JP2021068815A - Coil, coil unit, and wireless power transmission device, and manufacturing method of coil - Google Patents

Coil, coil unit, and wireless power transmission device, and manufacturing method of coil Download PDF

Info

Publication number
JP2021068815A
JP2021068815A JP2019193299A JP2019193299A JP2021068815A JP 2021068815 A JP2021068815 A JP 2021068815A JP 2019193299 A JP2019193299 A JP 2019193299A JP 2019193299 A JP2019193299 A JP 2019193299A JP 2021068815 A JP2021068815 A JP 2021068815A
Authority
JP
Japan
Prior art keywords
coil
magnetic tape
magnetic
stranded wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019193299A
Other languages
Japanese (ja)
Inventor
勉 水野
Tsutomu Mizuno
勉 水野
光秀 佐藤
Mitsuhide Sato
光秀 佐藤
穎剛 卜
Yinggang Bu
穎剛 卜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2019193299A priority Critical patent/JP2021068815A/en
Publication of JP2021068815A publication Critical patent/JP2021068815A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulated Conductors (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

To provide a coil and a coil unit for wireless power transmission, which have high transmission efficiency and can be manufactured at low cost.SOLUTION: In a coil in which a stranded conductor including a plurality of strands with insulation on the surface is wound in a spiral shape, a magnetic tape having shrinkage and having magnetic powder fixed with a binder is wound around the outer circumference of a stranded wire, and the outer circumference of the stranded wire is covered with the magnetic tape all around. The relative magnetic permeability of the magnetic tape is 5 or more and 200 or less with respect to an alternating magnetic field having a frequency of 85 kHz, and the thickness of the magnetic tape may be 0.05 to 0.1 times the diameter of the stranded wire. The magnetic tape may have an adhesive layer.SELECTED DRAWING: Figure 1

Description

本開示は、低コストで実現できる高効率なコイルおよびコイルユニットおよび無線電力伝送装置およびコイルの製造方法に関する。 The present disclosure relates to a highly efficient coil and coil unit and a method for manufacturing a wireless power transmission device and a coil that can be realized at low cost.

磁界共振結合を用いた無線(ワイヤレス)電力伝送は携帯機器やICカードなどに利用されており、電気自動車(EV)や工場で用いられる無人搬送車(AGV)等の大電力用無線電力伝送も実用化が始まりつつある。大電力で電力伝送を行うためにはこれに用いられるコイルの発熱低減と効率向上が求められる。一般に、大電力用無線電力伝送用途のコイルの線材には銅リッツ線(Litz Copper Wire 以下LCW)が用いられている。リッツ線は表面に絶縁処理が施された複数の素線を撚って形成した導線であり、表面積が実効的に増えることから、表皮効果に起因する交流抵抗の低減効果があるとされている。 Wireless power transmission using magnetic field resonance coupling is used for mobile devices and IC cards, and also for high-power wireless power transmission such as electric vehicles (EV) and automatic guided vehicles (AGV) used in factories. Practical use is beginning. In order to perform power transmission with high power, it is required to reduce heat generation and improve efficiency of the coil used for this. Generally, a copper litz wire (Litz Copper Ware or less LCW) is used as a wire material of a coil for high power wireless power transmission. A litz wire is a conductor formed by twisting a plurality of strands whose surface is insulated, and is said to have an effect of reducing AC resistance due to the skin effect because the surface area is effectively increased. ..

リッツ線は、素線の径が小さく素線の数が多いほど表皮効果の影響を受けにくくなり、交流抵抗の低減効果が大きくなるが、その反面製造コストが増える。素線径を大きくし数を減らせば、製造コスト削減につながるが、交流抵抗低減効果は小さくなる(非特許文献1)。またリッツ線をコイル(特にスパイラル状)として使用した場合、周囲の巻回線が発生する磁界による渦電流損が発生し(いわゆる近接効果)、交流抵抗をさらに高める原因となる。 The smaller the diameter of the strands and the larger the number of strands, the less affected the litz wire is due to the skin effect, and the greater the effect of reducing the AC resistance, but on the other hand, the manufacturing cost increases. Increasing the wire diameter and reducing the number leads to a reduction in manufacturing cost, but the effect of reducing AC resistance is reduced (Non-Patent Document 1). Further, when the litz wire is used as a coil (particularly in a spiral shape), an eddy current loss due to a magnetic field generated by a surrounding winding line occurs (so-called proximity effect), which causes further increase in AC resistance.

そこで、素線に透磁率の比較的高い磁性めっき線を用いたリッツ線を用いることで交流抵抗低減を図る技術(非特許文献2)や、製造コスト削減のため、磁性紛を接着させる工法(特許文献1)、磁性紛をシリコーンワニスに混ぜて吹き付ける方法(特許文献2)などが、これまでに提案されている。 Therefore, a technique for reducing AC resistance by using a litz wire using a magnetically plated wire with a relatively high magnetic permeability for the strand (Non-Patent Document 2) and a method for adhering magnetic powder to reduce manufacturing costs (Non-Patent Document 2). Patent Document 1), a method of mixing magnetic powder with a silicone varnish and spraying it (Patent Document 2) have been proposed so far.

特開2018−018585号公報JP-A-2018-018585 特開2018−137120号公報Japanese Unexamined Patent Publication No. 2018-137120

水野勉、神谷旭、志村祐介、飯田和剛、山本大輔、宮尾直樹、笹平秀昭、“リッツ線の素線数が交流抵抗に与える影響に関する検討”、日本AEM学会誌、Vol.18、No.3、p.300、2010Tsutomu Mizuno, Asahi Kamiya, Yusuke Shimura, Kazutake Iida, Daisuke Yamamoto, Naoki Miyao, Hideaki Sasahira, "Study on the effect of the number of strands of litz wire on AC resistance", Journal of AEM Society of Japan, Vol. 18, No. 3, p. 300, 2010 笠井貴裕、王文華、卜穎剛、水野勉、“磁性めっき線を用いた高効率非接触給電システム”、電磁力関連のダイナミクスシンポジウム、Vol.28、No.6−13、pp.84−89、2016Takahiro Kasai, Wang Wenhua, Gou Ura, Tsutomu Mizuno, "High-efficiency non-contact power supply system using magnetically plated wire", Electromagnetic force-related dynamics symposium, Vol. 28, No. 6-13, pp. 84-89, 2016

しかし、非特許文献2の技術では素線の本数を減らすことができても、メッキ工程が増える分コストアップになるといった課題があった。また、磁性紛を接着する特許文献1、2の技術の場合、隙間なく巻かれたヘリカルコイルのように比較的広い壁面が存在するコイルについては付着性の問題は無いが、無線電力伝送コイルのように、撚線(リッツ線)が各巻ごとに間隔を置いてスパイラル状に巻かれたコイルにおいては、撚線の外周に均等に磁性紛を付着させることが困難である、といった課題があった。 However, with the technique of Non-Patent Document 2, even if the number of strands can be reduced, there is a problem that the cost increases as the number of plating steps increases. Further, in the case of the techniques of Patent Documents 1 and 2 for adhering magnetic powder, there is no problem of adhesion for a coil having a relatively wide wall surface such as a helical coil wound without a gap, but a wireless power transmission coil As described above, in a coil in which stranded wires (litz wires) are spirally wound at intervals for each winding, there is a problem that it is difficult to evenly adhere magnetic powder to the outer periphery of the stranded wires. ..

特に無線電力伝送に用いるコイルの場合、磁性紛の量が多すぎると鉄損が増え、却って伝送効率を低下させることがある。この磁性紛量のコントロールが従来の技術では難しい。また、素線を太くし、しかも本数を少なくすると、各素線の剛性が強くなる。そのため、撚線が作りにくくしかも撚線の状態を維持しにくくなる、すなわちばらけ易くなる、といった課題もあった。 In particular, in the case of a coil used for wireless power transmission, if the amount of magnetic powder is too large, iron loss increases, and on the contrary, transmission efficiency may decrease. It is difficult to control the amount of magnetic powder with conventional technology. Further, if the strands are made thicker and the number of strands is reduced, the rigidity of each strand becomes stronger. Therefore, there is also a problem that it is difficult to make a stranded wire and it is difficult to maintain the state of the stranded wire, that is, it becomes easy to disperse.

本開示の一態様に係るコイルは、表面に絶縁処理が施された複数の素線を含む撚線がスパイラル状に巻回されたコイルであって、伸縮性を有ししかも磁性粉がバインダで固定された磁性テープが、前記撚線の外周に巻かれて、前記撚線の外周囲が全周にわたって前記磁性テープにより被覆されていることを特徴とする。 The coil according to one aspect of the present disclosure is a coil in which twisted wires including a plurality of strands whose surfaces are insulated are spirally wound, and has elasticity and magnetic powder is a binder. The fixed magnetic tape is wound around the outer periphery of the stranded wire, and the outer circumference of the stranded wire is covered with the magnetic tape over the entire circumference.

前記磁性テープの比透磁率は、周波数85kHzの交流磁界に対して5以上200以下であり、前記磁性テープの厚みは前記撚線の直径の0.05〜0.1倍であってもよい。 The relative magnetic permeability of the magnetic tape is 5 or more and 200 or less with respect to an alternating magnetic field having a frequency of 85 kHz, and the thickness of the magnetic tape may be 0.05 to 0.1 times the diameter of the stranded wire.

前記磁性テープは接着層を有していてもよい。 The magnetic tape may have an adhesive layer.

前記磁性テープは前記撚線の撚り方向と同方向でしかもより短いピッチで巻かれていてもよい。 The magnetic tape may be wound in the same direction as the twisting direction of the stranded wire and at a shorter pitch.

さらに、前記素線に、伸縮性を有ししかも磁性粉がバインダで固定された磁性テープが巻かれていてもよい。 Further, a magnetic tape having elasticity and having magnetic powder fixed with a binder may be wound around the wire.

前記撚線は、表面に絶縁処理が施された複数の素線によって構成される複数の子撚線がさらに撚られて形成されていてもよい。 The stranded wire may be formed by further twisting a plurality of child stranded wires composed of a plurality of strands whose surface is insulated.

前記子撚線の外側に、伸縮性を有ししかも磁性粉がバインダで固定された磁性テープがらせん状に巻かれていてもよい。 A magnetic tape having elasticity and having magnetic powder fixed with a binder may be spirally wound on the outside of the child stranded wire.

本開示の一態様に係るコイルユニットは、前記コイルが磁気シールド板の面上に設けられ、前記磁気シールド板の前記コイルが設けられた面と反対の面にスペーサーを挟んで非磁性金属板が設けられたことを特徴とする。 In the coil unit according to one aspect of the present disclosure, the coil is provided on the surface of the magnetic shield plate, and a non-magnetic metal plate is formed by sandwiching a spacer on the surface of the magnetic shield plate opposite to the surface on which the coil is provided. It is characterized by being provided.

前記磁気シールド板はフェライトを材料とし、前記非磁性金属板はアルミニウムを材料としてもよい。 The magnetic shield plate may be made of ferrite, and the non-magnetic metal plate may be made of aluminum.

本開示の一態様に係る無線電力伝送装置は、前記コイルユニットを含む無線電力伝送装置であって、前記コイルにキャパシタおよびインダクタによる共振回路が接続されたことを特徴とする。 The wireless power transmission device according to one aspect of the present disclosure is a wireless power transmission device including the coil unit, and is characterized in that a resonance circuit by a capacitor and an inductor is connected to the coil.

本開示の一態様に係るコイルの製造方法は、撚線の表面に磁性層を設けるコイルの製造方法であって、素線または複数の素線が撚られた子撚線を準備する工程と、前記素線または前記子撚線を撚り、撚線を形成する工程と、前記撚線に伸縮性を有ししかも磁性粉がバインダで固定された磁性テープをらせん状に巻いて、前記撚線の外周囲を全周にわたって前記磁性テープにより被覆する工程と、前記撚線をスパイラル状に巻回する工程を含む。 The method for manufacturing a coil according to one aspect of the present disclosure is a method for manufacturing a coil in which a magnetic layer is provided on the surface of a stranded wire, and is a step of preparing a wire or a child stranded wire in which a plurality of wires are twisted. The step of twisting the strand or the child stranded wire to form a stranded wire, and winding a magnetic tape having elasticity in the stranded wire and having magnetic powder fixed by a binder in a spiral shape to form the stranded wire. It includes a step of covering the outer circumference with the magnetic tape over the entire circumference and a step of winding the stranded wire in a spiral shape.

前記磁性テープをらせん状に巻く工程において、前記磁性テープは前記撚線の撚り方向と同方向でしかもより短いピッチで巻いてもよい。 In the step of spirally winding the magnetic tape, the magnetic tape may be wound in the same direction as the twisting direction of the stranded wire and at a shorter pitch.

前記子撚線の外側に、縮性を有ししかも磁性粉がバインダで固定された磁性テープをらせん状に巻く工程をさらに含んでもよい。 A step of spirally winding a magnetic tape having shrinkage property and having magnetic powder fixed with a binder on the outside of the child stranded wire may be further included.

本開示の一態様によれば、無線電力伝送コイルのように各巻が互いに間隔を置いてスパイラル状に巻かれたコイルにおいても、撚線の周囲に粘着力を有する磁性テープを巻くという簡単な工程で、表皮効果や外部磁束による近接効果の影響を効果的に除去することができる。その結果、素線を多少太くしてもコイル内部の交流抵抗の低減を図ることができ、伝送効率の向上と製造コストの低減を同時に実現することが可能となる。 According to one aspect of the present disclosure, even in a coil in which the windings are spirally wound at intervals from each other, such as a wireless power transmission coil, a simple step of winding a magnetic tape having adhesive strength around the stranded wire is performed. Therefore, the influence of the skin effect and the proximity effect due to the external magnetic flux can be effectively removed. As a result, the AC resistance inside the coil can be reduced even if the wire is made slightly thicker, and it is possible to improve the transmission efficiency and reduce the manufacturing cost at the same time.

また、素線を太くした場合に各素線の剛性が高くなるといった課題に対しては、前記磁性テープが撚線およびコイルの形状を維持する結束バンドとしても機能することになり、撚線の形状維持を図ることができる。 Further, to solve the problem that the rigidity of each wire becomes high when the wire is thickened, the magnetic tape also functions as a binding band for maintaining the shape of the stranded wire and the coil, and the stranded wire The shape can be maintained.

本開示の一実施形態の要部の外観図である。It is an external view of the main part of one Embodiment of this disclosure. 本開示の一実施形態の要部の断面図である。It is sectional drawing of the main part of one Embodiment of this disclosure. 本開示の一実施形態における磁性テープの部分斜視図である。It is a partial perspective view of the magnetic tape in one Embodiment of this disclosure. 本開示の一実施形態の製造方法のフローチャートである。It is a flowchart of the manufacturing method of one Embodiment of this disclosure. 本開示の一実施形態の効果を示す概念図である。It is a conceptual diagram which shows the effect of one Embodiment of this disclosure. 本開示の実施例の構成図である。It is a block diagram of the Example of this disclosure. 参考例の構成図である。It is a block diagram of a reference example. 本開示の実施例の実験結果を示すグラフである。It is a graph which shows the experimental result of the Example of this disclosure. 本開示の実施例の実験環境を示すブロック図である。It is a block diagram which shows the experimental environment of the Example of this disclosure. 本開示の実施例の実験結果を示すグラフである。It is a graph which shows the experimental result of the Example of this disclosure. 本開示の実施例の実験結果を示す写真である。It is a photograph which shows the experimental result of the Example of this disclosure. 本開示の第2の実施形態の要部の断面図である。It is sectional drawing of the main part of the 2nd Embodiment of this disclosure.

以下、本開示の一態様に係る実施の形態(以下、本実施の形態)について図面を参照しながら詳細に説明する。図1に本実施形態におけるコイル1の要部の外観図を示す。本実施の形態において、コイル1は無線電力伝送に用いられるものとし、図1には示されてはいないが、例えば後述の実施例(図6)で示されているように、撚線状の導体(例えばリッツ線)が平面内にスパイラル状に巻回されている形状を有する。各巻において、隣接する巻回との間には空隙が設けられている。 Hereinafter, an embodiment according to one aspect of the present disclosure (hereinafter, the present embodiment) will be described in detail with reference to the drawings. FIG. 1 shows an external view of a main part of the coil 1 in the present embodiment. In the present embodiment, the coil 1 is used for wireless power transmission, and although it is not shown in FIG. 1, it is stranded, for example, as shown in an embodiment (FIG. 6) described later. It has a shape in which a conductor (for example, a litz wire) is spirally wound in a plane. In each winding, a gap is provided between the winding and the adjacent winding.

図1において、コイル1は表面に絶縁処理が施された複数の素線101が撚り導線10を形成している。素線は、銅、アルミニウム、等の非磁性の金属導体であればよい。さらに撚り導線10の外周囲には、接着層を有する磁性テープ20がらせん状に隙間なく巻かれ、撚り導線10を全周にわたって被覆する状態になっている。磁性テープ20の巻き方向は、撚り導線10の撚り方向と同方向であっても逆方向であってもよい。 In FIG. 1, a plurality of strands 101 whose surfaces are insulated from the coil 1 form a stranded conductor 10. The wire may be a non-magnetic metal conductor such as copper or aluminum. Further, a magnetic tape 20 having an adhesive layer is spirally wound around the outer circumference of the stranded conductor 10 without a gap, and is in a state of covering the stranded conductor 10 over the entire circumference. The winding direction of the magnetic tape 20 may be the same as or opposite to the twisting direction of the stranded conductor 10.

撚線を結束させるという観点からは、撚り導線10の撚り方向と逆向きであるのが好ましいが、素線101や後述の子撚線102を撚りながら磁性テープ20を巻く場合は同方向で巻くほうが好ましい。撚り導線10を撚り終わってから磁性テープを巻く場合も、巻いている最中に撚り導線10が解れにくいといった利点がある。なお、同方向で巻く場合、撚り導線10よりも短いピッチで、つまり図1に示されるように、より急峻なスキュー角で巻くのが好ましい。 From the viewpoint of binding the stranded wires, it is preferable that the direction is opposite to the twisting direction of the stranded conductor 10, but when the magnetic tape 20 is wound while twisting the strand 101 or the child stranded wire 102 described later, the magnetic tape 20 is wound in the same direction. Is preferable. Even when the magnetic tape is wound after the twisted conductor 10 has been twisted, there is an advantage that the twisted conductor 10 is difficult to unravel during winding. When winding in the same direction, it is preferable to wind at a pitch shorter than that of the stranded conductor 10, that is, at a steeper skew angle as shown in FIG.

撚り導線10は、表面に絶縁処理が施された複数の素線101によって構成される複数の子撚線102(ストランド)がさらに撚られて形成されていてもよい。例えば、図2の断面図に示されるように、7本の素線101が撚り合わさって子撚線102(ストランド)を形成し、さらに7本の子撚線102が撚り合わさって撚り導線10を形成する。磁性テープ20はこれらすべての撚線の外側を覆うように巻かれる。 The stranded conductor 10 may be formed by further twisting a plurality of child stranded wires 102 (strands) composed of a plurality of strands 101 whose surface is insulated. For example, as shown in the cross-sectional view of FIG. 2, seven strands 101 are twisted to form a child stranded wire 102 (strand), and further seven child stranded wires 102 are twisted to form a stranded conductor 10. Form. The magnetic tape 20 is wound so as to cover the outside of all these stranded wires.

一般にリッツ線は、素線数が数本〜数千本と種類が多く、親撚り、子撚り、孫撚りと、さらに多数の組み合わせがあるが、本実施の形態では親子構造の撚線とする。また、本実施の形態において、子撚線102に含まれる素線の本数は2〜30本が好ましく、子撚線の本数は3〜10本が好ましい。素線の本数が増えれば増えるほどリッツ線効果は高まる。つまり表皮面積が増えることにより、渦電流損は低減する。しかし、磁性テープ20を巻くことによって改善できる余地はその分少なくなる。言い換えれば素線の本数が少ない(素線が太い)方が磁性テープ20を巻くことによる効果が顕著に現れる。 In general, there are many types of litz wires with a number of strands of several to several thousand, and there are many more combinations such as parent twist, child twist, and grandchild twist. .. Further, in the present embodiment, the number of strands contained in the child stranded wire 102 is preferably 2 to 30, and the number of child stranded wires is preferably 3 to 10. As the number of strands increases, the litz wire effect increases. That is, the eddy current loss is reduced by increasing the skin area. However, there is less room for improvement by winding the magnetic tape 20. In other words, the smaller the number of strands (thick strands), the more pronounced the effect of winding the magnetic tape 20.

図3に、磁性テープ20の部分斜視図を示す。磁性テープ20は接着層21と磁性紛23を含むバインダ22よりなる二層構造を有する。バインダ22は伸縮性がある絶縁性の樹脂(例えばシリコーン樹脂)が好ましい。磁性紛23は球形でも扁平でもよい。磁性紛23が配向性を有している場合は、特性の均一化を図るため、磁性層形成時に配向を一方向(例えば面水平方向)に揃えておくのが好ましい。 FIG. 3 shows a partial perspective view of the magnetic tape 20. The magnetic tape 20 has a two-layer structure including an adhesive layer 21 and a binder 22 including a magnetic powder 23. The binder 22 is preferably an elastic insulating resin (for example, a silicone resin) having elasticity. The magnetic powder 23 may be spherical or flat. When the magnetic powder 23 has orientation, it is preferable to align the orientation in one direction (for example, the horizontal direction of the plane) at the time of forming the magnetic layer in order to make the characteristics uniform.

図4に本実施の形態におけるコイルの製造方法のフローチャートを示す。先ず、子撚線102と磁性テープ20は予め準備しておく(P11)。次に、子撚線102を撚って、撚り導線10を形成する(P12)。次に、撚り導線10の外周囲に磁性テープ20を隙間なく巻いて前記撚線の外周囲を全周にわたって被覆する(P13)。さらに、撚り導線10をスパイラル状に巻回する(P14)。以上のような極めて簡単な工程により、図2で示した断面を有するコイルを作製することができる。 FIG. 4 shows a flowchart of a coil manufacturing method according to the present embodiment. First, the child stranded wire 102 and the magnetic tape 20 are prepared in advance (P11). Next, the child stranded wire 102 is twisted to form a stranded conductor 10 (P12). Next, the magnetic tape 20 is wrapped around the outer circumference of the stranded conductor 10 without a gap to cover the outer circumference of the stranded conductor over the entire circumference (P13). Further, the twisted conductor 10 is wound in a spiral shape (P14). By the extremely simple process as described above, a coil having the cross section shown in FIG. 2 can be manufactured.

なお、磁性テープの比透磁率は5以上200以下であることが好ましく、前記磁性テープの厚みは前記撚線の直径の0.05〜0.1倍であることが好ましい。前記範囲より比透磁率を上げようとするとバインダ22に対する磁性紛23の含有比率を高める必要があり、その結果磁性テープの弾力性が低下し、撚り導線10を被覆する際に割れやひびが入る虞がある。厚みについては、薄すぎると後述する近接効果の抑制力が弱まり、厚すぎるとコイル1の占積率が悪くなる。なお、前記磁性テープは重ね巻きしてもよく、例えば撚線直径の0.05倍厚の磁性テープを二重巻きにして実質的に撚線直径の0.1倍厚としてもよい。ここで接着層の厚みは磁性テープ全体の厚みに対して無視できるとする。 The relative magnetic permeability of the magnetic tape is preferably 5 or more and 200 or less, and the thickness of the magnetic tape is preferably 0.05 to 0.1 times the diameter of the stranded wire. If the relative magnetic permeability is to be increased from the above range, it is necessary to increase the content ratio of the magnetic powder 23 to the binder 22, and as a result, the elasticity of the magnetic tape is lowered, and cracks and cracks occur when coating the stranded conductor 10. There is a risk. Regarding the thickness, if it is too thin, the suppressing force of the proximity effect described later weakens, and if it is too thick, the space factor of the coil 1 deteriorates. The magnetic tape may be lap-wound. For example, a magnetic tape having a thickness of 0.05 times the stranded wire diameter may be double-wound to substantially 0.1 times the stranded wire diameter. Here, it is assumed that the thickness of the adhesive layer can be ignored with respect to the thickness of the entire magnetic tape.

本実施の形態の効果を図5に概念的に示す。図5において(a)は通常のリッツ銅線(Litz Copper Wire 以下LCW)を用いたコイル1の一部の断面図を表す。図中右側のリッツ銅線に(撚り導線)に電流が流れると(紙面表から裏向き)時計回りに磁束線が発生し、その一部が隣の巻のリッツ線の素線の内部に入り込む。その結果渦電流が発生し、これが交流抵抗を増やす原因となる。一方本実施形態をリッツ線コイルに適用した無線電力伝送コイル(Magnetic tape Litz wire、以下MLW)の場合、磁性テープ20が隣の撚り導線10に入り込もうとする磁束線をバイパスするように機能するため、撚り導線10の素線内部における渦電流損の発生はその分抑えられ、その結果、交流抵抗の低減が図れる。 The effect of this embodiment is conceptually shown in FIG. In FIG. 5, (a) shows a cross-sectional view of a part of the coil 1 using a normal Litz Copper Wire (LCW). When a current flows through the litz copper wire on the right side of the figure (twisted conductor), a magnetic flux wire is generated clockwise (from the front to the back of the paper), and a part of it enters the inside of the strand of the litz wire of the next winding. .. As a result, eddy currents are generated, which causes an increase in AC resistance. On the other hand, in the case of a wireless power transmission coil (Magnetic type Lite yard, hereinafter MLW) in which the present embodiment is applied to a litz wire coil, the magnetic tape 20 functions to bypass the magnetic flux wire trying to enter the adjacent stranded conductor 10. The generation of eddy current loss inside the strands of the stranded conductor 10 is suppressed by that amount, and as a result, the AC resistance can be reduced.

(受電側無線電力伝送コイルの構成)
以下、本開示の実施例について説明する。本実施例では本実施の形態を応用して試作した無線電力伝送装置とその実験結果について説明する。図6に本実施例の受電側のコイルユニットを示す。同図(a)は平面図を、(b)はAA’面で切断した断面図を示す。本実施例において、コイル1は円形のスパイラル形状を成す。SAE規格を想定し、コイル外径は320mm、巻数N=6とした。また、当該コイルユニットには、インダクタンスの向上と磁気遮蔽のためにコイルの背面にフェライト(磁気シールド板41)とアルミニウム板(非磁性金属板42)が設けられている。
(Configuration of wireless power transmission coil on the power receiving side)
Hereinafter, examples of the present disclosure will be described. In this embodiment, a wireless power transmission device prototyped by applying the present embodiment and its experimental results will be described. FIG. 6 shows a coil unit on the power receiving side of this embodiment. FIG. 3A shows a plan view, and FIG. 3B shows a cross-sectional view cut along the AA'plane. In this embodiment, the coil 1 has a circular spiral shape. Assuming the SAE standard, the coil outer diameter was 320 mm and the number of turns was N = 6. Further, the coil unit is provided with a ferrite (magnetic shield plate 41) and an aluminum plate (non-magnetic metal plate 42) on the back surface of the coil in order to improve the inductance and magnetically shield the coil.

コイル外径を310mm〜330mm、巻数N=6とした場合、コイル1の撚り導線10の直径は3mm〜10mmであることが好ましい。本実施例で高電流を扱うことを考慮すると、この範囲より細いと直流抵抗による発熱が無視できなくなり、太いと隣接の巻回線との隙間が小さくなり、外部磁界の影響を強く受けるからである。なお、本開示は前記コイルの外径と直径に限定されるものではない。言うまでもなく、コイル外形に応じて最適な撚り導線の太さや素線の本数は変わる。 When the outer diameter of the coil is 310 mm to 330 mm and the number of turns N = 6, the diameter of the stranded conductor 10 of the coil 1 is preferably 3 mm to 10 mm. Considering that a high current is handled in this embodiment, if it is thinner than this range, heat generation due to DC resistance cannot be ignored, and if it is thick, the gap between the adjacent winding line becomes small and it is strongly affected by an external magnetic field. .. The present disclosure is not limited to the outer diameter and the diameter of the coil. Needless to say, the optimum thickness of the stranded conductor and the number of strands vary depending on the outer shape of the coil.

受電側のコイルについては、まず比較例(同図左、磁性テープを設けない)を試作した。比較例LCWのコイルの撚り導線の外径は6mmである。本実施例のコイルMLW(図6(c)右側の図、磁性テープ2による被覆あり)は比較例(LCW)のコイルにさらに厚さ0.375mm(直径比0.0625)の磁性テープを巻いたものである。なお、本実施例において、0.375mmの厚みは0.125mm厚の磁性テープを3重巻きにして実現した。図6(d)にさらに詳細な構造を示した。いずれの試作も、導体径0.35mm、絶縁皮膜の厚さ0.014mmの銅線を用いた。26本(n2)の素線を束ねて小撚線を形成し、7本(n1)の小撚線を束ねて、総計182本の素線よりなる撚り導線を作製した。導体断面積は17.5mmである。 For the coil on the power receiving side, a comparative example (left in the figure, without magnetic tape) was first prototyped. Comparative Example The outer diameter of the stranded conductor of the LCW coil is 6 mm. In the coil MLW of this embodiment (the figure on the right side of FIG. 6C, covered with magnetic tape 2), a magnetic tape having a thickness of 0.375 mm (diameter ratio 0.0625) is further wound around the coil of Comparative Example (LCW). It was. In this embodiment, the thickness of 0.375 mm was realized by triple-wrapping a magnetic tape having a thickness of 0.125 mm. A more detailed structure is shown in FIG. 6 (d). In each of the prototypes, a copper wire having a conductor diameter of 0.35 mm and an insulating film thickness of 0.014 mm was used. Twenty-six (n2) strands were bundled to form a small stranded wire, and seven (n1) small stranded wires were bundled to produce a stranded conductor consisting of a total of 182 strands. The conductor cross-sectional area is 17.5 mm 2 .

(送電側無線電力伝送コイルの構成)
参考例として、図7に送電側のコイルの構造を示した。同図(a)に平面図を、(b)に断面図をそれぞれ示す。送電側のコイルとしては、長方形状のスパイラルコイルを用いた。図7(c)と(d)に当該コイルに用いたリッツ線の構造を示した。導体径0.049mm、絶縁皮膜の厚さ0.005mmの銅線を用いた。総数4200本の素線を3段階(親、子、孫)に撚って形成されている。導体断面積は7.92mmである。なお、本実施例において、送電側のコイルには磁性テープ等による磁性被覆は施されていない。
(Configuration of wireless power transmission coil on the power transmission side)
As a reference example, FIG. 7 shows the structure of the coil on the power transmission side. The plan view is shown in FIG. 6A, and the cross-sectional view is shown in FIG. A rectangular spiral coil was used as the coil on the power transmission side. 7 (c) and 7 (d) show the structure of the litz wire used for the coil. A copper wire having a conductor diameter of 0.049 mm and an insulating film thickness of 0.005 mm was used. A total of 4,200 strands are twisted in three stages (parent, child, grandchild). The conductor cross-sectional area is 7.92 mm 2 . In this embodiment, the coil on the power transmission side is not magnetically coated with a magnetic tape or the like.

(磁性テープの特性)
表1に本実施例における磁性テープに用いた磁性材料の特性を示した。比透磁率については、周波数85kHzのときのμ’が9.24、μ’’が0.0448という実測値が得られている。測定にはB−Hアナライザ(IWATSU SY−8218)を使用した。飽和磁束密度Bの測定には振動試料型磁力計(Riken Denshi)を用いた。

Figure 2021068815
(Characteristics of magnetic tape)
Table 1 shows the characteristics of the magnetic material used for the magnetic tape in this example. As for the relative magnetic permeability, actually measured values of 9.24 for μ'and 0.0448 for μ'at a frequency of 85 kHz have been obtained. A BH analyzer (IWATSU SY-8218) was used for the measurement. A vibrating sample magnetometer (Riken Denshi) was used to measure the saturation magnetic flux density B s.

Figure 2021068815

(コイルインピーダンス特性、結合係数の測定方法)
無線電力伝送コイル(送電側と受電側)の測定にはインピーダンスアナライザ(Agilent Technologies 4294A)を用いた。また結合係数kは伝送距離l(エル)=150mmの条件で測定した。コイルの同相直列接続でのインダクタンスL、逆相接続でのインダクタンスLを測定し、相互インダクタンスMを算出した。また、送電側のコイルのインダクタンスLと受電側のコイルのインダクタンスLと相互インダクタンスMからコイルの結合係数kを算出した。
(Measurement method of coil impedance characteristics and coupling coefficient)
An impedance analyzer (Agilent Technologies 4294A) was used for the measurement of the wireless power transmission coil (transmission side and power reception side). The coupling coefficient k was measured under the condition that the transmission distance l (L) = 150 mm. Inductance L a of the in-phase series connection of coils, the inductance L b of the reverse-phase connection was measured to calculate the mutual inductance M. In addition, the inductance L 1 of the power transmission coil inductance L 2 and the mutual inductance M of the power receiving coil to calculate the coupling coefficient k of the coil.

Q値は下式を用いて算出した。

Figure 2021068815
ここに、ω:角周波数(rad)、L:コイルのインダクタンス(H)、R:コイル抵抗(Ω)である。 The Q value was calculated using the following formula.
Figure 2021068815
Here, ω: angular frequency (rad), L: coil inductance (H), R: coil resistance (Ω).

相互インダクタンスM、結合係数kは下式を用いて算出した。

Figure 2021068815
Figure 2021068815
ここに、L:同相インダクタンス(H)、L:逆相インダクタンス(H)、L:送電側のコイルのインダクタンス(H)、L:受電側のコイルのインダクタンス(H)とする。 The mutual inductance M and the coupling coefficient k were calculated using the following equations.
Figure 2021068815
Figure 2021068815
Here, L a: phase inductance (H), L b: reverse phase inductance (H), L 1: the power transmission side of the coil inductance (H), L 2: the inductance (H) of the power receiving coil.

さらに、測定した結合係数kおよびコイルのQ値を用いてコイルの性能指標Uを算出した。また、性能指標Uから伝送効率ηcを算出した。

Figure 2021068815

Figure 2021068815
ここに、Q:送電側のコイルのQ値、Q:受電側のコイルのQ値とする。 Furthermore, the performance index U of the coil was calculated using the measured coupling coefficient k and the Q value of the coil. Further, the transmission efficiency ηc was calculated from the performance index U.
Figure 2021068815

Figure 2021068815
Here, Q 1 : the Q value of the coil on the power transmission side and Q 2 : the Q value of the coil on the power reception side.

(インピーダンス特性、結合係数の測定結果)
本実施例では、10kHzから200kHzまでの周波数特性を測定した。本実施例ではEV向けワイヤレス電力伝送で用いられる85kHzにおける値を比較した。図8に受電側のコイルのインピーダンス特性を示した。同図(a)は同コイルの抵抗を示す。直流抵抗(Rdc)が約5.6mΩとほぼ一定であるのに対し、交流抵抗は周波数と共に増加する。しかし、本実施例の無線電力伝送コイル(MLW)は比較例(LCW)と比べて高周波域ほど交流抵抗の低減効果が大きい。周波数85kHzにおいて、交流抵抗は73.9mΩから64.9mΩに低減した。
(Measurement results of impedance characteristics and coupling coefficient)
In this example, the frequency characteristics from 10 kHz to 200 kHz were measured. In this example, the values at 85 kHz used in wireless power transmission for EVs were compared. FIG. 8 shows the impedance characteristics of the coil on the power receiving side. FIG. 3A shows the resistance of the coil. The direct current resistance (R dc ) is almost constant at about 5.6 mΩ, while the alternating current resistance increases with frequency. However, the wireless power transmission coil (MLW) of this embodiment has a greater effect of reducing AC resistance in the high frequency range than that of the comparative example (LCW). At a frequency of 85 kHz, the AC resistance was reduced from 73.9 mΩ to 64.9 mΩ.

同図に受電側の無線電力伝送コイルのインダクタンスを示した。本実施例(MLW)も比較例(LCW)も10kHzから200kHzの範囲でほぼ一定である。周波数85kHzにおけるインダクタンスは比較例が21.4μHであるのに対し、本実施例では22.6μHと高い。さらに同図(c)に受電側の無線電力伝送コイルのQ値を示した。磁性テープを用いることで、85kHzにおけるQ値は155(LCW)から186(MLW)に向上した。 The figure shows the inductance of the wireless power transmission coil on the power receiving side. Both this example (MLW) and comparative example (LCW) are substantially constant in the range of 10 kHz to 200 kHz. The inductance at a frequency of 85 kHz is as high as 22.6 μH in this example, while it is 21.4 μH in the comparative example. Further, FIG. 3C shows the Q value of the wireless power transmission coil on the power receiving side. By using the magnetic tape, the Q value at 85 kHz was improved from 155 (LCW) to 186 (MLW).

表2に受電側と送電側のそれぞれのコイルの測定結果と上記式(1)〜(5)による算出結果を示した。結合係数kは比較例(LCW)の0.133に比べて、本実施例(MLW)では0.143と増加した。これは磁性テープにより、受電側のコイルに磁束が誘導されたためである。コイル間効率ηcでは、95.60%(LCW)から96.27%(MLW)に向上した。

Figure 2021068815
Table 2 shows the measurement results of the coils on the power receiving side and the power transmitting side and the calculation results by the above equations (1) to (5). The coupling coefficient k increased to 0.143 in this example (MLW) as compared with 0.133 in the comparative example (LCW). This is because the magnetic tape induces a magnetic flux in the coil on the power receiving side. The inter-coil efficiency ηc improved from 95.60% (LCW) to 96.27% (MLW).

Figure 2021068815

(電力伝送実験)
図9に無線電力伝送システムの構成ブロック図を示した。送電側は三相交流を直流電源で1−300V(DC)に変換している。さらにインバータを介して直流を81−90kHzに変換している。一次側と二次側はLCC共振回路で構成している。送電側のコイルと受電側のコイル(1)の伝送距離は150mmである。二次側の交流は整流回路により直流に変換され、負荷抵抗(R)に接続される。負荷抵抗は充電用のバッテリー(30Ω程度)を模擬している。電力の測定にはパワーアナライザ(YOKOGAWA WT1800)を用いた。一次整流後の電力と二次整流後の電力から伝送効率を算出した。

Figure 2021068815
ここに、P:受電側で整流後の電力、P:送電側直流電源の電力とする。 (Power transmission experiment)
FIG. 9 shows a block diagram of a wireless power transmission system. The power transmission side converts three-phase alternating current to 1-300V (DC) with a direct current power supply. Furthermore, direct current is converted to 81-90 kHz via an inverter. The primary side and the secondary side are composed of an LCC resonant circuit. The transmission distance between the coil on the power transmission side and the coil on the power reception side (1) is 150 mm. The alternating current on the secondary side is converted to direct current by the rectifier circuit and connected to the load resistor (RL). The load resistance simulates a charging battery (about 30Ω). A power analyzer (YOKOGAWA WT1800) was used for power measurement. The transmission efficiency was calculated from the power after the primary rectification and the power after the secondary rectification.
Figure 2021068815
Here, P o: power rectified at the receiving side, P i: the power DC power supply of the electric power.

(電力伝送特性)
周波数を81kHzから90kHzまで変えて電力伝送を行ったところ、比較例(LCW)、本実施例(MLW)共に86kHzで最大の効率になった。そのため、実験では86 kHzでの伝送効率を比較した。結果を図10(a)に示した。3kW伝送時、比較例(LCW)の88.4%に対して、本実施例(MLW)は88.9%と0.5%向上した。これはコイルのQ値と結合係数が向上したことで、コイル間効率が向上するためである。
(Power transmission characteristics)
When power transmission was performed by changing the frequency from 81 kHz to 90 kHz, the maximum efficiency was achieved at 86 kHz in both the comparative example (LCW) and the present embodiment (MLW). Therefore, in the experiment, the transmission efficiency at 86 kHz was compared. The results are shown in FIG. 10 (a). At the time of 3 kW transmission, the present example (MLW) was 88.9%, which was an improvement of 0.5%, compared with 88.4% of the comparative example (LCW). This is because the Q value and the coupling coefficient of the coils are improved, so that the efficiency between the coils is improved.

(コイルの発熱特性)
出力電力1kWで電力伝送を行い、比較例(LCW)と本実施例(MLW)の発熱をサーモグラフィ(testo 0563 0885)を用いて測定した。結果を図11(a)、(b)に示す。実測値はコイル温度が最大の点の値である。コイルは80分程度で熱飽和した。熱飽和時のコイルは比較例(LCW)の66.3℃に対して、本実施例(MLW)では58.1℃と発熱が低減した。これは比較例に比べて、本実施例の交流抵抗が小さいためである。図11に熱飽和時(電力伝送時間80分後)における比較例(LCW)と本実施例(MLW)それぞれの無線電力伝送コイルの熱画像を示した。比較例の64.3℃と比べて、本実施例の温度は58.1℃に低下している。
(Coil heat generation characteristics)
Power transmission was performed with an output power of 1 kW, and the heat generation of Comparative Example (LCW) and this Example (MLW) was measured using thermography (testo 0563-0885). The results are shown in FIGS. 11 (a) and 11 (b). The measured value is the value at the point where the coil temperature is the maximum. The coil was thermally saturated in about 80 minutes. The heat generation of the coil at the time of heat saturation was reduced to 58.1 ° C. in this example (MLW), compared with 66.3 ° C. in Comparative Example (LCW). This is because the AC resistance of this example is smaller than that of the comparative example. FIG. 11 shows thermal images of the wireless power transmission coils of the comparative example (LCW) and the present embodiment (MLW) at the time of thermal saturation (power transmission time 80 minutes later). Compared with 64.3 ° C. of Comparative Example, the temperature of this Example is lowered to 58.1 ° C.

なお、本実施例において、電力伝送用のコイルの諸特性を10kHzから200kHzの範囲において測定したが、本開示のコイルの使用周波数はこの範囲に限られない。電波法に抵触しない5kHz以下の周波数で用いてもよいし、携帯機器用の小型コイルの場合は数十MHz(例えば13.56MHz)で使用する可能性がある。 In this embodiment, various characteristics of the coil for power transmission were measured in the range of 10 kHz to 200 kHz, but the frequency used by the coil of the present disclosure is not limited to this range. It may be used at a frequency of 5 kHz or less that does not conflict with the Radio Law, and in the case of a small coil for a portable device, it may be used at several tens of MHz (for example, 13.56 MHz).

(第2の実施の形態)
以下、本開示の第2の実施形態について説明する。図12は第2の実施形態の無線電力伝送用のコイルの断面図を示す。図12において、撚り導線10が磁性テープ20で被覆されているのみならず、撚り導線10を構成する小撚線102のそれぞれが磁性テープ30で被覆されている。このような構成にすることによって、素線101に入り込む周囲のコイル巻線からの磁束線をより確実に防御することができ、その結果、さらなる交流抵抗の低減とインダクタンスの増加を図ることができる。
(Second Embodiment)
Hereinafter, the second embodiment of the present disclosure will be described. FIG. 12 shows a cross-sectional view of the coil for wireless power transmission of the second embodiment. In FIG. 12, not only the stranded conductor 10 is coated with the magnetic tape 20, but also each of the small stranded wires 102 constituting the stranded conductor 10 is coated with the magnetic tape 30. With such a configuration, it is possible to more reliably protect the magnetic flux wire from the surrounding coil winding that enters the strand 101, and as a result, it is possible to further reduce the AC resistance and increase the inductance. ..

磁性テープ30の比透磁率は磁性テープ20と同等であることが好ましい。また磁性テープ30の厚さについても、磁性テープ20と同程度、すなわち前記撚り導線10の直径の0.05〜0.1倍であることが好ましい。なお、素線101に使う金属が銅線並みに細くすることが困難な場合、例えばアルミニウム等を用いる場合、敢えて子撚線102を形成しなくてもよい。単線を直接撚り合わせて撚り導線10を形成した場合でも、素線(単線)の周囲に磁性テープ20を巻くことにより、ある程度の交流抵抗の低減とインダクタンスの増加を図ることができる。 The relative magnetic permeability of the magnetic tape 30 is preferably the same as that of the magnetic tape 20. Further, the thickness of the magnetic tape 30 is preferably about the same as that of the magnetic tape 20, that is, 0.05 to 0.1 times the diameter of the stranded conductor 10. When it is difficult to make the metal used for the wire 101 as thin as a copper wire, for example, when aluminum or the like is used, it is not necessary to dare to form the child stranded wire 102. Even when the single wire is directly twisted to form the stranded conductor 10, the AC resistance can be reduced to some extent and the inductance can be increased by winding the magnetic tape 20 around the wire (single wire).

以上、本開示によれば、撚り導線10の周囲に磁性テープ20を巻くという簡単な工程で、表皮効果や外部磁束による近接効果の影響を効果的に除去することができる。その結果伝送効率を高める(損失を減らす)ことができる。一実施例として、出力電力1kWで電力伝送を行った場合、比較例の64.3℃に対して本実施例の温度を58.1℃に抑えることができた。 As described above, according to the present disclosure, the influence of the skin effect and the proximity effect due to the external magnetic flux can be effectively removed by a simple step of winding the magnetic tape 20 around the stranded conductor 10. As a result, transmission efficiency can be increased (loss can be reduced). As an example, when power transmission was performed with an output power of 1 kW, the temperature of this example could be suppressed to 58.1 ° C. compared to 64.3 ° C. of the comparative example.

本発明はEV用途等の高電力の電力伝送に使用することができる。またIHクッキングヒータ等の電磁誘導加熱を目的とする用途に応用することもできる。またスマートフォンなどの小型の電子機器のワイヤレス充電用にも応用することができる。さらに、インダクタやトランスといったより汎用性の高いデバイスにも適用することができる。 The present invention can be used for high-power power transmission such as for EV applications. It can also be applied to applications such as IH cooking heaters for the purpose of electromagnetic induction heating. It can also be applied to wireless charging of small electronic devices such as smartphones. Furthermore, it can be applied to more versatile devices such as inductors and transformers.

1 コイル
10 撚り導線
101 素線
102 子撚線
20 磁性テープ
30 磁性テープ
41 磁気シールド板
42 非磁性金属板
1 Coil 10 Twisted conductor 101 Wire 102 Child Twisted wire 20 Magnetic tape 30 Magnetic tape 41 Magnetic shield plate 42 Non-magnetic metal plate

Claims (15)

表面に絶縁処理が施された複数の素線を含む撚線がスパイラル状に巻回されたコイルであって、
伸縮性を有ししかも磁性粉がバインダで固定された磁性テープが前記撚線の外周に巻かれて、前記撚線の外周囲が全周にわたって前記磁性テープにより被覆されていることを特徴とするコイル。
A coil in which a stranded wire containing a plurality of strands whose surface is insulated is wound in a spiral shape.
A magnetic tape having elasticity and to which magnetic powder is fixed by a binder is wound around the outer periphery of the stranded wire, and the outer circumference of the stranded wire is covered with the magnetic tape over the entire circumference. coil.
前記磁性テープの比透磁率は、周波数85kHzの交流磁界に対して5以上200以下であり、前記磁性テープの厚みは前記撚線の直径の0.05〜0.1倍であることを特徴とする、請求項1に記載のコイル。 The specific magnetic permeability of the magnetic tape is 5 or more and 200 or less with respect to an alternating magnetic field having a frequency of 85 kHz, and the thickness of the magnetic tape is 0.05 to 0.1 times the diameter of the stranded wire. The coil according to claim 1. 前記磁性テープは接着層を有することを特徴とする、請求項1または請求項2のいずれかに記載のコイル。 The coil according to claim 1 or 2, wherein the magnetic tape has an adhesive layer. 前記磁性テープは前記撚線の撚り方向と同方向でしかもより短いピッチで巻かれていることを特徴とする、請求項1〜請求項3のいずれかに記載のコイル。 The coil according to any one of claims 1 to 3, wherein the magnetic tape is wound in the same direction as the twisting direction of the stranded wire and at a shorter pitch. さらに、前記素線に、伸縮性を有ししかも磁性粉がバインダで固定された磁性テープが巻かれていることを特徴とする、請求項1〜請求項4のいずれかに記載のコイル。 The coil according to any one of claims 1 to 4, wherein a magnetic tape having elasticity and having magnetic powder fixed by a binder is wound around the wire. 前記撚線は、表面に絶縁処理が施された複数の素線によって構成される複数の子撚線がさらに撚られて形成されていることを特徴とする、請求項1〜請求項4のいずれかに記載のコイル。 The stranded wire is any one of claims 1 to 4, wherein a plurality of child stranded wires composed of a plurality of strands whose surface is insulated are further twisted and formed. The coil described in the crab. 前記子撚線の外側に、伸縮性を有ししかも磁性粉がバインダで固定された磁性テープがらせん状に巻かれていることを特徴とする請求項6に記載のコイル。 The coil according to claim 6, wherein a magnetic tape having elasticity and having magnetic powder fixed by a binder is spirally wound on the outside of the child stranded wire. 前記コイルが磁気シールド板の面上に設けられ、前記磁気シールド板の前記コイルが設けられた面と反対の面にスペーサーを挟んで非磁性金属板が設けられたことを特徴とする、請求項7に記載のコイルユニット。 A claim, wherein the coil is provided on a surface of a magnetic shield plate, and a non-magnetic metal plate is provided on a surface of the magnetic shield plate opposite to the surface on which the coil is provided with a spacer interposed therebetween. 7. The coil unit according to 7. 前記磁気シールド板はフェライトを材料とし、前記非磁性金属板はアルミニウムを材料とすることを特徴とする請求項8に記載のコイルユニット。 The coil unit according to claim 8, wherein the magnetic shield plate is made of ferrite and the non-magnetic metal plate is made of aluminum. 請求項8または9のいずれかに記載のコイルユニットを含む無線電力伝送装置であって、前記コイルにキャパシタおよびインダクタによる共振回路が接続されたことを特徴とする無線電力伝送装置。 A wireless power transmission device including the coil unit according to any one of claims 8 or 9, wherein a resonance circuit using a capacitor and an inductor is connected to the coil. 撚線の表面に磁性層を設けるコイルの製造方法であって、
素線または複数の素線が撚られた子撚線を準備する工程と、
前記素線または前記子撚線を撚り、撚線を形成する工程と、
前記撚線に伸縮性を有ししかも磁性粉がバインダで固定された磁性テープをらせん状に巻いて、前記撚線の外周囲を全周にわたって前記磁性テープにより被覆する工程と、
前記撚線をスパイラル状に巻回する工程を含む、コイルの製造方法。
A method for manufacturing a coil in which a magnetic layer is provided on the surface of a stranded wire.
The process of preparing a strand or a child stranded wire in which multiple strands are twisted,
The process of twisting the strand or the child stranded wire to form a stranded wire,
A step of spirally winding a magnetic tape having elasticity on the stranded wire and having magnetic powder fixed by a binder, and covering the outer circumference of the stranded wire with the magnetic tape over the entire circumference.
A method for manufacturing a coil, which comprises a step of winding the stranded wire in a spiral shape.
前記磁性テープの比透磁率は、周波数85kHzの交流磁界に対して5以上200以下であり、前記磁性テープの厚みは前記撚線の直径の0.05〜0.1倍であることを特徴とする、請求項11に記載のコイルの製造方法。 The specific magnetic permeability of the magnetic tape is 5 or more and 200 or less with respect to an alternating magnetic field having a frequency of 85 kHz, and the thickness of the magnetic tape is 0.05 to 0.1 times the diameter of the stranded wire. The method for manufacturing a coil according to claim 11. 前記磁性テープは接着層を有することを特徴とする、請求項11または請求項12のいずれかに記載のコイルの製造方法。 The method for manufacturing a coil according to any one of claims 11 or 12, wherein the magnetic tape has an adhesive layer. 前記磁性テープをらせん状に巻く工程において、前記磁性テープは前記撚線の撚り方向と同方向でしかもより短いピッチで巻くことを特徴とする、請求項11〜請求項13のいずれかに記載のコイルの製造方法。 The step according to any one of claims 11 to 13, wherein in the step of winding the magnetic tape in a spiral shape, the magnetic tape is wound in the same direction as the twisting direction of the stranded wire and at a shorter pitch. How to make a coil. 前記子撚線の外側に、縮性を有ししかも磁性粉がバインダで固定された磁性テープをらせん状に巻く工程をさらに含むことを特徴とする、請求項11請求項13のいずれかに記載のコイルの製造方法。 11. The thirteenth aspect of the present invention, further comprising a step of spirally winding a magnetic tape having shrinkage property and having magnetic powder fixed by a binder on the outside of the child stranded wire. Coil manufacturing method.
JP2019193299A 2019-10-24 2019-10-24 Coil, coil unit, and wireless power transmission device, and manufacturing method of coil Pending JP2021068815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019193299A JP2021068815A (en) 2019-10-24 2019-10-24 Coil, coil unit, and wireless power transmission device, and manufacturing method of coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019193299A JP2021068815A (en) 2019-10-24 2019-10-24 Coil, coil unit, and wireless power transmission device, and manufacturing method of coil

Publications (1)

Publication Number Publication Date
JP2021068815A true JP2021068815A (en) 2021-04-30

Family

ID=75637549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019193299A Pending JP2021068815A (en) 2019-10-24 2019-10-24 Coil, coil unit, and wireless power transmission device, and manufacturing method of coil

Country Status (1)

Country Link
JP (1) JP2021068815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022271261A1 (en) * 2021-06-22 2022-12-29 Apple Inc. Dual-frequency wireless charger modules
WO2022271260A1 (en) * 2021-06-22 2022-12-29 Apple Inc. Dual-frequency wireless charging systems
JP7490699B2 (en) 2022-03-29 2024-05-27 本田技研工業株式会社 coil

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266662A (en) * 2000-03-16 2001-09-28 Oki Electric Cable Co Ltd Shielded cable with coarsely wound magnetic tape
JP2009129654A (en) * 2007-11-22 2009-06-11 Totoku Electric Co Ltd Composite cable and coil
JP2011249022A (en) * 2010-05-24 2011-12-08 Sumitomo Electric Ind Ltd Photoelectricity composite cable
JP2014071969A (en) * 2012-09-28 2014-04-21 Fujikura Ltd Magnetic material-coated conductor and production method thereof as well as magnetic material-coated electric wire
WO2015129001A1 (en) * 2014-02-27 2015-09-03 日立金属株式会社 Magnetic tape and shield cable
JP2017027730A (en) * 2015-07-21 2017-02-02 日立金属株式会社 Method for manufacturing noise shield cable, and noise shield cable
JP3210770U (en) * 2014-05-30 2017-06-08 アップル インコーポレイテッド Coil structure for improved inductive energy transmission
WO2018055698A1 (en) * 2016-09-21 2018-03-29 株式会社Ihi Coil device
JP2018170480A (en) * 2017-03-30 2018-11-01 パナソニック株式会社 Transmission coil and power transmission device
JP2021034707A (en) * 2019-08-23 2021-03-01 Spiral Tech株式会社 High-frequency coil component, coil component for wireless power supply, wireless power supply device, and manufacturing method of frequency coil component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266662A (en) * 2000-03-16 2001-09-28 Oki Electric Cable Co Ltd Shielded cable with coarsely wound magnetic tape
JP2009129654A (en) * 2007-11-22 2009-06-11 Totoku Electric Co Ltd Composite cable and coil
JP2011249022A (en) * 2010-05-24 2011-12-08 Sumitomo Electric Ind Ltd Photoelectricity composite cable
JP2014071969A (en) * 2012-09-28 2014-04-21 Fujikura Ltd Magnetic material-coated conductor and production method thereof as well as magnetic material-coated electric wire
WO2015129001A1 (en) * 2014-02-27 2015-09-03 日立金属株式会社 Magnetic tape and shield cable
JP3210770U (en) * 2014-05-30 2017-06-08 アップル インコーポレイテッド Coil structure for improved inductive energy transmission
JP2017027730A (en) * 2015-07-21 2017-02-02 日立金属株式会社 Method for manufacturing noise shield cable, and noise shield cable
WO2018055698A1 (en) * 2016-09-21 2018-03-29 株式会社Ihi Coil device
JP2018170480A (en) * 2017-03-30 2018-11-01 パナソニック株式会社 Transmission coil and power transmission device
JP2021034707A (en) * 2019-08-23 2021-03-01 Spiral Tech株式会社 High-frequency coil component, coil component for wireless power supply, wireless power supply device, and manufacturing method of frequency coil component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022271261A1 (en) * 2021-06-22 2022-12-29 Apple Inc. Dual-frequency wireless charger modules
WO2022271260A1 (en) * 2021-06-22 2022-12-29 Apple Inc. Dual-frequency wireless charging systems
JP7490699B2 (en) 2022-03-29 2024-05-27 本田技研工業株式会社 coil

Similar Documents

Publication Publication Date Title
US9613745B2 (en) Adjustable integrated combined common mode and differential mode three phase inductors and methods of manufacture and use thereof
JP2021068815A (en) Coil, coil unit, and wireless power transmission device, and manufacturing method of coil
JP2011142177A (en) Contactless power transmission device, and coil unit for contactless power transmission device
Bu et al. Improvement in the transmission efficiency of EV wireless power transfer system using a magnetoplated aluminum pipe
JP2020178034A (en) Non-contact power supply transmission coil unit, manufacturing method thereof, and non-contact power supply device
US9672973B2 (en) Wireless power transmission device
Mizuno et al. Dependence of efficiency on wire type and number of strands of litz wire for wireless power transfer of magnetic resonant coupling
JP2012099739A (en) Core segment, annular coil core and annular coil
Sato et al. Reducing the alternating current resistance and heat generation in a single‐wire coil using a magnetic tape
JP2020047614A (en) Wireless power transmission coil unit
US10692646B2 (en) Single litz wire transformers
Kiruthiga et al. Wireless charging for low power applications using Qi standard
Shimura et al. Alternating-current copper loss reduction in a high-frequency transformer for railways using a magnetic tape
Tokudaiji et al. AC resistance reduction of a flexible wireless power transmission coil using magnetic path control technology at 13.56 MHz
US9330834B2 (en) Reactor
JP2021027112A (en) Contactless power supply coil
CN106464023B (en) Slim Wireless charging coil and its wireless charging system
CN103426610A (en) Iron-silicon-aluminum magnetic-core reactor
JP7082785B2 (en) Transmission coil parts for non-contact power supply, their manufacturing method, and non-contact power supply equipment
JPH11186086A (en) Manufacture of spiral coil for noncontact power transmitter
Honjo et al. Novel receiving coil structure for improving efficiency and power transfer capability of resonant inductive coupling wireless power transfer
Mizuno et al. Efficiency dependence on wire type for wireless power transfer of magnetic resonant coupling
CN207638413U (en) A kind of wireless charging electric wire coil assembly
US12014862B2 (en) Coil
Mohammad et al. Self-Resonant Coil Design for High-frequency High-Power Inductive Wireless Power Transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230804