JP2021065076A - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP2021065076A
JP2021065076A JP2019199365A JP2019199365A JP2021065076A JP 2021065076 A JP2021065076 A JP 2021065076A JP 2019199365 A JP2019199365 A JP 2019199365A JP 2019199365 A JP2019199365 A JP 2019199365A JP 2021065076 A JP2021065076 A JP 2021065076A
Authority
JP
Japan
Prior art keywords
electromagnet
gap
magnetic poles
expansion
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019199365A
Other languages
Japanese (ja)
Inventor
篤見 衛藤
Atsumi Eto
篤見 衛藤
嗣人 山崎
Tsuguto Yamazaki
嗣人 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO INFINITY CO Ltd
Original Assignee
ECO INFINITY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO INFINITY CO Ltd filed Critical ECO INFINITY CO Ltd
Priority to JP2019199365A priority Critical patent/JP2021065076A/en
Publication of JP2021065076A publication Critical patent/JP2021065076A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

To provide an electric motor capable of variably controlling a gap between magnetic poles to a gap that realizes high-speed cruising performance and energy saving while ensuring acceleration performance.SOLUTION: An electric motor includes a rotor with a shaft center connected to a rotary drive shaft and a permanent magnet arranged along the inner or outer circumference, a stator in which the magnetic pole of an electromagnet is arranged so as to face the magnetic pole of the permanent magnet of the rotor at predetermined gaps between the magnetic poles, and the gap between the magnetic poles at the time of facing the magnetic poles is automatically and continuously or stepwise adjusted by an expansion/contraction drive mechanism to a gap Xc between magnetic poles which obtains the maximum speed from the minimum gap Xo between magnetic poles along the appropriate curve Cn of a gap value of magnetic poles.SELECTED DRAWING: Figure 1

Description

本発明は、モーターやダイナモ(発電機)等の電動機に関するものである。 The present invention relates to an electric motor such as a motor or a dynamo (generator).

電気自動車に搭載されるモーターは、内燃機関と比較して、加速性能には優れているが、高速航続性能はネックとなり、実用的な移動手段としては限られた範囲に留まっている。
つまりモーターには「トルクと回転数」の関係において、東洋大学理工学部電気電子情報工学科論文の図8の「自動車・鉄道で要求されるモーターの駆動特性図」に示す性能が求められている。
Motors mounted on electric vehicles are superior in acceleration performance to internal combustion engines, but their high-speed cruising performance is a bottleneck, and they are limited to a practical means of transportation.
That is, the motor is required to have the performance shown in FIG. 8 "Driving characteristic diagram of the motor required for automobiles and railways" in the paper of the Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Toyo University, in relation to "torque and rotation speed".

而して、モーターの駆動特性に求められるのは、稼働運転状況に応じた適切なトルクと回転数、そしてそれぞれに必要なエネルギーの分配である。同一モーターにおいて「高磁力‐低速」と「低磁力‐高速」を、エネルギーの無駄を最小限に抑えて実現することが求められており、同様のことはガソリン車にも異口同音に指摘されている。
共通のポイントとしては、高速走行では、大きなトルクは必要とせず、モーターの回転数を上げなければならない。そこでガソリン車のように省エネが実現すれば、燃費は良くなり、航続距離も伸びる。
Therefore, what is required for the drive characteristics of the motor is an appropriate torque and rotation speed according to the operating operation conditions, and the distribution of energy required for each. It is required to realize "high magnetic force-low speed" and "low magnetic force-high speed" with the same motor while minimizing the waste of energy, and the same thing has been pointed out in the same way for gasoline vehicles. ..
The common point is that high-speed driving does not require a large amount of torque, and the number of revolutions of the motor must be increased. Therefore, if energy saving is realized like a gasoline car, fuel efficiency will be improved and the cruising range will be extended.

本発明者等は、モーター自体の構造変更は最小限に抑えながら、加速性能を担保しつつ、高速航続性能と省エネルギー化を実現する電動機を先願発明として提供している。
前記先願発明は「回転駆動軸に軸心を連結し内周方向に沿い永久磁石を配列したローターと、前記ローターの永久磁石に対して所定の磁極間間隙で電磁石を対面配置したステーターとを設けた電動機において、前記永久磁石は粘弾性物体又は弾性バネを介して前記ローターの内周面に装着して永久磁石の回転速度で変化する遠心力で前記磁極間間隙を自動的に可変可能にした電動機。」である。
The present inventors provide, as a prior invention, an electric motor that realizes high-speed cruising performance and energy saving while ensuring acceleration performance while minimizing structural changes of the motor itself.
The prior invention is "a rotor in which the axis is connected to a rotation drive shaft and permanent magnets are arranged along the inner peripheral direction, and a stator in which electromagnets are arranged facing each other with a predetermined gap between magnetic poles with respect to the permanent magnets of the rotor. In the provided electric motor, the permanent magnet is attached to the inner peripheral surface of the rotor via a viscoelastic object or an elastic spring, and the gap between the magnetic poles can be automatically changed by a centrifugal force that changes with the rotation speed of the permanent magnet. The electric motor. "

本発明は、前記先願発明に続くシリーズ第2弾発明として前記磁極間間隙を加速性能を担保しつつ、高速航続性能と省エネルギー化を実現する間隙に可変制御することを可能にした電動機を提供する。 The present invention provides an electric motor capable of variably controlling the gap between magnetic poles to a gap that realizes high-speed cruising performance and energy saving while ensuring acceleration performance as the second invention in the series following the prior invention. To do.

上記課題を満足させる本発明の電動機における主な技術構成は、次の(1)〜(8)の通りである。 The main technical configurations of the electric motor of the present invention that satisfy the above problems are as follows (1) to (8).

(1)、回転駆動軸に軸心を連結し内周方向に沿い永久磁石を配列したローターと、前記ローターの内側において前記永久磁石の磁極に対して所定の磁極間間隙で電磁石の磁極を全部同時に又は一個ずつ或いは点対称的に複数個単位で順次に対面可能に配置したステーターとを設けた電動機において、前記対面時の磁極間間隙を拡縮駆動機構により拡縮可変可能にしたことを特徴とする電動機。(1) A rotor whose axis is connected to a rotary drive shaft and whose permanent magnets are arranged along the inner peripheral direction, and all the magnetic poles of the electromagnet inside the rotor with a predetermined gap between the magnetic poles of the permanent magnet. In an electric motor provided with stators that are arranged so that they can face each other at the same time, one by one, or point-symmetrically in units of a plurality of units, the gap between the magnetic poles at the time of facing each other can be expanded or contracted by an expansion / contraction drive mechanism. Electric motor.

(2)、前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石にリンク機構を介して連結し前記ステーターの中心部に所定量回転可能に装着した回転円盤とからなることを特徴とする前記(1)に記載の電動機。(2) The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles is a center of the stator connected to the electromagnet via a link mechanism and a guide for mounting the electromagnet on the stator so as to be movable in the radial direction. The electric motor according to (1) above, wherein the electric motor comprises a rotating disk mounted on a portion so as to be rotatable by a predetermined amount.

(3)、前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石の基部に設けたロール部材と、前記ロール部材に係合連結する円弧ガイド部を外周に形成して前記ステーターの中心部に回転可能に装着した電動式回転円盤とからなることを特徴とする前記(1)に記載の電動機。(3) The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles includes a guide for mounting the electromagnet on the stator so as to be movable in the radial direction, a roll member provided at the base of the electromagnet, and the roll member. The electric motor according to (1) above, wherein an arc guide portion engaged with and connected to the above is formed on the outer periphery thereof and is composed of an electric rotary disk rotatably mounted on the central portion of the stator.

(4)、前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記永久磁石の反回転方向端部をバネ付軸で支持してその回転停止時に磁極を電磁石の磁極と平行に対面可能にし当該永久磁石が回転するとその遠心力でバネ力に抗して回転方向に開作動可能にしてなることを特徴とする前記(1)に記載の電動機。(4) The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles supports the end of the permanent magnet in the counter-rotation direction with a spring-loaded shaft so that the magnetic poles can face each other in parallel with the magnetic poles of the electromagnet when the rotation is stopped. The electric motor according to (1) above, wherein when the permanent magnet rotates, the centrifugal force of the permanent magnet makes it possible to open the permanent magnet in the direction of rotation against the spring force.

(5)、前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石にリンク機構を介して連結して前記ステーターに装着したソレノイド機構とからなることを特徴とする前記(1)に記載の電動機。(5) The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles is a guide for mounting the electromagnet on the stator so as to be movable in the radial direction, and is connected to the electromagnet via a link mechanism to the stator. The electric motor according to (1) above, which comprises a mounted solenoid mechanism.

(6)、回転駆動軸に軸心を連結し外周方向に沿い永久磁石を配列したローターと、前記ローターの外側において、前記永久磁石の磁極に対して所定の磁極間間隙で電磁石の磁極を全部同時に又は一個ずつ或いは点対称的に複数個単位で順次に対面可能に配置したステーターとを設けた電動機において、前記対面時の磁極間間隙を拡縮駆動機構により拡縮可変可能にしたことを特徴とする電動機。(6) A rotor in which the axis is connected to the rotation drive shaft and permanent magnets are arranged along the outer peripheral direction, and on the outside of the rotor, all the magnetic poles of the electromagnet are placed in a predetermined gap between the magnetic poles of the permanent magnet. In an electric motor provided with stators that are arranged so that they can face each other at the same time, one by one, or point-symmetrically in units of a plurality of units, the gap between the magnetic poles at the time of facing each other can be expanded or contracted by a scaling drive mechanism. Electric motor.

(7)、前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石に軸支したリンク機構を介して軸支連結し前記ステーターの外周部に所定量回転可能に装着した電動式回転ドーナツ盤とからなることを特徴とする前記(6)に記載の電動機。(7) The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles is a shaft support connection via a guide for mounting the electromagnet on the stator so as to be movable in the radial direction and a link mechanism axially supported by the electromagnet. The electric motor according to (6) above, wherein the electric motor comprises an electric rotary donut disc rotatably mounted on the outer peripheral portion of the stator by a predetermined amount.

(8)、前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石の基部に設けたテーパ部材と、前記テーパ部材に接合するテーパスライド部を外周に形成して前記ステーターの中心部に所定量回転可能に装着した回転テーパ円盤とからなることを特徴とする前記(6)に記載の電動機。(8) The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles includes a guide for mounting the electromagnet on the stator so as to be movable in the radial direction, a taper member provided at the base of the electromagnet, and the taper member. The electric motor according to (6) above, wherein a tapered slide portion to be joined to is formed on the outer periphery thereof and is composed of a rotary taper disk mounted on the central portion of the stator so as to be rotatable by a predetermined amount.

(9)、前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石にリンク機構を介して連結して前記ステーターに装着したソレノイド機構とからなることを特徴とする前記(6)に記載の電動機。(9) The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles is a guide that mounts the electromagnet on the stator so as to be movable in the radial direction, and connects the electromagnet to the electromagnet via a link mechanism to the stator. The electric motor according to (6) above, which comprises a mounted solenoid mechanism.

本発明は、電動機の構造に前記特徴の多少の変更構造を加えることにより、永久磁石(以下PMと称する)が発生する磁束密度によって電磁石の受ける磁気抵抗を制御する。この構造変更により、加速時や登坂時には磁束密度の高い磁場と電磁石が作用しあって、低速で高トルクを発生させ、一方、回転数が高くなると、その(遠心力などの)回転の作用や、手動やセンサーを用いた制御によってPM、電磁石、またはその組み合わせが、磁束密度の低い状態に移動し、磁気抵抗が少ない状態で高速回転が実現でき、消費電力も減少する。 The present invention controls the magnetic resistance received by an electromagnet by the magnetic flux density generated by a permanent magnet (hereinafter referred to as PM) by adding a slightly modified structure of the above characteristics to the structure of the electric motor. Due to this structural change, a magnetic field with a high magnetic flux density and an electromagnet act on each other when accelerating or climbing a slope to generate high torque at low speed, while when the number of rotations increases, the action of rotation (such as centrifugal force) PM, electromagnet, or a combination thereof can be moved to a state where the magnetic flux density is low by manual control or control using a sensor, high-speed rotation can be realized with low magnetic resistance, and power consumption is also reduced.

遠心力を用いる制御では、新規な実施例4及び前記先願のように遠心力の強さに応じたバネ係数や弾粘性を選ぶことにより、回転速度に応じた磁極間の間隙の変位度合いを決めることができる。これで低速−高トルクおよび高速−低トルクの最適化された「トルク対回転速度」の状況が自動的に実現できる。つまり低回転時には間隙は狭く、磁束密度は高く電磁されその作用で高トルクを発生させる。高速になると間隙は広がり磁気抵抗が低くなるとともに回転数は上がり、低消費電力を維持しながら高速航続を行う。登坂や減速時には回転数が落ち、それに伴って間隙は狭まり、高トルクを発生できる状態になる。これらモーター特性の変化は自動的に行われる。 In the control using centrifugal force, the degree of displacement of the gap between the magnetic poles according to the rotation speed is determined by selecting the spring coefficient and elastic viscosity according to the strength of the centrifugal force as in the new Example 4 and the above-mentioned prior application. You can decide. This allows the optimized "torque vs. rotational speed" situation of low speed-high torque and high speed-low torque to be achieved automatically. That is, at low rotation, the gap is narrow, the magnetic flux density is high, and electromagnetic waves are generated to generate high torque. At high speeds, the gap widens, the magnetic resistance decreases, and the number of revolutions increases, so high-speed cruising is performed while maintaining low power consumption. When climbing a slope or decelerating, the number of revolutions drops, and the gap narrows accordingly, making it possible to generate high torque. These changes in motor characteristics are automatic.

本発明は更に電動機の力行((りっこう)駆動)、慣行(慣性走行)、回生(制動)を細かく制御するには、磁極間間隙の制御をローターの回転速度に応じて前記拡縮駆動機構により手動、自動、またはそれらの組み合わせの仕組みで行う。
本発明はこれらの基本原理を現実のモーター構造に実装するには、次に記載のように3通りの基本的な仕組み構造がある。
(1)アウトローター外輪型PS)モーターにおける手動・自動制御により強制的に行う間隙制御(実施例1〜5)、
(2)インローター(内輪型PS)モーターにおける手動・自動制御により、強制的に行う間隙制御(実施例6〜9)
(3)PSの回転遠心力を利用した他の間隙制御(実施例4)
これ等の拡縮駆動機構の仕組みを実施例1〜実施例9により具体的に紹介するが、いずれの拡縮駆動機構の仕組みも、PMと電磁石間に発生する磁束密度の変化を磁極間の間隙調整させることにより「トルク対回転速度」を最適化させることを可能にしている。
In the present invention, in order to further finely control the power running (driving), the conventional (inertial running), and the regeneration (braking) of the electric motor, the control of the gap between the magnetic poles is manually performed by the expansion / contraction drive mechanism according to the rotation speed of the rotor. , Automatic, or a combination of these.
In the present invention, in order to implement these basic principles in an actual motor structure, there are three basic mechanical structures as described below.
(1) Gap control forcibly performed by manual / automatic control in the out-rotor outer ring type PS) motor (Examples 1 to 5),
(2) Gap control forcibly performed by manual / automatic control of the in-rotor (inner ring type PS) motor (Examples 6 to 9)
(3) Other gap control using the rotational centrifugal force of PS (Example 4)
The mechanism of these expansion / contraction drive mechanisms will be specifically introduced in Examples 1 to 9, but in each of the expansion / contraction drive mechanism mechanisms, the change in the magnetic flux density generated between the PM and the electromagnet is adjusted in the gap between the magnetic poles. By making it possible, it is possible to optimize "torque vs. rotation speed".

図1は実施例1の説明図であり(1)は横断面概略図を示し、(2)は永久磁石と電磁石の磁極間間隙の変化を示す概略説明図である。FIG. 1 is an explanatory view of the first embodiment, (1) is a schematic cross-sectional view, and (2) is a schematic explanatory view showing a change in the gap between the magnetic poles of a permanent magnet and an electromagnet. 図2は実施例2の説明図である。FIG. 2 is an explanatory diagram of the second embodiment. 図3は実施例3の説明図である。FIG. 3 is an explanatory diagram of the third embodiment. 図4は実施例4の説明図であり(1)は横断面概略図を示し、(2)は永久磁石と電磁石の磁極間間隙の変化動作を示す概略説明図である。FIG. 4 is an explanatory view of the fourth embodiment, (1) is a schematic cross-sectional view, and (2) is a schematic explanatory view showing a changing operation of the gap between the magnetic poles of the permanent magnet and the electromagnet. 図5は実施例5の説明図であり(1)は横断面概略図を示し、(2)は永久磁石と電磁石の磁極間間隙の変化動作を示す概略説明図である。5A and 5B are explanatory views of the fifth embodiment, FIG. 5A is a schematic cross-sectional view, and FIG. 52 is a schematic explanatory view showing a change operation of the gap between the magnetic poles of the permanent magnet and the electromagnet. 図6は実施例6の説明図であり、(1)は横断面概略図を示し、(2)は永久磁石と電磁石の磁極間間隙の変化動作を示す概略説明図である。る。6A and 6B are explanatory views of the sixth embodiment, FIG. 6A is a schematic cross-sectional view, and FIG. 62 is a schematic explanatory view showing a change operation of the gap between the magnetic poles of the permanent magnet and the electromagnet. To. 図7は実施例7の説明図である。FIG. 7 is an explanatory diagram of the seventh embodiment. 自動車・鉄道で要求されるモーターの駆動特性図を示すグラフである。It is a graph which shows the drive characteristic diagram of the motor required for automobiles and railways. 図1〜図7に示すモデル例におけるローターの永久磁石とステーターの電磁石の磁極間間隙とローターの回転数(RPM)の関係(実測値)を示すグラフを示す。A graph showing the relationship (measured value) between the magnetic pole gap between the permanent magnet of the rotor and the electromagnet of the stator and the rotation speed (RPM) of the rotor in the model example shown in FIGS. 1 to 7 is shown.

本発明の実施形態に係る装置の実施例1(:図1)〜実施例7(:図7)を説明する。 Examples 1 (: FIG. 1) to Example 7 (: FIG. 7) of the apparatus according to the embodiment of the present invention will be described.

図1(1)(2)に示す、実施例1は、回転駆動軸101に軸心部を連結し内周方向に沿い永久磁石102を配列したローター100と、前記ローター100の内側において前記永久磁石102の磁極に対して初動時には最大トルクとなる最少磁極間間隙Xoで電磁石201を例えば点対称的に二個ずつ順次対面可能に配置したステーター200とを設けたアウトローター(外輪型PS)の電動機において、前記対面時の最少磁極間間隙Xoを拡縮駆動機構により最高速回転時には損失が最小となる最適磁極間間隙Xcに可変可能にした。
前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石201を前記ステーター200にその半径方向の移動を可能に装着するガイド202と、前記電磁石にリンク機構203を介して連結し前記ステーター200の中心部に回転可能に装着し磁極間間隙を可変する電動回転円盤204とからなる。
回転円盤204は、前記ローター100の回転速度測定器からの回転速度測定値に応じて前記電磁石201をリンク機構210を介してステーター200の半径方向に移動させて電磁石201と永久磁石102との対面時の磁極間間隙を図9に示すように適正な磁極間間隙値曲線Cnに沿って最少磁極間間隙Xoから最適磁極間間隙Xcに連続的に又は段階的に自動位置調節する。
In the first embodiment shown in FIGS. 1 (1) and 1 (2), a rotor 100 in which an axial center portion is connected to a rotary drive shaft 101 and permanent magnets 102 are arranged along the inner peripheral direction, and the permanent inside the rotor 100 are described. An outrotor (outer ring type PS) provided with a stator 200 in which two electromagnets 201 are arranged so as to face each other in a point-symmetrical manner with a minimum inter-magnetic gap Xo that is the maximum torque at the time of initial movement with respect to the magnetic poles of the magnet 102. In the electric motor, the minimum magnetic pole gap Xo at the time of facing each other can be changed to the optimum magnetic pole gap Xc that minimizes the loss at the maximum speed rotation by the expansion / contraction drive mechanism.
The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles is a guide 202 for mounting the electromagnet 201 on the stator 200 so as to be movable in the radial direction thereof, and the stator 200 connected to the electromagnet via a link mechanism 203. It consists of an electric rotating disk 204 that is rotatably mounted in the center and has a variable gap between magnetic poles.
The rotating disk 204 moves the electromagnet 201 in the radial direction of the stator 200 via the link mechanism 210 according to the rotation speed measurement value from the rotation speed measuring device of the rotor 100, and faces the electromagnet 201 and the permanent magnet 102. As shown in FIG. 9, the inter-magnet gap at the time is automatically adjusted continuously or stepwise from the minimum inter-magnetic gap Xo to the optimum inter-magnetic gap Xc along an appropriate inter-magnetic gap value curve Cn.

図9は、本発明における基礎的な新知見であり、図1〜図7に示すモデル例におけるローター100の永久磁石102とステーター200の電磁石201の磁極間間隙(mm)とローターの回転数(RPM)の関係(実測値)の検証実験結果を示すグラフである。図9例において、前記磁極間間隙は、最小距離Xを例えば2mmに定め、その間隙における最速RPMを、磁極間間隙の値を変えながらそれぞれ計測した。因みに、
1.ローターは半径18cm、
2.永久磁石の仕様:ネオジム磁石、直径1cm、長さ2cmの湾曲片、重量11.56g吸引力=4061gf 表面磁束密度=5327Gauss
3.ステーターの半径=15cm、重量=約2800g
4.電磁石の仕様:全長=6cm、0.6mm径の銅線長70m、コア径=1.3cm、ア材質=軟鉄
而してこの検証実験では、始動時のギャップ2.0mm、回転数552rpm、消費電力4.7Wで、回転に伴ってギャップが拡がり、最大の4.5mmになった時には、回転数は723rpm、消費電力2.7Wとなった。
つまり、回転数は約30%増加し、消費電力は約40%減少した。このことから、モーターの高速航行性能は、最大トルク発生時に比べて、概算で(100+30%)/(100−40%)または約2倍となる。
ただし、エアコンその他の電気機器による消費など種々の要因があり、状況に応じた算出が必要となることは言うまでもない。
FIG. 9 is a basic new finding in the present invention, in which the gap between the magnetic poles (mm) of the permanent magnet 102 of the rotor 100 and the electromagnet 201 of the stator 200 and the rotation speed of the rotor (rotor rotation speed) in the model examples shown in FIGS. It is a graph which shows the verification experiment result of the relation (measured value) of RPM). In the example of FIG. 9, the minimum distance X 0 was set to, for example, 2 mm, and the fastest RPM in the gap was measured while changing the value of the gap between the magnetic poles. By the way,
1. 1. The rotor has a radius of 18 cm,
2. Permanent magnet specifications: neodymium magnet, curved piece with a diameter of 1 cm and a length of 2 cm, weight 11.56 g, attractive force = 4061 gf, surface magnetic flux density = 5327Gauss
3. 3. Radius of stator = 15 cm, weight = about 2800 g
4. Electromagnet specifications: total length = 6 cm, 0.6 mm diameter copper wire length 70 m, core diameter = 1.3 cm, a material = soft iron Therefore, in this verification experiment, the gap at the start was 2.0 mm, the rotation speed was 552 rpm, and the power consumption. With a power of 4.7 W, the gap widened with rotation, and when the maximum reached 4.5 mm, the rotation speed was 723 rpm and the power consumption was 2.7 W.
That is, the number of revolutions increased by about 30% and the power consumption decreased by about 40%. From this, the high-speed navigation performance of the motor is estimated to be (100 + 30%) / (100-40%) or about twice as much as when the maximum torque is generated.
However, it goes without saying that there are various factors such as consumption by air conditioners and other electric devices, and it is necessary to calculate according to the situation.

図2に示す、実施例2は、前記アウトローター(外輪型PS)電動機において、永久磁石102と電磁石201との前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石201を前記ステーター200にその半径方向の移動を可能に装着するガイド202と、前記電磁石201の基部に設けたロール部材205と、前記ロール部材205に係合連結する円弧ガイド部206を形成して前記ステーター200の中心部に回転可能に装着した電動式回転円盤207とからなる。
電動式回転円盤207は、前記ローター100の回転速度測定器からの回転速度測定値に応じて電磁石201と永久磁石102との磁極間間隙を図9に示すような適正な磁極間間隙値曲線Cnに沿って最少磁極間間隙Xoから最適磁極間間隙Xcに連続的に又は段階的に変更可能にする回転駆動する。
In the second embodiment shown in FIG. 2, in the outrotor (outer ring type PS) electric motor, the expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles of the permanent magnet 102 and the electromagnet 201 is such that the electromagnet 201 is attached to the stator 200. A guide 202 that can be moved in the radial direction, a roll member 205 provided at the base of the electromagnet 201, and an arc guide portion 206 that engages and connects with the roll member 205 are formed to form a central portion of the stator 200. It consists of an electric rotating disk 207 that is rotatably mounted on the surface.
The electric rotary disk 207 has an appropriate inter-magnetic pole clearance value curve Cn as shown in FIG. 9 for the inter-magnetic pole gap between the electromagnet 201 and the permanent magnet 102 according to the rotation speed measurement value from the rotation speed measuring device of the rotor 100. Rotational drive is made so that the minimum inter-magnetic pole gap Xo can be changed continuously or stepwise from the minimum inter-magnetic pole gap Xc.

図3に示す実施例3は、前記アウトローター(外輪型PS)電動機において、永久磁石102と電磁石201との前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記永久磁石102の反回転方向端部をバネ付きの回転軸208で支持してその永久磁石102の回転停止時に磁極を電磁石201の磁極と最少間隙で平行に対面し当該永久磁石102が回転するとその遠心力で回転方向に開作動可能にしてなる。
バネ208s付きの回転軸208と永久磁石102の遠心力による永久磁石102の開作動は、前記ローター100の回転対応する永久磁石102の遠心力に応じて斜めではあるが図9に示すような適正な磁極間間隙値曲線Cnに沿って最少磁極間間隙Xoから最適磁極間間隙Xcに連続的に自動可変する。
In the third embodiment shown in FIG. 3, in the outrotor (outer ring type PS) electric motor, the expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles of the permanent magnet 102 and the electromagnet 201 is a counter-rotational end of the permanent magnet 102. The part is supported by a rotating shaft 208 with a spring, and when the rotation of the permanent magnet 102 is stopped, the magnetic poles face parallel to the magnetic poles of the electromagnet 201 with the minimum gap, and when the permanent magnet 102 rotates, the permanent magnet 102 opens in the rotational direction due to its centrifugal force. It will be possible.
The opening operation of the permanent magnet 102 by the centrifugal force of the rotating shaft 208 with the spring 208s and the permanent magnet 102 is appropriate as shown in FIG. 9, although it is oblique according to the centrifugal force of the permanent magnet 102 corresponding to the rotation of the rotor 100. Along the magnetic pole gap value curve Cn, the minimum magnetic pole gap Xo is continuously and automatically changed to the optimum magnetic pole gap Xc.

図4(1)(2)に示す実施例4はインローター(内輪型PS)電動機において、永久磁石102と電磁石201との前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石201を前記ステーター200にその半径方向の移動を可能に装着するガイド209と、前記電磁石201にリンク機構210を介して連結して前記ステーター200に装着したソレノイド機構211とからなる。
ソレノイド機構211は、前記ローター100の回転速度測定器からの回転速度測定値に応じて前記電磁石201をリンク機構210を介してステーター200の半径方向に移動させて電磁石201と永久磁石102との磁極間間隙を図9に示すように適正な磁極間間隙値曲線Cnに沿って最少磁極間間隙Xoから最適磁極間間隙Xcに連続的に又は段階的に自動位置調節する。
In the fourth embodiment shown in FIGS. 4 (1) and 4 (2), in the in-rotor (inner ring type PS) electric motor, the scaling drive mechanism for scaling the gap between the magnetic poles of the permanent magnet 102 and the electromagnet 201 is such that the electromagnet 201 is used as described above. The guide 209 is mounted on the stator 200 so as to be movable in the radial direction, and the solenoid mechanism 211 is mounted on the stator 200 by being connected to the electromagnet 201 via a link mechanism 210.
The solenoid mechanism 211 moves the electromagnet 201 in the radial direction of the stator 200 via the link mechanism 210 according to the rotation speed measurement value from the rotation speed measuring device of the rotor 100, and magnetic poles between the electromagnet 201 and the permanent magnet 102. As shown in FIG. 9, the inter-magnetic gap is automatically positioned continuously or stepwise from the minimum inter-magnetic gap Xo to the optimum inter-magnetic gap Xc along an appropriate inter-magnetic gap value curve Cn.

図5(1)(2)に示す実施例5は、回転駆動軸111に軸心を連結し外周方向に沿い永久磁石301を配列したローター300と、前記ローター300の外側において前記永久磁石301の磁極に対して所定の磁極間間隙で電磁石302の磁極を例えば点対称的に二個ずつ順次に対面可能に配置したステーター303とを設けたインローター(内輪型PS)の電動機において、前記対面時の磁極間間隙を拡縮駆動機構により拡縮可変可能にしたものである。
前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石302を前記ステーター303にその半径方向の移動を可能に装着するガイド304と、前記電磁石302に軸支35したリンク機構305と軸連結36し前記ステーター303の外周部に所定量回転可能に装着した電動式回転ドーナツ盤306とからなる。
電動式回転ドーナツ盤306は、前記ローター300の回転速度測定器からの回転速度測定値に応じて回転してリンク機構305を介して電磁石302をガイド304に沿ってステーター303の半径方向に移動させて電磁石302と永久磁石301との磁極間間隙を(2)に示すように図9に示す適正な磁極間間隙値曲線Cnに沿って最少磁極間間隙Xoから最適磁極間間隙Xcに連続的に又は段階的に変更可能に回転駆動する。
In the fifth embodiment shown in FIGS. 5 (1) and 5 (2), the rotor 300 is connected to the rotation drive shaft 111 and the permanent magnets 301 are arranged along the outer peripheral direction, and the permanent magnets 301 are arranged outside the rotor 300. In an electric motor of an in-rotor (inner ring type PS) provided with a stator 303 in which two magnetic poles of an electromagnet 302 are arranged in a point-symmetrical manner so as to be face-to-face with each other in a predetermined gap between the magnetic poles with respect to the magnetic poles. The gap between the magnetic poles of the above is made variable by the expansion / contraction drive mechanism.
The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles includes a guide 304 for mounting the electromagnet 302 on the stator 303 so as to be movable in the radial direction thereof, and a link mechanism 305 for shaft support 35 on the electromagnet 302 and a shaft connection 36. It is composed of an electric rotary donut board 306 mounted on the outer peripheral portion of the stator 303 so as to be rotatable by a predetermined amount.
The electric rotary donut board 306 rotates according to the rotation speed measurement value from the rotation speed measuring device of the rotor 300, and moves the electromagnet 302 along the guide 304 in the radial direction of the stator 303 via the link mechanism 305. As shown in (2), the gap between the electromagnets 302 and the permanent magnet 301 is continuously provided from the minimum gap Xo to the optimum gap Xc along the appropriate gap value curve Cn shown in FIG. Alternatively, it is rotationally driven so that it can be changed stepwise.

図6(1)(2)に示す実施例6は、前記インローター(内輪型PS)の電動機において、永久磁石301と電磁石302との前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石302を前記ステーター303にその半径方向の移動を可能に装着するガイド307と、前記電磁石302の側部に設けたロール部材308と、前記ロール部材308に係合連結するテーパスライドガイド309を外周に形成して前記ステーター303の中心部に所定量回転可能に装着した電動式の回転ドーナツ盤310とからなる。
前記回転ドーナツ盤310は、前記ローター100の回転速度測定器からの回転速度測定値に応じて前記電磁石302をリンク機構305を介してステーター303の半径方向に移動させて電磁石302と永久磁石301との磁極間間隙を(2)に示すように図9に示す適正な磁極間間隙値曲線Cnに沿って最少磁極間間隙Xoから最適磁極間間隙Xcに連続的に又は段階的に自動位置調節する。
In the sixth embodiment shown in FIGS. 6 (1) and 6 (2), in the electric motor of the in-rotor (inner ring type PS), the expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles of the permanent magnet 301 and the electromagnet 302 is the electromagnet. A guide 307 for mounting the 302 on the stator 303 so as to be movable in the radial direction, a roll member 308 provided on the side of the electromagnet 302, and a tapered slide guide 309 for engaging and connecting to the roll member 308 are provided on the outer circumference. It is composed of an electric rotary donut board 310 formed and mounted on the central portion of the stator 303 so as to be rotatable by a predetermined amount.
The rotating donut board 310 moves the electromagnet 302 in the radial direction of the stator 303 via the link mechanism 305 according to the rotation speed measurement value from the rotation speed measuring device of the rotor 100, and causes the electromagnet 302 and the permanent magnet 301. As shown in (2), the position of the inter-magnetic gap is automatically adjusted continuously or stepwise from the minimum inter-magnetic gap Xo to the optimum inter-magnetic gap Xc along the appropriate inter-magnetic gap value curve Cn shown in FIG. ..

図7に示す実施例7は、前記インローター(内輪型PS)の電動機において、前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石302を前記ステーター303にその半径方向の移動を可能に装着するガイド311と、ステーター303に支持台314を介して取り付けたソレノイド機構313と、ソレノイド機構313を前記電磁石302に連結したリンク機構312とからなる。
ソレノイド機構313は、前記ローター300の回転速度測定器からの回転速度測定値に応じて前記電磁石302をリンク機構312を介してステーター303の半径方向に移動させて電磁石302と永久磁石301との磁極間間隙を図9に示すように適正な磁極間間隙値曲線Cnに沿って最少磁極間間隙Xoから最適磁極間間隙Xcに連続的に又は段階的に自動位置調節する。
In the seventh embodiment shown in FIG. 7, in the electric motor of the in-rotor (inner ring type PS), the expansion / contraction drive mechanism that expands / contracts the gap between the magnetic poles enables the electromagnet 302 to move to the stator 303 in the radial direction. It includes a guide 311 to be mounted, a solenoid mechanism 313 attached to the stator 303 via a support base 314, and a link mechanism 312 in which the solenoid mechanism 313 is connected to the electromagnet 302.
The solenoid mechanism 313 moves the electromagnet 302 in the radial direction of the stator 303 via the link mechanism 312 according to the rotation speed measurement value from the rotation speed measuring device of the rotor 300, and the magnetic poles of the electromagnet 302 and the permanent magnet 301. As shown in FIG. 9, the inter-magnetic gap is automatically positioned continuously or stepwise from the minimum inter-magnetic gap Xo to the optimum inter-magnetic gap Xc along an appropriate inter-magnetic gap value curve Cn.

本発明の電動機は、ローター及びステーターの配置は、竪型、横型(水平型)、斜め型等自在配置を自在に可能にして、しかもスリム化を実現し、応用範囲を自転車、自動車、航空機、ドローン等に用いる各種の小型・大型・超小型の駆動モーター、簡易家庭用発電機又は駆動モーター、各種工業用発電機又は駆動モーター等に幅広く利用可能にするなどその用途の汎用性は計り知れず電動機産業に貢献すること多大なものがある。 In the electric motor of the present invention, the rotor and the stator can be freely arranged in a vertical type, a horizontal type (horizontal type), an oblique type, etc. The versatility of the application is immeasurable, such as making it widely available for various small, large and ultra-small drive motors used for drones, simple household generators or drive motors, various industrial generators or drive motors, etc. There is a great deal to contribute to the electric motor industry.

Xo:最少磁極間間隙
Xc:最適最速磁極間間隙
100:ローター
101:回転駆動軸
102:永久磁石
200:ステーター
201:電磁石
202、209、212、215、219、304、307、311:ガイド
203:リンク機構
204:回転円盤
205:ロール部材
206:円弧ガイド部
207:電動式回転円盤
208:バネ付きの回転軸
208s:バネ
210:リンク機構
211:ソレノイド機構
213:リンク機構
214:回転ドーナツ盤
216:ロール部材
217:円弧ガイド部
218:電動式回転円盤
220:リンク機構
221:ソレノイド機構
111:回転駆動軸
301:永久磁石
302:電磁石
305:リンク機構
306:電動式回転ドーナツ盤
308:ロール部材
309:テーパスライドガイド
310:電動式の回転ドーナツ盤
312:リンク機構
313:ソレノイド機構
Xo: Minimum gap between magnetic poles Xc: Optimal fastest gap between magnetic poles 100: Rotor 101: Rotational drive shaft 102: Permanent magnet 200: Stator 201: Electromagnet 202, 209, 212, 215, 219, 304, 307, 311: Guide 203: Link mechanism 204: Rotating disk 205: Roll member 206: Arc guide part 207: Electric rotating disk 208: Rotating shaft with spring 208s: Spring 210: Link mechanism 211: Electromagnetic mechanism 213: Link mechanism 214: Rotating donut disk 216: Roll member 217: Arc guide part 218: Electric rotary disk 220: Link mechanism 221: Solvent mechanism 111: Rotation drive shaft 301: Permanent magnet 302: Electromagnet 305: Link mechanism 306: Electric rotary donut disk 308: Roll member 309: Tapered slide guide 310: Electric rotary donut board 312: Link mechanism 313: Solvent mechanism

Claims (9)

回転駆動軸に軸心を連結し内周方向に沿い永久磁石を配列したローターと、前記ローターの内側において前記永久磁石の磁極に対して所定の磁極間間隙で電磁石の磁極を対面可能に配置したステーターとを設けた電動機において、前記対面時の磁極間間隙を拡縮駆動機構により拡縮可変可能にしたことを特徴とする電動機。 A rotor in which the axis is connected to the rotation drive shaft and permanent magnets are arranged along the inner peripheral direction, and the magnetic poles of the electromagnet are arranged so as to face each other with a predetermined magnetic pole gap with respect to the magnetic poles of the permanent magnet inside the rotor. An electric motor provided with a stator, characterized in that the gap between the magnetic poles at the time of facing each other can be expanded or contracted by an expansion / contraction drive mechanism. 前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石にリンク機構を介して連結し前記ステーターの中心部に所定量回転可能に装着した回転円盤とからなることを特徴とする前記請求項1に記載の電動機。 The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles is a guide for mounting the electromagnet on the stator so as to be movable in the radial direction thereof, and a predetermined amount connected to the electromagnet via a link mechanism at the center of the stator. The electric motor according to claim 1, further comprising a rotating disk mounted rotatably. 前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石の基部に設けたロール部材と、前記ロール部材に係合連結する円弧ガイド部を外周に形成して前記ステーターの中心部に回転可能に装着した電動式回転円盤とからなることを特徴とする前記請求項1に記載の電動機。 The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles includes a guide for mounting the electromagnet on the stator so as to be movable in the radial direction, a roll member provided at the base of the electromagnet, and an engagement connection with the roll member. The electric motor according to claim 1, further comprising an electric rotating disk having an arc guide portion formed on the outer periphery thereof and rotatably mounted on a central portion of the stator. 前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記永久磁石の反回転方向端部をバネ付軸で支持してその回転停止時に磁極を電磁石の磁極と平行に対面し当該永久磁石が回転するとその遠心力でバネ力に抗して回転方向に開作動可能にしてなることを特徴とする前記請求項1に記載の電動機。 The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles supports the end of the permanent magnet in the counter-rotation direction with a spring-loaded shaft, and when the rotation is stopped, the magnetic poles face parallel to the magnetic poles of the electromagnet and the permanent magnet rotates. The electric motor according to claim 1, wherein the centrifugal force enables the electric motor to open in the rotational direction against the spring force. 前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石にリンク機構を介して連結して前記ステーターに装着したソレノイド機構とからなることを特徴とする前記請求項1に記載の電動機。 The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles includes a guide for mounting the electromagnet on the stator so as to be movable in the radial direction, and a solenoid mechanism mounted on the stator by connecting the electromagnet to the electromagnet via a link mechanism. The electric motor according to claim 1, wherein the electric motor comprises. 回転駆動軸に軸心を連結し外周方向に沿い永久磁石を配列したローターと、前記ローターの外側において前記永久磁石の磁極に対して所定の磁極間間隙で電磁石の磁極を対面可能に配置したステーターとを設けた電動機において、前記対面時の磁極間間隙を拡縮駆動機構により拡縮可変可能にしたことを特徴とする電動機。 A rotor in which the axis is connected to the rotation drive shaft and permanent magnets are arranged along the outer peripheral direction, and a stator in which the magnetic poles of the electromagnet are arranged so as to face each other with a predetermined gap between the magnetic poles of the permanent magnet on the outside of the rotor. An electric motor provided with the above, wherein the gap between the magnetic poles at the time of facing each other can be expanded or contracted by an expansion / contraction drive mechanism. 前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石に軸支したリンク機構を介して軸支連結し前記ステーターの外周部に所定量回転可能に装着した電動式回転ドーナツ盤とからなることを特徴とする前記請求項6に記載の電動機。 The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles is a guide for mounting the electromagnet on the stator so as to be movable in the radial direction thereof, and a link mechanism pivotally supported by the electromagnet. The electric motor according to claim 6, further comprising an electric rotary donut board mounted on an outer peripheral portion so as to be rotatable by a predetermined amount. 前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石の側部に設けたロール部材と、前記ロール部材に係合連結するテーパスライドガイド部を外周に形成して前記ステーターの中心部に所定量回転可能に装着した回転ドーナツ盤とからなることを特徴とする前記請求項6に記載の電動機。 The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles engages the guide for mounting the electromagnet on the stator so as to be movable in the radial direction, the roll member provided on the side portion of the electromagnet, and the roll member. The electric motor according to claim 6, wherein a tapered slide guide portion to be connected is formed on an outer periphery thereof and is composed of a rotating donut disc rotatably mounted on a central portion of the stator by a predetermined amount. 前記磁極間間隙を拡縮可変させる拡縮駆動機構は、前記電磁石を前記ステーターにその半径方向の移動を可能に装着するガイドと、前記電磁石にリンク機構を介して連結して前記ステーターに装着したソレノイド機構とからなることを特徴とする前記請求項6に記載の電動機。 The expansion / contraction drive mechanism for varying the expansion / contraction of the gap between the magnetic poles includes a guide for mounting the electromagnet on the stator so as to be movable in the radial direction, and a solenoid mechanism mounted on the stator by connecting the electromagnet to the electromagnet via a link mechanism. The electric motor according to claim 6, wherein the electric motor comprises.
JP2019199365A 2019-10-11 2019-10-11 Electric motor Pending JP2021065076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019199365A JP2021065076A (en) 2019-10-11 2019-10-11 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199365A JP2021065076A (en) 2019-10-11 2019-10-11 Electric motor

Publications (1)

Publication Number Publication Date
JP2021065076A true JP2021065076A (en) 2021-04-22

Family

ID=75486683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199365A Pending JP2021065076A (en) 2019-10-11 2019-10-11 Electric motor

Country Status (1)

Country Link
JP (1) JP2021065076A (en)

Similar Documents

Publication Publication Date Title
JP4576363B2 (en) Auxiliary drive
US10122309B2 (en) Generator comprising a variable speed magnetic gear
CN105846567B (en) Outer-rotor type variable excitation formula motor
JP2012130086A (en) Axial gap type rotary electric machine
RU2544835C1 (en) Synchronous motor with magnet gear reduction
JP2017225223A (en) Electric motor
CN105656268B (en) Outer-rotor type variable excitation formula motor
WO2017158710A1 (en) Flywheel apparatus and power generation and driving motor apparatus
JP4528974B2 (en) Vibration suppression device
JP2021065076A (en) Electric motor
CN204497904U (en) Magnetically levitated flywheel motor
KR101891548B1 (en) Split Supercharger
JP2016039733A (en) Flywheel device, and power generation and drive motor device
US20150108856A1 (en) Rotating electric machine
JP4798598B2 (en) Wind power generator
JP3215881U (en) Flywheel device and rotating electric machine
JP2018157755A (en) Flywheel device, and power generation and drive motor device
JP2018011473A (en) Variable magnetic flux motor
JP2018191507A (en) Flywheel device and rotary electric machine
JP2010035398A (en) Energy-saving power/power generation system
JP2000266117A (en) Rotary magnetic damper
JP2023103146A (en) electric motor (1)
JP2023103145A (en) electric motor (2)
JP2001045739A (en) Self-exciting torque variable type rotating thrust generating equipment using magnet
Durairaju et al. An alternative PM machine configuration suitable for low speed and beyond—rated speed applications