正する、公知の手振れ補正駆動を重畳して行っても同様の効果を得ることができる。 Further, in the present embodiment, the camera shake correction unit 12 has been described in a state where only the periodic drive control is performed, but the known camera shake correction drive for correcting the camera shake applied to the camera is superimposed. Can also obtain the same effect.

<変形例1>
図4は、撮像素子6を振動型ローパスフィルタとして使用する場合の他のシフト駆動例を示す。
<Modification example 1>
FIG. 4 shows another shift drive example when the image sensor 6 is used as a vibration type low-pass filter.

なお、図4において、GA、GB、RA、RB、及び縦軸、横軸は、上述した図3と同様であるため、説明を省略する。また、図4において、実線は、変形例1におけるカメラ振れ補正部12の駆動制御の様子を示したものである。点線は図3に示した駆動制御であり、比較参照するために記している。 In FIG. 4, GA, GB, RA, RB, and the vertical and horizontal axes are the same as those in FIG. 3 described above, and thus the description thereof will be omitted. Further, in FIG. 4, the solid line shows the state of drive control of the camera shake correction unit 12 in the first modification. The dotted line is the drive control shown in FIG. 3, and is shown for comparison and reference.

図4の実線に示す通り、カメラ振れ補正部12の周期駆動制御は、図3に示す周期駆動制御(点線)よりも大きな振幅で、1焦点検出周期TAF内におおよそ焦点検出画素間の間隔dAF分の距離を焦点検出画素の配列方向(図4の左右方向)に駆動制御を行う。 As shown in solid line in FIG. 4, the period the drive control of the camera shake correcting section 12, at an amplitude greater than the cycle the drive control (dotted line) shown in FIG. 3, approximate distance between the focus detection pixels 1 focus detection period T in AF d Drive control is performed for the distance of AF in the arrangement direction of the focus detection pixels (left-right direction in FIG. 4).

なお、図4では、1焦点検出周期TAF内におおよそ焦点検出画素間の間隔dAF分の距離を焦点検出画素の配列方向に駆動制御したが、実際には、焦点検出のための電荷蓄積時間も考慮する必要がある。すなわち、図4のような駆動制御は、1焦点検出周期TAFと焦点検出のための電荷蓄積時間τが等価である条件を示したものであり、τ<TAFとなる条件においては、駆動周波数も高くする必要がある。これらのような条件で周期駆動制御を行うことによって、図3に示した様な周期駆動制御で発生する恐れのある振動や音を抑制することができるとともに、フレームレート高速化による焦点検出周期TAFの短縮にも対応可能となる。また、ライブビューの各フレームに対して、図8に示した光学ローパスフィルタと同様の効果が得られる。 In FIG. 4, the distance between the focus detection pixels d AF is driven and controlled in the arrangement direction of the focus detection pixels within the one focus detection cycle T AF , but in reality, charge accumulation for focus detection is performed. Time also needs to be considered. That is, the drive control as shown in FIG. 4 shows the condition that the one-focus detection cycle T AF and the charge accumulation time τ for focus detection are equivalent, and under the condition that τ <TA F , the drive is driven. The frequency also needs to be high. By performing the periodic drive control under these conditions, it is possible to suppress the vibration and sound that may occur in the periodic drive control as shown in FIG. 3, and the focus detection cycle T due to the high frame rate. It is also possible to shorten AF. Further, the same effect as that of the optical low-pass filter shown in FIG. 8 can be obtained for each frame of the live view.

なお、この図4に示す周期駆動制御を行うことで、取得画像において、3つの焦点検出画素の距離(=3×dAF)分
(焦点検出画素の間隔の複数倍)の移動が、3焦点検出周期の間に発生することになる。しかしながら、撮像素子6は焦点検出を実施する期間、すなわちライブビュー期間については、読み出しの際に水平方向に同色の3画素を加算する処理を施しているため、ライブビュー画像上は周期駆動の影響が表出しない。そのため、電子ビューファインダー10aなどの表示装置10に対して表示位置の変更等、別段の処理を行わずとも良い。
By performing the periodic drive control shown in FIG. 4, the movement of the distance (= 3 × d AF ) of the three focus detection pixels (multiple times the interval of the focus detection pixels) in the acquired image is three focal points. It will occur during the detection cycle. However, since the image sensor 6 is subjected to a process of adding three pixels of the same color in the horizontal direction during the period of performing focus detection, that is, the live view period, the effect of periodic drive on the live view image. Does not appear. Therefore, it is not necessary to perform other processing such as changing the display position on the display device 10 such as the electronic viewfinder 10a.

なお、図4で示す周期駆動制御において駆動される撮像素子6の速度を第1の速度とした場合、カメラ振れ補正部12の可動部の重量によっては、第1の速度で駆動しても消費電力が大き過ぎる場合や、第1の速度による駆動を実現することができない場合がある。その場合には、予め可動部の重量から実現することが可能な最大速度(これを第2の速度とする。)を規定しておき、第1の速度が第2の速度よりも大きい場合には、第2の速度以下での駆動制御を行う様に制御する。 When the speed of the image sensor 6 driven in the periodic drive control shown in FIG. 4 is set to the first speed, it is consumed even if it is driven at the first speed depending on the weight of the movable part of the camera shake correction unit 12. There are cases where the power is too large or it is not possible to realize driving at the first speed. In that case, the maximum speed that can be realized from the weight of the moving part (this is referred to as the second speed) is defined in advance, and when the first speed is larger than the second speed. Controls to perform drive control at a second speed or lower.

<変形例2>
図5は、撮像素子6を振動型ローパスフィルタとして使用する場合の他のシフト駆動例を示す。
<Modification 2>
FIG. 5 shows another shift drive example when the image sensor 6 is used as a vibration type low-pass filter.

図5に示す周期駆動制御は、周期が図4よりも長いことが特徴となっている。図5のような周期駆動制御の場合も、焦点検出周期TAF内で撮像素子6が移動する距離は、図4と同様に焦点検出画素の間隔dAFであるため、同様に光学ローパスフィルタと同様の効果が得られる。一方で、周期駆動制御の振幅が図4よりも大きいため、電子ビューファインダー10aなどの表示装置10上でのライブビュー画像の表示が徐々に移動してしまう。そのため、カメラシステム制御部5は、表示装置10上の表示位置が移動しないように、周期駆動制御とは逆方向に表示されるよう、表示制御を行う。 The periodic drive control shown in FIG. 5 is characterized in that the period is longer than that in FIG. Even in the case of the periodic drive control as shown in FIG. 5, the distance that the image sensor 6 moves in the focus detection cycle T AF is the distance d AF of the focus detection pixels as in FIG. A similar effect can be obtained. On the other hand, since the amplitude of the periodic drive control is larger than that in FIG. 4, the display of the live view image on the display device 10 such as the electronic viewfinder 10a gradually moves. Therefore, the camera system control unit 5 performs display control so that the display position on the display device 10 does not move and is displayed in the direction opposite to the periodic drive control.

上述した変形例1及び変形例2によれば、不要な音や振動の発生を抑えることができると共に、更に高いフレームレートに対応することが可能となると共に、不要な消費電力の増大を防ぐことができる。 According to the above-mentioned modifications 1 and 2, it is possible to suppress the generation of unnecessary sounds and vibrations, to cope with a higher frame rate, and to prevent unnecessary increase in power consumption. Can be done.

なお、変形例1及び変形例2で説明した図4及び図5では、周期駆動制御はどちらも同じ方向(グラフの右方向)に移動するように開始されている。この方向については、像振れ補正の被駆動部材である撮像素子6や防振レンズユニット19が、前述のように重畳された像振れ補正のための駆動によって発生している位置の偏りに応じて変更するとよい。例えば、カメラ振れ補正部12で撮像素子6が図4の右方向にすでに偏って位置する際には、周期駆動制御を左方向に駆動するところから開始する。このように駆動方向を制御することで、撮像素子6の振幅中心位置をなるべく光軸4に近づけることができ、撮像素子6の駆動可能範囲をバランスよく利用することが可能になる。 In FIGS. 4 and 5 described in the first modification and the second modification, the periodic drive control is started so as to move in the same direction (to the right of the graph). In this direction, the image sensor 6 and the anti-vibration lens unit 19, which are the driven members for image shake correction, respond to the bias of the position generated by the superimposed drive for image shake correction as described above. You should change it. For example, when the image sensor 6 is already biased to the right in FIG. 4 in the camera shake correction unit 12, the periodic drive control is driven to the left. By controlling the drive direction in this way, the amplitude center position of the image sensor 6 can be made as close as possible to the optical axis 4, and the driveable range of the image sensor 6 can be used in a well-balanced manner.

また、図3〜図5において、焦点検出周期TAF内で撮像素子6が移動する距離は、ともに焦点検出画素間の間隔dAFであったが、本発明はこれに限られるものでは無い。例えば、撮像装置として折り返りを抑制したい空間周波数に応じて適切な距離だけ移動するように駆動制御すればよい。たとえばdAFよりも小さい値に設定すると、図8における実線はナイキスト周波数よりも高い周波数で0となる。この場合、ナイキスト周波数以上の周波数で得られる応答は、ナイキスト周波数未満の領域に折り返りを生じるが、焦点検出したい空間周波数帯域に影響がないのであれば、焦点検出そのものに与える影響はないため、問題とならない。いずれの場合にも、焦点検出周期TAF内で撮像素子6が移動する距離は、焦点検出画素間の間隔dAFを基準として規定される値焦点検出画素の間隔以下の値)と考えることができる。 Further, in FIGS. 3 to 5, the distance that the image sensor 6 moves in the focus detection cycle T AF is the distance d AF between the focus detection pixels, but the present invention is not limited to this. For example, as an image pickup device, drive control may be performed so as to move by an appropriate distance according to the spatial frequency in which folding back is desired to be suppressed. For example , if the value is set to be smaller than d AF , the solid line in FIG. 8 becomes 0 at a frequency higher than the Nyquist frequency. In this case, the response obtained at frequencies above the Nyquist frequency causes wrapping in the region below the Nyquist frequency, but if there is no effect on the spatial frequency band for which focus detection is desired, there is no effect on focus detection itself. It doesn't matter. In any case, the distance that the image sensor 6 moves in the focus detection cycle T AF can be considered as a value defined with reference to the distance d AF between the focus detection pixels (a value equal to or less than the distance between the focus detection pixels). it can.

また、図3〜図5では、焦点検出画素が射出瞳のA領域とB領域の光束を受光する前提で説明しているが、本発明の撮像素子6の構成は図2に示すものに限定されるものではない。撮影光学系の互いに異なる瞳領域を通過した被写体光に基づいて、視差を有する焦点検出信号対を取得可能に信号を出力する焦点検出画素を含む構成であれば良い。 Further, in FIGS. 3 to 5, the description is made on the premise that the focus detection pixel receives the light fluxes in the A region and the B region of the exit pupil, but the configuration of the image pickup device 6 of the present invention is limited to that shown in FIG. It is not something that is done. The configuration may include focus detection pixels that output signals so that a focus detection signal pair having parallax can be acquired based on subject light that has passed through different pupil regions of the photographing optical system.

例えばA領域とB領域の配列方向と直交する方向(図4及び図5における上下方向)に焦点検出画素が配置されていてもよい。この場合は、周期駆動制御される方向も図4及び図5の駆動方向とは直交する方向に駆動する必要がある。また、焦点検出画素が一つの撮像画素内に田の字型に4つ配置されているような場合、周期駆動制御される方向が斜め45度方向とすることで、上述した実施形態と同様の効果を得ることができる。 For example, the focus detection pixels may be arranged in a direction orthogonal to the arrangement direction of the A region and the B region (vertical direction in FIGS. 4 and 5). In this case, the direction in which the periodic drive is controlled also needs to be driven in a direction orthogonal to the drive directions of FIGS. 4 and 5. Further, when four focus detection pixels are arranged in a paddy field shape in one image pickup pixel, the direction of periodic drive control is set to an oblique 45 degree direction, which is the same as that of the above-described embodiment. The effect can be obtained.

<変形例3>
第1の実施形態の撮像システム100においては、撮像画素のすべての光電変換部が焦点検出画素となっていたが、これには限定されず、焦点検出画素が離散配置されていてもよい。この場合、焦点検出画素の間隔は撮像画素の間隔とは異なった値となる。この場合の制御について、図6及び図7を用いて説明する。
<Modification example 3>
In the image pickup system 100 of the first embodiment, all the photoelectric conversion units of the image pickup pixels are focus detection pixels, but the present invention is not limited to this, and the focus detection pixels may be arranged discretely. In this case, the distance between the focus detection pixels is different from the distance between the imaging pixels. The control in this case will be described with reference to FIGS. 6 and 7.

図6は、撮像素子6の画素配列の更に別の一例を示したものである。図6において、500は、撮像画像を形成するための撮像画素であり、501,502は画素内に、例えば特開2009−244862号公報に記された公開技術等を利用して遮光構造が配された焦点検出画素である。第1焦点検出画素501と第2焦点検出画素502は対を成し、撮像面位相差方式の焦点検出に用いる焦点検出信号対を出力する。この焦点検出信号対は、y方向の縦縞パターンの被写体のピント位置を検出するのに適している。なお、同様に、上下方向に異なる遮光構造を有する、対を為す焦点検出画素を設けても良い。その場合、この焦点検出信号対は、x方向の横縞パターンの被写体のピント位置を検出するのに適している。 FIG. 6 shows still another example of the pixel arrangement of the image sensor 6. In FIG. 6, 500 is an image pickup pixel for forming an image to be captured, and 501 and 502 are a light-shielding structure arranged in the pixel by using, for example, the published technique described in JP-A-2009-244862. It is a focus detection pixel. The first focus detection pixel 501 and the second focus detection pixel 502 form a pair, and output a focus detection signal pair used for focus detection in the imaging surface phase difference method. This focus detection signal pair is suitable for detecting the focus position of a subject having a vertical stripe pattern in the y direction. Similarly, paired focus detection pixels having different light-shielding structures in the vertical direction may be provided. In that case, this focus detection signal pair is suitable for detecting the focus position of the subject in the horizontal stripe pattern in the x direction.

図7は、焦点検出画素が離散配置されている場合における撮像素子6の周期駆動制御を説明する概略図である。なお、図7では画素の配置とカメラ振れ補正部12で駆動する速度の関係について説明するため、一方の射出瞳領域を通過する光束を受光する画素のみを図示した。 FIG. 7 is a schematic diagram illustrating periodic drive control of the image pickup device 6 when the focus detection pixels are arranged discretely. In addition, in FIG. 7, in order to explain the relationship between the arrangement of the pixels and the speed of driving by the camera shake correction unit 12, only the pixels that receive the light flux passing through one of the exit pupil regions are shown.

図7に示す例の場合、焦点検出画素は同色(G)画素位置に配置されているため、撮像画素でいう2画素間隔で配置されていることとなる。このような配置であっても図8における実線のような応答を得るためには、離散的に配置されている焦点検出画素の間隔dAFだけ駆動する必要がある。図中の点線は、図3の概念を念頭に、離散的に配置された焦点検出画素に対して同様な周期駆動を行ったことを示しているが、隣接画素間に配置されている図4及び図5と異なり、より高速な往復動作が要求される。そこで、実線のような周期駆動を行う。すなわち、離散的に配置された焦点検出画素の場合には、第1の実施形態よりもより振幅の大きい周期駆動制御を行う。 In the case of the example shown in FIG. 7, since the focus detection pixels are arranged at the same color (G) pixel positions, they are arranged at intervals of two pixels in the image pickup pixels. Even with such an arrangement, in order to obtain a response as shown by the solid line in FIG. 8, it is necessary to drive only the distance d AF of the focus detection pixels arranged discretely. The dotted line in the figure indicates that the same periodic drive was performed on the focus detection pixels arranged discretely with the concept of FIG. 3 in mind, but FIG. 4 is arranged between the adjacent pixels. And unlike FIG. 5, higher speed reciprocating operation is required. Therefore, periodic drive as shown by the solid line is performed. That is, in the case of the focus detection pixels arranged discretely, the periodic drive control having a larger amplitude than that of the first embodiment is performed.

このように振幅の大きい周期駆動制御を行うことで、焦点検出画素が離散的に配置されている場合にも、上述した実施形態と同様の効果を得ることができる。 By performing the periodic drive control having a large amplitude in this way, the same effect as that of the above-described embodiment can be obtained even when the focus detection pixels are arranged discretely.

<第2の実施形態>
次に、本発明の第2の実施形態について説明する。なお、第2の実施形態における撮像システム100の構成は、図1を参照して説明したものと同様であるため、ここでは説明を省略する。ただし、第2の実施形態における撮像素子6は、第1の実施形態で説明した構成と異なり、焦点検出画素群を有さない。代わりに第2の実施形態においては、撮像システム100は、いわゆるコントラスト方式のAFを行う。即ち、焦点検出部11は、撮影光学系3の焦点状態を変更しながら撮像素子6から得られる画素信号のコントラスト情報を取得し、コントラストが最大となった時のフォーカスレンズの位置を検出する。そして、検出したフォーカスレンズの位置となるように、カメラシステム制御部5、レンズシステム制御部15を介して焦点調節部22によりフォーカスレンズを駆動制御する。
<Second embodiment>
Next, a second embodiment of the present invention will be described. Since the configuration of the imaging system 100 in the second embodiment is the same as that described with reference to FIG. 1, the description thereof will be omitted here. However, unlike the configuration described in the first embodiment, the image sensor 6 in the second embodiment does not have a focus detection pixel group. Instead, in the second embodiment, the imaging system 100 performs so-called contrast AF. That is, the focus detection unit 11 acquires the contrast information of the pixel signal obtained from the image sensor 6 while changing the focus state of the photographing optical system 3, and detects the position of the focus lens when the contrast is maximized. Then, the focus lens is driven and controlled by the focus adjusting unit 22 via the camera system control unit 5 and the lens system control unit 15 so as to be the position of the detected focus lens.

コントラストAF方式の場合であっても、空間周波数の高い被写体を撮像画素でサンプリングするため、ナイキスト周波数を境とした折り返り現象が発生する。このため、焦点状態を変更しながら合焦近傍に到達した際、低周波信号の影響でコントラストが低下したと誤判定されてしまう。この場合も、第1の実施形態及び変形例1、2で実施した周期駆動制御が有効である。この際、周期駆動の方向は、コントラストを検出する方向である必要がある。 Even in the case of the contrast AF method, since the subject having a high spatial frequency is sampled by the imaging pixels, the folding phenomenon with the Nyquist frequency as the boundary occurs. Therefore, when the focus state is changed and the focus state is reached, it is erroneously determined that the contrast is lowered due to the influence of the low frequency signal. Also in this case, the periodic drive control carried out in the first embodiment and the first and second modifications 1 and 2 is effective. At this time, the direction of the periodic drive needs to be the direction of detecting the contrast.

一般に、撮像素子6の読み出し方向についてコントラストを検出することが多く、その場合には読み出し方向に周期駆動を行うよう駆動制御がなされる。しかしながら、被写体の種類によっては、読み出し方向とは直交する方向についてコントラストを検出することもあり、その場合には、コントラストを検出する方向に周期駆動を行うよう駆動制御がなされる。 In general, contrast is often detected in the reading direction of the image sensor 6, and in that case, drive control is performed so as to perform periodic drive in the reading direction. However, depending on the type of subject, the contrast may be detected in a direction orthogonal to the reading direction, and in that case, drive control is performed so as to perform periodic drive in the direction in which the contrast is detected.

また、焦点検出に利用するライブビュー画像は、読み出し方向には同色加算処理、読み出し直交方向には間引き処理等のダウンサンプリング処理が行われている。このため、特に間引き処理がなされる読み出し直交方向での焦点検出にあたっては、焦点検出に用いられる画素の間隔が広く、その間隔を元に周期駆動制御を行う必要がある。これはちょうど第1の実施形態の図7と同様の駆動制御となる。 Further, the live view image used for focus detection is subjected to downsampling processing such as same color addition processing in the reading direction and thinning processing in the reading orthogonal direction. For this reason, especially in the focus detection in the read orthogonal direction in which the thinning process is performed, the interval between the pixels used for the focus detection is wide, and it is necessary to perform periodic drive control based on the interval. This is exactly the same drive control as in FIG. 7 of the first embodiment.

なお、同色加算処理を行う読み出し方向については、加算前の画像信号で折り返り現象が発生しないよう、図3から図5のいずれかと同様な駆動制御を行うことと、加算後の画像信号での折り返りを抑制するために図7と同様の駆動制御を行うことが考えられる。これらは焦点検出の際に重視する被写体の空間周波数及びそのために実施する特定帯域の抽出(フィルタ)処理に応じて決めればよい。この周期駆動方向以外に、駆動周波数、駆動開始時の駆動方向、周期駆動に伴う表示位置の制御、手振れ補正駆動の重畳などを実施するが、これらについては第1の実施形態と同様であるため、説明を割愛する。 Regarding the reading direction in which the same color addition processing is performed, the same drive control as in any of FIGS. 3 to 5 is performed so that the image signal before addition does not cause a folding phenomenon, and the image signal after addition is used. It is conceivable to perform the same drive control as in FIG. 7 in order to suppress the folding back. These may be determined according to the spatial frequency of the subject to be emphasized in the focus detection and the extraction (filter) processing of the specific band performed for that purpose. In addition to this periodic drive direction, the drive frequency, the drive direction at the start of drive, the control of the display position accompanying the periodic drive, the superimposition of the image stabilization drive, etc. are performed, but these are the same as those in the first embodiment. , I will omit the explanation.

以上のように第2の実施形態によれば、コントラスト方式のAFを行う撮像装置においても、上述した実施形態と同様の効果を得ることができる。 As described above, according to the second embodiment, the same effect as that of the above-described embodiment can be obtained even in the image pickup apparatus that performs the contrast type AF.

なお、上述した第1乃至第2の実施形態においては、レンズ交換式のデジタルカメラ(いわゆる一眼カメラ)を用いて説明を行ったが、本発明はこれに限定されず、レンズ固定式のデジタルカメラ(いわゆるコンパクトデジタルカメラ)であっても構わない。 In the first to second embodiments described above, the description has been made using a digital camera with an interchangeable lens (so-called single-lens camera), but the present invention is not limited to this, and a digital camera with a fixed lens is used. (So-called compact digital camera) may be used.

また、焦点検出動作が静止画、動画いずれのためであるかは特に言及していないが、これによる制限を受けるものではなく、高周波な被写体が存在する場合に、周期駆動制御が実施されれば、静止画撮影前動作であっても動画撮影中の焦点検出であっても構わない。 In addition, although it is not specifically mentioned whether the focus detection operation is for a still image or a moving image, it is not limited by this, and if periodic drive control is performed when a high-frequency subject is present. , It may be the operation before shooting a still image or the focus detection during movie shooting.

<他の実施形態>
また、本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
<Other Embodiments>
The present invention also supplies a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device implement the program. It can also be realized by the process of reading and executing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above embodiments, and various modifications and modifications can be made without departing from the spirit and scope of the invention. Therefore, a claim is attached to make the scope of the invention public.

1:カメラボディ、2:レンズユニット、3:撮影光学系、5:カメラシステム制御部、7:画像処理部、11:焦点検出部、12:カメラ振れ補正部、15:レンズシステム制御部、18:レンズ振れ補正部、19:防振レンズユニット、22:焦点調節部、100:撮像システム 1: Camera body 2: Lens unit 3: Shooting optical system 5: Camera system control unit, 7: Image processing unit, 11: Focus detection unit, 12: Camera shake correction unit, 15: Lens system control unit, 18 : Lens shake correction unit, 19: Anti-vibration lens unit, 22: Focus adjustment unit, 100: Imaging system

Claims (22)

撮影光学系の互いに異なる瞳領域を通過した光束に基づいて、視差を有する一対の焦点検出信号を取得可能に信号を出力する焦点検出画素を含む複数の画素が配列された撮像素子と、
前記撮像素子における前記光束の入射位置をシフトさせるシフト手段と、
前記一対の焦点検出信号を用いて位相差方式の焦点検出を行う焦点検出手段と、を有し、
前記シフト手段は、前記焦点検出に用いる画像を取得するための前記撮像素子の電荷蓄積時間の間に、位相差を検出する方向に、前記一対の焦点検出信号に対応する前記撮像素子の焦点検出画素の間隔以下の予め決められた距離をシフトさせることを特徴とする撮像装置。
An image sensor in which a plurality of pixels including a focus detection pixel that outputs a pair of focus detection signals having a parallax can be acquired based on light flux passing through different pupil regions of the photographing optical system are arranged.
A shift means for shifting the incident position of the luminous flux in the image sensor, and
It has a focus detection means for performing a phase difference type focus detection using the pair of focus detection signals.
The shift means detects the focus of the image sensor corresponding to the pair of focus detection signals in the direction of detecting the phase difference during the charge accumulation time of the image sensor for acquiring the image used for the focus detection. An image pickup device characterized by shifting a predetermined distance equal to or less than a pixel spacing.
前記シフト手段は、前記撮像素子を前記撮影光学系の光軸に対して直交する面上で移動させることを特徴とする請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the shifting means moves the imaging element on a plane orthogonal to the optical axis of the photographing optical system. 前記シフト手段は、前記撮影光学系に含まれる防振レンズを前記撮影光学系の光軸に対して直交する面上で移動させることを特徴とする請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the shifting means moves the anti-vibration lens included in the photographing optical system on a plane orthogonal to the optical axis of the photographing optical system. 前記シフト手段は、前記光束の入射位置が前記撮像素子上で往復するようにシフトすることを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。 The image pickup apparatus according to any one of claims 1 to 3, wherein the shift means shifts the incident position of the light flux so as to reciprocate on the image pickup device. 前記往復の振幅は、前記焦点検出画素の間隔であることを特徴とする請求項4に記載の撮像装置。 The imaging device according to claim 4, wherein the reciprocating amplitude is an interval between the focus detection pixels. 前記往復の振幅は、前記焦点検出画素の間隔の複数倍であることを特徴とする請求項4に記載の撮像装置。 The imaging device according to claim 4, wherein the reciprocating amplitude is a plurality of times the distance between the focus detection pixels. 前記撮像素子の各画素は、1つのマイクロレンズと複数の光電変換部とを有することを特徴とする請求項1乃至6のいずれか1項に記載の撮像装置。 The image pickup apparatus according to any one of claims 1 to 6, wherein each pixel of the image pickup device has one microlens and a plurality of photoelectric conversion units. 前記撮像素子は、第1の部分が遮光された複数の第1の焦点検出画素と、前記第1の部分と異なる第2の部分が遮光された複数の第2の焦点検出画素が、前記複数の画素の間に離散的に配置された構成を有することを特徴とする請求項1乃至6のいずれか1項に記載の撮像装置。 The image sensor has a plurality of first focus detection pixels in which the first portion is shielded from light, and a plurality of second focus detection pixels in which a second portion different from the first portion is shielded from light. The image pickup apparatus according to any one of claims 1 to 6, further comprising a configuration in which the pixels are arranged discretely. 撮影光学系を介して入射する光束に基づいて、信号を出力する複数の画素が配列された撮像素子と、
前記撮像素子における前記光束の入射位置をシフトさせるシフト手段と、
前記複数の画素から読み出された信号のコントラストに基づいて焦点検出を行う焦点検出手段と、を有し、
前記シフト手段は、前記焦点検出に用いる画像を取得するための前記撮像素子の電荷蓄積時間の間に、前記読み出された信号に対応する前記撮像素子の画素の間隔以下の予め決められた距離をシフトさせることを特徴とする撮像装置。
An image sensor in which a plurality of pixels that output signals are arranged based on the luminous flux incident through the photographing optical system, and
A shift means for shifting the incident position of the luminous flux in the image sensor, and
It has a focus detection means that performs focus detection based on the contrast of signals read from the plurality of pixels.
The shift means has a predetermined distance equal to or less than the pixel spacing of the image sensor corresponding to the read signal during the charge accumulation time of the image sensor for acquiring the image used for the focus detection. An image sensor characterized by shifting the image.
前記シフト手段は、前記撮像素子を前記撮影光学系の光軸に対して直交する面上で移動させることを特徴とする請求項9に記載の撮像装置。 The imaging device according to claim 9, wherein the shifting means moves the imaging element on a plane orthogonal to the optical axis of the photographing optical system. 前記シフト手段は、前記撮影光学系に含まれる防振レンズを前記撮影光学系の光軸に対して直交する面上で移動させることを特徴とする請求項9に記載の撮像装置。 The imaging device according to claim 9, wherein the shifting means moves the anti-vibration lens included in the photographing optical system on a plane orthogonal to the optical axis of the photographing optical system. 前記シフト手段は、前記光束の入射位置が往復するようにシフトすることを特徴とする請求項9乃至11のいずれか1項に記載の撮像装置。 The imaging device according to any one of claims 9 to 11, wherein the shifting means shifts the incident position of the light flux so as to reciprocate. 前記往復の振幅は、前記画素の間隔であることを特徴とする請求項12に記載の撮像装置。 The imaging device according to claim 12, wherein the reciprocating amplitude is the interval between the pixels. 前記往復の振幅は、前記間隔の複数倍であることを特徴とする請求項12に記載の撮像装置。 The imaging device according to claim 12, wherein the reciprocating amplitude is a plurality of times the interval. 前記シフト手段によりシフトされる前記光束の入射位置の最大速度は、前記光束の入射位置をシフトさせるための部材の重量により規定されることを特徴とする請求項1乃至14のいずれか1項に記載の撮像装置。 The maximum velocity of the incident position of the light flux shifted by the shift means is defined by the weight of a member for shifting the incident position of the light flux, according to any one of claims 1 to 14. The imaging device described. 振れを検出する検出手段と、
前記検出された振れを相殺するように前記撮像素子における前記光束の入射位置をシフトさせる補正量を算出する算出手段と、を更に有し、
前記シフト手段は、前記距離に前記補正量を重畳した値に基づいて、前記光束の入射位置をシフトさせることを特徴とする請求項1乃至15のいずれか1項に記載の撮像装置。
Detection means to detect runout and
Further, it has a calculation means for calculating a correction amount for shifting the incident position of the luminous flux in the image sensor so as to cancel the detected runout.
The imaging device according to any one of claims 1 to 15, wherein the shifting means shifts the incident position of the luminous flux based on a value obtained by superimposing the correction amount on the distance.
前記シフト手段によりシフトされる前記距離の方向は、前記算出手段により算出された補正量に基づく前記光束の入射位置の偏りの方向と逆の方向であることを特徴とする請求項16に記載の撮像装置。 16. The direction of claim 16, wherein the direction of the distance shifted by the shifting means is opposite to the direction of deviation of the incident position of the luminous flux based on the correction amount calculated by the calculating means. Imaging device. 前記撮像素子から得られる信号に基づく画像を表示手段に表示するように制御する表示制御手段を更に有し、
前記表示制御手段は、前記シフト手段による前記光束の入射位置のシフトによって生じる被写体像の移動を打ち消す方向に画像の表示位置を移動しながら表示制御することを特徴とする請求項1乃至17のいずれか1項に記載の撮像装置。
Further, it has a display control means for controlling the display of an image based on the signal obtained from the image pickup element on the display means.
The display control means according to any one of claims 1 to 17, wherein the display control means controls the display while moving the display position of the image in a direction that cancels the movement of the subject image caused by the shift of the incident position of the light flux by the shift means. The image pickup apparatus according to item 1.
前記撮影光学系を含むことを特徴とする請求項1乃至18のいずれか1項に記載の撮像装置。 The imaging device according to any one of claims 1 to 18, further comprising the photographing optical system. 前記撮影光学系は、前記撮像装置に着脱可能であることを特徴とする請求項1乃至18のいずれか1項に記載の撮像装置。 The imaging device according to any one of claims 1 to 18, wherein the photographing optical system is detachable from the imaging device. 撮影光学系の互いに異なる瞳領域を通過した光束に基づいて、視差を有する一対の焦点検出信号を取得可能に信号を出力する焦点検出画素を含む複数の画素が配列された撮像素子と、前記撮像素子における前記光束の入射位置をシフトさせるシフト手段と、前記一対の焦点検出信号を用いて位相差方式の焦点検出を行う焦点検出手段と、を有する撮像装置の制御方法であって、
前記シフト手段が、前記焦点検出に用いる画像を取得するための前記撮像素子の電荷蓄積時間の間に、位相差を検出する方向に、前記一対の焦点検出信号に対応する前記撮像素子の焦点検出画素の間隔以下の予め決められた距離をシフトさせることを特徴とする撮像装置の制御方法。
An image sensor in which a plurality of pixels including a focus detection pixel that outputs a pair of focus detection signals having a parallax can be acquired based on light beams that have passed through different pupil regions of the imaging optical system are arranged, and the image pickup A control method for an image pickup device comprising a shift means for shifting the incident position of the light beam on the element and a focus detection means for performing a phase difference type focus detection using the pair of focus detection signals.
Focus detection of the image sensor corresponding to the pair of focus detection signals in a direction in which the shift means detects a phase difference during the charge accumulation time of the image sensor for acquiring an image used for the focus detection. A control method for an image sensor, which comprises shifting a predetermined distance equal to or less than a pixel interval.
撮影光学系を介して入射する光束に基づいて、信号を出力する複数の画素が配列された撮像素子と、前記撮像素子における前記光束の入射位置をシフトさせるシフト手段と、前記複数の画素から読み出された信号のコントラストに基づいて焦点検出を行う焦点検出手段と、を有する撮像装置の制御方法であって、
前記シフト手段が、前記焦点検出に用いる画像を取得するための前記撮像素子の電荷蓄積時間の間に、前記読み出された信号に対応する前記撮像素子の画素の間隔以下の予め決められた距離をシフトさせることを特徴とする撮像装置の制御方法。
An image sensor in which a plurality of pixels for outputting a signal are arranged based on a light flux incident through the photographing optical system, a shift means for shifting the incident position of the light flux in the image sensor, and reading from the plurality of pixels. A control method for an image pickup device having a focus detection means for performing focus detection based on the contrast of an output signal.
A predetermined distance equal to or less than the pixel spacing of the image sensor corresponding to the read signal during the charge accumulation time of the image sensor for acquiring the image used for the focus detection by the shift means. A control method for an image sensor, which comprises shifting the image sensor.
JP2019197648A 2019-10-30 2019-10-30 Imaging device and its control method Active JP7397626B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019197648A JP7397626B2 (en) 2019-10-30 2019-10-30 Imaging device and its control method
US17/082,846 US11496665B2 (en) 2019-10-30 2020-10-28 Image capturing apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197648A JP7397626B2 (en) 2019-10-30 2019-10-30 Imaging device and its control method

Publications (3)

Publication Number Publication Date
JP2021071573A true JP2021071573A (en) 2021-05-06
JP2021071573A5 JP2021071573A5 (en) 2022-11-04
JP7397626B2 JP7397626B2 (en) 2023-12-13

Family

ID=75689156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197648A Active JP7397626B2 (en) 2019-10-30 2019-10-30 Imaging device and its control method

Country Status (2)

Country Link
US (1) US11496665B2 (en)
JP (1) JP7397626B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065950A (en) * 1996-08-13 1998-03-06 Canon Inc Image processing unit and image pickup device
JP2001136541A (en) * 1999-11-02 2001-05-18 Ricoh Co Ltd Image pickup device
JP2010087850A (en) * 2008-09-30 2010-04-15 Fujitsu Frontech Ltd Imaging apparatus for reading information
JP2012168383A (en) * 2011-02-15 2012-09-06 Olympus Corp Imaging apparatus
JP2012237937A (en) * 2011-05-13 2012-12-06 Nikon Corp Electronic apparatus
JP2015141367A (en) * 2014-01-30 2015-08-03 リコーイメージング株式会社 Imaging device including af function
JP2019057893A (en) * 2017-09-22 2019-04-11 株式会社日立国際電気 Imaging device
JP2019168661A (en) * 2018-03-26 2019-10-03 キヤノン株式会社 Controller, imaging unit, method for control, program, and storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451111B2 (en) 2008-03-11 2014-03-26 キヤノン株式会社 Focus detection apparatus and imaging apparatus having the same
JP5868060B2 (en) * 2011-08-02 2016-02-24 キヤノン株式会社 Image blur correction apparatus and method, optical apparatus, and imaging apparatus
JP5527368B2 (en) 2012-07-10 2014-06-18 株式会社ニコン Digital camera
US9451168B2 (en) * 2013-03-13 2016-09-20 Ricoh Imaging Company, Ltd. Photographing apparatus and photographing control system with low-pass filter effect
US9584727B2 (en) * 2013-05-17 2017-02-28 Ricoh Imaging Company, Ltd. Photographing apparatus and photographing control system
US10057492B2 (en) * 2013-10-29 2018-08-21 Ricoh Imaging Company, Ltd. Photographing apparatus and photographing control method to generate a low-pass filter effect
US9578243B2 (en) * 2013-10-30 2017-02-21 Ricoh Imaging Company, Ltd. Photographing apparatus and photographing control method
JP6598496B2 (en) * 2015-04-22 2019-10-30 キヤノン株式会社 Imaging apparatus and signal processing method
WO2017154366A1 (en) * 2016-03-11 2017-09-14 ソニー株式会社 Low-pass filter control device, low-pass filter control method, and image-capturing device
WO2017170165A1 (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Imaging device, operation method, image processing device, and image processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065950A (en) * 1996-08-13 1998-03-06 Canon Inc Image processing unit and image pickup device
JP2001136541A (en) * 1999-11-02 2001-05-18 Ricoh Co Ltd Image pickup device
JP2010087850A (en) * 2008-09-30 2010-04-15 Fujitsu Frontech Ltd Imaging apparatus for reading information
JP2012168383A (en) * 2011-02-15 2012-09-06 Olympus Corp Imaging apparatus
JP2012237937A (en) * 2011-05-13 2012-12-06 Nikon Corp Electronic apparatus
JP2015141367A (en) * 2014-01-30 2015-08-03 リコーイメージング株式会社 Imaging device including af function
JP2019057893A (en) * 2017-09-22 2019-04-11 株式会社日立国際電気 Imaging device
JP2019168661A (en) * 2018-03-26 2019-10-03 キヤノン株式会社 Controller, imaging unit, method for control, program, and storage medium

Also Published As

Publication number Publication date
US11496665B2 (en) 2022-11-08
JP7397626B2 (en) 2023-12-13
US20210136295A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP5791349B2 (en) Imaging apparatus and control method thereof
JP6124564B2 (en) Focus detection apparatus and method, and imaging apparatus
JP2008015754A (en) Image pickup device, image processor and image processing method
JP2022000695A (en) Imaging device
US10362214B2 (en) Control apparatus, image capturing apparatus, control method, and non-transitory computer-readable storage medium
JP5348258B2 (en) Imaging device
JP2014026051A (en) Image capturing device and image processing device
JP6207293B2 (en) IMAGING DEVICE, IMAGING SYSTEM, IMAGING DEVICE CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP6190119B2 (en) Image processing apparatus, imaging apparatus, control method, and program
CN103460702B (en) Color image capturing element and image capturing device
WO2019202984A1 (en) Image capturing device, distance measuring method, distance measuring program, and recording medium
JP5338112B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5998583B2 (en) Imaging device
JP2020046482A (en) Imaging apparatus
JP7397626B2 (en) Imaging device and its control method
JP2021157069A (en) Image tremor correction control device, imaging device and imaging device control method
JP6741549B2 (en) Imaging device and control method thereof
JP2009162845A (en) Imaging device, focus detecting device and imaging apparatus
JP6500618B2 (en) Imaging apparatus and imaging method
US20220385875A1 (en) Device, capturing device, control method, and storage medium
JP7019442B2 (en) Image pickup device and its control method
JP6234097B2 (en) Imaging apparatus and control method thereof
JP6541477B2 (en) IMAGE PROCESSING APPARATUS, IMAGING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM
JP6541503B2 (en) Image pickup apparatus, image processing apparatus, image processing method and program
JP2021071573A5 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231201

R151 Written notification of patent or utility model registration

Ref document number: 7397626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151