JP2021071354A - Bearing diagnosis system and bearing diagnosis method - Google Patents

Bearing diagnosis system and bearing diagnosis method Download PDF

Info

Publication number
JP2021071354A
JP2021071354A JP2019197501A JP2019197501A JP2021071354A JP 2021071354 A JP2021071354 A JP 2021071354A JP 2019197501 A JP2019197501 A JP 2019197501A JP 2019197501 A JP2019197501 A JP 2019197501A JP 2021071354 A JP2021071354 A JP 2021071354A
Authority
JP
Japan
Prior art keywords
bearing
frequency
vibration
characteristic
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019197501A
Other languages
Japanese (ja)
Inventor
亘 津野田
Wataru Tsunoda
亘 津野田
大野 耕作
Kosaku Ono
耕作 大野
真 辺見
Makoto Henmi
真 辺見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019197501A priority Critical patent/JP2021071354A/en
Publication of JP2021071354A publication Critical patent/JP2021071354A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

To provide a bearing diagnosis system with which, even when a measurement apparatus of slow sampling frequency is used, it is possible to capture characteristic high-frequency vibration of a bearing and monitor a state of the bearing.SOLUTION: There is provided a bearing diagnosis system comprising: a digital converter for digitally converting, with a lower sampling frequency than a characteristic vibration frequency of a bearing, the vibration waveform outputted by a vibration measuring sensor installed in the vicinity of a bearing of a rotary machine; an FFT computing unit for Fourier-transforming the vibration waveform having been digitally converted by the digital converter; a frequency shifter for mapping a spectrum having been Fourier-transformed by the FFT computing unit to a high-frequency region that includes the characteristic vibration frequency of the bearing; and an inverse FFT computing unit for inversely Fourier-transforming a spectrum of the high-frequency region having been mapped by the frequency shifter and thereby restoring the characteristic vibration of the bearing.SELECTED DRAWING: Figure 1

Description

本発明は、回転機械の軸受を診断する軸受診断システム、および、軸受診断方法に関する。 The present invention relates to a bearing diagnostic system for diagnosing a bearing of a rotating machine, and a bearing diagnostic method.

近年のIoT(Internet of Things)技術の発展により、回転機械の軸受状態をインターネット経由で常時監視できる診断システムの導入が進んでいる。 With the recent development of IoT (Internet of Things) technology, the introduction of diagnostic systems that can constantly monitor the bearing status of rotating machines via the Internet is progressing.

この結果、従来は、メンテナンス作業者が回転機械の設置場所に赴き、軸受振動を計測し、計測データを解析することで回転機械の軸受状態を診断していたが、上記した診断システムを採用すれば、遠隔地からも計測データをインターネット経由で常時収集できるため、回転機械の軸受の損傷の兆候を早期に発見でき、適切なタイミングで作業者が回転機械の設置場所に訪れメンテナンスを実施したり、その結果として、回転機械を含む生産システムの稼働停止時間を低減したりすることができる。 As a result, in the past, maintenance workers went to the installation location of the rotating machine, measured the bearing vibration, and analyzed the measurement data to diagnose the bearing condition of the rotating machine. For example, since measurement data can be constantly collected from a remote location via the Internet, signs of damage to the bearings of the rotating machine can be detected at an early stage, and workers can visit the installation site of the rotating machine at the appropriate time to perform maintenance. As a result, it is possible to reduce the downtime of the production system including the rotating machine.

ここで、回転機械の軸受の外輪が損傷した時の振動加速度の時刻歴波形と、それをフーリエ変換して周波数解析した結果(FFT結果)を、図2Aと図2Bを用いて説明する。図2Bに例示するFFT結果からは、4〜5kHz程度の比較的狭い周波数範囲に大きな振動ピークが確認できる。また、図2Aに示す振動加速度の時刻歴波形には、前述の4〜5kHzが振幅変調している。これは、軸受の転動体が外輪の損傷位置を通過するたびに、外輪自身の固有振動数(図2Bの例では、4〜5kHz)を励起することによる。 Here, the time history waveform of the vibration acceleration when the outer ring of the bearing of the rotating machine is damaged and the result (FFT result) of the frequency analysis by Fourier transforming the waveform will be described with reference to FIGS. 2A and 2B. From the FFT results illustrated in FIG. 2B, a large vibration peak can be confirmed in a relatively narrow frequency range of about 4 to 5 kHz. Further, the time history waveform of the vibration acceleration shown in FIG. 2A is amplitude-modulated with the above-mentioned 4 to 5 kHz. This is because each time the rolling element of the bearing passes through the damaged position of the outer ring, the natural frequency of the outer ring itself (4 to 5 kHz in the example of FIG. 2B) is excited.

軸受異常を診断する従来技術として、例えば、特許文献1の軸受異常診断システムが知られている。同文献の要約書には、「軸受ハウジング10の振動加速度を検出する振動加速度センサ12と、振動加速度センサ12からの振動加速度信号に基づいて、エンベロープ処理及びFFT解析によりエンベロープスペクトル上の周波数解析を行う振動分析部214と、エンベロープスペクトルに基づいて軸受異常の有無を診断する第1の異常診断部217と、エンベロープスペクトルから検出されたピーク周波数の発生次数パターン、あるいは、振動加速度信号の振動最大値と振動RMS値(root mean square)との比である波高率、により軸受異常の種類を特定する第2の異常診断部218と、を備える。」と記載されており、軸受の振動加速度にエンベロープ処理とFFT解析を施すことで、軸受異常の有無を診断する軸受異常診断システムが開示されている。 As a conventional technique for diagnosing a bearing abnormality, for example, the bearing abnormality diagnosis system of Patent Document 1 is known. In the abstract of the same document, "Frequency analysis on the envelope spectrum is performed by envelope processing and FFT analysis based on the vibration acceleration sensor 12 that detects the vibration acceleration of the bearing housing 10 and the vibration acceleration signal from the vibration acceleration sensor 12. The vibration analysis unit 214, the first abnormality diagnosis unit 217 that diagnoses the presence or absence of a bearing abnormality based on the envelope spectrum, the generation order pattern of the peak frequency detected from the envelope spectrum, or the maximum vibration value of the vibration acceleration signal. It is provided with a second abnormality diagnosis unit 218 that identifies the type of bearing abnormality by the wave height ratio, which is the ratio of the vibration RMS value to the vibration RMS value (root mean square). ” A bearing abnormality diagnosis system for diagnosing the presence or absence of a bearing abnormality by performing processing and FFT analysis is disclosed.

特開2018−155494号公報JP-A-2018-155494

特許文献1に開示されるような従来の軸受診断方法では、図2Aのような振動加速度データに対してエンベロープ処理(包絡線処理)を施し、得られた包絡線の振動周波数を求め、求めた振動周波数に基づいて軸受の損傷を診断していた。 In the conventional bearing diagnosis method as disclosed in Patent Document 1, the vibration acceleration data as shown in FIG. 2A is subjected to envelope processing (envelope processing), and the vibration frequency of the obtained envelope is obtained and obtained. Bearing damage was diagnosed based on the vibration frequency.

このような軸受診断方法を用いて、軸受の外輪損傷時に発生する高周波数の特徴振動(例えば4〜5kHz)を捉えるためには、その2倍以上のサンプリング周波数(例えば8〜10kHz)を有する高性能な計測機器が必要となるが、そのような計測機器は高価であり、その採用は軸受診断システム全体としてのコスト増につながっていた。 In order to capture the characteristic vibration of high frequency (for example, 4 to 5 kHz) generated when the outer ring of the bearing is damaged by using such a bearing diagnostic method, the high frequency having a sampling frequency (for example, 8 to 10 kHz) more than twice that is high. Performance measuring equipment is required, but such measuring equipment is expensive, and its adoption has led to an increase in the cost of the bearing diagnostic system as a whole.

ここで、軸受診断システムの低コスト化には、高性能で高価な計測機器を使用せず、産業用機器に既設の計測機器を流用したり、安価な計測機器を使用したりすることが有効である。しかし、産業用途に広く採用されている状態監視制御システムの1つであるSCADA(Supervisory Control And Data Acquisition)におけるデータ収集速度は、多くの場合100Hz以下(良くても600Hz以下)であり、高周波数の軸受の特徴振動(例えば、4〜5kHz)を捉えて、診断に利用することは難しかった。 Here, in order to reduce the cost of the bearing diagnostic system, it is effective not to use high-performance and expensive measuring equipment, but to divert existing measuring equipment to industrial equipment or to use inexpensive measuring equipment. Is. However, the data collection speed in SCADA (Supervisory Control And Data Acquisition), which is one of the condition monitoring control systems widely used in industrial applications, is often 100 Hz or less (600 Hz or less at best), and is a high frequency. It was difficult to capture the characteristic vibration (for example, 4 to 5 kHz) of the bearing and use it for diagnosis.

また、産業用機器の中には、未だに低速CAN(Controller Area Network)等の伝送速度の低い通信規格が用いられるものも多く、高性能な計測機器が高周波数のサンプリングデータを出力しても、それを生産システムの外部に伝送できないという問題もあった。 In addition, many industrial devices still use communication standards with low transmission speeds such as low-speed CAN (Controller Area Network), and even if high-performance measuring devices output high-frequency sampling data, There was also the problem that it could not be transmitted to the outside of the production system.

以上のことから、既設の計測機器を流用しながら軸受状態を常時監視するには、低速サンプリングであっても、高周波成分を有する軸受の特徴振動を捉えることができる診断方法が必要である。 From the above, in order to constantly monitor the bearing state while diverting the existing measuring equipment, a diagnostic method capable of capturing the characteristic vibration of the bearing having a high frequency component is required even at low speed sampling.

そこで、本発明では、低速なサンプリング周波数の計測機器を用いて、軸受の特徴振動周波数を捉え、軸受の状態を監視できる軸受診断装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a bearing diagnostic device capable of capturing a characteristic vibration frequency of a bearing and monitoring the state of the bearing by using a measuring device having a low sampling frequency.

上記課題を解決するため、本発明の軸受診断システムは、回転機械の軸受の近傍に設置した振動計測センサが出力する振動波形を前記軸受の特徴振動周波数より低いサンプリング周波数でデジタル変換するデジタル変換器と、該デジタル変換器でデジタル変換された前記振動波形をフーリエ変換するFFT演算器と、該FFT演算器でフーリエ変換されたスペクトルを、前記軸受の特徴振動周波数を含む高周波数領域に写像する周波数シフト器と、該周波数シフト器で写像された高周波数領域のスペクトルを逆フーリエ変換することで前記軸受の特徴振動を復元する逆FFT演算器と、を具備するものとした。 In order to solve the above problems, the bearing diagnostic system of the present invention is a digital converter that digitally converts a vibration waveform output by a vibration measurement sensor installed near a bearing of a rotating machine at a sampling frequency lower than the characteristic vibration frequency of the bearing. An FFT calculator that Fourier transforms the vibration waveform digitally converted by the digital converter, and a frequency that maps the Fourier transform spectrum by the FFT calculator to a high frequency region including the characteristic vibration frequency of the bearing. It is provided with a shifter and an inverse FFT calculator that restores the characteristic vibration of the bearing by inverse Fourier transforming the spectrum of the high frequency region mapped by the frequency shifter.

本発明の軸受診断装置によれば、低速なサンプリング周波数を有する計測機器を用いて、軸受の特徴振動周波数を捉えることができるため、産業機器に既設の計測機器により軸受の状態監視を行い、軸受損傷の検知や予測が可能となる。 According to the bearing diagnostic apparatus of the present invention, since the characteristic vibration frequency of the bearing can be captured by using a measuring device having a low sampling frequency, the state of the bearing is monitored by the existing measuring device in the industrial equipment, and the bearing is supported. Damage can be detected and predicted.

本発明の実施例1にかかる軸受診断システムを示す概念図。The conceptual diagram which shows the bearing diagnostic system which concerns on Example 1 of this invention. 軸受の損傷時に見られる特徴的な振動例。A characteristic example of vibration seen when a bearing is damaged. 軸受の損傷時に見られる特徴的な振動例。A characteristic example of vibration seen when a bearing is damaged. エイリアシングによる周波数軸の折返しの例。An example of frequency axis folding due to aliasing. 本発明の実施例2にかかる軸受診断装置を示す概念図。The conceptual diagram which shows the bearing diagnostic apparatus which concerns on Example 2 of this invention.

以下、本発明に係る軸受診断システムおよび軸受診断方法を、図面を用いて説明する。 Hereinafter, the bearing diagnosis system and the bearing diagnosis method according to the present invention will be described with reference to the drawings.

まず、一般的な軸受診断システムで利用される、軸受診断の原理について説明する。一般的な軸受診断システムにおいては、回転機械の軸受近傍で計測された振動波形(軸受の振動加速度の時間変化を示すアナログ信号)を、軸受の特徴振動周波数f(例えば、4〜5kHz)よりも十分高いサンプリング周波数f(例えば、8〜10kHz)を用いてA/D変換し、得られたデジタル信号に基づいて回転機械の軸受を診断する。また、軸受診断装置のA/D変換器の前段には、ナイキスト周波数f(=f/2)以上の不要な周波数成分を除去するため、アンチエイリアシングフィルタが組み込まれている。このような軸受診断装置では、デジタル変換後の振動波形に対して、包絡線処理を行い、その特徴振動周波数成分を評価することで軸受状態を診断していた。 First, the principle of bearing diagnosis used in a general bearing diagnosis system will be described. In a typical bearing diagnostic system, vibration waveform measured by the bearing near the rotary machine (analog signal indicating the time change of the vibration acceleration of bearings), from the feature vibration frequency f a of the bearing (e.g., 4~5KHz) A / D conversion is performed using a sufficiently high sampling frequency f s (for example, 8 to 10 kHz), and the bearing of the rotating machine is diagnosed based on the obtained digital signal. Further, an antialiasing filter is incorporated in the front stage of the A / D converter of the bearing diagnostic apparatus in order to remove unnecessary frequency components having a Nyquist frequency f n (= f s / 2) or higher. In such a bearing diagnostic apparatus, the bearing state is diagnosed by performing envelope processing on the vibration waveform after digital conversion and evaluating its characteristic vibration frequency component.

この軸受診断装置において、サンプリング周波数fやナイキスト周波数fを軸受の特徴振動周波数fより低くすると、アンチエイリアシングフィルタにより軸受の特徴振動が除去され、軸受の診断に必要な特徴振動を計測できないという問題がある。この問題が発生する環境下では、仮にアンチエイリアシングフィルタを取り除いた構成としても、ナイキスト周波数f以上の振動を計測データ点によっては表現できない。 In this bearing diagnostic apparatus, the sampling frequency f s and the Nyquist frequency f n is less than the characteristic vibration frequency f a of the bearing, characterized the vibration of the bearing is eliminated by anti-aliasing filter, can not be measured characteristic vibration required to diagnose the bearing There is a problem. In an environment where this problem occurs, even if the antialiasing filter is removed , vibration above the Nyquist frequency f n cannot be expressed by the measurement data points.

そこで、本発明では、エイリアシング(折り返し雑音)という現象を活用することで、サンプリング周波数fより高い周波数の軸受の特徴振動周波数fを捉え、軸受診断に利用できるようにする。 Therefore, in the present invention, by utilizing the phenomenon of aliasing (aliasing), the characteristic vibration frequency fa of a bearing having a frequency higher than the sampling frequency f s can be captured and used for bearing diagnosis.

エイリアシングを解説する先行技術文献としては、例えば、特開2006−180373号公報がある。この文献の段落0002には、「アンダーサンプリングとは、受信信号をナイキスト周波数よりも低い周波数でサンプリングすることにより、意図的に周波数のダウンコンバートイメージを発生させて周波数変換をする方法をいう(・・・)。ダウンコンバートとは、高周波信号又は中間周波数帯のイメージを低い周波数のイメージへ折り返させることをいう。これにより、1つのサンプリング周波数で、1つ以上の無線システム帯域のアナログ信号を同時に周波数変換することができる。」との記載があり、FFT(fast Fourier transform)のエイリアシングにより、高周波成分のスペクトルを低周波サンプリングで得ることができると説明されている。 Prior art documents that explain aliasing include, for example, Japanese Patent Application Laid-Open No. 2006-180373. In paragraph 0002 of this document, "undersampling refers to a method of intentionally generating a frequency down-convert image to perform frequency conversion by sampling a received signal at a frequency lower than the Nyquist frequency (..・ ・). Down-conversion means to fold an image of a high frequency signal or an intermediate frequency band back to an image of a low frequency, whereby analog signals of one or more radio system bands can be simultaneously output at one sampling frequency. It is explained that the spectrum of the high frequency component can be obtained by low frequency sampling by the aliasing of FFT (fast Fourier transform).

この文献の図2でも説明されるように、エイリアシングとは、ナイキスト周波数fの倍数毎に周波数軸を折り返して形成された周波数領域毎に、スペクトルが重ねて表現される現象のことである。例えば、図3に例示するように、周波数fが0〜f(=f/2)の周波数領域を第1領域、f〜2f(=f)の周波数領域を第2領域、2f(=f)〜3f(=1.5f)の周波数領域を第3領域、3f(=1.5f)〜4f(=2f)の周波数領域を第4領域、4f(=2f)〜5f(=2.5f)の周波数領域を第5領域、すなわち、(m−1)f〜mf(mは自然数)の周波数領域を第m領域と定義すると、第5領域(奇数領域)に現れた特徴振動周波数fのスペクトルは、エイリアシングの結果、第1領域と第3領域(奇数領域)にそのまま反映され、第2領域と第4領域(偶数領域)に大小関係が反転して反映される。 As described in FIG. 2 of this document, aliasing is a phenomenon in which spectra are superimposed and expressed in each frequency domain formed by folding back the frequency axis for each multiple of the Nyquist frequency f n. For example, as illustrated in FIG. 3, the frequency domain having a frequency f of 0 to f n (= f s / 2) is the first region, and the frequency domain of f n to 2 f n (= f s ) is the second region. The frequency domain of 2f n (= f s ) to 3f n (= 1.5f s ) is the third region, and the frequency domain of 3f n (= 1.5f s ) to 4f n (= 2f s ) is the fourth region. 4f n (= 2f s) ~5f n fifth region the frequency domain (= 2.5f s), i.e., the (m-1) f n ~mf n (m is a natural number) area m the frequency domain defining the spectral characteristic vibration frequency f a which appeared to the fifth region (odd region), the aliasing results as reflected in the first region and the third region (odd region), the second region and the fourth region ( The magnitude relationship is reversed and reflected in the even area).

このように、ナイキスト周波数f以上の振動スペクトル(例えば、第5領域のスペクトル)も低周波サンプリング下でのFFT結果(例えば、第1領域)に現れることが分かる。従って、低周波領域(例えば、第1領域)の振動スペクトルを特徴振動の周波数領域(例えば、第5領域)に写像してから逆FFTすれば、高性能な計測機器を用いることなく、高周波振動を復元し、軸受診断に活用することができる。 As described above, it can be seen that the vibration spectrum having a Nyquist frequency f n or more (for example, the spectrum in the fifth region) also appears in the FFT result (for example, the first region) under low frequency sampling. Therefore, if the vibration spectrum of the low frequency region (for example, the first region) is mapped to the characteristic vibration frequency region (for example, the fifth region) and then the inverse FFT is performed, the high frequency vibration is performed without using a high-performance measuring device. Can be restored and used for bearing diagnosis.

上記した原理を利用した、本発明の実施例1の軸受診断システムを、図1と図3を用いて説明する。 The bearing diagnostic system of the first embodiment of the present invention utilizing the above principle will be described with reference to FIGS. 1 and 3.

図1は、本実施例の軸受診断システムを示す概念図である。本システムの監視対象である回転機械2の軸受の近傍には振動計測センサ3が設置されている。振動計測センサ3が出力した振動加速度のアナログ信号は、低サンプリング周波数のA/D変換器4でデジタル信号に変換され、軸受診断装置1に入力される。この振動計測センサ3は、加速度センサ、変位センサ、音響センサ等の、軸受の振動波形を捉えることができるセンサであってもよい。なお、図1では、A/D変換器4が軸受診断装置1や振動計測センサ3から独立している構成を例示しているが、A/D変換器4を軸受診断装置1に組み込んだ構成としても良いし、A/D変換器4を振動計測センサ3に組み込んだ構成としても良い。 FIG. 1 is a conceptual diagram showing a bearing diagnostic system of this embodiment. A vibration measurement sensor 3 is installed near the bearing of the rotating machine 2 to be monitored by this system. The vibration acceleration analog signal output by the vibration measurement sensor 3 is converted into a digital signal by the low sampling frequency A / D converter 4 and input to the bearing diagnostic device 1. The vibration measurement sensor 3 may be a sensor that can capture the vibration waveform of the bearing, such as an acceleration sensor, a displacement sensor, or an acoustic sensor. Although FIG. 1 illustrates a configuration in which the A / D converter 4 is independent of the bearing diagnostic device 1 and the vibration measurement sensor 3, the configuration in which the A / D converter 4 is incorporated in the bearing diagnostic device 1 is illustrated. Alternatively, the A / D converter 4 may be incorporated into the vibration measurement sensor 3.

また、図1に示すように、軸受診断装置1は、FFT演算器11と、周波数シフト器12と、逆FFT演算器13と、軸受診断器14と、を備えている。この軸受診断装置1は、具体的には、CPU等の演算装置、半導体メモリ等の記憶装置、および、通信装置などのハードウェアを備えた計算機である。そして、記憶装置にロードされたプログラムを演算装置が実行することで、FFT演算器11等の各機能を実現するが、以下では、このような計算機分野での周知技術を適宜省略しながら説明する。なお、軸受診断装置1は、回転機械2の近傍に設置しても良いし、遠隔地(例えば、生産システムの管理室)に設置しても良い。 Further, as shown in FIG. 1, the bearing diagnostic apparatus 1 includes an FFT calculator 11, a frequency shifter 12, an inverse FFT calculator 13, and a bearing diagnostic device 14. Specifically, the bearing diagnostic device 1 is a computer including a computing device such as a CPU, a storage device such as a semiconductor memory, and hardware such as a communication device. Then, each function of the FFT computer 11 and the like is realized by executing the program loaded in the storage device by the computer, but the following description will be made while omitting such well-known techniques in the computer field as appropriate. .. The bearing diagnostic device 1 may be installed in the vicinity of the rotary machine 2 or may be installed in a remote location (for example, a management room of a production system).

A/D変換器4は、振動計測センサ3が計測した振動波形のアナログ信号を、比較的低速なサンプリング周波数fでデジタル信号に変換する。なお、本発明の用途が、高速の特徴振動周波数fを低速のサンプリング周波数fで監視することであることを鑑み、A/D変換器4のナイキスト周波数f(=f/2)は、軸受の特徴振動周波数fよりも低いものとする。また、ここでは、A/D変換器4の前段に、アンチエイジングフィルタは設置しない。 A / D converter 4, the analog signal of the vibration waveform of the vibration measurement sensor 3 is measured and converted to a digital signal at a relatively slow sampling frequency f s. Incidentally, application of the present invention, a high-speed characteristic vibration frequency f a view that is to monitor at a slower sampling frequency f s, A / D converter 4 of the Nyquist frequency f n (= f s / 2 ) It shall lower than the characteristic vibration frequency f a of the bearing. Further, here, the anti-aging filter is not installed in front of the A / D converter 4.

FFT演算器11は、A/D変換器11でデジタル変換された振動波形をフーリエ変換する。 The FFT calculator 11 Fourier transforms the vibration waveform digitally converted by the A / D converter 11.

周波数シフト器12は、FFT演算器11でフーリエ変換されたスペクトルを、特徴振動周波数fを含む高周波数領域に写像する。 Frequency shifter 12, the spectrum Fourier transform FFT processor 11, which maps to the high frequency range including the feature vibration frequency f a.

ここで実行する写像の意義を、図3を用いて解説する。図3に例示するように、軸受の特徴振動のスペクトルが第5領域に現れる場合、そのスペクトルは、第1領域にもそのまま表示される。つまり、比較的低速なA/D変換器4の出力をフーリエ変換した第1領域のスペクトルには、より高速なA/D変換器の出力をフーリエ変換した場合に第5領域に表示されるはずの特徴振動のスペクトルが、そのまま表示されていることになる。従って、第1領域のスペクトルをそのまま第5領域に写像したものは、特徴振動周波数fを含む第5領域で本来表示されるスペクトルと同等のものとなる。 The significance of the mapping performed here will be explained with reference to FIG. As illustrated in FIG. 3, when the spectrum of the characteristic vibration of the bearing appears in the fifth region, the spectrum is also displayed as it is in the first region. That is, the spectrum of the first region obtained by Fourier transforming the output of the relatively slow A / D converter 4 should be displayed in the fifth region when the output of the faster A / D converter is Fourier transformed. Features The vibration spectrum is displayed as it is. Thus, those maps the spectrum of the first region directly to the fifth region, the equivalent to the spectrum originally displayed in the fifth region including the feature vibration frequency f a.

逆FFT演算器13は、周波数シフト器12が低周波領域から高周波数領域(例えば、図3の第1領域から第5領域)に写像したスペクトルを逆フーリエ変換することで、軸受の特徴振動を復元する。 The inverse FFT calculator 13 performs the characteristic vibration of the bearing by inverse Fourier transforming the spectrum mapped by the frequency shifter 12 from the low frequency region to the high frequency region (for example, the first region to the fifth region in FIG. 3). Restore.

軸受診断器14は、逆FFT演算器13で復元された軸受の特徴振動に基づいて、回転機械2の軸受を診断する。 The bearing diagnostic device 14 diagnoses the bearing of the rotating machine 2 based on the characteristic vibration of the bearing restored by the inverse FFT calculator 13.

以上で概説した軸受診断装置1の処理をより具体的に説明する。FFT演算器11以降の処理については、以下の条件1〜条件3に応じて分岐する。 The processing of the bearing diagnostic apparatus 1 outlined above will be described more specifically. The processing after the FFT calculator 11 branches according to the following conditions 1 to 3.

Figure 2021071354
Figure 2021071354

Figure 2021071354
Figure 2021071354

式1、式2において、fは特徴振動の下限周波数(図2Bの例では4kHz)、fは特徴振動の上限周波数(図2Bの例では5kHz)であり、監視対象の回転機械の機種や軸受の種類に応じて、適切な値をメンテナンス作業者が適宜設定する。また、nは自然数である。なお、上記不等式は、式1∋式2を満たす。 In Equations 1 and 2, f 1 is the lower limit frequency of the characteristic vibration (4 kHz in the example of FIG. 2B), f 2 is the upper limit frequency of the characteristic vibration (5 kHz in the example of FIG. 2B), and the model of the rotating machine to be monitored. The maintenance worker appropriately sets an appropriate value according to the type of the bearing and the bearing. Also, n is a natural number. The above inequality satisfies Equation 1 ∋ Equation 2.

<条件1:式1と式2の両方を満たさない場合>
すなわち、メンテナンス作業者が設定した下限周波数fから上限周波数fの幅が図3に示す一領域の幅より大きく、周波数域f〜fが複数の領域に跨る場合、FFT演算器11により演算された第1領域のFFT結果には、第2領域以降の偶数領域の特徴振動周波数fを反映したスペクトルと、第3領域以降の奇数領域の特徴振動周波数fを反映したスペクトルと、が重畳されることになる。従って、第1領域のスペクトルを他の領域に写像しても、当該領域の本来のスペクトルを復元することはできず、当然ながら、そのような写像を逆FFT演算しても軸受特徴振動を復元することはできない。
<Condition 1: When both Equation 1 and Equation 2 are not satisfied>
That is, when the width from the lower limit frequency f 1 set by the maintenance worker to the upper limit frequency f 2 is larger than the width of one region shown in FIG. 3 and the frequency regions f 1 to f 2 span a plurality of regions, the FFT calculator 11 the first region FFT results of calculated by the spectrum that reflects the characteristic vibration frequency f a of the even region of the second region later, spectrum and reflecting the characteristic vibration frequency f a of the odd region in the third region and subsequent , Will be superimposed. Therefore, even if the spectrum of the first region is mapped to another region, the original spectrum of the region cannot be restored, and of course, the bearing characteristic vibration is restored even if such a mapping is subjected to the inverse FFT calculation. You can't.

<条件2:式1は満たすが、式2は満たさない場合>
すなわち、メンテナンス作業者が設定した下限周波数fから上限周波数fの幅が図3に示す一領域の幅より小さいが、周波数域f〜fが複数の領域に跨る場合、FFT演算器11により演算された第1領域のFFT結果には、第2領域以降の偶数領域の特徴振動周波数fを反映したスペクトルと、第3領域以降の奇数領域の特徴振動周波数fを反映したスペクトルと、が重畳されることになる。従って、第1領域のスペクトルを他の領域に写像しても、当該領域の本来のスペクトルを復元することはできず、当然ながら、そのような写像を逆FFT演算しても軸受特徴振動を復元することはできない。
<Condition 2: When Equation 1 is satisfied but Equation 2 is not satisfied>
That is, when the width from the lower limit frequency f 1 set by the maintenance worker to the upper limit frequency f 2 is smaller than the width of one region shown in FIG. 3, but the frequency regions f 1 to f 2 span a plurality of regions, the FFT calculator spectrum in the first region FFT result of reflecting the spectrum that reflects the characteristic vibration frequency f a of the even region of the second region after the characteristic vibration frequency f a of the odd region in the third region and subsequent calculated by 11 And will be superimposed. Therefore, even if the spectrum of the first region is mapped to another region, the original spectrum of the region cannot be restored, and of course, the bearing characteristic vibration is restored even if such a mapping is subjected to the inverse FFT calculation. You can't.

<条件3:式1と式2の両方を満たす場合>
すなわち、メンテナンス作業者が設定した下限周波数fから上限周波数fの幅が図3に示す一領域の幅より小さく、かつ、周波数域f〜fが一つの領域に収まる場合、FFT演算器11により演算された第1領域のFFT結果には、第2領域以降の偶数領域の特徴振動周波数fが反映されたスペクトル、または、第3領域以降の奇数領域の特徴振動周波数fが反映されたスペクトル、の何れか一方だけが表示されることになる。従って、第1領域のスペクトルを特徴振動周波数fの領域に写像すれば、当該領域の本来のスペクトルを復元することができ、そのような写像を逆FFT演算することで軸受特徴振動を復元することができる。
<Condition 3: When both Equation 1 and Equation 2 are satisfied>
That is, when the width from the lower limit frequency f 1 to the upper limit frequency f 2 set by the maintenance worker is smaller than the width of one region shown in FIG. 3 and the frequency regions f 1 to f 2 fit in one region, the FFT calculation is performed. the first region FFT results of calculated by the vessel 11, characterized oscillation frequency f spectrum a is reflected in the even region of the second region later, or characteristic vibration frequency f a of the odd region in the third region and subsequent Only one of the reflected spectra will be displayed. Accordingly, if mapping the spectrum of the first region to the area of the characteristic vibration frequency f a, it is possible to restore the original spectrum of the region, restoring the bearing wherein vibrations by inverse FFT operation such mapping be able to.

従って、条件3を満たすことが確認された場合、周波数シフト器12は、第1領域のスペクトルを、周波数域f〜fを含む領域(例えば、第5領域)に写像する。ここで、写像の対象領域が偶数領域である場合は、第1領域のスペクトルの大小関係を反転させて写像し、写像の対象領域が奇数領域である場合は、第1領域のスペクトルをそのまま写像する。 Therefore, when it is confirmed that the condition 3 is satisfied, the frequency shifter 12 maps the spectrum of the first region to a region including the frequency regions f 1 to f 2 (for example, the fifth region). Here, when the target region of the mapping is an even region, the magnitude relation of the spectrum of the first region is inverted and mapped, and when the target region of the mapping is an odd region, the spectrum of the first region is mapped as it is. To do.

逆FFT演算器13では、周波数シフト器12による周波数シフト結果に対して、逆FFT演算を実施し、軸受の特徴振動を復元する。 The inverse FFT calculator 13 performs an inverse FFT calculation on the frequency shift result by the frequency shifter 12 to restore the characteristic vibration of the bearing.

そして、軸受診断器14では、復元された特徴振動に基づいて、軸受の損傷診断を実施する。なお、軸受診断器14での診断方法には、既知の方法を用いることができ、例えば、包絡線処理により軸受の特徴周波数成分や、振動の2乗平均平方根などを求めることにより診断を行っても良いし、軸受の振動波形を用いる他の手法を用いてもよい。 Then, the bearing diagnostic device 14 performs a bearing damage diagnosis based on the restored characteristic vibration. As a diagnostic method in the bearing diagnostic device 14, a known method can be used. For example, the diagnosis is performed by obtaining the characteristic frequency component of the bearing, the squared average square root of vibration, and the like by wrapping wire processing. Alternatively, another method using the vibration waveform of the bearing may be used.

以上で説明したように、本実施例の軸受診断システムでは、特開2006−180373号公報で説明されるエイリアシングの性質と、本発明で提案する周波数シフトを利用することで、軸受の特徴振動周波数f(f〜f)よりも低いサンプリング周波数fあるいはナイキスト周波数fのA/D変換器を用いる場合であっても、軸受の特徴振動を捉え、診断に活用することができる。これにより、A/D変換器の性能への要求を引き下げ、より安価なA/D変換器を利用できることができ、軸受損傷に関する状態監視や予兆診断システムの導入を容易にすることができる。 As described above, in the bearing diagnostic system of the present embodiment, by utilizing the properties of aliasing described in Japanese Patent Application Laid-Open No. 2006-180373 and the frequency shift proposed in the present invention, the characteristic vibration frequency of the bearing is used. Even when an A / D converter having a sampling frequency f s lower than f a (f 1 to f 2 ) or a Nyquist frequency f n is used, the characteristic vibration of the bearing can be captured and used for diagnosis. As a result, the demand for the performance of the A / D converter can be lowered, the cheaper A / D converter can be used, and the condition monitoring regarding bearing damage and the introduction of the predictive diagnosis system can be facilitated.

以下、本発明の実施例2を、図4に沿って説明する。なお、実施例1との共通点は、重複説明を省略する。 Hereinafter, Example 2 of the present invention will be described with reference to FIG. It should be noted that the common points with the first embodiment are omitted from the duplicate description.

実施例1の構成では、振動計測センサ3が計測する振動波形の振動周波数に、軸受の特徴振動周波数f(f〜f)以外にも大振幅の周波数成分が存在する場合、FFT演算器11でのFFT結果の中に、それらのノイズが混入してしまう問題がある。その場合、周波数シフト器12による写像を用いて復元した振動波形と元々の振動波形が合致せず、診断精度の悪化が懸念される。 In the arrangement of Embodiment 1, the vibration frequency of the vibration waveform the vibration measuring sensor 3 measures, if even there are a large amplitude of the frequency components other than the bearing characteristics oscillation frequency f a (f 1 ~f 2) , FFT calculation There is a problem that those noises are mixed in the FFT result of the vessel 11. In that case, the vibration waveform restored by using the mapping by the frequency shifter 12 and the original vibration waveform do not match, and there is a concern that the diagnostic accuracy may deteriorate.

そこで、本実施例では、軸受の特徴振動周波数f(f〜f)以外の周波数帯域のピーク(ノイズ)を除去するため、A/D変換器4の前段にフィルタ5を追加した。このフィルタ5は、軸受の特徴周波数以外のピークを除去し、軸受の特徴周波数を通過させるよう設計されたローパスフィルタや、ハイパスフィルタ、バンドパスフィルタ、バンドストップフィルタでもよい。また、フィルタ5はデジタル処理でもアナログ処理でもよい。 Therefore, in this embodiment, in order to remove the bearing characteristics oscillation frequency f a (f 1 ~f 2) other than the frequency band of the peak (noise), was added to the filter 5 in front of the A / D converter 4. The filter 5 may be a low-pass filter, a high-pass filter, a band-pass filter, or a band-stop filter designed to remove peaks other than the characteristic frequency of the bearing and pass the characteristic frequency of the bearing. Further, the filter 5 may be digitally processed or analog processed.

ここでは、フィルタ5がバンドパスフィルタである場合を例に説明する。このフィルタ5の通過帯域fp1〜fp2は、A/D変換器4のサンプリング周波数fよりも高い点が、通常用いられるアンチエイリアシングフィルタと異なる。なお、フィルタ5の通過帯域fp1〜fp2は特徴周波数f〜fを含むものとする。 Here, a case where the filter 5 is a bandpass filter will be described as an example. The pass band f p1 to f p2 of the filter 5 is higher than the sampling frequency f s of the A / D converter 4, which is different from the commonly used anti-aliasing filter. It is assumed that the pass bands f p1 to f p2 of the filter 5 include the feature frequencies f 1 to f 2 .

フィルタ5の通過後の振動値を、低速なサンプリング周波数fを有するA/D変換器4でサンプリングする。実機の計測結果には、軸受特徴振動以外の振動(ノイズ)も重畳されているが、そのようなノイズはフィルタ5で除去されるため、FFT演算器11によるFFT結果には、フィルタ5を通過した軸受の振動成分のみが含まれるため、周波数シフト器12以降で、実施例1と同様の処理を行うことで、ノイズの影響を排除し、より正確な軸受診断を実現することができる。 The vibration value after passing through the filter 5, is sampled by A / D converter 4 with a slower sampling frequency f s. Vibration (noise) other than the characteristic vibration of the bearing is also superimposed on the measurement result of the actual machine, but since such noise is removed by the filter 5, the FFT result by the FFT calculator 11 passes through the filter 5. Since only the vibration component of the bearing is contained, the influence of noise can be eliminated and a more accurate bearing diagnosis can be realized by performing the same processing as in the first embodiment with the frequency shifter 12 or later.

1 軸受診断装置、
11 FFT演算器、
12 周波数シフト器、
13 逆FFT演算器、
14 軸受診断器、
2 回転機械、
3 振動計測センサ、
4 A/D変換器、
5 フィルタ
1 Bearing diagnostic device,
11 FFT calculator,
12 frequency shifter,
13 Inverse FFT calculator,
14 Bearing diagnostic device,
2 rotating machine,
3 Vibration measurement sensor,
4 A / D converter,
5 filters

Claims (4)

回転機械の軸受の近傍に設置した振動計測センサが出力する振動波形を前記軸受の特徴振動周波数より低いサンプリング周波数でデジタル変換するデジタル変換器と、
該デジタル変換器でデジタル変換された前記振動波形をフーリエ変換するFFT演算器と、
該FFT演算器でフーリエ変換されたスペクトルを、前記軸受の特徴振動周波数を含む高周波数領域に写像する周波数シフト器と、
該周波数シフト器で写像された高周波数領域のスペクトルを逆フーリエ変換することで前記軸受の特徴振動を復元する逆FFT演算器と、
を具備することを特徴とする軸受診断システム。
A digital converter that digitally converts the vibration waveform output by a vibration measurement sensor installed near the bearing of a rotating machine at a sampling frequency lower than the characteristic vibration frequency of the bearing.
An FFT calculator that Fourier transforms the vibration waveform digitally converted by the digital converter,
A frequency shifter that maps the Fourier-transformed spectrum of the FFT calculator into a high frequency region that includes the characteristic vibration frequency of the bearing.
An inverse FFT calculator that restores the characteristic vibration of the bearing by inverse Fourier transforming the spectrum in the high frequency domain mapped by the frequency shifter.
A bearing diagnostic system characterized by being equipped with.
請求項1に記載の軸受診断システムにおいて、
さらに、前記逆FFT演算器で復元された前記軸受の特徴波形に基づいて、前記軸受の損傷検知や損傷予兆検知をする軸受診断器を具備することを特徴とする軸受診断システム。
In the bearing diagnostic system according to claim 1,
Further, the bearing diagnostic system is provided with a bearing diagnostic device that detects damage to the bearing and detects signs of damage based on the characteristic waveform of the bearing restored by the inverse FFT calculator.
請求項2に記載の軸受診断システムにおいて、
前記デジタル変換器には、前記サンプリング周波数よりも高い周波数であり、かつ、前記軸受の特徴振動周波数成分を通過帯域とし、前記軸受の特徴振動周波数成分以外の成分をカットするフィルタを通過した、前記軸受の振動波形が入力されることを特徴とする軸受診断システム。
In the bearing diagnostic system according to claim 2,
The digital converter has passed through a filter having a frequency higher than the sampling frequency, having the characteristic vibration frequency component of the bearing as a pass band, and cutting components other than the characteristic vibration frequency component of the bearing. A bearing diagnostic system characterized in that the vibration waveform of the bearing is input.
回転機械の軸受の近傍に設置した振動計測センサが出力する振動波形を所定のサンプリング周波数でデジタル変換し、
デジタル変換された前記振動波形をフーリエ変換し、
フーリエ変換されたスペクトルを、前記軸受の特徴振動周波数を含む高周波数領域に写像し、
写像された高周波数領域のスペクトルを逆フーリエ変換することで前記軸受の特徴振動を復元することを特徴とする軸受診断方法。
The vibration waveform output by the vibration measurement sensor installed near the bearing of the rotating machine is digitally converted at a predetermined sampling frequency.
The digitally converted vibration waveform is Fourier transformed and
The Fourier transformed spectrum is mapped to a high frequency region including the characteristic vibration frequency of the bearing.
A bearing diagnostic method characterized in that the characteristic vibration of the bearing is restored by inverse Fourier transforming the mapped spectrum in the high frequency region.
JP2019197501A 2019-10-30 2019-10-30 Bearing diagnosis system and bearing diagnosis method Pending JP2021071354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197501A JP2021071354A (en) 2019-10-30 2019-10-30 Bearing diagnosis system and bearing diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197501A JP2021071354A (en) 2019-10-30 2019-10-30 Bearing diagnosis system and bearing diagnosis method

Publications (1)

Publication Number Publication Date
JP2021071354A true JP2021071354A (en) 2021-05-06

Family

ID=75712900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197501A Pending JP2021071354A (en) 2019-10-30 2019-10-30 Bearing diagnosis system and bearing diagnosis method

Country Status (1)

Country Link
JP (1) JP2021071354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057364A1 (en) * 2022-09-12 2024-03-21 中山水熱工業株式会社 Vibration detection device, abnormality detection assistance system, and vibration detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132767A (en) * 2005-11-10 2007-05-31 Jtekt Corp Drive shaft damage diagnosis device
WO2016091233A1 (en) * 2014-12-11 2016-06-16 Výzkumný A Zkušební Ústav Plzeň S.R.O. Method of monitoring residual life of turbomachinery rotor blades
CN109540279A (en) * 2018-11-30 2019-03-29 厦门大学 The inverse compressed sensing restoration methods of machine tool high speed milling process lack sampling Dynamic Signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132767A (en) * 2005-11-10 2007-05-31 Jtekt Corp Drive shaft damage diagnosis device
WO2016091233A1 (en) * 2014-12-11 2016-06-16 Výzkumný A Zkušební Ústav Plzeň S.R.O. Method of monitoring residual life of turbomachinery rotor blades
CN109540279A (en) * 2018-11-30 2019-03-29 厦门大学 The inverse compressed sensing restoration methods of machine tool high speed milling process lack sampling Dynamic Signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SILIANG LU ET AL.: "Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from", JOURNAL OF SOUND AND VIBRATION, vol. 414, JPN6023021125, 2018, pages 81 - 96, ISSN: 0005123701 *
村口 正弘: "RF直交アンダーサンプリングと同期クロック再生技術", 電子情報通信学会論文誌 C, vol. 100, no. 12, JPN7023001995, 2017, pages 551 - 560, ISSN: 0005070196 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057364A1 (en) * 2022-09-12 2024-03-21 中山水熱工業株式会社 Vibration detection device, abnormality detection assistance system, and vibration detection method

Similar Documents

Publication Publication Date Title
Yang et al. Vibration feature extraction techniques for fault diagnosis of rotating machinery: a literature survey
KR101818394B1 (en) Method and apparatus for diagnosing facility condition
Assaad et al. Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
Yoon et al. On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis
Feng et al. A novel order spectrum-based Vold-Kalman filter bandwidth selection scheme for fault diagnosis of gearbox in offshore wind turbines
Bechhoefer et al. Processing for improved spectral analysis
Sharma et al. Gear crack detection using modified TSA and proposed fault indicators for fluctuating speed conditions
JP2003528292A (en) State-based monitoring of bearings by vibration analysis
JP6945371B2 (en) Diagnostic equipment for rotating machine systems, power converters, rotating machine systems, and diagnostic methods for rotating machine systems.
WO2013053989A1 (en) A method and a system for the purpose of condition monitoring of gearboxes
CN104136896B (en) For the system for the vibration signal for obtaining rotation motor
Chaabi et al. Fault diagnosis of rolling bearings in non-stationary running conditions using improved CEEMDAN and multivariate denoising based on wavelet and principal component analyses
US10975849B2 (en) Condition monitoring system and wind turbine including the same
CN102341597A (en) Method for monitoring wind turbines
CN104865400A (en) Method and system for detecting and identifying rotating speed of wind power generation set
US11927501B2 (en) Method and device for monitoring a gear system
JP2005514602A (en) Gas turbine engine vibration monitoring system
EP2381219A1 (en) Axial vibration monitoring for detecting shaft misalignments in turbomachinery trains
Lin et al. A review and strategy for the diagnosis of speed-varying machinery
CN109596349A (en) A kind of decelerator trouble diagnostic method based on VMD and PCT
JP5765881B2 (en) Equipment diagnostic equipment
KR102068077B1 (en) A Diagnosis Apparatus For Rotating Machinery Using Complex Signals
JP4561304B2 (en) Abnormality diagnosis system for mechanical equipment
JP5958932B2 (en) Dynamic equipment condition monitoring system, method and program
JP2021071354A (en) Bearing diagnosis system and bearing diagnosis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230808