JP2021069123A - Satellite communication device and communication method thereof - Google Patents

Satellite communication device and communication method thereof Download PDF

Info

Publication number
JP2021069123A
JP2021069123A JP2021000220A JP2021000220A JP2021069123A JP 2021069123 A JP2021069123 A JP 2021069123A JP 2021000220 A JP2021000220 A JP 2021000220A JP 2021000220 A JP2021000220 A JP 2021000220A JP 2021069123 A JP2021069123 A JP 2021069123A
Authority
JP
Japan
Prior art keywords
antenna
attenuation value
elevation angle
satellite communication
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021000220A
Other languages
Japanese (ja)
Inventor
雄一朗 持田
Yuichiro Mochida
雄一朗 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2021000220A priority Critical patent/JP2021069123A/en
Publication of JP2021069123A publication Critical patent/JP2021069123A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transmitters (AREA)

Abstract

To provide a satellite communication device capable of maintaining constant communication speed of satellite communication, for example, even if antenna gain is changed during mobile communication at a mobile satellite communication station.SOLUTION: A satellite communication device includes: a high power amplifying frequency converter (HPC) 15 for amplifying output power of a target transmission signal from a satellite communication antenna 11; a variable attenuator (V-ATT) 15b for variably attenuating gain of the output power; an antenna beam elevation angle detector 12b for detecting an elevation angle of an antenna beam; and an ATT setting table 16T for associating groups of a plurality of attenuation values of the V-ATT 15b for increasing the output power by the HPC 15 according to decrease of the antenna beam elevation angle. If a communication controller 16 determines that a reception strength of a reference signal detected by a reception strength detector 12a decreases, the controller obtains an attenuation value corresponding to the current antenna beam elevation angle from the table 16T and changes the attenuation value of the V-ATT 15b to the obtained attenuation value.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、衛星通信装置およびその通信方法に関する。 An embodiment of the present invention relates to a satellite communication device and a communication method thereof.

通信衛星を介して通信を行うにおいて、車等の移動体に衛星通信装置を搭載して衛星通信を行なう移動体衛星通信局がある。 In communicating via a communication satellite, there is a mobile satellite communication station that carries out satellite communication by mounting a satellite communication device on a moving body such as a car.

この移動体衛星通信局のアンテナは、移動に合わせて当該アンテナの方向を物理的に通信衛星の方向に向け直す必要があった。しかしながら、近年では、移動体の向きや傾きの変化に応じてアンテナビームの方位角と仰角が電子的に制御することで、移動通信中にも物理的に通信衛星の方向に向け直す必要がないアンテナが開発されている、例えば、フェーズドアレイアンテナが使用される。このフェーズドアレイアンテナは、複数のアンテナ素子を平面状に配列し、各アンテナ素子の位相を電子的に制御することで、アンテナビームの方向(指向性)を調整できる。 The antenna of this mobile satellite communication station had to physically reorient the direction of the antenna to the direction of the communication satellite in accordance with the movement. However, in recent years, since the azimuth and elevation angles of the antenna beam are electronically controlled according to changes in the orientation and tilt of the moving object, it is not necessary to physically reorient the antenna beam toward the communication satellite even during mobile communication. Antennas have been developed, for example phased array antennas are used. In this phased array antenna, the direction (directivity) of the antenna beam can be adjusted by arranging a plurality of antenna elements in a plane and electronically controlling the phase of each antenna element.

なお、近年、液晶を電子的に制御することで、アンテナビームの方向を調整できる平面型アンテナも考えられている。 In recent years, a planar antenna capable of adjusting the direction of the antenna beam by electronically controlling the liquid crystal has also been considered.

しかしながら、前記移動体が傾斜することに応じて、アンテナに対する通信衛星の仰角が変化すると、アンテナビームの方向が通信衛星の方向に合っていても、当該通信衛星から見たアンテナの開口面積が変化するため、同アンテナの利得も変化する。 However, when the elevation angle of the communication satellite with respect to the antenna changes according to the inclination of the moving body, the opening area of the antenna as seen from the communication satellite changes even if the direction of the antenna beam matches the direction of the communication satellite. Therefore, the gain of the antenna also changes.

例えば、アンテナに対する通信衛星の仰角が小さくなりアンテナの開口面積が少なくなると、アンテナの利得は低下する。ここで、衛星通信の通信速度(kbps)は、アンテナの利得(開口面積)と出力電力に依存するため、アンテナの利得が低下すると通信速度も遅くなる。通信速度が遅くなると、動作中のアプリケーションによっては必要とする通信データ量が確保できず、その動作が中断したり停止したりする不具合が生じる。 For example, when the elevation angle of the communication satellite with respect to the antenna becomes small and the aperture area of the antenna becomes small, the gain of the antenna decreases. Here, since the communication speed (kbps) of satellite communication depends on the gain (opening area) of the antenna and the output power, the communication speed also slows down as the gain of the antenna decreases. If the communication speed becomes slow, the required amount of communication data cannot be secured depending on the operating application, and the operation may be interrupted or stopped.

特開平04−269006号公報Japanese Unexamined Patent Publication No. 04-269006 特開2011−259092号公報Japanese Unexamined Patent Publication No. 2011-259902 特開平05−199527号公報Japanese Unexamined Patent Publication No. 05-199527

本発明が解決しようとする課題は、例えば移動体衛星通信局での移動通信中にアンテナの利得が変化した場合でも、衛星通信の通信速度を一定に維持することが可能になる衛星通信装置およびその通信方法を提供することである。 The problem to be solved by the present invention is, for example, a satellite communication device capable of maintaining a constant communication speed of satellite communication even when the gain of the antenna changes during mobile communication in a mobile satellite communication station. It is to provide the communication method.

実施形態の衛星通信装置は、衛星通信アンテナから送信する送信対象信号の出力電力を増幅する電力増幅手段と、前記電力増幅手段による出力電力の増幅度を可変減衰する可変減衰手段と、前記衛星通信アンテナにおけるアンテナビームの仰角を検出するビーム仰角検出手段と、前記アンテナビームの仰角と前記可変減衰手段に設定する前記増幅度の減衰値とを、当該仰角が小さくなるほど減衰値が小さくなるように予め複数組み対応付けた減衰値設定テーブルを記憶するテーブル記憶手段と、前記ビーム仰角検出手段により検出されるアンテナビームの仰角が変化した場合に、前記テーブル記憶手段により記憶された減衰値設定テーブルから、当該変化した仰角に対応付けられた減衰値を取得し、前記可変減衰手段による増幅度の減衰値を当該取得した減衰値に変更する減衰値変更手段と、を備えている。 The satellite communication device of the embodiment includes a power amplification means for amplifying the output power of a transmission target signal transmitted from the satellite communication antenna, a variable attenuation means for variably attenuating the amplification degree of the output power by the power amplification means, and the satellite communication. The beam elevation detection means for detecting the elevation angle of the antenna beam in the antenna, the elevation angle of the antenna beam, and the attenuation value of the amplification degree set in the variable attenuation means are set in advance so that the attenuation value decreases as the elevation angle decreases. From the table storage means for storing the attenuation value setting table associated with a plurality of sets and the attenuation value setting table stored by the table storage means when the elevation angle of the antenna beam detected by the beam elevation detection means changes. It is provided with an attenuation value changing means for acquiring an attenuation value associated with the changed elevation angle and changing the attenuation value of the amplification degree by the variable attenuation means to the acquired attenuation value.

実施形態の衛星通信装置10を備えた移動体衛星通信システムの全体構成を示す図。The figure which shows the whole structure of the mobile satellite communication system provided with the satellite communication device 10 of embodiment. 通信衛星CSに対する衛星通信アンテナ11の仰角変化に応じたアンテナ開口面積の変化を示す図。The figure which shows the change of the antenna opening area according to the elevation angle change of the satellite communication antenna 11 with respect to the communication satellite CS. 前記衛星通信装置10の通信制御系に登録されて使用されるATT(減衰値)設定テーブル16Tの一例を示す図。The figure which shows an example of the ATT (attenuation value) setting table 16T registered and used in the communication control system of the satellite communication apparatus 10. 前記衛星通信装置10の第1実施形態の通信制御処理(1)を示すフローチャート。The flowchart which shows the communication control processing (1) of the 1st Embodiment of the satellite communication apparatus 10. 前記衛星通信装置10の第2実施形態の通信制御処理(2)を示すフローチャート。The flowchart which shows the communication control processing (2) of the 2nd Embodiment of the satellite communication apparatus 10. 前記衛星通信装置10の第3実施形態の通信制御処理(3)を示すフローチャート。The flowchart which shows the communication control processing (3) of the 3rd Embodiment of the satellite communication apparatus 10.

以下、実施形態の衛星通信装置およびその通信方法を、図面を参照して説明する。 Hereinafter, the satellite communication device of the embodiment and the communication method thereof will be described with reference to the drawings.

図1は、実施形態の衛星通信装置10を備えた移動体衛星通信システムの全体構成を示す図である。 FIG. 1 is a diagram showing an overall configuration of a mobile satellite communication system including the satellite communication device 10 of the embodiment.

この移動体衛星通信システムは、通信衛星CSを介して固定衛星通信局20と移動体衛星通信局30との間でデータ通信を行なう衛星通信システムであり、本実施形態の衛星通信装置10は当該移動体衛星通信局30に搭載される。 This mobile satellite communication system is a satellite communication system that performs data communication between the fixed satellite communication station 20 and the mobile satellite communication station 30 via the communication satellite CS, and the satellite communication device 10 of the present embodiment is the satellite communication device 10. It is mounted on the mobile satellite communication station 30.

前記衛星通信装置10は、衛星通信アンテナ11、アンテナ制御部12、低雑音周波数変換器(LNC)13、変復調部14、大電力増幅周波数変換器(HPC)15、通信制御部16、車体傾斜検出部17を備えている。 The satellite communication device 10 includes a satellite communication antenna 11, an antenna control unit 12, a low noise frequency converter (LNC) 13, a modulation / demodulation unit 14, a high power amplification frequency converter (HPC) 15, a communication control unit 16, and a vehicle body tilt detection. The part 17 is provided.

前記衛星通信装置10の変復調部14には、パーソナルコンピュータ等のアプリケーション対応機器40が接続され、例えば、図示しないAV(audio-visual)機器から入力される映像・音声信号を、当該アプリケーション機器40から衛星通信装置40を介して前記固定衛星通信局20へ送信する。 An application-compatible device 40 such as a personal computer is connected to the modulation / demodulation unit 14 of the satellite communication device 10, and for example, a video / audio signal input from an AV (audio-visual) device (not shown) is transmitted from the application device 40. It is transmitted to the fixed satellite communication station 20 via the satellite communication device 40.

前記衛星通信アンテナ11は、フェーズドアレイアンテナ等、アンテナビームの方向(方位角と仰角)を電子的に制御可能で、前記移動体衛星通信局30による移動通信中にも当該アンテナを物理的には通信衛星CSの方向に向け直す必要がないアンテナである。 The satellite communication antenna 11 can electronically control the direction (azimuth and elevation) of the antenna beam, such as a phased array antenna, and physically controls the antenna even during mobile communication by the mobile satellite communication station 30. It is an antenna that does not need to be turned in the direction of the communication satellite CS.

前記アンテナ制御部12は、前記衛星通信アンテナ11により受信される通信衛星CSからのビーコン(基準)信号に基づいて、例えば当該ビーコン信号の受信強度が最大となるように、該アンテナ11のアンテナビームの方位角と仰角とを電子的に制御する。このアンテナ制御部12は、前記アンテナ11による受信信号の電界強度を検出する受信強度検出部12a、前記電子的に制御されるアンテナビームの仰角を検出するアンテナビーム仰角検出部12bを備える。 The antenna control unit 12 is based on the beacon (reference) signal from the communication satellite CS received by the satellite communication antenna 11, and the antenna beam of the antenna 11 is maximized, for example, so that the reception intensity of the beacon signal is maximized. The azimuth and elevation of the are electronically controlled. The antenna control unit 12 includes a reception strength detection unit 12a that detects the electric field strength of the received signal by the antenna 11, and an antenna beam elevation detection unit 12b that detects the elevation angle of the electronically controlled antenna beam.

前記低雑音周波数変換器(LNC:Low Noise Converter)13は、前記衛星通信アンテナ11による受信信号を、増幅器(AMP)13aにより低雑音増幅し、例えば1GHz帯に周波数変換した後に前記変復調部14に出力する。 The low noise frequency converter (LNC) 13 amplifies the signal received by the satellite communication antenna 11 with low noise by an amplifier (AMP) 13a, and after frequency conversion to, for example, 1 GHz band, the modulation / demodulation unit 14 is used. Output.

前記変復調部14は、前記低雑音周波数変換器(LNC)13から入力された受信信号を復調し前記アプリケーション対応機器40へ出力する。また前記アプリケーション対応機器40から入力された映像・音声信号等の送信対象信号を、位相偏移変調(PSK:phase shift keying)や直交振幅変調(QAM:quadrature amplitude modulation)の変調方式により変調し、前記大電力増幅周波数変換器(HPC)15に出力する。なお、前記位相偏移変調(PSK)では、例えばB(binary)PSK、Q(quadrature)PSK、8PSK、また、前記直交振幅変調(QAM)では、例えば16QAM、32QAM、64QAM、等のデータ伝送速度(データ伝送量)の異なる複数の変調方式があり、必要に応じて、前記通信制御部16からの制御により当該データ伝送速度の異なる複数の変調方式を選択可能な構成とする。 The modulation / demodulation unit 14 demodulates the received signal input from the low noise frequency converter (LNC) 13 and outputs it to the application-compatible device 40. Further, a transmission target signal such as a video / audio signal input from the application-compatible device 40 is modulated by a modulation method of phase shift keying (PSK) or quadrature amplitude modulation (QAM). Output to the high power amplification frequency converter (HPC) 15. In the phase shift keying (PSK), for example, B (binary) PSK, Q (quadrature) PSK, 8PSK, and in the quadrature amplitude modulation (QAM), for example, 16QAM, 32QAM, 64QAM, etc. There are a plurality of modulation methods having different (data transmission amounts), and if necessary, a plurality of modulation methods having different data transmission speeds can be selected by control from the communication control unit 16.

前記大電力増幅周波数変換器(HPC:High Power Converter)15は、前記変復調部14により変調された送信対象信号を、例えば14GHz帯に周波数変換し、増幅器(AMP)15aにより大電力に増幅した後に前記衛星通信アンテナ11に出力して送信させる。この大電力増幅周波数変換器(HPC)15の増幅器(AMP)15aは、その電力増幅度を最大(減衰値:最小)から最小(減衰値:最大)の間で適切に減衰して調整する可変減衰器(V−ATT)15bを備える。 The high power amplification frequency converter (HPC: High Power Converter) 15 frequency-converts a transmission target signal modulated by the modulation / demodulation unit 14 into, for example, a 14 GHz band, and after amplifying the signal to a high power by an amplifier (AMP) 15a. It is output to the satellite communication antenna 11 and transmitted. The amplifier (AMP) 15a of the high power amplification frequency converter (HPC) 15 appropriately attenuates and adjusts the power amplification degree from the maximum (attenuation value: minimum) to the minimum (attenuation value: maximum). It is equipped with an attenuator (V-ATT) 15b.

前記通信制御部16は、予めROM等の記憶部に記憶された通信制御プログラムに従い本衛星通信装置10の各部の動作を制御するCPUを備える。そして、この通信制御部16は、後述の動作説明において詳述する第1〜第3実施形態の何れかの通信制御処理(1)〜(3)に従い、前記車体傾斜検出部17により検出される前記移動体衛星通信局30の車体傾斜角、前記受信強度検出部12aにより検出される前記ビーコン信号の受信強度、前記アンテナビーム仰角検出部12bにより検出されるアンテナビームの仰角、後述のATT(減衰値)設定テーブル16Tにより予め設定されている前記可変減衰器(V−ATT)15bの減衰値(ATT値(dB))、を選択的に取得する。そして、前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値)、前記変復調部14における送信対象信号の変調方式、を選択的に制御する機能を有する。 The communication control unit 16 includes a CPU that controls the operation of each unit of the satellite communication device 10 according to a communication control program stored in advance in a storage unit such as a ROM. Then, the communication control unit 16 is detected by the vehicle body tilt detection unit 17 according to the communication control processes (1) to (3) of any of the first to third embodiments described in detail in the operation description described later. The vehicle body tilt angle of the mobile satellite communication station 30, the reception intensity of the beacon signal detected by the reception intensity detection unit 12a, the elevation angle of the antenna beam detected by the antenna beam elevation detection unit 12b, and the ATT (attenuator) described later. Value) The attenuation value (ATT value (dB)) of the variable attenuator (V-ATT) 15b preset by the setting table 16T is selectively acquired. Then, a function of selectively controlling the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b in the high-power amplification frequency converter (HPC) 15 and the modulation method of the transmission target signal in the modulation / demodulation unit 14. Has.

前記車体傾斜検出部17は、例えば、当該移動体衛星通信局30の移動体(車体)に装着されている車両用傾斜センサからの出力信号を入力して車体傾斜角を検出する。 The vehicle body tilt detection unit 17 detects the vehicle body tilt angle by inputting an output signal from a vehicle tilt sensor mounted on the moving body (vehicle body) of the mobile satellite communication station 30, for example.

図2は、前記通信衛星CSに対する衛星通信アンテナ11の仰角変化に応じたアンテナ開口面積の変化を示す図である。 FIG. 2 is a diagram showing a change in the antenna opening area according to a change in the elevation angle of the satellite communication antenna 11 with respect to the communication satellite CS.

図2(A)に示すように、例えばアンテナ11の表面が水平となっていて、当該表面の45°の方向に通信衛星CSが位置する場合に対して、例えば前記移動体(車体)が傾斜することで、図2(B)に示すように、前記アンテナ11の表面も傾斜し、当該表面の30°の方向に前記通信衛星CSが位置するようになった場合、アンテナ開口面積は少なくなり、アンテナ11の利得は低下する。 As shown in FIG. 2A, for example, the moving body (vehicle body) is tilted with respect to the case where the surface of the antenna 11 is horizontal and the communication satellite CS is located in the direction of 45 ° of the surface. As a result, as shown in FIG. 2 (B), when the surface of the antenna 11 is also inclined and the communication satellite CS is located in the direction of 30 ° of the surface, the antenna opening area is reduced. , The gain of the antenna 11 decreases.

前述した通り、衛星通信の通信速度(kbps)は、アンテナ11の利得(開口面積)と出力電力に依存するため、アンテナ11の利得の低下分に応じて出力電力を上げれば、前記通信速度を一定に維持できる。 As described above, the communication speed (kbps) of satellite communication depends on the gain (opening area) of the antenna 11 and the output power. Therefore, if the output power is increased according to the decrease in the gain of the antenna 11, the communication speed can be increased. Can be kept constant.

前記アンテナ11の利得(高低)と前記ビーコン信号等の一定強度の信号の受信強度(強弱)とは比例的に相関するため、当該一定強度の信号の受信強度の低下分に応じて前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値(dB))を小さく変更して出力電力を上げれば、前記通信速度を一定に維持できることになる(通信制御処理(1))。 Since the gain (high / low) of the antenna 11 and the reception intensity (strength / weakness) of a signal having a constant intensity such as the beacon signal correlate proportionally, the high power is increased according to the decrease in the reception intensity of the signal having the constant intensity. If the attenuation value (ATT value (dB)) of the variable attenuator (V-ATT) 15b in the amplification frequency converter (HPC) 15 is slightly changed to increase the output power, the communication speed can be maintained constant (the communication speed can be maintained constant). Communication control process (1)).

また、前記アンテナ11の利得(開口面積(大小))と前記通信衛星CSに対するアンテナビームの仰角(例えば90°〜5°の範囲での大小)とは比例的に相関するため、当該アンテナビームの仰角が小さくなることに応じて、前記大電力増幅周波数変換器(HPC)15による出力電力を上昇させるための可変減衰器(V−ATT)15bの減衰値(ATT値)を、ATT(減衰値)設定テーブル16T(図3参照)により予め設定する。そして、前記アンテナビームの仰角の変化(大→小)に応じて前記可変減衰器(V−ATT)15bの減衰値(ATT値(dB))を、前記ATT(減衰値)設定テーブル16Tに予め設定された減衰値(ATT値(大→小))に変更すれば、前記通信速度を一定に維持できることになる(通信制御処理(2))。 Further, since the gain (opening area (large and small)) of the antenna 11 and the elevation angle of the antenna beam with respect to the communication satellite CS (for example, the size in the range of 90 ° to 5 °) correlate proportionally, the antenna beam of the antenna beam. The attenuation value (ATT value) of the variable attenuator (V-ATT) 15b for increasing the output power of the high-power amplification frequency converter (HPC) 15 according to the decrease in elevation angle is set to ATT (attenuator value). ) Set in advance using the setting table 16T (see FIG. 3). Then, the attenuation value (ATT value (dB)) of the variable attenuator (V-ATT) 15b is previously set in the ATT (attenuation value) setting table 16T according to the change in elevation angle (large → small) of the antenna beam. By changing to the set attenuation value (ATT value (large → small)), the communication speed can be maintained constant (communication control process (2)).

図3は、前記衛星通信装置10の通信制御部16に予め記憶されて使用されるATT(減衰値)設定テーブル16Tの一例を示す図である。 FIG. 3 is a diagram showing an example of an ATT (attenuator value) setting table 16T stored in advance in the communication control unit 16 of the satellite communication device 10 and used.

また、前記通信制御処理(1)と同様に、一定強度の信号の受信強度の低下分に応じて、前記通信速度を一定にするために求めた前記可変減衰器(V−ATT)15bに対する目標の減衰値(ATT値(dB))が、当該可変減衰器(V−ATT)15bの可変可能な最小の減衰値(電力増幅度:最大)を超過(マイナス超過)した場合は、さらに、前記目標の減衰値の超過分(電力増幅度の不足分)に応じて、前記変復調部14におけるデータ伝送速度(データ伝送量)の異なる複数の変調方式のうち、より多いデータ伝送量の変調方式を選択して送信対象信号を変調することで、前記通信速度を一定に維持できることになる(通信制御処理(3))。 Further, as in the communication control process (1), the target for the variable attenuator (V-ATT) 15b obtained in order to make the communication speed constant according to the decrease in the reception intensity of the signal having a constant intensity. When the attenuation value (ATT value (dB)) of the above exceeds (minus excess) the minimum variable attenuation value (power amplification: maximum) of the variable attenuator (V-ATT) 15b, further, the above-mentioned Among a plurality of modulation methods having different data transmission speeds (data transmission amounts) in the modulation / demodulation unit 14, a modulation method having a larger data transmission amount is selected according to the excess amount of the target attenuation value (insufficient amount of power amplification). By selecting and modulating the transmission target signal, the communication speed can be maintained constant (communication control process (3)).

このように構成された衛星通信装置10は、前記通信制御部16のCPUが前記通信制御プログラムに記述された命令に従い各部の動作を制御し、ソフトウエアとハードウエアとが協働して動作することにより、以下の動作説明で述べるような、各種の通信制御機能を実現する。 In the satellite communication device 10 configured in this way, the CPU of the communication control unit 16 controls the operation of each unit according to the instructions described in the communication control program, and the software and the hardware operate in cooperation with each other. As a result, various communication control functions as described in the following operation explanations are realized.

なお、前記通信制御部16は、前記アンテナ制御部12または前記変復調部14の何れかに内蔵されて構成されてもよい。 The communication control unit 16 may be built in either the antenna control unit 12 or the modulation / demodulation unit 14.

次に、前記構成の衛星通信装置10の動作について説明する。 Next, the operation of the satellite communication device 10 having the above configuration will be described.

(第1実施形態)
図4は、前記衛星通信装置10の第1実施形態の通信制御処理(1)を示すフローチャートである。
(First Embodiment)
FIG. 4 is a flowchart showing the communication control process (1) of the first embodiment of the satellite communication device 10.

前記移動体衛星通信局30による衛星通信が開始されると、前記通信制御部16において、前記車体傾斜検出部17により検出されている車体傾斜角が取得され(ステップS1)、車体(移動体)が傾斜したか否か(衛星通信アンテナ11が水平な状態から傾いたか否か)が判断される(ステップS2)。 When the satellite communication by the mobile satellite communication station 30 is started, the communication control unit 16 acquires the vehicle body inclination angle detected by the vehicle body inclination detection unit 17 (step S1), and the vehicle body (moving body). It is determined whether or not the satellite communication antenna 11 is tilted (whether or not the satellite communication antenna 11 is tilted from the horizontal state) (step S2).

ここで、前記移動体衛星通信局30である車体(移動体)が傾斜したと判断されると(ステップS2(Yes))、前記アンテナ制御部12の受信強度検出部12aにより検出されている前記ビーコン信号の受信強度が取得され(ステップS3)、当該ビーコン信号の受信強度が低下したか否か判断される(ステップS4)。 Here, when it is determined that the vehicle body (mobile body) of the mobile satellite communication station 30 is tilted (step S2 (Yes)), the reception intensity detection unit 12a of the antenna control unit 12 detects the above. The reception strength of the beacon signal is acquired (step S3), and it is determined whether or not the reception strength of the beacon signal has decreased (step S4).

ここで、前記ビーコン信号の受信強度が低下したと判断されると(ステップS4(Yes))、前記通信衛星アンテナ11が前記車体(移動体)と共に傾き、当該アンテナ11に対する通信衛星CSの仰角が小さくなることで、そのアンテナ開口面積が小さくなりアンテナ利得が低下したと判断できる。 Here, when it is determined that the reception strength of the beacon signal has decreased (step S4 (Yes)), the communication satellite antenna 11 is tilted together with the vehicle body (moving body), and the elevation angle of the communication satellite CS with respect to the antenna 11 is increased. It can be determined that the smaller the antenna opening area, the smaller the antenna gain.

すると、前記通信制御部16では、前記衛星通信の通信速度(kbps)が、前記アンテナ利得(開口面積)と出力電力に依存することの相関に基づいて、前記受信強度の低下分に応じて前記通信速度を一定に維持するために必要な前記大電力増幅周波数変換器(HPC)15の出力電力が得られる可変減衰器(V−ATT)15bの減衰値(ATT値)を算出する(ステップS5)。 Then, in the communication control unit 16, the communication speed (kbps) of the satellite communication depends on the antenna gain (opening area) and the output power, and based on the correlation, the reception intensity is reduced according to the decrease. Calculate the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b that can obtain the output power of the high power amplification frequency converter (HPC) 15 required to maintain the communication speed constant (step S5). ).

そして、前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値)を、前記ステップS5にて算出された減衰値(ATT値)に設定して変更し、当該HPC15からの出力電力を上昇させる(ステップS6)。 Then, the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b in the high power amplification frequency converter (HPC) 15 is set to the attenuation value (ATT value) calculated in step S5. The change is made to increase the output power from the HPC 15 (step S6).

例えば、移動通信中の正常時における前記ビーコン信号の受信強度が10(dB)であって、前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値)が5(dB)に設定されている状態で、前記受信強度が10(dB)から7(dB)、つまり2分の1に低下した場合は、当該受信強度の低下分3(dB)に応じて前記可変減衰器(V−ATT)15bの減衰値(ATT値)が5(dB)から2(dB)に設定変更され、前記(HPC)15からの出力電力は2倍に上昇される。 For example, the reception intensity of the beacon signal in the normal state during mobile communication is 10 (dB), and the attenuation value (ATT) of the variable attenuator (V-ATT) 15b in the high power amplification frequency converter (HPC) 15. If the reception intensity is reduced from 10 (dB) to 7 (dB), that is, half when the value) is set to 5 (dB), the decrease in reception intensity is 3 (dB). The attenuation value (ATT value) of the variable attenuator (V-ATT) 15b is changed from 5 (dB) to 2 (dB) accordingly, and the output power from the (HPC) 15 is doubled. To.

なお、ここでは、前記ビーコン信号の受信強度が低下した場合に、当該受信強度の低下分に応じて前記大電力増幅周波数変換器(HPC)15における可変減衰器15bの減衰値を小さな値に設定変更してその出力電力を上昇させ、通信速度を一定に維持する動作について説明したが、この後、前記ビーコン信号の受信強度が正常な状態へと上昇に転じた場合に、当該受信強度の上昇分に応じて前記可変減衰器15bの減衰値を元の値に戻すよう制御するのは勿論である。 Here, when the reception intensity of the beacon signal decreases, the attenuation value of the variable attenuator 15b in the high power amplification frequency converter (HPC) 15 is set to a small value according to the decrease in the reception intensity. The operation of changing the output power to increase the output power and maintaining the communication speed constant has been described, but after that, when the reception intensity of the beacon signal starts to increase to a normal state, the reception intensity increases. Of course, the attenuation value of the variable attenuator 15b is controlled to return to the original value according to the minute.

したがって、前記第1実施形態の通信制御処理(1)によれば、前記移動体衛星通信局30による衛星通信中に車体(移動体)が傾斜することに伴い、前記衛星通信アンテナ11が傾斜し当該アンテナ11に対する通信衛星CSの仰角が小さくなることで、同アンテナ11の開口面積(アンテナ利得)が小さくなった場合でも、当該衛星通信の通信速度を一定に維持することできる。よって、例えば前記衛星通信の通信データを使用して動作しているアプリケーションが必要とする通信データ量を確保できずにその動作が中断したり停止したりしてしまう不具合を、未然に防止することができる。 Therefore, according to the communication control process (1) of the first embodiment, the satellite communication antenna 11 is tilted as the vehicle body (moving body) is tilted during satellite communication by the mobile satellite communication station 30. By reducing the elevation angle of the communication satellite CS with respect to the antenna 11, the communication speed of the satellite communication can be maintained constant even when the opening area (antenna gain) of the antenna 11 is reduced. Therefore, for example, it is possible to prevent a problem that the operation is interrupted or stopped because the amount of communication data required by the application operating using the communication data of the satellite communication cannot be secured. Can be done.

(第2実施形態)
図5は、前記衛星通信装置10の第2実施形態の通信制御処理(2)を示すフローチャートである。
(Second Embodiment)
FIG. 5 is a flowchart showing the communication control process (2) of the second embodiment of the satellite communication device 10.

この図5における第2実施形態の通信制御処理(2)のうち、ステップS21〜S24に示す処理は、前記図4を参照して説明した第1実施形態の通信制御処理(1)でのステップS1〜S4に対応する処理と同じであるため、その説明を省略する。 Of the communication control processes (2) of the second embodiment in FIG. 5, the processes shown in steps S21 to S24 are the steps in the communication control process (1) of the first embodiment described with reference to FIG. Since it is the same as the processing corresponding to S1 to S4, the description thereof will be omitted.

すなわち、前記通信衛星アンテナ11が前記車体(移動体)と共に傾き、当該アンテナ11に対する通信衛星CSの仰角が小さくなると、そのアンテナ開口面積が小さくなり、アンテナ利得が低下し、前記通信制御部16において、前記ビーコン信号の受信強度が低下したと判断される(ステップS21〜S24(Yes))。 That is, when the communication satellite antenna 11 is tilted together with the vehicle body (moving body) and the elevation angle of the communication satellite CS with respect to the antenna 11 is reduced, the antenna opening area is reduced, the antenna gain is reduced, and the communication control unit 16 is used. , It is determined that the reception strength of the beacon signal has decreased (steps S21 to S24 (Yes)).

すると、前記通信制御部16において、前記アンテナ制御部12のアンテナビーム仰角検出部12bにより検出されている前記アンテナ11の前記通信衛星CSに対する現在のアンテナビーム仰角が取得され(ステップS25)、当該通信制御部16に記憶されたATT設定テーブル16T(図3参照)から、前記取得された現在のアンテナビーム仰角に対応する減衰値(ATT値(dB))が取得される(ステップS26)。 Then, the communication control unit 16 acquires the current antenna beam elevation angle of the antenna 11 with respect to the communication satellite CS detected by the antenna beam elevation detection unit 12b of the antenna control unit 12 (step S25), and the communication is performed. From the ATT setting table 16T (see FIG. 3) stored in the control unit 16, the attenuation value (ATT value (dB)) corresponding to the acquired current antenna beam elevation angle is acquired (step S26).

そして、前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値)を、前記ステップS26にてATT設定テーブル16Tから取得された減衰値(ATT値(dB))に設定して変更し、当該HPC15からの出力電力を上昇させる(ステップS27)。 Then, the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b in the high power amplification frequency converter (HPC) 15 is set to the attenuation value (ATT value) acquired from the ATT setting table 16T in step S26. (dB)) is set and changed to increase the output power from the HPC 15 (step S27).

例えば、移動通信中におけるアンテナビーム仰角が40°であって、前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値)が5(dB)に設定されている状態で、当該アンテナビーム仰角が15°に小さくなった場合は、前記可変減衰器(V−ATT)15bの減衰値(ATT値)が5(dB)から1(dB)に設定変更され、前記HPC15からの出力電力は、前記アンテナ開口面積の縮小に伴うアンテナ利得(受信強度)の低下分に応じて上昇される。 For example, the antenna beam elevation angle during mobile communication is 40 °, and the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b in the high power amplification frequency converter (HPC) 15 is set to 5 (dB). If the elevation angle of the antenna beam is reduced to 15 ° in the set state, the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b is set from 5 (dB) to 1 (dB). The output power from the HPC 15 is changed, and the output power is increased according to the decrease in the antenna gain (reception intensity) due to the reduction of the antenna opening area.

なお、ここでは、前記ビーコン信号の受信強度が低下した場合に、アンテナビーム仰角を取得し、前記大電力増幅周波数変換器(HPC)15における可変減衰器15bの減衰値を、当該アンテナビーム仰角に応じて前記ATT設定テーブル16Tに設定されている減衰値(ATT値)に設定変更して出力電力を上昇させ、通信速度を一定に維持する動作について説明したが、この後、前記ビーコン信号の受信強度が正常な状態へと上昇に転じた場合に、前記アンテナビーム仰角を再取得し、前記ATT設定テーブル16Tに従い前記可変減衰器15bの減衰値を再制御するのは勿論である。 Here, when the reception intensity of the beacon signal is lowered, the antenna beam elevation angle is acquired, and the attenuation value of the variable attenuator 15b in the high power amplification frequency converter (HPC) 15 is set to the antenna beam elevation angle. Correspondingly, the operation of changing the setting to the attenuation value (ATT value) set in the ATT setting table 16T to increase the output power and maintaining the communication speed constant has been described. After that, the reception of the beacon signal is described. Of course, when the intensity starts to rise to a normal state, the antenna beam elevation angle is reacquired and the attenuation value of the variable attenuator 15b is re-controlled according to the ATT setting table 16T.

したがって、前記第2実施形態の通信制御処理(2)によれば、前記第1実施形態の通信制御処理(1)と同様に、前記移動体衛星通信局30による衛星通信中に車体(移動体)が傾斜することに伴い、前記衛星通信アンテナ11が傾斜し当該アンテナ11に対する通信衛星CSの仰角が小さくなることで、同アンテナ11の開口面積(アンテナ利得)が小さくなった場合でも、当該衛星通信の通信速度を一定に維持することできる。 Therefore, according to the communication control process (2) of the second embodiment, as in the communication control process (1) of the first embodiment, the vehicle body (moving body) during satellite communication by the mobile satellite communication station 30. ) Is tilted and the satellite communication antenna 11 is tilted to reduce the elevation angle of the communication satellite CS with respect to the antenna 11, so that even if the opening area (antenna gain) of the antenna 11 is reduced, the satellite is concerned. The communication speed of communication can be maintained constant.

(第3実施形態)
図6は、前記衛星通信装置10の第3実施形態の通信制御処理(3)を示すフローチャートである。
(Third Embodiment)
FIG. 6 is a flowchart showing the communication control process (3) of the third embodiment of the satellite communication device 10.

この図6における第3実施形態の通信制御処理(3)のうち、ステップS31〜S35に示す処理は、前記図4を参照して説明した第1実施形態の通信制御処理(1)でのステップS1〜S5に対応する処理と同じであるため、その説明を省略する。 Of the communication control processes (3) of the third embodiment in FIG. 6, the processes shown in steps S31 to S35 are the steps in the communication control process (1) of the first embodiment described with reference to FIG. Since it is the same as the processing corresponding to S1 to S5, the description thereof will be omitted.

すなわち、この第3実施形態の通信制御処理(3)でも、通信制御部16において、前記受信強度検出部12aにより検出されている受信強度の低下分に応じて前記通信速度を一定に維持するために必要な前記大電力増幅周波数変換器(HPC)15の出力電力が得られる可変減衰器(V−ATT)15bの減衰値(ATT値)を算出する(ステップS31〜S35)。 That is, even in the communication control process (3) of the third embodiment, the communication control unit 16 maintains the communication speed constant according to the decrease in the reception strength detected by the reception strength detection unit 12a. The attenuation value (ATT value) of the variable attenuator (V-ATT) 15b from which the output power of the high power amplification frequency converter (HPC) 15 required for the above is obtained is calculated (steps S31 to S35).

すると、前記ステップS35にて算出された可変減衰器(V−ATT)15bの減衰値(ATT値)は、当該可変減衰器15bの可変可能な最小の減衰値(電力増幅度:最大)を更に小さい値として超過(マイナス超過)しているか否か判断される(ステップS36)。 Then, the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b calculated in step S35 further increases the variable minimum attenuation value (power amplification degree: maximum) of the variable attenuator 15b. It is determined whether or not the value is exceeded (minus excess) as a small value (step S36).

ここで、前記算出された減衰値(ATT値)が、前記可変減衰器15bの可変可能な最小の減衰値を超過していないと判断された場合は(ステップS36(No))、前記第1実施形態の通信制御処理(1)と同様に、前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値)を、前記ステップS35にて算出された減衰値(ATT値)に設定して変更し、当該HPC15からの出力電力を上昇させることで、前記衛星通信の通信速度を一定に維持する(ステップS36a)。 Here, when it is determined that the calculated attenuation value (ATT value) does not exceed the minimum variable attenuation value of the variable attenuator 15b (step S36 (No)), the first Similar to the communication control process (1) of the embodiment, the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b in the high power amplification frequency converter (HPC) 15 is calculated in the step S35. By setting and changing the attenuation value (ATT value) and increasing the output power from the HPC 15, the communication speed of the satellite communication is maintained constant (step S36a).

一方、前記ステップS35にて算出された減衰値(ATT値)が、前記可変減衰器15bの可変可能な最小の減衰値を超過(マイナス超過)したと判断された場合は(ステップS36(Yes))、当該減衰値のマイナス超過分(電力増幅度の不足分)に応じて、前記通信速度を一定に維持するために必要なデータ伝送量の増加分を算出する。そして、前記変復調部14におけるデータ伝送速度(データ伝送量)の異なる複数の変調方式のうち、現在の変調方式でのデータ伝送量に前記算出したデータ伝送量を加算したデータ伝送量が得られる変調方式を選択する(ステップS37)。 On the other hand, when it is determined that the attenuation value (ATT value) calculated in step S35 exceeds (minus excess) the minimum variable attenuation value of the variable attenuator 15b (step S36 (Yes)). ), The amount of increase in the amount of data transmission required to maintain the communication speed constant is calculated according to the amount of minus excess of the attenuation value (the amount of insufficient power amplification). Then, among a plurality of modulation methods having different data transmission speeds (data transmission amounts) in the modulation / demodulation unit 14, the modulation that obtains the data transmission amount obtained by adding the calculated data transmission amount to the data transmission amount in the current modulation method. The method is selected (step S37).

そして、前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値)を、当該可変減衰器15bの可変可能な最小の減衰値に設定して変更し、当該HPC15からの出力電力を最大まで上昇させる(ステップS38)。 Then, the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b in the high power amplification frequency converter (HPC) 15 is set to the minimum variable attenuation value of the variable attenuator 15b and changed. Then, the output power from the HPC 15 is increased to the maximum (step S38).

さらに、前記変復調部14における送信対象信号の変調方式を、前記ステップS37にて選択された変調方式に変更し、当該送信対象信号のデータ伝送量を増加させる(ステップS39)。 Further, the modulation method of the transmission target signal in the modulation / demodulation unit 14 is changed to the modulation method selected in step S37, and the data transmission amount of the transmission target signal is increased (step S39).

例えば、移動通信中の正常時における前記ビーコン信号の受信強度が10(dB)であって、前記大電力増幅周波数変換器(HPC)15における可変減衰器(V−ATT)15bの減衰値(ATT値)が5(dB)に設定されており、当該可変減衰器(V−ATT)15bの可変可能な最小の減衰値が2(dB)であるとする。また、前記変復調部14における変調方式がB(binary)PSKであるとする。この状態で、前記受信強度が10(dB)から4(dB)、つまり6(dB)低下した場合は、前記可変減衰器(V−ATT)15bの減衰値(ATT値)を、前記設定されている5(dB)から可変可能な最小の2(dB)に設定変更しても、さらに3(dB)分の当該減衰値のマイナス超過(電力増幅度の不足)が生じる。この場合、前記可変減衰器(V−ATT)15bの減衰値(ATT値)をその最小の2(dB)に設定変更し、前記HPC15からの出力電力を最大に上昇させ、さらに、前記変復調部14の変調方式を前記B(binary)PSKからQ(quadrature)PSKに変更し、そのデータ伝送量を2倍に増加させる。 For example, the reception intensity of the beacon signal in the normal state during mobile communication is 10 (dB), and the attenuation value (ATT) of the variable attenuator (V-ATT) 15b in the high power amplification frequency converter (HPC) 15. The value) is set to 5 (dB), and the minimum variable attenuation value of the variable attenuator (V-ATT) 15b is 2 (dB). Further, it is assumed that the modulation method in the modulation / demodulation unit 14 is B (binary) PSK. In this state, when the reception intensity decreases from 10 (dB) to 4 (dB), that is, 6 (dB), the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b is set. Even if the setting is changed from the variable 5 (dB) to the variable minimum 2 (dB), a negative excess (insufficient power amplification degree) of the attenuation value by 3 (dB) still occurs. In this case, the attenuation value (ATT value) of the variable attenuator (V-ATT) 15b is changed to its minimum value of 2 (dB), the output power from the HPC 15 is increased to the maximum, and the modulation / demodulation unit is further increased. The modulation method of 14 is changed from the B (binary) PSK to the Q (quadrature) PSK, and the data transmission amount is doubled.

なお、ここでは、前記ビーコン信号の受信強度が低下した場合に、当該受信強度の低下分に応じて、前記大電力増幅周波数変換器(HPC)15における可変減衰器15bの減衰値を小さな値に設定変更してその出力電力を上昇させると共に、データ伝送量の多い変調方式を選択して通信速度を一定に維持する動作について説明したが、この後、前記ビーコン信号の受信強度が正常な状態へと上昇に転じた場合に、当該受信強度の上昇分に応じて、先ず元のデータ伝送量の変調方式に戻し、また、前記可変減衰器15bの減衰値を元の値に戻すよう制御するのは勿論である。 Here, when the reception intensity of the beacon signal decreases, the attenuation value of the variable attenuator 15b in the high power amplification frequency converter (HPC) 15 is reduced to a small value according to the decrease in the reception intensity. The operation of changing the setting to increase the output power and selecting a modulation method with a large amount of data transmission to maintain the communication speed constant has been described. After that, the reception strength of the beacon signal is returned to the normal state. When the signal is increased, the original data transmission amount modulation method is first restored according to the increase in the reception intensity, and the attenuation value of the variable attenuator 15b is controlled to be returned to the original value. Of course.

したがって、前記第3実施形態の通信制御処理(3)によれば、前記第1実施形態の通信制御処理(1)と同様に、前記移動体衛星通信局30による衛星通信中に車体(移動体)が傾斜することに伴い、前記衛星通信アンテナ11が傾斜し当該アンテナ11に対する通信衛星CSの仰角が小さくなることで、同アンテナ11の開口面積(アンテナ利得)が小さくなった場合でも、当該衛星通信の通信速度を一定に維持することできる。 Therefore, according to the communication control process (3) of the third embodiment, as in the communication control process (1) of the first embodiment, the vehicle body (moving body) during satellite communication by the mobile satellite communication station 30. ) Is tilted and the satellite communication antenna 11 is tilted to reduce the elevation angle of the communication satellite CS with respect to the antenna 11, so that even if the opening area (antenna gain) of the antenna 11 is reduced, the satellite is concerned. The communication speed of communication can be maintained constant.

なお、前記衛星通信装置10の各実施形態における通信制御処理(1)〜(3)では、車体の傾斜を判断する処理(ステップS1,S2/S21,S22/S31,S32)を入れて説明したが、当該車体の傾斜を判断する処理は省略してもよい。 The communication control processes (1) to (3) in each embodiment of the satellite communication device 10 include processes for determining the inclination of the vehicle body (steps S1, S2 / S21, S22 / S31, S32). However, the process of determining the inclination of the vehicle body may be omitted.

本願発明は、前記各実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、前記各実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、各実施形態に示される全構成要件から幾つかの構成要件が削除されたり、幾つかの構成要件が異なる形態にして組み合わされても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除されたり組み合わされた構成が発明として抽出され得るものである。 The present invention is not limited to each of the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof. Further, each of the above-described embodiments includes inventions at various stages, and various inventions can be extracted by an appropriate combination of a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in each embodiment or some constituent requirements are combined in different forms, the problems described in the section of the problem to be solved by the invention Can be solved and the effects described in the section on the effects of the invention can be obtained, the configuration in which this constituent requirement is deleted or combined can be extracted as the invention.

10…衛星通信装置、11…衛星通信アンテナ、12…アンテナ制御部、
12a…受信強度検出部、12b…アンテナビーム仰角検出部、
13…低雑音周波数変換器(LNC)、13a…低雑音増幅器(AMP)、
14…変復調部、15…大電力増幅周波数変換器(HPC)、
15a…大電力増幅器(AMP)、15b…可変減衰器(V−ATT)、
16…通信制御部、16T…ATT(減衰値)設定テーブル、
17…車体傾斜検出部、20…固定衛星通信局、30…移動体衛星通信局、
40…アプリケーション対応機器、CS…通信衛星。
10 ... satellite communication device, 11 ... satellite communication antenna, 12 ... antenna control unit,
12a ... Reception intensity detection unit, 12b ... Antenna beam elevation detection unit,
13 ... Low noise frequency converter (LNC), 13a ... Low noise amplifier (AMP),
14 ... Modulation / demodulation unit, 15 ... High power amplification frequency converter (HPC),
15a ... High power amplifier (AMP), 15b ... Variable attenuator (V-ATT),
16 ... Communication control unit, 16T ... ATT (attenuation value) setting table,
17 ... Body tilt detector, 20 ... Fixed satellite communication station, 30 ... Mobile satellite communication station,
40 ... Application compatible equipment, CS ... Communication satellite.

Claims (3)

衛星通信アンテナから送信する送信対象信号の出力電力を増幅する電力増幅手段と、
前記電力増幅手段による出力電力の増幅度を可変減衰する可変減衰手段と、
前記衛星通信アンテナにおけるアンテナビームの仰角を検出するビーム仰角検出手段と、
前記アンテナビームの仰角と前記可変減衰手段に設定する前記増幅度の減衰値とを、当該仰角が小さくなるほど減衰値が小さくなるように予め複数組み対応付けた減衰値設定テーブルを記憶するテーブル記憶手段と、
前記ビーム仰角検出手段により検出されるアンテナビームの仰角が変化した場合に、前記テーブル記憶手段により記憶された減衰値設定テーブルから、当該変化した仰角に対応付けられた減衰値を取得し、前記可変減衰手段による増幅度の減衰値を当該取得した減衰値に変更する減衰値変更手段と、
を備えた衛星通信装置。
A power amplification means that amplifies the output power of the transmission target signal transmitted from the satellite communication antenna,
A variable attenuation means that variably attenuates the amplification degree of output power by the power amplification means, and
Beam elevation detection means for detecting the elevation angle of the antenna beam in the satellite communication antenna, and
A table storage means for storing a plurality of sets of attenuation value setting tables in which the elevation angle of the antenna beam and the attenuation value of the amplification degree set in the variable attenuation means are associated with each other in advance so that the attenuation value becomes smaller as the elevation angle becomes smaller. When,
When the elevation angle of the antenna beam detected by the beam elevation detection means changes, the attenuation value associated with the changed elevation angle is acquired from the attenuation value setting table stored by the table storage means, and the variable value is obtained. Attenuation value changing means for changing the attenuation value of the amplification degree by the attenuation means to the acquired attenuation value, and
A satellite communication device equipped with.
前記テーブル記憶手段は、前記アンテナビームの仰角と前記可変減衰手段に設定する前記増幅度の減衰値とを、当該仰角の変化に伴うアンテナ開口面積の変化に応じて通信速度を一定に維持する前記送信対象信号の出力電力が得られるように予め複数組み対応付けた減衰値設定テーブルを記憶する、
請求項1に記載の衛星通信装置。
The table storage means maintains a constant communication speed between the elevation angle of the antenna beam and the attenuation value of the amplification degree set in the variable attenuation means according to a change in the antenna opening area accompanying the change in the elevation angle. Attenuation value setting table associated with a plurality of sets in advance is stored so that the output power of the signal to be transmitted can be obtained.
The satellite communication device according to claim 1.
衛星通信アンテナから送信する送信対象信号の出力電力を増幅する電力増幅手段と、前記電力増幅手段による出力電力の増幅度を可変減衰する可変減衰手段と、を備えた衛星通信装置の通信方法であって、
前記衛星通信アンテナにおけるアンテナビームの仰角を検出し、
前記検出されるアンテナビームの仰角が変化した場合に、前記アンテナビームの仰角と前記可変減衰手段に設定する前記増幅度の減衰値とを当該仰角が小さくなるほど減衰値が小さくなるように予め複数組み対応付けた減衰値設定テーブルから、前記変化した仰角に対応付けられた減衰値を取得し、前記可変減衰手段による増幅度の減衰値を当該取得した減衰値に変更する、
ようにした通信方法。
It is a communication method of a satellite communication device including a power amplification means for amplifying the output power of a transmission target signal transmitted from a satellite communication antenna and a variable attenuation means for variably attenuating the amplification degree of the output power by the power amplification means. hand,
Detecting the elevation angle of the antenna beam in the satellite communication antenna,
When the elevation angle of the detected antenna beam changes, a plurality of sets of the elevation angle of the antenna beam and the attenuation value of the amplification degree set in the variable attenuation means are set in advance so that the attenuation value decreases as the elevation angle decreases. The attenuation value associated with the changed elevation angle is acquired from the associated attenuation value setting table, and the attenuation value of the amplification degree by the variable attenuation means is changed to the acquired attenuation value.
Communication method.
JP2021000220A 2021-01-04 2021-01-04 Satellite communication device and communication method thereof Pending JP2021069123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000220A JP2021069123A (en) 2021-01-04 2021-01-04 Satellite communication device and communication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000220A JP2021069123A (en) 2021-01-04 2021-01-04 Satellite communication device and communication method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016229046A Division JP6917698B2 (en) 2016-11-25 2016-11-25 Satellite communication device and its communication method

Publications (1)

Publication Number Publication Date
JP2021069123A true JP2021069123A (en) 2021-04-30

Family

ID=75638687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000220A Pending JP2021069123A (en) 2021-01-04 2021-01-04 Satellite communication device and communication method thereof

Country Status (1)

Country Link
JP (1) JP2021069123A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164800A (en) * 2000-11-27 2002-06-07 Mitsubishi Electric Corp Transmission power controller and radio transmitter using the same
WO2005043779A1 (en) * 2003-10-30 2005-05-12 Mitsubishi Denki Kabushiki Kaisha Mobile satellite communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164800A (en) * 2000-11-27 2002-06-07 Mitsubishi Electric Corp Transmission power controller and radio transmitter using the same
WO2005043779A1 (en) * 2003-10-30 2005-05-12 Mitsubishi Denki Kabushiki Kaisha Mobile satellite communication system

Similar Documents

Publication Publication Date Title
US6587511B2 (en) Radio frequency transmitter and methods thereof
EP0740422B1 (en) Power control circuit for transmission apparatus
EP1675256B1 (en) Radio transmitter, transmission power adjustment method and recording medium storing program for implementing method
US7251462B2 (en) Modulation circuit device, modulation method and radio communication device
JP5324451B2 (en) m RFID reader machine
US6466628B1 (en) Technique for effectively rendering power amplification and control in wireless communications
US6718165B1 (en) Apparatus and method for reducing nonlinear distortion in an automatic gain control system
KR20190119381A (en) Electronic device and method for controlling power based on bandwidth adaptation in the electronic device
US20090074108A1 (en) Method and system for adjusting the amplitude and phase characteristics of real and imaginary signal components of complex signals processed by an analog radio transmitter
US7742543B2 (en) Transmission circuit by polar modulation system and communication apparatus using the same
JP6917698B2 (en) Satellite communication device and its communication method
US7834687B2 (en) Method and system for polar modulation with discontinuous phase for RF transmitters with power control
JP2021069123A (en) Satellite communication device and communication method thereof
US20040012441A1 (en) RF power amplifier digital gain flattening over multiband frequencies
KR20070114818A (en) System for reducing power consumption in a local oscillator
US20030119462A1 (en) Apparatus for linear transmitter with improved loop gain stabilization
JP2002314348A (en) Linear amplifier
JP3843259B2 (en) Mobile phone
JP4023025B2 (en) Wireless communication apparatus and transmission power control method for wireless communication apparatus
JP4639989B2 (en) Communication device and frequency converter used therefor
KR100606358B1 (en) Apparatus and control method for transmitter for multi FA in mobile communication system
JP2015186031A (en) Antenna system, controller, and computer program
KR101008614B1 (en) Auto gain controller in receiver
JP2001326700A (en) Digital radio equipment
JP2006086894A (en) Radio transmitting circuit, radio receiving circuit and radio equipment of array antenna system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220419