JP2021067480A - Surface shape measuring device - Google Patents

Surface shape measuring device Download PDF

Info

Publication number
JP2021067480A
JP2021067480A JP2019190779A JP2019190779A JP2021067480A JP 2021067480 A JP2021067480 A JP 2021067480A JP 2019190779 A JP2019190779 A JP 2019190779A JP 2019190779 A JP2019190779 A JP 2019190779A JP 2021067480 A JP2021067480 A JP 2021067480A
Authority
JP
Japan
Prior art keywords
map information
division
height map
measured
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019190779A
Other languages
Japanese (ja)
Other versions
JP7171535B2 (en
Inventor
公平 射場
Kohei Iba
公平 射場
昌之 杉山
Masayuki Sugiyama
昌之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2019190779A priority Critical patent/JP7171535B2/en
Publication of JP2021067480A publication Critical patent/JP2021067480A/en
Application granted granted Critical
Publication of JP7171535B2 publication Critical patent/JP7171535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a surface shape measuring device with which, even in a process in which single-row conveyance and parallel conveyance coexist, it is possible to conduct measurement with high accuracy without lowering productivity.SOLUTION: An embodiment of the present invention comprises: a surface coordinate conversion unit for generating first height map information on the basis of a first line and generating second height map information on the basis of a second line from image data derived by sequentially imaging the first and second lines with which a measurement object is irradiated from two slit-shaped-light light sources arranged diagonally upward of the measurement object so that the optical axes are parallel; a surface coordinate division unit for generating first and second divided height map information on the basis of the first height map information and generating third and fourth divided height map information on the basis of the second height map information; and a rugged surface computation unit for computing first final height map information on the basis of the first and third divided height map information and computing second final height map information on the basis of the second and fourth divided height map information.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、鉄鋼製造設備において、搬送されてくる帯状鋼板の表面形状を測定する表面形状測定装置に関する。 An embodiment of the present invention relates to a surface shape measuring device for measuring the surface shape of a strip-shaped steel sheet to be conveyed in a steel manufacturing facility.

近年、帯状鋼板の高品質化、高機能化等とともに、生産性を低下させることなく多品種生産することが求められている。ここで、帯状鋼板の表面形状の測定とは、鋼板の表面波高さ、急峻度および伸び率等を測定することをいう。 In recent years, along with improving the quality and functionality of strip-shaped steel sheets, it has been required to produce a wide variety of products without lowering productivity. Here, the measurement of the surface shape of the strip-shaped steel sheet means to measure the surface wave height, steepness, elongation, etc. of the steel sheet.

多品種の鋼板の生産において生産性を向上させる手法として、鋼板の幅等に応じて、単一の鋼板をラインに投入して搬送(単列搬送)する場合と、2枚の鋼板を同時にラインに投入し、並べて搬送(並列搬送)する場合とを適宜切り替ることが行われている。また、単列搬送した鋼板を2枚に切断した後、並列搬送に切り替えることも行われている。 As a method for improving productivity in the production of a wide variety of steel sheets, a single steel sheet is put into a line and transported (single row transfer) according to the width of the steel sheet, and two steel sheets are simultaneously lined. It is appropriately switched between the case of putting in the steel sheet and transporting it side by side (parallel transport). In addition, after cutting a steel plate transported in a single row into two sheets, switching to parallel transport is also performed.

従来、表面形状測定装置では、単列搬送の場合であっても並列搬送の場合であっても、取得されるのは1枚の画像データであり、得られた画像データに振動軽減処理を行って、表面形状の測定を行う。そのため、並列搬送された場合でも、得られる測定結果は、2枚の鋼板のデータが含まれた1つのデータであり、測定結果によって不良判定された場合には、2枚の鋼板のうちいずれが不良判定されたのか判別することができない。そのため、不良判定された2枚の鋼板を再度ラインに投入し単列搬送して、順次表面形状を測定する必要がある。あるいは、このような作業工程の後戻りが発生するのを抑制するために、並列搬送の場合であっても、表面形状測定の前に単列搬送に切り替えることが行われている。 Conventionally, in the surface shape measuring device, one image data is acquired regardless of whether it is a single row transfer or a parallel transfer, and the obtained image data is subjected to vibration reduction processing. Then, the surface shape is measured. Therefore, even when transported in parallel, the obtained measurement result is one data including the data of two steel plates, and if a defect is determined based on the measurement result, which of the two steel plates is used. It is not possible to determine whether a defect has been determined. Therefore, it is necessary to put the two steel plates judged to be defective into the line again, transport them in a single row, and measure the surface shape sequentially. Alternatively, in order to suppress the occurrence of such backtracking in the work process, even in the case of parallel transfer, switching to single-row transfer is performed before the surface shape measurement.

いずれの場合であっても、単列搬送と並列搬送とを適宜切り替えることによって実現されるべき生産性の向上が阻害される要因となり得る。 In any case, it can be a factor that hinders the improvement of productivity that should be realized by appropriately switching between single-row transfer and parallel transfer.

特開2012−251816号公報Japanese Unexamined Patent Publication No. 2012-251816

本発明に係る実施の形態は、上述のような課題を解決するためになされたもので、帯状鋼板の単列搬送と並列搬送が混在する工程であっても、生産性を低下させることなく表面形状を高精度に測定できる表面形状測定装置を提供することを目的とする。 The embodiment according to the present invention has been made to solve the above-mentioned problems, and even in a process in which single-row transfer and parallel transfer of strip-shaped steel sheets are mixed, the surface surface is not lowered in productivity. An object of the present invention is to provide a surface shape measuring device capable of measuring a shape with high accuracy.

本発明に係る実施の形態の表面形状測定装置は、第1方向および前記第1方向に直交する第2方向を含むパスライン上に載置された1つの被測定物体または2つの被測定物体が搬送される前記第1方向に直交する2つの離隔した平面内にそれぞれ設けられ互いの光軸が平行になるように前記1つの被測定物体または前記2つの被測定物体のななめ上方に配置された2つのスリット状光光源から前記1つの被測定物体または前記2つの被測定物体の表面にそれぞれ照射される第1ラインおよび第2ラインを所定の周期で順次撮像する撮像部であって、前記1つの被測定物体または前記2つの被測定物体のななめ上方かつ前記平面から角度をなす位置に配置された前記撮像部によって取得されたななめ画像データを、前記2つのスリット状光光源からの照射線上で撮像したような画像データに変換し、前記画像データを前記第1ラインにもとづいて、前記第1方向および前記第2方向に直交する第3方向の座標の第1高さデータを含む第1高さマップ情報を生成し、前記画像データを前記第2ラインにもとづいて前記第3方向の座標の第2高さデータを含む第2高さマップ情報を生成する表面座標変換部と、前記2つの被測定物体が搬送されてくる場合に、前記第1高さマップ情報にもとづいて前記2つの被測定物体のそれぞれに対応する第1分割高さマップ情報および第2分割高さマップ情報を生成し、前記第2高さマップ情報にもとづいて前記2つの被測定物体のそれぞれに対応する第3分割高さマップ情報および第4分割高さマップ情報を生成する表面座標分割部と、前記第1分割高さマップ情報および前記第3分割高さマップ情報にもとづいて、前記2つの被測定物体の振動による影響を軽減された第1最終高さマップ情報を演算し、前記第2分割高さマップ情報および前記第4分割高さマップ情報にもとづいて、前記2つの被測定物体の振動による影響を軽減された第2最終高さマップ情報を演算し、前記第1高さマップ情報および前記第2高さマップ情報にもとづいて前記2つの被測定物体の表面の形状を測定する凹凸形状演算部と、を備える。前記凹凸形状演算部は、前記1つの被測定物体が搬送されてくる場合には、前記第1高さマップ情報および前記第2高さマップ情報にもとづいて、前記1つの被測定物体の振動による影響を軽減された第3最終マップ情報を演算し、前記第3最終マップ情報にもとづいて前記1つの被測定物体の表面の形状を測定する。 In the surface shape measuring device according to the embodiment of the present invention, one measured object or two measured objects placed on a path line including a first direction and a second direction orthogonal to the first direction. They are provided in two separated planes orthogonal to the first direction to be transported, and are arranged above the licking of the one object to be measured or the two objects to be measured so that their optical axes are parallel to each other. An imaging unit that sequentially images the first line and the second line that irradiate the surface of the one object to be measured or the surfaces of the two objects to be measured from two slit-shaped light sources at a predetermined cycle. The tanned image data acquired by the imaging unit arranged above the tanning of the two objects to be measured or at a position at an angle from the plane is displayed on the irradiation lines from the two slit-shaped light sources. A first height that is converted into image data as if it was captured, and the image data is based on the first line and includes first height data of coordinates in the first direction and the third direction orthogonal to the second direction. A surface coordinate conversion unit that generates map information and generates second height map information including the second height data of the coordinates in the third direction based on the second line, and the two above. When the object to be measured is transported, the first division height map information and the second division height map information corresponding to each of the two objects to be measured are generated based on the first height map information. , A surface coordinate division unit that generates a third division height map information and a fourth division height map information corresponding to each of the two objects to be measured based on the second height map information, and the first division. Based on the height map information and the third divided height map information, the first final height map information in which the influence of the vibration of the two objects to be measured is reduced is calculated, and the second divided height map information is calculated. Based on the fourth divided height map information, the second final height map information in which the influence of the vibration of the two objects to be measured is reduced is calculated, and the first height map information and the second height are calculated. A concave-convex shape calculation unit for measuring the surface shape of the two objects to be measured based on the map information is provided. When the one object to be measured is conveyed, the uneven shape calculation unit is based on the vibration of the one object to be measured based on the first height map information and the second height map information. The third final map information with reduced influence is calculated, and the shape of the surface of the one object to be measured is measured based on the third final map information.

本発明によれば、帯状鋼板の単列搬送と並列搬送が混在する工程であっても、生産性を低下させることなく表面形状を高精度に測定できる表面形状測定装置が実現される。 According to the present invention, a surface shape measuring device capable of measuring a surface shape with high accuracy without lowering productivity is realized even in a process in which single-row transfer and parallel transfer of strip-shaped steel sheets are mixed.

実施形態に係る表面形状測定装置を例示するブロック図である。It is a block diagram which illustrates the surface shape measuring apparatus which concerns on embodiment. 図2(a)は、並列搬送される被測定物体の表面形状の測定系を例示する平面図である。図2(b)は、並列搬送される被測定物体の表面形状の測定系を例示する正面図である。図2(c)は、並列搬送される被測定物体の表面形状の測定系を例示する側面図である。FIG. 2A is a plan view illustrating a measurement system for the surface shape of the object to be measured that is conveyed in parallel. FIG. 2B is a front view illustrating a measurement system for the surface shape of the object to be measured that is conveyed in parallel. FIG. 2C is a side view illustrating a measurement system for the surface shape of the object to be measured that is conveyed in parallel. 図3(a)は、並列搬送された被測定物体の画像データを例示する模式図である。図3(b)は、並列搬送された被測定物体の1ライン分の高さ座標のデータを例示する模式図である。図3(c)は、図3(b)のE部の拡大図である。FIG. 3A is a schematic diagram illustrating image data of the object to be measured transported in parallel. FIG. 3B is a schematic diagram illustrating data of height coordinates for one line of the object to be measured transported in parallel. FIG. 3 (c) is an enlarged view of part E of FIG. 3 (b). 並列搬送された被測定物体の画像データの表面座標の分割動作を説明する模式図である。It is a schematic diagram explaining the division operation of the surface coordinates of the image data of the object to be measured which was carried in parallel. 分割異常判定される画像データを例示する模式図である。It is a schematic diagram which illustrates the image data which determines the division abnormality. 実施形態の表面形状測定装置の動作を説明するためのフローチャートの例である。This is an example of a flowchart for explaining the operation of the surface shape measuring device of the embodiment.

以下、図面を参照しつつ、本発明の実施形態について説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the ratio of the sizes between the parts, and the like are not necessarily the same as the actual ones. Further, even when the same parts are represented, the dimensions and ratios may be different from each other depending on the drawings.
In addition, in the present specification and each figure, the same elements as those described above with respect to the above-mentioned figures are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.

図1は、実施形態に係る表面形状測定装置を例示するブロック図である。
図1に示すように、表面形状測定装置10は、表面座標変換部14と、単列/並列切替部17と、表面座標分割部18と、凹凸形状演算部15と、を備える。また、好ましくは、表面形状測定装置10は、分割異常判定部19をさらに備える。
FIG. 1 is a block diagram illustrating a surface shape measuring device according to an embodiment.
As shown in FIG. 1, the surface shape measuring device 10 includes a surface coordinate conversion unit 14, a single row / parallel switching unit 17, a surface coordinate dividing unit 18, and an uneven shape calculation unit 15. Further, preferably, the surface shape measuring device 10 further includes a division abnormality determination unit 19.

表面形状測定装置10は、表面撮像部3の出力に接続されている。表面撮像部3は、撮像する領域100の画像データを取得する。領域100は、表面撮像部3が被測定物体1a,1bを撮像することが可能な領域である。領域100は、搬送されてくる被測定物体1a,1bの全幅の表面を含み、その中に2つのスリット状光光源2A,2Bによって表面上に照射されたスリット状光を含むように設定されている。 The surface shape measuring device 10 is connected to the output of the surface imaging unit 3. The surface imaging unit 3 acquires image data of the region 100 to be imaged. The region 100 is a region where the surface imaging unit 3 can image the objects 1a and 1b to be measured. The region 100 is set to include the full-width surface of the objects to be measured 1a and 1b to be conveyed, and to include the slit-shaped light irradiated on the surface by the two slit-shaped light sources 2A and 2B. There is.

2つのスリット状光光源2A,2Bは、領域100内の被測定物体1a,1bの表面にスリット状光をそれぞれ照射する。2つのスリット状光光源2A,2Bは、被測定物体1a,1bの搬送方向(第1方向)に沿って配置されており、スリット状光光源2A,2Bのそれぞれは、出射するスリット状光が被測定物体1a,1bの搬送方向にほぼ垂直になるように配置されている。また、スリット状光光源2A,2Bは、それぞれのスリット状光の光軸が平行になるように配置されている。 The two slit-shaped light sources 2A and 2B irradiate the surfaces of the objects to be measured 1a and 1b in the region 100 with slit-shaped light, respectively. The two slit-shaped light sources 2A and 2B are arranged along the transport direction (first direction) of the objects 1a and 1b to be measured, and each of the slit-shaped light sources 2A and 2B emits slit-shaped light. The objects to be measured 1a and 1b are arranged so as to be substantially perpendicular to the transport direction. Further, the slit-shaped light sources 2A and 2B are arranged so that the optical axes of the slit-shaped light sources are parallel to each other.

2つのスリット状光光源2A,2Bは、互いに近接して配置されており、被測定物体1a,1bの長手方向の長さに比べて十分に短い間隔に配置されている。2つのスリット状光による被測定物体1a,1bの表面の画像データに、後述する適切な演算処理を施すことによって、被測定物体1a,1bの搬送時等の振動による高さ座標の時間変動を軽減することができる。 The two slit-shaped light sources 2A and 2B are arranged close to each other, and are arranged at a sufficiently short interval with respect to the length of the objects 1a and 1b to be measured in the longitudinal direction. By performing appropriate arithmetic processing described later on the image data of the surfaces of the objects 1a and 1b to be measured by the two slit-shaped lights, the time variation of the height coordinates due to vibration during transportation of the objects 1a and 1b to be measured can be obtained. It can be mitigated.

表面撮像部3は、搬送されてくる被測定物体1a,1bの表面に照射される2本のスリット状光を撮像して画像データを出力する。この例では、被測定物体1a,1bは、並列搬送されている場合が示されているが、単列で被測定物体が搬送されてくる場合もあり、その場合も同様に、表面撮像部3は、2本のスリット状光の画像データを出力する。被測定物体は、帯状鋼板である。表面形状測定装置10は、上位の鋼板搬送制御システム側(図示せず)からの指令によって、被測定物体が単列搬送されてくるか、並列搬送されてくるかを判別することができる。 The surface imaging unit 3 captures two slit-shaped lights emitted on the surfaces of the objects 1a and 1b to be measured and outputs image data. In this example, the cases where the objects to be measured 1a and 1b are conveyed in parallel are shown, but the objects to be measured may be conveyed in a single row, and in that case as well, the surface imaging unit 3 Outputs image data of two slit-shaped lights. The object to be measured is a strip-shaped steel plate. The surface shape measuring device 10 can determine whether the object to be measured is transported in a single row or in parallel by a command from the upper steel sheet transfer control system side (not shown).

表面形状測定装置10は、表示部20に接続される。表示部20は、表面形状測定装置10によって測定された被測定物体の表面形状の測定結果を表示するためのインタフェースを提供する。表示部20は、たとえば、表面形状測定装置10の操作端末に設けられたディスプレイ装置に接続するためのインタフェースである。 The surface shape measuring device 10 is connected to the display unit 20. The display unit 20 provides an interface for displaying the measurement result of the surface shape of the object to be measured measured by the surface shape measuring device 10. The display unit 20 is, for example, an interface for connecting to a display device provided in the operation terminal of the surface shape measuring device 10.

表面形状測定装置10は、分割異常判定部19を備える場合には、分割異常表示部30に接続される。分割異常表示部30は、分割異常判定部19が生成した結果を表示するためのインタフェースを提供する。分割異常表示部30を介して、表面形状測定装置の操作端末とは別に設けられたディスプレイ装置に接続してもよいし、表面形状測定装置10の操作端末のディスプレイ装置に接続するようにしてもよい。 The surface shape measuring device 10 is connected to the division abnormality display unit 30 when the division abnormality determination unit 19 is provided. The division abnormality display unit 30 provides an interface for displaying the result generated by the division abnormality determination unit 19. It may be connected to a display device provided separately from the operation terminal of the surface shape measuring device via the division abnormality display unit 30, or may be connected to the display device of the operating terminal of the surface shape measuring device 10. Good.

まず、搬送されてくる被測定物体の表面座標の測定方法について説明する。被測定物体の表面座標の測定方法は、被測定物体が単列か並列かによらないが、以下では、被測定物体1a,1bが並列搬送されている場合を例に説明する。 First, a method of measuring the surface coordinates of the transported object to be measured will be described. The method of measuring the surface coordinates of the object to be measured does not depend on whether the object to be measured is in a single row or in parallel, but the case where the objects 1a and 1b to be measured are conveyed in parallel will be described below as an example.

図2(a)は、並列搬送される被測定物体の表面形状の測定系を例示する平面図である。
図2(b)は、並列搬送される被測定物体の表面形状の測定系を例示する正面図である。
図2(c)は、並列搬送される被測定物体の表面形状の測定系を例示する側面図である。
図2(a)〜図2(c)に示すように、スリット状光光源2A,2Bおよび表面撮像部3は、被測定物体1a,1bの表面のななめ上方に設けられている。スリット状光光源2A,2Bは、この例では、被測定物体1a,1bの長手方向の一方の縁の側に設けられ、表面撮像部3は、スリット状光光源2A,2Bが設けられているのとは反対の縁の側に設けられている。スリット状光光源2A,2Bおよび表面撮像部3は、被測定物体1a,1bの同じ縁の側に設けられていてもよい。
FIG. 2A is a plan view illustrating a measurement system for the surface shape of the object to be measured that is conveyed in parallel.
FIG. 2B is a front view illustrating a measurement system for the surface shape of the object to be measured that is conveyed in parallel.
FIG. 2C is a side view illustrating a measurement system for the surface shape of the object to be measured that is conveyed in parallel.
As shown in FIGS. 2A to 2C, the slit-shaped light sources 2A and 2B and the surface imaging unit 3 are provided above the surface of the objects 1a and 1b to be measured. In this example, the slit-shaped light sources 2A and 2B are provided on one edge side in the longitudinal direction of the objects 1a and 1b to be measured, and the surface imaging unit 3 is provided with the slit-shaped light sources 2A and 2B. It is provided on the opposite side of the edge. The slit-shaped light sources 2A and 2B and the surface imaging unit 3 may be provided on the same edge side of the objects 1a and 1b to be measured.

スリット状光光源2A,2Bは、搬送方向に直交する2つの平面内に配置される。スリット状光光源2A,2Bの光軸2Ac,2Bcは、搬送方向に直交する2つの平面を直進し、搬送方向とほぼ直交するように配置されている。スリット状光光源2A,2Bは、光軸2Ac,2Bcがほぼ平行になるように配置されている。 The slit-shaped light sources 2A and 2B are arranged in two planes orthogonal to the transport direction. The optical axes 2Ac and 2Bc of the slit-shaped light sources 2A and 2B are arranged so as to travel straight through two planes orthogonal to the transport direction and to be substantially orthogonal to the transport direction. The slit-shaped light sources 2A and 2B are arranged so that the optical axes 2Ac and 2Bc are substantially parallel to each other.

被測定物体1a,1bは、パスラインP上を搬送方向に沿って搬送される。被測定物体1a,1bの長手方向の縁は、搬送方向に水平となるように配置されている場合に限らず、この例のように、鋼板をラインに投入する設備の操作精度等によって、ななめに配置されている場合もある。 The objects 1a and 1b to be measured are transported on the pass line P along the transport direction. The edges of the objects 1a and 1b to be measured in the longitudinal direction are not limited to the case where they are arranged so as to be horizontal in the transport direction. It may be located in.

表面撮像部3は、スリット状光光源2A,2Bの光軸2Ac,2Bcを含む平面から、被測定物体1a,1bの搬送方向後方に角度をなすように配置されている。この角度は、光軸2Ac,2Bcを含む平面から搬送方向前方に形成するようにしてもよい。表面撮像部3は、スリット状光光源2A,2Bから照射されたスリット状光が被測定物体1a,1bの表面に描くライン2AL,2BLを、ななめ上方かつ搬送方向後方から撮像する。表面撮像部3の光軸とスリット状光光源2A,2Bの光軸2Ac,2Bcとのなす角度は、角度θ1である。 The surface imaging unit 3 is arranged so as to form an angle behind the plane including the optical axes 2Ac and 2Bc of the slit-shaped optical light sources 2A and 2B in the transport direction of the objects 1a and 1b to be measured. This angle may be formed forward in the transport direction from the plane including the optical axes 2Ac and 2Bc. The surface imaging unit 3 images the lines 2AL and 2BL drawn on the surface of the objects 1a and 1b to be measured by the slit-shaped light emitted from the slit-shaped light sources 2A and 2B from above the lick and from behind in the transport direction. The angle formed by the optical axis of the surface imaging unit 3 and the optical axes 2Ac and 2Bc of the slit-shaped optical light sources 2A and 2B is an angle θ1.

表面撮像部3は、搬送されてくる被測定物体1a,1bの表面に照射されているスリット状光のライン2AL,2BLを一定の時間間隔で撮像する。表面撮像部3は、撮像した画像データを表面形状測定装置10に送信する。 The surface imaging unit 3 images the slit-shaped light lines 2AL and 2BL irradiating the surfaces of the conveyed objects 1a and 1b at regular time intervals. The surface imaging unit 3 transmits the captured image data to the surface shape measuring device 10.

次に、表面形状測定装置10の構成について説明する。
表面座標変換部14は、表面撮像部3の出力に接続されている(図1)。表面座標変換部14は、表面撮像部3によって撮像されたスリット状光のライン2AL,2BLの画像データにもとづいて、高さマップ情報A,Bのデータをそれぞれ生成する。高さマップ情報とは、パスラインPに平行な平面(たとえばXY平面)の座標(XY座標)を有する、XY座標に垂直な方向の座標(たとえばZ座標)のデータをいう。
Next, the configuration of the surface shape measuring device 10 will be described.
The surface coordinate conversion unit 14 is connected to the output of the surface imaging unit 3 (FIG. 1). The surface coordinate conversion unit 14 generates height map information A and B data based on the image data of the slit-shaped light lines 2AL and 2BL imaged by the surface imaging unit 3, respectively. The height map information refers to data in coordinates (for example, Z coordinate) in a direction perpendicular to XY coordinates, which has coordinates (XY coordinates) in a plane parallel to the path line P (for example, XY plane).

より具体的には、表面座標変換部14は、次のように動作する。すなわち、表面座標変換部14は、表面撮像部3から取得した画像データ(ななめ画像データ)を、表面撮像部3のななめ配置の角度θ1にしたがって、スリット状光光源2A,2Bが照射するスリット状光からの照射線上で撮像したようなデータに変換する。表面座標の変換については、周知の技術であり、特許文献1等に詳しいが、たとえば、以下のようにすることができる。上述のように表面撮像部3およびスリット状光光源2A,2Bを配置し、被測定物体に代えて、あらかじめ複数種類の幅および高さを有する基準板を撮像して、撮像座標と、幅および高さとの変換テーブルを作成する。表面座標変換部14は、被測定物体1a,1bの画像データを、作成された変換テーブルにしたがって、座標変換して出力する。 More specifically, the surface coordinate conversion unit 14 operates as follows. That is, the surface coordinate conversion unit 14 irradiates the image data (tanned image data) acquired from the surface imaging unit 3 by the slit-shaped light sources 2A and 2B according to the angle θ1 of the tanned arrangement of the surface imaging unit 3. It is converted into data as if it was captured on the irradiation line from light. The conversion of surface coordinates is a well-known technique and is detailed in Patent Document 1 and the like, but for example, it can be as follows. As described above, the surface imaging unit 3 and the slit-shaped optical light sources 2A and 2B are arranged, and instead of the object to be measured, a reference plate having a plurality of types of widths and heights is imaged in advance, and the imaging coordinates, width, and Create a conversion table with height. The surface coordinate conversion unit 14 converts the image data of the objects to be measured 1a and 1b into coordinates according to the created conversion table and outputs the image data.

表面座標変換部14は、1ラインごとのZ座標のデータを、そのラインに沿ってサンプリングすることによって取得する。そのラインおよびサンプリングされた位置は、XY座標のデータとして表される。したがって、XY座標にZ座標のデータを紐づけすることによって、表面座標変換部14は、高さマップ情報A,Bを生成することができる。 The surface coordinate conversion unit 14 acquires the Z coordinate data for each line by sampling along the line. The line and the sampled position are represented as XY coordinate data. Therefore, by associating the Z coordinate data with the XY coordinates, the surface coordinate conversion unit 14 can generate the height map information A and B.

表面座標変換部14の出力は、単列/並列切替部17に接続されている。単列/並列切替部17の出力は、凹凸形状演算部15および表面座標分割部18にそれぞれ接続されている。単列/並列切替部17は、図示しないが、上位の鋼板搬送制御システムから送信されてくる単列/並列のいずれかを表す指令を受信する。 The output of the surface coordinate conversion unit 14 is connected to the single-row / parallel switching unit 17. The output of the single-row / parallel switching unit 17 is connected to the concave-convex shape calculation unit 15 and the surface coordinate division unit 18, respectively. Although not shown, the single-row / parallel switching unit 17 receives a command indicating either single-row / parallel transmitted from a higher-level steel sheet transfer control system.

単列/並列切替部17は、単列を表す指令(単列指令)を受信した場合には、表面座標変換部14から受信した高さマップ情報A,Bをそのまま凹凸形状演算部15に送信する。単列/並列切替部17は、並列搬送を表す指令(並列指令)を受信した場合には、高さマップ情報A,Bを表面座標分割部18に送信する。 When the single row / parallel switching unit 17 receives a command representing a single row (single row command), the single row / parallel switching unit 17 transmits the height map information A and B received from the surface coordinate conversion unit 14 to the concave-convex shape calculation unit 15 as they are. To do. When the single row / parallel switching unit 17 receives a command (parallel command) indicating parallel transport, the single row / parallel switching unit 17 transmits the height map information A and B to the surface coordinate dividing unit 18.

単列/並列切替部17が送信する高さマップ情報A,Bのデータは、単列指令の場合には1枚分の鋼板表面の座標データが含まれており、並列指令の場合には、2枚分の鋼板表面の座標データが含まれている。凹凸形状演算部15での演算処理は、1枚分でも2枚分でも同様であるので、以下では、特に断らない限り、並列指令によって2枚分の演算処理を行う場合について説明する。 The data of the height map information A and B transmitted by the single row / parallel switching unit 17 includes the coordinate data of the surface of one steel plate in the case of the single row command, and in the case of the parallel command, the coordinate data of the surface of one steel plate is included. The coordinate data of the surface of two steel plates is included. Since the calculation processing in the concave-convex shape calculation unit 15 is the same for one sheet or two sheets, the case where the calculation processing for two sheets is performed by the parallel command will be described below unless otherwise specified.

表面座標分割部18は、入力された高さマップ情報Aのデータにもとづいて、被測定物体1a,1bにそれぞれ対応する高さマップ情報aA,bAを生成する。表面座標分割部18は、入力された高さマップ情報Bのデータにもとづいて、被測定物体1a,1bにそれぞれ対応する高さマップ情報aB,bBを生成する。 The surface coordinate dividing unit 18 generates height map information aA and bA corresponding to the objects 1a and 1b to be measured, respectively, based on the input data of the height map information A. The surface coordinate dividing unit 18 generates height map information aB and bB corresponding to the objects 1a and 1b to be measured, respectively, based on the input data of the height map information B.

ここで、被測定物体1aに対応する高さマップ情報のうち、スリット状光光源2Aの照射によるライン2ALを含むものを高さマップ情報aAとする。被測定物体1aに対応する高さマップ情報のうち、スリット状光光源2Bの照射によるライン2BLを含むものを高さマップ情報aBとする。被測定物体1bに対応する高さマップ情報のうち、スリット状光光源2Aの照射によるライン2ALを含むものを高さマップ情報bAとする。被測定物体1bに対応する高さマップ情報のうち、スリット状光光源2Bの照射によるライン2BLを含むものを高さマップ情報bBとする。 Here, among the height map information corresponding to the object to be measured 1a, the height map information aA including the line 2AL due to the irradiation of the slit-shaped light source 2A is referred to as the height map information aA. Among the height map information corresponding to the object to be measured 1a, the height map information aB includes the line 2BL generated by the irradiation of the slit-shaped light source 2B. Among the height map information corresponding to the object to be measured 1b, the height map information bA including the line 2AL due to the irradiation of the slit-shaped light source 2A is defined as the height map information bA. Among the height map information corresponding to the object to be measured 1b, the height map information bB includes the line 2BL generated by the irradiation of the slit-shaped light source 2B.

より具体的には、表面座標分割部18は、次のように動作する。すなわち、表面座標分割部18は、表面座標変換部14から高さマップ情報Aを入力し、被測定物体1a,1bに対応する部分の分割点(第1分割点)を抽出する。さらに、抽出された分割点にもとづいて、被測定物体1a,1bのそれぞれに対応する部分に分割する分割ライン(第1分割ライン)を生成し、分割された分割高さマップ情報aA,bA(第1分割高さマップ情報、第2分割高さマップ情報)を生成する。 More specifically, the surface coordinate dividing unit 18 operates as follows. That is, the surface coordinate dividing unit 18 inputs the height map information A from the surface coordinate conversion unit 14, and extracts the dividing points (first dividing points) of the portions corresponding to the objects 1a and 1b to be measured. Further, based on the extracted division points, a division line (first division line) for dividing into the portions corresponding to the objects to be measured 1a and 1b is generated, and the division height map information aA and bA (divided height map information aA and bA) The first division height map information and the second division height map information) are generated.

表面座標分割部18は、表面座標変換部14から高さマップ情報Bを入力し、被測定物体1a,1bのそれぞれに対応する部分の分割点(第2分割点)を抽出する。さらに、抽出された分割点にもとづいて、被測定物体1a,1bにそれぞれ対応する部分に分割する分割ライン(第2分割ライン)を生成し、分割された分割高さマップ情報aB,bB(第3分割高さマップ情報、第4分割高さマップ情報)を生成する。 The surface coordinate division unit 18 inputs the height map information B from the surface coordinate conversion unit 14, and extracts the division points (second division points) of the portions corresponding to the objects 1a and 1b to be measured. Further, based on the extracted division points, division lines (second division lines) for dividing into the portions corresponding to the objects to be measured 1a and 1b are generated, and the divided division height map information aB and bB (second division height map information aB and bB) are generated. 3 division height map information, 4 division height map information) is generated.

図3(a)は、並列搬送された被測定物体の表面形状の画像データを例示する模式図である。
図3(b)は、並列搬送された被測定物体の1ライン分の高さ座標のデータを例示する模式図である。
図3(c)は、図3(b)のE部の拡大図である。
上述したとおり、複数のラインからなる画像データや高さマップ情報は、スリット状光光源2A,2Bのそれぞれによる2種類のデータにもとづいて生成等されるが、冗長な説明を避けるため、以下では、スリット状光光源2Aによるライン2ALにもとづく画像データや高さマップ情報Aの処理について説明する。スリット状光光源2BによるラインBLにもとづく画像データや高さマップ情報Bの処理についても同様である。
FIG. 3A is a schematic view illustrating image data of the surface shape of the object to be measured transported in parallel.
FIG. 3B is a schematic diagram illustrating data of height coordinates for one line of the object to be measured transported in parallel.
FIG. 3 (c) is an enlarged view of part E of FIG. 3 (b).
As described above, image data and height map information consisting of a plurality of lines are generated based on two types of data by the slit-shaped light sources 2A and 2B, respectively. , The processing of the image data and the height map information A based on the line 2AL by the slit-shaped light source 2A will be described. The same applies to the processing of the image data and the height map information B based on the line BL by the slit-shaped light source 2B.

図3(a)に示すように、表面形状の画像データ102は、搬送方向に垂直な方向の複数のラインからなる。ライン2ALは、スリット状光光源2Aが出射する光が被測定物体1a,1b上に描く光の線である。撮像されたライン2AL1,2AL2,2AL3,…,2AL6,…からなる画像データ102は、被測定物体1a,1bの搬送方向先頭から搬送方向に沿って順次取得される。つまり、被測定物体1a,1bの表面形状の画像データ102は、搬送方向に離散的なデータとして取得される。 As shown in FIG. 3A, the surface shape image data 102 includes a plurality of lines in a direction perpendicular to the transport direction. The line 2AL is a line of light that the light emitted by the slit-shaped light source 2A draws on the objects 1a and 1b to be measured. The image data 102 including the captured lines 2AL1, 2, AL2, 2AL3, ..., 2AL6, ... Is sequentially acquired from the head of the objects 1a, 1b to be measured in the transport direction along the transport direction. That is, the image data 102 of the surface shapes of the objects 1a and 1b to be measured is acquired as discrete data in the transport direction.

被測定物体1a,1bは、上流に設けられた鋼板を配置操作する操作設備の操作精度等によって、必ずしも平行に配置されるとは限らない。この例のように、一方の被測定物体1aが搬送方向に対してななめに配置される場合もある。また、被測定物体1a,1bの先端や尾端の位置がそろわない場合もある。 The objects 1a and 1b to be measured are not always arranged in parallel depending on the operation accuracy of the operation equipment for arranging and operating the steel plate provided upstream. As in this example, one object to be measured 1a may be arranged in a slanted manner with respect to the transport direction. In addition, the positions of the tips and tails of the objects 1a and 1b to be measured may not be aligned.

図3(b)に示すように、各ラインは、ライン方向に沿って高さ座標のデータを有している。 As shown in FIG. 3B, each line has height coordinate data along the line direction.

図3(c)に示すように、ラインごとにライン方向に沿ってサンプリングすることによって、XY平面における座標データとともに、高さ座標のデータを得ることができる。図3(c)には、分割点の位置も合わせて示されている。たとえば、ラインごとにライン方向に沿って高さ座標のデータを走査し、立下り座標および立上り座標を検出し、立上り座標と立上り座標との中間の座標を分割点とすることができる。 As shown in FIG. 3C, by sampling each line along the line direction, height coordinate data can be obtained together with coordinate data in the XY plane. FIG. 3C also shows the positions of the dividing points. For example, the height coordinate data can be scanned along the line direction for each line, the falling coordinate and the rising coordinate can be detected, and the coordinate between the rising coordinate and the rising coordinate can be set as the dividing point.

立下り座標および立上り座標の検出のために、たとえば、あらかじめ高さ座標のしきい値が設けられている。しきい値は、たとえば、ライン方向に沿って高さ座標のデータを走査した場合に、高さ座標のデータが、しきい値よりも小さい値を検出した場合に、立下り座標と判定され、しきい値以上の値を検出した場合に立上り座標と判定されるように設定される。 For the detection of the falling coordinate and the rising coordinate, for example, a threshold value of the height coordinate is set in advance. The threshold value is determined to be the falling coordinate when, for example, when the height coordinate data is scanned along the line direction and the height coordinate data detects a value smaller than the threshold value, the threshold value is determined. It is set so that it is determined to be the rising coordinate when a value equal to or higher than the threshold value is detected.

この例のように、被測定物体1a,1bの先端や尾端の位置がそろっていない場合には、立下り座標検出または立上り座標検出のいずれか一方が検出されないこととなる。また、撮像の開始当初や終了時の前には、立下り座標も立上り座標も検出されないこともある。 As in this example, when the positions of the tips and tails of the objects 1a and 1b to be measured are not aligned, either the falling coordinate detection or the rising coordinate detection is not detected. In addition, neither the falling coordinates nor the rising coordinates may be detected at the beginning or before the end of imaging.

この例では、ライン方向の走査を図上、上から下に行った場合には、ライン2AL1〜2AL3では、立上り座標検出がされず、ライン2AL4以降において立下り座標検出および立上り座標検出がされている。たとえば、表面座標分割部18は、最初の数ラインにおいて、立下り座標検出がされないか、立上り座標検出がされない場合には、検出されないライン数があらかじめ設定したライン数よりも少ないときには、検出されなかったラインのデータを分割点演算の対象から除外するようできる。被測定物体1a,1bの尾端付近における立下り座標検出または立上り座標の不検出の場合も同様に処理することができる。 In this example, when scanning in the line direction is performed from top to bottom on the figure, the rising coordinates are not detected on the lines 2AL1 and 2AL3, and the falling coordinates and the rising coordinates are detected on the lines 2AL4 and thereafter. There is. For example, the surface coordinate dividing unit 18 is not detected in the first few lines when the falling coordinate is not detected or the rising coordinate is not detected and the number of undetected lines is less than the preset number of lines. It is possible to exclude the data of the line from the target of the division point calculation. The same process can be applied to the case where the falling coordinates are detected or the rising coordinates are not detected near the tail ends of the objects 1a and 1b to be measured.

被測定物体1a,1bの先端や尾端付近の位置以外における立下り座標不検出または立上り座標の不検出の場合には、後述するように分割異常判定の対象とすることができる。また、被測定物体1a,1bの先端または尾端付近の立下り座標検出または立上り座標の不検出ラインが所定値以上となった場合も分割異常判定の対象としてもよい。 In the case where the falling coordinates are not detected or the rising coordinates are not detected at positions other than the positions near the tips and tails of the objects 1a and 1b to be measured, they can be subject to the division abnormality determination as described later. Further, even when the falling coordinate detection or the non-detection line of the rising coordinate near the tip or the tail of the objects 1a and 1b to be measured becomes a predetermined value or more, it may be the target of the division abnormality determination.

図4は、並列搬送された被測定物体の表面座標の分割動作を説明するための模式図である。
図4の上の図には、画像分割前の2枚分の被測定物体1a,1bを含む画像データ102の状態が示されており、図4の下の図には、分割ラインによって分割された画像データ102a,102bの状態が模式的に示されている。画像データ102aは、被測定物体1aに対応し、画像データ102bは、被測定物体1bに対応する。
FIG. 4 is a schematic diagram for explaining the division operation of the surface coordinates of the object to be measured transported in parallel.
The upper figure of FIG. 4 shows the state of the image data 102 including the two objects 1a and 1b to be measured before the image division, and the lower figure of FIG. 4 shows the state of the image data 102 divided by the dividing line. The states of the image data 102a and 102b are schematically shown. The image data 102a corresponds to the object to be measured 1a, and the image data 102b corresponds to the object to be measured 1b.

図4に示すように、分割ラインは、ラインごとに検出された分割点の座標を用いて設定される。分割ラインは、たとえば、ラインごとに検出された分割点を二次近似することによって求められる。分割ラインの設定には、二次近似に限らず他の適切な近似演算等を用いてもよい。 As shown in FIG. 4, the dividing line is set using the coordinates of the dividing point detected for each line. The dividing line is obtained, for example, by quadratic approximation of the dividing points detected for each line. The setting of the dividing line is not limited to the quadratic approximation, and other appropriate approximation operations or the like may be used.

分割ラインが設定された画像データ102は、分割ラインによって画像分割処理され、2つの画像データ102a,102bが生成される。画像データ102aは、被測定物体1aの高さマップ情報aAであり、画像データ102bは、被測定物体1bの高さマップ情報bAである。表面座標分割部18は、ラインBLにもとづく画像データについても上述と同様に、2つの被測定物体1a,1bに対応する画像に画像分割処理し、高さマップ情報aB,bBを生成する。 The image data 102 in which the division line is set is subjected to image division processing by the division line, and two image data 102a and 102b are generated. The image data 102a is the height map information aA of the object to be measured 1a, and the image data 102b is the height map information bA of the object to be measured 1b. The surface coordinate dividing unit 18 also divides the image data based on the line BL into images corresponding to the two objects 1a and 1b to be measured in the same manner as described above, and generates height map information aB and bB.

凹凸形状演算部15は、高さマップ情報aAおよび高さマップ情報aBにもとづいて、振動軽減処理演算を実行し、振動軽減処理された高さマップ情報a0(第1最終高さマップ情報)を生成する。凹凸形状演算部15は、高さマップ情報bAおよび高さマップ情報bBにもとづいて、振動軽減処理を実行し、高さマップ情報b0(第2最終高さマップ情報)を生成する。 The uneven shape calculation unit 15 executes the vibration reduction processing calculation based on the height map information aA and the height map information aB, and obtains the vibration reduction processed height map information a0 (first final height map information). Generate. The uneven shape calculation unit 15 executes vibration reduction processing based on the height map information bA and the height map information bB, and generates the height map information b0 (second final height map information).

凹凸形状演算部15は、高さマップ情報a0にもとづいて、被測定物体1aの表面形状を測定し、結果を出力する。凹凸形状演算部15は、高さマップ情報b0にもとづいて、被測定物体1bの表面形状を測定し、結果を出力する。 The uneven shape calculation unit 15 measures the surface shape of the object to be measured 1a based on the height map information a0, and outputs the result. The uneven shape calculation unit 15 measures the surface shape of the object to be measured 1b based on the height map information b0, and outputs the result.

凹凸形状演算部15は、位置の異なる高さマップ情報A,Bのデータをそれぞれ搬送方向に積分し、差分をとることによって、時間による変動分が除去される。そのため、凹凸形状演算部15は、被測定物体1a,1bの搬送時の振動による高さ座標の変動をほとんど含まない高さマップ情報a0,b0のデータを生成することができる。 The concave-convex shape calculation unit 15 integrates the data of the height map information A and B having different positions in the transport direction and takes a difference to remove the variation due to time. Therefore, the concave-convex shape calculation unit 15 can generate data of height map information a0 and b0 that hardly includes fluctuations in height coordinates due to vibration during transportation of the objects 1a and 1b to be measured.

分割異常判定部19は、表面座標分割部18における処理に異常があるか否かを判定する。分割異常判定部19は、凹凸形状演算部15における分割処理に関する処理に異常があるか否かを判定する。分割異常判定部19は、分割異常である旨の表示を出力する。 The division abnormality determination unit 19 determines whether or not there is an abnormality in the processing in the surface coordinate division unit 18. The division abnormality determination unit 19 determines whether or not there is an abnormality in the processing related to the division processing in the uneven shape calculation unit 15. The division abnormality determination unit 19 outputs a display indicating that the division is abnormal.

分割異常判定部19は、1つあるいは複数種類の異常判定機能を含むことができる。たとえば、分割異常判定部19は、表面座標分割部18において分割点の抽出処理の異常有無を判定することができる。たとえば、分割異常判定部19は、分割ラインの生成処理の異常有無を判定するようにしてもよい。たとえば、分割異常判定部19は、分割高さマップ情報のデータの異常有無を判定するようにしてもよい。 The division abnormality determination unit 19 can include one or a plurality of types of abnormality determination functions. For example, the division abnormality determination unit 19 can determine whether or not there is an abnormality in the extraction processing of the division points in the surface coordinate division unit 18. For example, the division abnormality determination unit 19 may determine whether or not there is an abnormality in the division line generation process. For example, the division abnormality determination unit 19 may determine whether or not there is an abnormality in the data of the division height map information.

図5は、分割異常と判定される画像データを例示する模式図である。
図5には、2つの被測定物体を含む画像データを分割処理した結果、妥当でない分割画像が生成された場合の例を示している。
図5に示すように、被測定物体1aの画像データ102aは、妥当でない高さ座標のデータを含む高さマップ情報201aのデータを有している。妥当でない高さ座標のデータとは、高さマップ情報201aにおいて、被測定物体1aの尾端付近に相当する範囲の分割ラインの高さ座標のデータが、立下り座標検出のためのしきい値よりも十分大きい値を有している場合である。
FIG. 5 is a schematic diagram illustrating image data determined to be a division abnormality.
FIG. 5 shows an example in which an invalid divided image is generated as a result of dividing the image data including the two objects to be measured.
As shown in FIG. 5, the image data 102a of the object to be measured 1a has data of height map information 201a including data of invalid height coordinates. In the height map information 201a, the data of the height coordinates of the dividing line in the range corresponding to the vicinity of the tail end of the object to be measured 1a is the threshold value for detecting the falling coordinates. This is the case when the value is sufficiently larger than.

たとえば、分割異常判定部19は、凹凸形状演算部15において、スリット状光光源2A,2Bによる2つの分割高さマップ情報のデータ間の異常の有無を判定してもよい。これら複数種類の異常判定機能は、必要に応じて任意に設定することができる。 For example, the division abnormality determination unit 19 may determine in the uneven shape calculation unit 15 whether or not there is an abnormality between the data of the two division height map information by the slit-shaped optical light sources 2A and 2B. These plurality of types of abnormality determination functions can be arbitrarily set as needed.

上述した構成を備える表面形状測定装置10の一連の動作を、フローチャートを用いて説明する。
図6は、実施形態の表面形状測定装置の動作を説明するためのフローチャートの例である。
図6に示すように、ステップS1において、表面座標変換部14は、表面撮像部3によって撮像されたライン2AL,2BLのデータを角度θ1を用いて、直交座標のデータに変換する。
A series of operations of the surface shape measuring device 10 having the above-described configuration will be described with reference to a flowchart.
FIG. 6 is an example of a flowchart for explaining the operation of the surface shape measuring device of the embodiment.
As shown in FIG. 6, in step S1, the surface coordinate conversion unit 14 converts the data of the lines 2AL and 2BL imaged by the surface imaging unit 3 into the data of Cartesian coordinates using the angle θ1.

ステップS2において、表面座標変換部14は、直交座標のデータに変換されたライン2AL,2BLのデータをラインごとにそれぞれサンプリング処理する。 In step S2, the surface coordinate conversion unit 14 samples the data of the lines 2AL and 2BL converted into the data of the orthogonal coordinates for each line.

ステップS3Aにおいて、表面座標変換部14は、ラインごとにサンプリング処理されたライン2ALのデータにもとづいて、高さマップ情報Aを生成する。 In step S3A, the surface coordinate conversion unit 14 generates height map information A based on the data of the line 2AL sampled for each line.

ステップS3Bにおいて、表面座標変換部14は、ラインごとにサンプリング処理されたライン2BLのデータにもとづいて、高さマップ情報Bを生成する。 In step S3B, the surface coordinate conversion unit 14 generates height map information B based on the data of the line 2BL sampled for each line.

ステップS11Aにおいて、表面座標分割部18は、高さマップ情報Aにもとづいて、ラインごとに分割点を抽出する。 In step S11A, the surface coordinate dividing unit 18 extracts a dividing point for each line based on the height map information A.

ステップS11Bにおいて、表面座標分割部18は、高さマップ情報Bにもとづいて、ラインごとに分割点を抽出する。 In step S11B, the surface coordinate dividing unit 18 extracts a dividing point for each line based on the height map information B.

ステップS12Aにおいて、表面座標分割部18は、ステップS11Aで抽出されたラインごとの分割点を用いて近似処理を実行し、分割ラインを生成する。 In step S12A, the surface coordinate dividing unit 18 executes an approximation process using the dividing points for each line extracted in step S11A to generate a dividing line.

ステップS12Bにおいて、表面座標分割部18は、ステップS11Bで抽出されたラインごとの分割点を用いて近似処理を実行し、分割ラインを生成する。 In step S12B, the surface coordinate dividing unit 18 executes an approximation process using the dividing points for each line extracted in step S11B to generate a dividing line.

ステップS13Aにおいて、表面座標分割部18は、ステップS12Aで生成された分割ラインを用いて、ライン2ALにもとづく画像データの分割処理を実行する。 In step S13A, the surface coordinate dividing unit 18 executes the image data dividing process based on the line 2AL by using the dividing line generated in step S12A.

ステップS13Bにおいて、表面座標分割部18は、ステップS12Bで生成された分割ラインを用いて、ライン2BLにもとづく画像データの分割処理を実行する。 In step S13B, the surface coordinate dividing unit 18 executes the image data dividing process based on the line 2BL using the dividing line generated in step S12B.

ステップS14A1において、表面座標分割部18は、ステップS13Aで分割処理された2つの画像データのうちの被測定物体1aに対応するデータを用いて、被測定物体1aに対応する分割高さマップ情報aAを取得する。 In step S14A1, the surface coordinate dividing unit 18 uses the data corresponding to the object to be measured 1a out of the two image data divided in step S13A, and the divided height map information aA corresponding to the object to be measured 1a. To get.

ステップS14A2において、表面座標分割部18は、ステップS13Aで分割処理された2つの画像データのうちの被測定物体1bに対応するデータを用いて、被測定物体1bに対応する分割高さマップ情報bAを取得する。 In step S14A2, the surface coordinate dividing unit 18 uses the data corresponding to the object to be measured 1b out of the two image data divided in step S13A, and the divided height map information bA corresponding to the object to be measured 1b. To get.

ステップS14B1において、表面座標分割部18は、ステップS13Bで分割処理された2つの画像データのうちの被測定物体1aに対応するデータを用いて、被測定物体1aに対応する分割高さマップ情報aBを取得する。 In step S14B1, the surface coordinate dividing unit 18 uses the data corresponding to the object to be measured 1a out of the two image data divided in step S13B, and the divided height map information aB corresponding to the object to be measured 1a. To get.

ステップS14B2において、表面座標分割部18は、ステップS13Bで分割処理された2つの画像データのうちの被測定物体1bに対応するデータを用いて、被測定物体1bに対応する分割高さマップ情報bBを取得する。 In step S14B2, the surface coordinate dividing unit 18 uses the data corresponding to the object to be measured 1b out of the two image data divided in step S13B, and the divided height map information bB corresponding to the object to be measured 1b. To get.

ステップS21Aにおいて、凹凸形状演算部15は、ライン2ALのデータにもとづく分割高さマップ情報aAおよびライン2BLのデータにもとづく分割高さマップ情報aBを用いて、振動軽減処理演算を実行し、被測定物体1aに対応する高さマップ情報a0を出力する。凹凸形状演算部15は、高さマップ情報a0にもとづいて、表面形状(鋼板の表面波高さ、急峻度および伸び率等)を計算する。 In step S21A, the concave-convex shape calculation unit 15 executes the vibration reduction processing calculation using the division height map information aA based on the data of the line 2AL and the division height map information aB based on the data of the line 2BL, and measures the measurement. The height map information a0 corresponding to the object 1a is output. The uneven shape calculation unit 15 calculates the surface shape (surface wave height, steepness, elongation, etc. of the steel sheet) based on the height map information a0.

ステップS21Bにおいて、凹凸形状演算部15は、ライン2ALのデータにもとづく分割高さマップ情報bAおよびライン2BLのデータにもとづく分割高さマップ情報bBを用いて、振動軽減処理演算を実行し、被測定物体1bに対応する高さマップ情報b0を出力する。凹凸形状演算部15は、高さマップ情報b0にもとづいて、表面形状を計算する。 In step S21B, the concave-convex shape calculation unit 15 executes the vibration reduction processing calculation using the division height map information bA based on the data of the line 2AL and the division height map information bB based on the data of the line 2BL, and measures the measurement. The height map information b0 corresponding to the object 1b is output. The uneven shape calculation unit 15 calculates the surface shape based on the height map information b0.

ステップS31Aにおいて、表示部20は、被測定物体1aの表面形状のデータを出力し、表示する。 In step S31A, the display unit 20 outputs and displays the data of the surface shape of the object to be measured 1a.

ステップS31Bにおいて、表示部20は、被測定物体1bの表面形状のデータを出力し、表示する。 In step S31B, the display unit 20 outputs and displays the data of the surface shape of the object to be measured 1b.

ステップS41において、分割異常判定部19は、ステップS11Aで抽出された分割点(図6では近似サンプルと表記)の異常の有無を判定する。また、分割異常判定部19は、ステップS11Bで抽出された分割点の異常の有無を判定する。 In step S41, the division abnormality determination unit 19 determines whether or not there is an abnormality in the division point (denoted as an approximate sample in FIG. 6) extracted in step S11A. Further, the division abnormality determination unit 19 determines whether or not there is an abnormality in the division point extracted in step S11B.

分割点の異常とは、たとえば、搬送方向の途中のラインの高さ座標のデータにおいて、立下り座標検出または立上り座標の少なくともいずれか一方が存在しない場合である。たとえば、異常判定には、適切な高さ座標データが存在しないラインが連続する場合や、全体のライン数中、あらかじめ設定した割合以上に適切な座標データが存在しない場合等と基準とすることができる。また、被測定物体の先端付近や尾端付近で、適切な座標データが存在しない場合が所定数または所定割合以上のときに異常判定するようにしてもよい。 The abnormality of the dividing point is, for example, a case where at least one of the falling coordinate detection and the rising coordinate does not exist in the data of the height coordinates of the line in the middle of the transport direction. For example, the abnormality judgment can be based on the case where lines that do not have appropriate height coordinate data are continuous, or the case where appropriate coordinate data does not exist in a preset ratio or more in the total number of lines. it can. Further, the abnormality may be determined when the number of cases where appropriate coordinate data does not exist near the tip or the tail of the object to be measured is a predetermined number or a predetermined ratio or more.

ステップS42において、分割異常判定部19は、ステップS12Aで近似処理された分割ラインの異常有無を判定する。同様に、分割異常判定部19は、ステップS12Bで近似処理された分割ラインの異常有無を判定する。 In step S42, the division abnormality determination unit 19 determines whether or not there is an abnormality in the division line approximated in step S12A. Similarly, the division abnormality determination unit 19 determines whether or not there is an abnormality in the division line approximated in step S12B.

分割異常判定部19は、たとえば、算出された分割ラインの近似式の係数が、あらかじめ設定した範囲をはずれた場合に分割ラインの異常と判定する。 The division abnormality determination unit 19 determines, for example, that the division line is abnormal when the coefficient of the calculated approximation formula of the division line deviates from the preset range.

ステップS43において、分割異常判定部19は、S14A1〜S14B2で取得された分割高さマップ情報aA〜bBのデータの異常の有無を判定する。データの異常は、分割された分割高さマップ情報aA〜bBのデータが妥当であるか否かにより判定される。分割高さマップ情報aA〜bBのデータが妥当でないとは、たとえば、上述したように、分割処理された高さマップ情報において、被測定物体の尾端側に対応する部分の分割ラインの高さのデータが、あらかじめ設定された値以上の場合とすることができる。異常判定には、被測定物体の尾端側に対応する部分の分割ラインの高さのデータにおいて、あらかじめ設定された値以上のデータが所定のライン数以上の場合としたり、全体のライン数に対する比率が所定値以上となった場合としたりすることができる。 In step S43, the division abnormality determination unit 19 determines whether or not there is an abnormality in the data of the division height map information aA to bB acquired in S14A1 to S14B2. The abnormality of the data is determined by whether or not the data of the divided height map information aA to bB is valid. The data of the divided height map information aA to bB is not valid, for example, as described above, in the divided height map information, the height of the divided line of the portion corresponding to the tail end side of the object to be measured. Data can be set to be greater than or equal to a preset value. In the abnormality judgment, in the data of the height of the dividing line of the portion corresponding to the tail end side of the object to be measured, the data of the preset value or more is the predetermined number of lines or more, or the total number of lines is determined. This can be the case when the ratio exceeds a predetermined value.

ステップS44において、分割異常判定部19は、ステップS21Aで凹凸形状の演算を実行する前に、一対の分割高さマップ情報aA,aBの高さ座標のデータの相違が所定値以上となる割合があらかじめ設定した値以上となるか否かを判定する。同様に、分割異常判定部19は、ステップS21Bで凹凸形状の演算を実行する前に、一対の分割高さマップ情報bA,bBの高さ座標のデータの相違が所定値以上となる割合があらかじめ設定した値以上となるか否かを判定する。 In step S44, the division abnormality determination unit 19 determines that the difference between the height coordinate data of the pair of division height map information aA and aB becomes a predetermined value or more before executing the calculation of the uneven shape in step S21A. Determine if the value is greater than or equal to the preset value. Similarly, before executing the calculation of the concave-convex shape in step S21B, the division abnormality determination unit 19 determines in advance the ratio that the difference between the height coordinate data of the pair of division height map information bA and bB becomes a predetermined value or more. Judge whether or not the value exceeds the set value.

ステップS51において、分割異常表示部(図では表示部と表記)30は、ステップS41〜S44における判定結果をそれぞれ出力し、表示する。 In step S51, the division abnormality display unit (denoted as a display unit in the figure) 30 outputs and displays the determination results in steps S41 to S44, respectively.

なお、分割異常判定部19によって、分割異常であると判定され表示される場合であっても、表面座標分割部18および凹凸形状演算部15の一連の動作は、そのまま継続して実行される。あるいは、異常判定にレベルを設けて、軽度の異常レベル判定の場合に一連の動作を継続し、重度の異常レベルを判定した場合に、動作を停止させたり、動作を中止して、次の被測定物体の測定に移行させたりしてもよい。 Even if the division abnormality determination unit 19 determines and displays the division abnormality, the series of operations of the surface coordinate division unit 18 and the uneven shape calculation unit 15 are continuously executed as they are. Alternatively, a level is set for the abnormality determination, a series of operations are continued in the case of a mild abnormality level determination, and when a severe abnormality level is determined, the operation is stopped or the operation is stopped, and the next object is subjected to. It may shift to the measurement of the measurement object.

実施形態の表面形状測定装置10の効果について説明する。
実施形態の表面形状測定装置10は、表面座標分割部18を備える。表面座標分割部18は、被測定物体1a,1bが並列搬送された場合に、表面座標変換部14によって生成された高さマップ情報A,Bにもとづいて、分割点を抽出し、画像データの分割ラインを設定することができる。そのため、並列搬送されていても、表面撮像部3によって取得された画像データでは、1枚の鋼板を含むのか2枚の鋼板を含むのか判別できない場合であっても、2枚の鋼板の画像データ(高さマップ情報)を生成することができる。
The effect of the surface shape measuring device 10 of the embodiment will be described.
The surface shape measuring device 10 of the embodiment includes a surface coordinate dividing unit 18. The surface coordinate dividing unit 18 extracts the dividing points based on the height map information A and B generated by the surface coordinate conversion unit 14 when the objects 1a and 1b to be measured are conveyed in parallel, and obtains image data. Dividing lines can be set. Therefore, even if the images are conveyed in parallel, the image data of the two steel plates cannot be determined whether the image data acquired by the surface imaging unit 3 includes one steel plate or two steel plates. (Height map information) can be generated.

実施形態の表面形状測定装置10では、2つの平行光軸を有するスリット状光光源2A,2Bによるラインを表面撮像部3によって撮像するので、振動軽減処理演算を行うことによって、高精度に高さマップ情報を生成することができるので、表面座標分割部18で分割された分割高さマップ情報によって、高精度な表面形状測定を行うことができる。 In the surface shape measuring device 10 of the embodiment, since the surface imaging unit 3 captures a line by the slit-shaped optical light sources 2A and 2B having two parallel optical axes, the height is increased with high accuracy by performing the vibration reduction processing calculation. Since the map information can be generated, highly accurate surface shape measurement can be performed by the divided height map information divided by the surface coordinate dividing unit 18.

実施形態の表面形状測定装置10は、分割異常判定部19をさらに備えることができる。分割異常判定部19は、表面座標分割部18によって、画像データの分割処理がされた場合に処理データの異常の有無を判定することができる。そのため、不適切なデータを除外して分割処理を実行し、振動軽減処理演算を行うことができるので、より正確な表面形状の測定を行うことができる。 The surface shape measuring device 10 of the embodiment may further include a division abnormality determination unit 19. The division abnormality determination unit 19 can determine whether or not there is an abnormality in the processed data when the image data is divided by the surface coordinate division unit 18. Therefore, it is possible to exclude inappropriate data, execute the division process, and perform the vibration reduction process calculation, so that more accurate surface shape measurement can be performed.

1枚の鋼板か2枚の鋼板かを識別し、2枚の鋼板を含む画像データを分割処理することによって、単列/並列搬送の切り替えに応じて、適切に表面形状の測定を行うことができるので、異常判定されるデータをいずれかの鋼板に含んでいても、他方の鋼板の表面形状測定のデータを有効に取得することができる。そのため、再度2枚分の鋼板の再測定を行うことなく、形状測定を完了させることができるので、多品種の鋼板製造ラインの生産性を低下させることなく、高精度の表面形状測定を行うことができる。 By distinguishing between one steel plate and two steel plates and dividing the image data including the two steel plates, it is possible to appropriately measure the surface shape according to the switching between single row / parallel transport. Therefore, even if one of the steel sheets contains the data for determining the abnormality, the data for measuring the surface shape of the other steel sheet can be effectively obtained. Therefore, the shape measurement can be completed without re-measuring the two steel plates, so that the surface shape measurement can be performed with high accuracy without reducing the productivity of the high-mix steel plate production line. Can be done.

分割異常判定部19では、画像データの分割処理に伴う異常有無の判定を1種類以上設けることができる。帯状鋼板の製造ラインでは、冷却水の噴出や高温での鋼板の表面処理等を行う工程が併存するので、測定環境は必ずしもよいとは言えない。たとえば、表面形状測定を行う前の工程において、鋼板に冷却水を噴出させて冷却する工程がある場合には、鋼板表面の凹部に冷却水がたまって、画像データや高さマップ情報を取得する際に、正確な表面データが取得されない場合も少なくない。また、2枚の鋼板を並列配置する場合に適切な位置に配置されていない場合には、そもそも画像分割処理ができない場合等もある。これらの事情は、鋼板の製造ラインの構成等によっても異なるので、分割異常判定部19の処理内容を製造ラインの構成等に応じて適切に組み合わせる等することができる。これによって、より適切かつ高精度に帯状鋼板の表面形状を測定することができる。 The division abnormality determination unit 19 can provide one or more types of determination for the presence or absence of an abnormality associated with the image data division processing. In the strip-shaped steel sheet production line, the measurement environment is not always good because the steps of ejecting cooling water and surface-treating the steel sheet at a high temperature coexist. For example, if there is a step of ejecting cooling water onto the steel plate to cool it in the process before measuring the surface shape, the cooling water accumulates in the recesses on the surface of the steel plate to acquire image data and height map information. In some cases, accurate surface data may not be obtained. Further, when two steel plates are arranged in parallel, if they are not arranged at appropriate positions, the image division process may not be possible in the first place. Since these circumstances differ depending on the configuration of the steel sheet production line and the like, the processing contents of the division abnormality determination unit 19 can be appropriately combined according to the configuration of the production line and the like. This makes it possible to measure the surface shape of the strip-shaped steel sheet more appropriately and with high accuracy.

このようにして、鋼板の単列搬送と並列搬送が混在する工程であっても、生産性を低下させることなく表面形状を測定できる表面形状測定装置を実現することができる。 In this way, it is possible to realize a surface shape measuring device capable of measuring the surface shape without lowering the productivity even in a process in which single-row transfer and parallel transfer of the steel sheet are mixed.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明およびその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention and its equivalents described in the claims. Moreover, each of the above-described embodiments can be implemented in combination with each other.

1a,1b 被測定物体、2A,2B スリット状光光源、3 表面撮像部、10 表面形状測定装置、14 表面座標変換部、15 凹凸形状演算部、17 単列/並列切替部、18 表面座標分割部、19 分割異常判定部、20 表示部、30 分割異常表示部、100 領域、102,102a,102b 画像データ 1a, 1b Object to be measured, 2A, 2B Slit-shaped light source, 3 Surface imaging unit, 10 Surface shape measuring device, 14 Surface coordinate conversion unit, 15 Concavo-convex shape calculation unit, 17 Single row / parallel switching unit, 18 Surface coordinate division Unit, 19 division abnormality judgment unit, 20 display unit, 30 division abnormality display unit, 100 area, 102, 102a, 102b image data

Claims (9)

第1方向および前記第1方向に直交する第2方向を含むパスライン上に載置された1つの被測定物体または2つの被測定物体が搬送される前記第1方向に直交する2つの離隔した平面内にそれぞれ設けられ互いの光軸が平行になるように前記1つの被測定物体または前記2つの被測定物体のななめ上方に配置された2つのスリット状光光源から前記1つの被測定物体または前記2つの被測定物体の表面にそれぞれ照射される第1ラインおよび第2ラインを所定の周期で順次撮像する撮像部であって、前記1つの被測定物体または前記2つの被測定物体のななめ上方かつ前記平面から角度をなす位置に配置された前記撮像部によって取得されたななめ画像データを、前記2つのスリット状光光源からの照射線上で撮像したような画像データに変換し、前記画像データを前記第1ラインにもとづいて、前記第1方向および前記第2方向に直交する第3方向の座標の第1高さデータを含む第1高さマップ情報を生成し、前記画像データを前記第2ラインにもとづいて前記第3方向の座標の第2高さデータを含む第2高さマップ情報を生成する表面座標変換部と、
前記2つの被測定物体が搬送されてくる場合に、前記第1高さマップ情報にもとづいて前記2つの被測定物体のそれぞれに対応する第1分割高さマップ情報および第2分割高さマップ情報を生成し、前記第2高さマップ情報にもとづいて前記2つの被測定物体のそれぞれに対応する第3分割高さマップ情報および第4分割高さマップ情報を生成する表面座標分割部と、
前記第1分割高さマップ情報および前記第3分割高さマップ情報にもとづいて、前記2つの被測定物体の振動による影響を軽減された第1最終高さマップ情報を演算し、前記第2分割高さマップ情報および前記第4分割高さマップ情報にもとづいて、前記2つの被測定物体の振動による影響を軽減された第2最終高さマップ情報を演算し、前記第1高さマップ情報および前記第2高さマップ情報にもとづいて前記2つの被測定物体の表面の形状を測定する凹凸形状演算部と、
を備え、
前記凹凸形状演算部は、前記1つの被測定物体が搬送されてくる場合には、前記第1高さマップ情報および前記第2高さマップ情報にもとづいて、前記1つの被測定物体の振動による影響を軽減された第3最終マップ情報を演算し、前記第3最終マップ情報にもとづいて前記1つの被測定物体の表面の形状を測定する表面形状測定装置。
One object to be measured or two objects to be measured placed on a path line including a first direction and a second direction orthogonal to the first direction are separated by two distances orthogonal to the first direction to be conveyed. The one object to be measured or the one object to be measured from two slit-shaped light sources arranged above the licking of the one object to be measured or the two objects to be measured so that their optical axes are parallel to each other provided in a plane. An imaging unit that sequentially images the first line and the second line that irradiate the surfaces of the two objects to be measured at predetermined cycles, and is a licking upper portion of the one object to be measured or the two objects to be measured. The tanned image data acquired by the imaging unit arranged at an angle from the plane is converted into image data as if it was captured on the irradiation lines from the two slit-shaped light sources, and the image data is converted into the image data. Based on the first line, first height map information including first height data of coordinates in the first direction and the third direction orthogonal to the second direction is generated, and the image data is used as the second. A surface coordinate conversion unit that generates second height map information including second height data of the coordinates in the third direction based on the line, and a surface coordinate conversion unit.
When the two objects to be measured are conveyed, the first division height map information and the second division height map information corresponding to each of the two objects to be measured are based on the first height map information. To generate the third division height map information and the fourth division height map information corresponding to each of the two objects to be measured based on the second height map information, and a surface coordinate division unit.
Based on the first division height map information and the third division height map information, the first final height map information in which the influence of the vibration of the two objects to be measured is reduced is calculated, and the second division is performed. Based on the height map information and the fourth division height map information, the second final height map information in which the influence of the vibration of the two objects to be measured is reduced is calculated, and the first height map information and the first height map information and the above-mentioned first height map information are calculated. An uneven shape calculation unit that measures the surface shape of the two objects to be measured based on the second height map information, and a concave-convex shape calculation unit.
With
When the one object to be measured is conveyed, the uneven shape calculation unit is based on the vibration of the one object to be measured based on the first height map information and the second height map information. A surface shape measuring device that calculates the third final map information with reduced influence and measures the surface shape of the one object to be measured based on the third final map information.
前記表面座標変換部は、
前記第1ラインを前記第2方向に沿ってサンプリングして前記第2方向の座標に対する前記第3方向の座標のデータを紐づけすることによって、前記第1高さマップ情報を生成し、
前記第2ラインを前記第2方向に沿ってサンプリングして前記第2方向の座標に対する前記第3方向の座標のデータを紐づけすることによって、前記第2高さマップ情報を生成し、
前記表面座標分割部は、
前記第1高さマップ情報を前記第1ラインに沿って走査し、前記第3方向の座標データが第1しきい値よりも小さくなったときに第1立下り座標を検出したものと判定し、
前記第3方向の座標のデータが前記第1しきい値以上となったときに第1立上り座標を検出したものと判定し、
前記第1立下り座標と前記第1立上り座標との中間の座標を、前記2つの被測定物体に対応する第1分割点として抽出し、
前記第2高さマップ情報を前記第2ラインに沿って走査し、前記第3方向の座標データが前記第1しきい値よりも小さくなったときに第2立下り座標を検出したものと判定し、
前記第3方向の座標のデータが前記第1しきい値以上となったときに第2立上り座標を検出したものと判定し、
前記第2立下り座標と前記第2立上り座標との中間の座標を、前記2つの被測定物体に対応する第2分割点として抽出する請求項1記載の表面形状測定装置。
The surface coordinate conversion unit
The first height map information is generated by sampling the first line along the second direction and associating the data of the coordinates of the third direction with the coordinates of the second direction.
The second height map information is generated by sampling the second line along the second direction and associating the data of the coordinates of the third direction with the coordinates of the second direction.
The surface coordinate division portion is
The first height map information is scanned along the first line, and it is determined that the first falling coordinate is detected when the coordinate data in the third direction becomes smaller than the first threshold value. ,
It is determined that the first rising coordinate is detected when the coordinate data in the third direction becomes equal to or higher than the first threshold value.
The coordinates intermediate between the first falling coordinates and the first rising coordinates are extracted as the first dividing points corresponding to the two objects to be measured.
The second height map information is scanned along the second line, and it is determined that the second falling coordinate is detected when the coordinate data in the third direction becomes smaller than the first threshold value. And
It is determined that the second rising coordinate is detected when the coordinate data in the third direction becomes equal to or higher than the first threshold value.
The surface shape measuring apparatus according to claim 1, wherein coordinates intermediate between the second falling coordinates and the second rising coordinates are extracted as second division points corresponding to the two objects to be measured.
前記表面座標分割部は、
前記第1分割点を、前記2つの被測定物体に関して前記第1方向にわたって複数個抽出し、抽出された前記複数の第1分割点にもとづいて第1分割ラインを近似演算し、
前記第2分割点を、前記2つの被測定物体に関して前記第1方向にわたって複数個抽出し、抽出された前記複数の第2分割点にもとづいて第2分割ラインを近似演算する請求項2記載の表面形状測定装置。
The surface coordinate division portion is
A plurality of the first division points are extracted with respect to the two objects to be measured in the first direction, and the first division line is approximated based on the extracted first division points.
The second aspect of claim 2, wherein a plurality of the second division points are extracted with respect to the two objects to be measured in the first direction, and the second division line is approximated based on the extracted second division points. Surface shape measuring device.
前記表面座標分割部は、
前記第1分割ラインにもとづいて、前記第1分割高さマップ情報および前記第2分割高さマップ情報を生成し、
前記第2分割ラインにもとづいて、前記第3分割高さマップ情報および前記第4分割高さマップ情報を生成する請求項3記載の表面形状測定装置。
The surface coordinate division portion is
Based on the first division line, the first division height map information and the second division height map information are generated.
The surface shape measuring apparatus according to claim 3, wherein the third division height map information and the fourth division height map information are generated based on the second division line.
前記表面座標分割部または凹凸形状演算部の処理の異常有無を判定する分割異常判定部をさらに備えた請求項4記載の表面形状測定装置。 The surface shape measuring apparatus according to claim 4, further comprising a division abnormality determining unit for determining the presence or absence of an abnormality in the processing of the surface coordinate dividing unit or the uneven shape calculation unit. 前記分割異常判定部は、
前記表面座標分割部において、
前記第1立下り座標または前記第1立上り座標のうち少なくとも一方の検出ができないとき、または、前記第1立下り座標または前記第1立上り座標のうち少なくとも一方について複数回検出されたときに、分割点抽出異常と判定し、
前記第2立下り座標または前記第2立上り座標のうち少なくとも一方の検出ができないとき、または、前記第2立下り座標または前記第2立上り座標のうち少なくとも一方について複数回検出されたときに、分割点抽出異常と判定する請求項5記載の表面形状測定装置。
The division abnormality determination unit
In the surface coordinate dividing portion,
Divided when at least one of the first falling coordinates or the first rising coordinates cannot be detected, or when at least one of the first falling coordinates or the first rising coordinates is detected a plurality of times. Judged as a point extraction abnormality,
When at least one of the second falling coordinate or the second rising coordinate cannot be detected, or when at least one of the second falling coordinate or the second rising coordinate is detected a plurality of times, the division is performed. The surface shape measuring device according to claim 5, wherein the point extraction abnormality is determined.
前記分割異常判定部は、
前記表面座標分割部において、
前記第1分割ラインの近似演算の係数が所定の範囲内からはずれたときに分割ライン異常と判定し、
前記第2分割ラインの近似演算の係数が所定の範囲内からはずれたときに分割ライン異常と判定する請求項5記載の表面形状測定装置。
The division abnormality determination unit
In the surface coordinate dividing portion,
When the coefficient of the approximation operation of the first division line deviates from the predetermined range, it is determined that the division line is abnormal, and the division line is determined to be abnormal.
The surface shape measuring apparatus according to claim 5, wherein when the coefficient of the approximation calculation of the second dividing line deviates from the predetermined range, it is determined that the dividing line is abnormal.
前記分割異常判定部は、
前記第1分割ラインの前記第3方向の座標の値が所定値以上のデータを含むときに分割画像妥当性異常と判定し、
前記第2分割ラインの前記第3方向の座標の値が所定値以上のデータを含むときに分割画像妥当性異常と判定する請求項5記載の表面形状測定装置。
The division abnormality determination unit
When the value of the coordinates of the first division line in the third direction includes data of a predetermined value or more, it is determined that the division image validity is abnormal.
The surface shape measuring apparatus according to claim 5, wherein when the value of the coordinates of the second division line in the third direction includes data of a predetermined value or more, it is determined that the division image validity is abnormal.
前記分割異常判定部は、
前記凹凸形状演算部において、
前記第1分割高さマップ情報および前記第3分割高さマップ情報の同一の前記第1方向の座標および前記第2方向の座標における前記第3方向のそれぞれの座標の値の相違が所定値以上である場合に凹凸演算有効性異常と判定し、
前記第2分割高さマップ情報および前記第4分割高さマップ情報の同一の前記第1方向の座標および前記第2方向の座標における前記第3方向のそれぞれの座標の値の相違が所定値以上である場合に凹凸演算有効性異常と判定する請求項5記載の表面形状測定装置。
The division abnormality determination unit
In the uneven shape calculation unit,
The difference between the same coordinates of the first division height map information and the third division height map information in the first direction and the coordinates of the third direction in the coordinates of the second direction is equal to or greater than a predetermined value. If, it is judged that the unevenness calculation effectiveness is abnormal, and
The difference between the same coordinates in the first direction and the coordinates in the second direction of the second division height map information and the fourth division height map information in the third direction is equal to or greater than a predetermined value. The surface shape measuring device according to claim 5, wherein the unevenness calculation effectiveness abnormality is determined in the case of.
JP2019190779A 2019-10-18 2019-10-18 Surface shape measuring device Active JP7171535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190779A JP7171535B2 (en) 2019-10-18 2019-10-18 Surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190779A JP7171535B2 (en) 2019-10-18 2019-10-18 Surface shape measuring device

Publications (2)

Publication Number Publication Date
JP2021067480A true JP2021067480A (en) 2021-04-30
JP7171535B2 JP7171535B2 (en) 2022-11-15

Family

ID=75637003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190779A Active JP7171535B2 (en) 2019-10-18 2019-10-18 Surface shape measuring device

Country Status (1)

Country Link
JP (1) JP7171535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431195B2 (en) 2021-06-03 2024-02-14 東芝三菱電機産業システム株式会社 Inspection device for planar shape measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814834A (en) * 1994-06-29 1996-01-19 Kawasaki Steel Corp Breadth measurement method and device for parallel steel plates
JP2012251816A (en) * 2011-06-01 2012-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Shape measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814834A (en) * 1994-06-29 1996-01-19 Kawasaki Steel Corp Breadth measurement method and device for parallel steel plates
JP2012251816A (en) * 2011-06-01 2012-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Shape measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431195B2 (en) 2021-06-03 2024-02-14 東芝三菱電機産業システム株式会社 Inspection device for planar shape measurement system

Also Published As

Publication number Publication date
JP7171535B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
JP6408654B1 (en) Inspection device
JP5412829B2 (en) Steel plate shape straightening device
JP5245817B2 (en) Steel plate shape measuring method and shape measuring device
JP2020008501A (en) Surface defect detection device and surface defect detection method
KR101106045B1 (en) Method for calibrating steel sheet
JP5438475B2 (en) Gap step measurement device, gap step measurement method, and program thereof
JP2010071722A (en) Method and device for inspecting unevenness flaws
EP4140632A1 (en) Skid state determination device, skid state determination method, and laser processing system
US6708122B2 (en) Apparatus and method for detecting twist in articles
JP2008216199A (en) Device and method for inspecting weld bead
JP2021067480A (en) Surface shape measuring device
JP6624121B2 (en) Steel plate shape straightening device
JP2010133846A (en) Appearance inspection device
JPWO2018168700A1 (en) Method and apparatus for measuring meandering amount of band, and method and apparatus for detecting meandering abnormality of band
JP6308808B2 (en) Inspection system, inspection apparatus, control method, and program
JPH02194307A (en) Curvature shape measuring instrument for plate-like body
JP2015129751A (en) Inspection method and device for the same
JP2006226834A (en) Surface inspection device and surface inspection method
JP2021149305A (en) Image processing apparatus, image processing method, and program
JPH11248638A (en) Automatic detection method for surface of press-molded product
JP5055095B2 (en) Measuring apparatus and measuring method
JP7040325B2 (en) Concavo-convex part detection method and uneven part detection device
JP2020109374A (en) Surface inspection device and surface inspection method
JP7221409B2 (en) height measuring device
JP3096807B2 (en) Front / back discrimination method and front / back discrimination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150