JP2021060167A - Heat transfer body, heat exchange unit, and heat transfer body attaching method - Google Patents

Heat transfer body, heat exchange unit, and heat transfer body attaching method Download PDF

Info

Publication number
JP2021060167A
JP2021060167A JP2019185960A JP2019185960A JP2021060167A JP 2021060167 A JP2021060167 A JP 2021060167A JP 2019185960 A JP2019185960 A JP 2019185960A JP 2019185960 A JP2019185960 A JP 2019185960A JP 2021060167 A JP2021060167 A JP 2021060167A
Authority
JP
Japan
Prior art keywords
heat transfer
base material
transfer body
heat
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019185960A
Other languages
Japanese (ja)
Inventor
英輝 森内
Hideki Moriuchi
英輝 森内
修平 幡野
Shuhei Hatano
修平 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2019185960A priority Critical patent/JP2021060167A/en
Priority to PCT/JP2020/030697 priority patent/WO2021070470A1/en
Priority to TW109128089A priority patent/TW202129872A/en
Publication of JP2021060167A publication Critical patent/JP2021060167A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a heat transfer body, a heat exchange unit, and a heat transfer body attaching method which can provide a base material with flexibility and followability to a body to be heated, and can have an appropriate heat transfer effect.SOLUTION: A heat transfer body 10 includes a base material 20 which contains at least metal fibers and should be attached to a body to be heated, and a heat transfer part 30 a part of which is fused to the metal fibers of the base material 20 and another part of which is exposed.SELECTED DRAWING: Figure 1

Description

本発明は、被伝熱物から放熱したり被伝熱物に熱を与えたりするための伝熱体、このような伝熱体を備えた熱交換ユニットおよびこのような伝熱体を被伝熱物に取り付ける伝熱体取付方法に関する。 The present invention provides a heat transfer body for radiating heat from a heat transfer object or applying heat to the heat transfer object, a heat exchange unit provided with such a heat transfer body, and such a heat transfer body. The present invention relates to a method of attaching a heat transfer body to a hot object.

従来から、発熱する電気部品や電子部品等の被冷却物から放熱を行うために放熱体や放熱材として様々な種類のものが用いられている。このような放熱体等として、平板状の基部と、基部の上面から立設し、かつ、互いにほぼ平行に配置された複数の板状部材とを有するものが知られている。また、他の種類の放熱体等として、平板状の基部と、基部の上面から立設し、かつ、格子線の各交点上に配置された複数の棒状部材とを有するものが用いられてもよい。このような放熱体等では、少なくとも平板状の基部がソリッド材(すなわち、温度が変化してもほとんど伸縮しない部材)から形成されている。このため、放熱体等を被冷却物に取り付けた後、外部環境の変化によって被冷却物が伸縮した場合に、放熱体等の基部がこの被冷却物の伸縮と同じように伸縮することができず、よって被冷却物と放熱体等との間に隙間が生じてしまうため冷却効率が低下するという問題があった。 Conventionally, various types of heat radiating bodies and heat radiating materials have been used in order to dissipate heat from objects to be cooled such as electric parts and electronic parts that generate heat. As such a heat radiating body and the like, those having a flat plate-shaped base portion and a plurality of plate-shaped members erected from the upper surface of the base portion and arranged substantially parallel to each other are known. Further, as another type of heat radiating body or the like, one having a flat plate-shaped base and a plurality of rod-shaped members erected from the upper surface of the base and arranged on each intersection of lattice lines may be used. Good. In such a radiator or the like, at least a flat plate-shaped base is formed of a solid material (that is, a member that hardly expands or contracts even when the temperature changes). Therefore, after the radiator or the like is attached to the object to be cooled, when the object to be cooled expands or contracts due to a change in the external environment, the base of the radiator or the like can expand or contract in the same manner as the object to be cooled. Therefore, there is a problem that the cooling efficiency is lowered because a gap is formed between the object to be cooled and the radiator or the like.

また、従来の放熱体等として、特許文献1乃至4に開示されるものが従来から知られている。ここで、特許文献1乃至3に開示される放熱体等は略平板状となっている。より詳細には、特許文献1に開示される放熱体は、金属繊維、金属細線、金属箔およびセラミックス繊維から選択される少なくとも1種の熱伝導性素材の集合体から構成されたものである。また、特許文献2や特許文献3に開示される放熱材等は、フレキシブルな基材(例えば、ゲル状材料から形成されるもの等)から構成されたものである。 Further, as a conventional radiator or the like, those disclosed in Patent Documents 1 to 4 are conventionally known. Here, the radiators and the like disclosed in Patent Documents 1 to 3 have a substantially flat plate shape. More specifically, the radiator disclosed in Patent Document 1 is composed of an aggregate of at least one kind of thermally conductive material selected from metal fibers, fine metal wires, metal foils and ceramic fibers. Further, the heat radiating material and the like disclosed in Patent Document 2 and Patent Document 3 are made of a flexible base material (for example, one formed of a gel-like material).

また、特許文献4に開示される放熱フィンは、平板状の基部と、基部の上面から立設し、かつ、互いにほぼ平行に配置された複数の薄板状のフィンとを有しており、これらの基部および複数のフィンは一体的に形成されている。このような放熱フィンにおいて、基材および各フィンを厚み方向から見た際に、繊維状フィラーが基部および各フィンのそれぞれにおいて平面方向に配向されている。 Further, the heat radiation fin disclosed in Patent Document 4 has a flat plate-shaped base and a plurality of thin plate-shaped fins erected from the upper surface of the base and arranged substantially parallel to each other. The base and the plurality of fins are integrally formed. In such a heat radiating fin, when the base material and each fin are viewed from the thickness direction, the fibrous filler is oriented in the plane direction at each of the base and each fin.

特開平5−299545号公報Japanese Unexamined Patent Publication No. 5-299545 特開2000−101005号公報Japanese Unexamined Patent Publication No. 2000-101005 特開2002−88171号公報Japanese Unexamined Patent Publication No. 2002-88171 国際特許出願公開公報WO2017/061307A1International Patent Application Publication Publication WO2017 / 061307A1

しかしながら、特許文献1に開示される放熱体は、金属繊維、金属細線、金属箔およびセラミックス繊維から選択される少なくとも1種の熱伝導性素材の集合体から構成されたものであるため、この放熱体の内部には間隙が形成されており、この間隙に含まれる空気により断熱効果がもたらされる。また、特許文献1に開示される放熱体は平板状のものである。これらの理由により、特許文献1に開示される放熱体では被冷却物から十分に放熱することができないおそれがある。また、特許文献2や3に開示される放熱材等は被冷却物に接していないためこの被冷却物から十分に放熱することができないおそれがある。また、特許文献4に開示される放熱フィンは抄造成形体であり、この抄造成形体には、熱硬化性樹脂と、繊維状フィラーと、粉末状フィラーとが含まれる。この場合には抄造成形体はソリッド状のものとなるため、外部環境の変化によって被冷却物が伸縮した場合に、放熱フィンの基部が被冷却物の伸縮と同じように伸縮することができず、よって被冷却物と放熱体等との間に隙間が生じてしまうため冷却効率が低下してしまうおそれがある。 However, since the radiator disclosed in Patent Document 1 is composed of an aggregate of at least one kind of heat conductive material selected from metal fibers, fine metal wires, metal foils and ceramic fibers, this heat dissipation. A gap is formed inside the body, and the air contained in the gap provides a heat insulating effect. Further, the heat radiating body disclosed in Patent Document 1 is a flat plate. For these reasons, the heat radiating body disclosed in Patent Document 1 may not be able to sufficiently dissipate heat from the object to be cooled. Further, since the heat radiating material and the like disclosed in Patent Documents 2 and 3 are not in contact with the object to be cooled, there is a possibility that sufficient heat cannot be radiated from the object to be cooled. Further, the heat radiating fin disclosed in Patent Document 4 is a fabrication molded body, and the manufactured molded body includes a thermosetting resin, a fibrous filler, and a powder filler. In this case, since the manufactured body is solid, when the object to be cooled expands and contracts due to changes in the external environment, the base of the heat radiation fin cannot expand and contract in the same way as the object to be cooled expands and contracts. Therefore, there is a possibility that the cooling efficiency is lowered because a gap is formed between the object to be cooled and the radiator or the like.

本発明は、このような点を考慮してなされたものであり、基材に柔軟性および被伝熱物への追従性を持たせることができ、また、十分な伝熱効果を得ることができる伝熱体、熱交換ユニットおよび伝熱体取付方法を提供することを目的とする。 The present invention has been made in consideration of such a point, and it is possible to give the base material flexibility and followability to the heat transfer object, and to obtain a sufficient heat transfer effect. It is an object of the present invention to provide a heat transfer body, a heat exchange unit, and a heat transfer body mounting method which can be performed.

本発明の伝熱体は、少なくとも金属繊維を含む、被伝熱物に取り付けられるべき基材と、一部分が前記基材の金属繊維に融着し、その他の部分が露出している伝熱部と、を備えたことを特徴とする。 The heat transfer body of the present invention includes a base material to be attached to a heat transfer object, including at least a metal fiber, and a heat transfer portion in which a part is fused to the metal fiber of the base material and the other part is exposed. It is characterized by having.

本発明の熱交換ユニットは、少なくとも金属繊維を含む基材と、一部分が前記基材の金属繊維に融着し、その他の部分が露出している伝熱部と、前記基材が取り付けられる被伝熱物と、を備えたことを特徴とする。 In the heat exchange unit of the present invention, a base material containing at least a metal fiber, a heat transfer portion in which a part is fused to the metal fiber of the base material and the other part is exposed, and a subject to which the base material is attached. It is characterized by having a heat transfer material.

本発明の伝熱体取付方法は、少なくとも金属繊維を含む基材と、一部分が前記基材の金属繊維に融着し、その他の部分が露出している伝熱部とを有する伝熱体を準備する工程と、前記伝熱体の前記基材を被伝熱物に取り付ける工程と、を備えたことを特徴とする。 The heat transfer body mounting method of the present invention comprises a heat transfer body having a base material containing at least a metal fiber and a heat transfer portion having a part fused to the metal fiber of the base material and the other part exposed. It is characterized by including a step of preparing and a step of attaching the base material of the heat transfer body to a heat transfer object.

本発明の伝熱体、熱交換ユニットおよび伝熱体取付方法によれば、基材に柔軟性および被伝熱物への追従性を持たせることができ、また、十分な伝熱効果を得ることができる。 According to the heat transfer body, the heat exchange unit, and the heat transfer body mounting method of the present invention, the base material can be made flexible and followable to the heat transfer object, and a sufficient heat transfer effect can be obtained. be able to.

本発明の実施の形態による伝熱体の斜視図である。It is a perspective view of the heat transfer body according to the embodiment of this invention. 図1に示す伝熱体の上面図である。It is a top view of the heat transfer body shown in FIG. 図1に示す伝熱体の側面図である。It is a side view of the heat transfer body shown in FIG. 図1等に示す伝熱体において基材に対する伝熱部の各棒状部材の取り付け状態の一例を示す構成図である。FIG. 5 is a configuration diagram showing an example of a state in which each rod-shaped member of the heat transfer portion is attached to the base material in the heat transfer body shown in FIG. 1 and the like. 図1等に示す伝熱体において基材に対する伝熱部の各棒状部材の取り付け状態の他の例を示す構成図である。FIG. 5 is a configuration diagram showing another example of a state in which each rod-shaped member of the heat transfer portion is attached to the base material in the heat transfer body shown in FIG. 1 and the like. 図1等に示す伝熱体の基材が被伝熱物に取り付けられた熱交換ユニットの断面図である。FIG. 5 is a cross-sectional view of a heat exchange unit in which the base material of the heat transfer body shown in FIG. 1 and the like is attached to a heat transfer object. 本発明の実施の形態による他の例に係る伝熱体の斜視図である。It is a perspective view of the heat transfer body which concerns on another example by embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。図1乃至図7は、本実施の形態による伝熱体およびこのような伝熱体の基材が被伝熱物に取り付けられた熱交換ユニットを示す図である。本実施の形態による伝熱体は、発熱する電気部品や電子部品等の被伝熱物に取り付けられることにより、これらの被伝熱物から放熱を行うものである。また、本実施の形態による伝熱体は、冷却水や冷却ガス等の媒体が中を通るパイプの外周面に取り付けられることにより、周囲の環境から熱を奪って冷却するような熱交換ユニットの一部として用いられてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 7 are views showing a heat transfer body according to the present embodiment and a heat exchange unit in which a base material of such a heat transfer body is attached to a heat transfer object. The heat transfer body according to the present embodiment dissipates heat from the heat transferable objects such as electric parts and electronic parts that generate heat by being attached to the heat transferable objects. Further, the heat transfer body according to the present embodiment is a heat exchange unit that takes heat from the surrounding environment and cools it by being attached to the outer peripheral surface of a pipe through which a medium such as cooling water or cooling gas passes. It may be used as a part.

図1乃至図3に示すように、本実施の形態の伝熱体10は、被伝熱物に取り付けられるべき平板状の基材20と、基材20に取り付けられている複数の棒状部材から構成される伝熱部30とを備えている。基材20は、少なくとも金属繊維を含んでいる。基材20に含まれる金属繊維として、金属被覆繊維が用いられてもよい。また、基材20の金属繊維は、湿式または乾式の不織布、織布およびメッシュ等のうち少なくとも一つのものである。好ましくは、基材20として、金属繊維間が結着された金属繊維不織布が用いられる。 As shown in FIGS. 1 to 3, the heat transfer body 10 of the present embodiment is composed of a flat base material 20 to be attached to a heat transfer object and a plurality of rod-shaped members attached to the base material 20. It includes a heat transfer unit 30 that is configured. The base material 20 contains at least metal fibers. As the metal fiber contained in the base material 20, a metal-coated fiber may be used. The metal fiber of the base material 20 is at least one of a wet or dry non-woven fabric, a woven fabric, a mesh, and the like. Preferably, as the base material 20, a metal fiber non-woven fabric in which metal fibers are bonded is used.

基材20に含まれる金属繊維を構成する金属の具体例としては、特に限定されないが、ステンレス、鉄、銅、アルミニウム、青銅、黄銅、ニッケルおよびクロム等からなる群から選択されたもの、あるいは、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウムおよびオスミウム等からなる群から選択された貴金属であってもよい。この中でも、銅繊維およびアルミニウム繊維は、熱伝導性がすぐれており、また剛直性と塑性変形性とのバランスが適度であるため好ましい。 Specific examples of the metal constituting the metal fiber contained in the base material 20 are not particularly limited, but are selected from the group consisting of stainless steel, iron, copper, aluminum, bronze, brass, nickel, chromium and the like, or It may be a noble metal selected from the group consisting of gold, platinum, silver, palladium, rhodium, iridium, ruthenium, osmium and the like. Among these, copper fibers and aluminum fibers are preferable because they have excellent thermal conductivity and have an appropriate balance between rigidity and plastic deformability.

基材20として、繊維間が結着された金属繊維不織布が用いられる場合について以下に詳述する。金属繊維不織布は、金属繊維のみから構成されていてもよいし、金属繊維に加えて金属繊維以外のもの(例えば、アルミナ粒子等の熱伝導性粒子)を有していてもよい。金属繊維間が結着しているとは、金属繊維が物理的に固定されている状態を指し、金属繊維が物理的に固定されている部位を結着部という。結着部では、金属繊維同士が直接的に固定されていてもよいし、金属繊維の一部同士が金属成分以外の成分を介して間接的に固定されていてもよい。金属成分以外の成分としては、ポリエチレン樹脂およびポリプロピレン樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリビニルアルコール(PVA)樹脂、ポリ塩化ビニル樹脂、アラミド樹脂、ナイロンおよびアクリル系樹脂等、ならびにこれらの樹脂からなる繊維状物を例示できる。更には、金属繊維に対して結着性および担持性を有する有機物等を結着部に使用することもできる。 The case where a metal fiber non-woven fabric in which fibers are bonded is used as the base material 20 will be described in detail below. The metal fiber non-woven fabric may be composed of only metal fibers, or may have other than metal fibers (for example, thermally conductive particles such as alumina particles) in addition to the metal fibers. The binding between the metal fibers refers to a state in which the metal fibers are physically fixed, and the portion where the metal fibers are physically fixed is called a binding portion. At the binding portion, the metal fibers may be directly fixed to each other, or a part of the metal fibers may be indirectly fixed to each other via a component other than the metal component. Examples of the components other than the metal component include polyolefin resins such as polyethylene resin and polypropylene resin, polyethylene terephthalate (PET) resin, polyvinyl alcohol (PVA) resin, polyvinyl chloride resin, aramid resin, nylon and acrylic resin, and the like. A fibrous material made of resin can be exemplified. Further, an organic substance or the like having binding property and supporting property to the metal fiber can be used for the binding portion.

金属繊維の平均繊維径は、不織布の均質性を損なわない範囲で任意に設定可能であるが、好ましくは1μm〜30μmの範囲内の大きさであり、更に好ましくは2μm〜20μmの範囲内の大きさである。金属繊維の平均繊維径が1μm以上であれば、金属繊維の適度な剛直性が得られるため、不織布にする際にいわゆるダマが発生しにくい傾向がある。金属繊維の平均繊維径が30μm以下であれば、金属繊維の適度な可撓性が得られるため、繊維が適度に交差しやすい傾向がある。なお、金属繊維の平均繊維径は不織布とするのに支障がない範囲内において小さい方が金属繊維不織布の均質性を高め易くなるため好ましい。また、本明細書における「平均繊維径」とは、顕微鏡で撮像された金属繊維不織布の長手方向に対する任意の垂直断面における、金属繊維の断面積を算出し(例えば、公知ソフトにて算出する)、当該断面積と同一面積を有する円の直径を算出することにより導かれた面積径の平均値(例えば、20個の繊維の平均値)である。 The average fiber diameter of the metal fibers can be arbitrarily set as long as the homogeneity of the non-woven fabric is not impaired, but is preferably a size in the range of 1 μm to 30 μm, and more preferably a size in the range of 2 μm to 20 μm. That's right. When the average fiber diameter of the metal fibers is 1 μm or more, appropriate rigidity of the metal fibers can be obtained, so that so-called lumps tend to be less likely to occur when the non-woven fabric is made. When the average fiber diameter of the metal fibers is 30 μm or less, appropriate flexibility of the metal fibers can be obtained, so that the fibers tend to cross each other appropriately. It is preferable that the average fiber diameter of the metal fibers is as small as possible within a range that does not hinder the non-woven fabric, because the homogeneity of the metal fiber non-woven fabric can be easily improved. Further, the "average fiber diameter" in the present specification is calculated by calculating the cross-sectional area of the metal fiber in an arbitrary vertical cross section with respect to the longitudinal direction of the metal fiber non-woven fabric imaged by a microscope (for example, calculated by known software). , The average value of the area diameters derived by calculating the diameter of the circle having the same area as the cross-sectional area (for example, the average value of 20 fibers).

また、金属繊維の長手方向に垂直な断面形状は円形、楕円形、略四角形、不定形等いずれであっても良いが、好ましくは円形である。ここで、円形断面とは、金属繊維不織布の生産を実施する上で受ける応力において、曲部を生じ易い程度の円断面形状であれば良いため、真円断面である必要はない。 The cross-sectional shape perpendicular to the longitudinal direction of the metal fiber may be circular, elliptical, substantially quadrangular, amorphous, or the like, but is preferably circular. Here, the circular cross section does not have to be a perfect circular cross section because it may have a circular cross section shape that is likely to cause a curved portion in the stress received in the production of the metal fiber non-woven fabric.

金属繊維の平均繊維長は、1mm〜10mmの範囲内であることが好ましく、更に好ましくは、3mm〜5mmの範囲である。なお、金属繊維の繊維長は不織布とするのに支障がない範囲内において短い方が金属繊維不織布の均質性を高めやすくなるため好ましい。平均繊維長が1mm〜10mmの範囲内であると、例えば、抄造によって金属繊維不織布を作製する場合に、いわゆる金属繊維のダマが生じにくく、金属繊維の分散の度合いを制御しやすくなると共に、金属繊維同士が適度に交絡するため、金属繊維不織布のハンドリング強度の向上効果をも発揮しやすくなる。なお、本明細書における「平均繊維長」とは、顕微鏡で20本を測定し、測定値を平均した値である。 The average fiber length of the metal fibers is preferably in the range of 1 mm to 10 mm, more preferably in the range of 3 mm to 5 mm. It is preferable that the fiber length of the metal fiber is short within a range that does not hinder the non-woven fabric because it is easy to improve the homogeneity of the metal fiber non-woven fabric. When the average fiber length is within the range of 1 mm to 10 mm, for example, when a metal fiber non-woven fabric is produced by fabrication, so-called metal fiber lumps are less likely to occur, the degree of dispersion of the metal fibers can be easily controlled, and the metal can be easily controlled. Since the fibers are appropriately entangled with each other, the effect of improving the handling strength of the metal fiber non-woven fabric can be easily exerted. The "average fiber length" in the present specification is a value obtained by measuring 20 fibers with a microscope and averaging the measured values.

なお、基材20として金属繊維不織布ではなく金属繊維の織布を用いてもよい。金属繊維の織布にも伸縮可能なものがあるため、このような伸縮可能な金属繊維の織布から構成される基材20を用いた場合には、当該基材20が取り付けられた被伝熱物が伸縮したときに基材20が追随して伸縮する。このことにより、基材20と被伝熱物との間に隙間が生じてしまうことを防止することができる。 A metal fiber woven fabric may be used as the base material 20 instead of the metal fiber non-woven fabric. Since some metal fiber woven fabrics can be expanded and contracted, when a base material 20 composed of such a stretchable metal fiber woven fabric is used, the transfer to which the base material 20 is attached is transmitted. When the hot material expands and contracts, the base material 20 expands and contracts accordingly. This makes it possible to prevent a gap from being formed between the base material 20 and the heat transfer object.

基材20の厚みは、任意の厚さに調整可能であるが、例えば1mm〜50mmの範囲内であることが好ましく、2mm〜10mmの範囲内であることがより好ましい。本明細書における「基材20の厚み」とは、空気による端子落下方式の膜厚計(例えば、ミツトヨ社製:デジマチックインジケータID−C112X)により、任意の数の測定点を測定した場合の平均値をいう。 The thickness of the base material 20 can be adjusted to any thickness, but is preferably in the range of, for example, 1 mm to 50 mm, and more preferably in the range of 2 mm to 10 mm. The "thickness of the base material 20" in the present specification is a case where an arbitrary number of measurement points are measured by a film thickness meter (for example, manufactured by Mitutoyo Co., Ltd .: Digimatic Indicator ID-C112X) of a terminal drop type by air. The average value.

基材20における金属繊維の占積率は、5〜50%の範囲内であることが好ましく、15%〜40%の範囲内であることがより好ましい。金属繊維の占積率が5%以上の場合には、金属繊維の量が十分であるため適度な均質性が得られる。また、金属繊維の占積率が50%以下であれば、適度な均質性に加え、金属繊維不織布の所望の可撓性が得られる。本明細書における「基材20における金属繊維の占積率」とは、基材20の体積に対して金属繊維が存在する部分の割合である。 The space factor of the metal fiber in the base material 20 is preferably in the range of 5 to 50%, more preferably in the range of 15% to 40%. When the space factor of the metal fibers is 5% or more, the amount of the metal fibers is sufficient, so that appropriate homogeneity can be obtained. Further, when the space factor of the metal fiber is 50% or less, the desired flexibility of the metal fiber non-woven fabric can be obtained in addition to the appropriate homogeneity. In the present specification, the "space ratio of metal fibers in the base material 20" is the ratio of the portion where the metal fibers are present to the volume of the base material 20.

JIS P8113に準拠した基材20の伸び率(引張破断伸び)は50ppm〜50,000ppmの範囲内の大きさであることが好ましく、100ppm〜20,000ppmの範囲内の大きさであることがより好ましく、200ppm〜5,000ppmの範囲内の大きさであることが更に好ましい。基材20が適度な伸び率を有することにより、例えば絶縁層等の被伝熱物に沿って基材20が折り曲げられた場合、基材20の折り曲げ部の外側に伸びしろがあることにより、座屈せずに被伝熱物に追従しやすくなる効果を奏する。具体的には、基材20の伸び率が100ppmよりも小さい場合には、基材20が取り付けられた被伝熱物が伸縮しても基材20が被伝熱物に追随して伸縮することができず、基材20と被伝熱物との間に隙間が生じるおそれがある。一方、基材20の伸び率が50,000ppmよりも大きい場合には、基材20の強度が弱くなってしまったり、基材20の伝熱性が悪くなってしまったりするおそれがある。このような基材20の伸び率は、金属繊維の平均繊維長、金属繊維の平均繊維径、基材20における金属繊維の占積率、金属繊維間の距離等によって決まる。本明細書における「基材20の伸び率」は、JIS P8113(ISO 1924−2)に準拠して測定した値をいう。具体的には、試験片の面積を15mm×180mmとなるように調整し、引っ張り試験機(エーアンドディー社製 製品名:RTG1210)を使用し、引張速度30mm/minにて測定して求めることができる。 The elongation rate (tensile fracture elongation) of the base material 20 according to JIS P8113 is preferably in the range of 50 ppm to 50,000 ppm, and more preferably in the range of 100 ppm to 20,000 ppm. The size is preferably in the range of 200 ppm to 5,000 ppm, and more preferably. Since the base material 20 has an appropriate elongation rate, for example, when the base material 20 is bent along a heat transfer object such as an insulating layer, there is a margin for stretching outside the bent portion of the base material 20. It has the effect of making it easier to follow the heat transfer object without buckling. Specifically, when the elongation rate of the base material 20 is smaller than 100 ppm, the base material 20 expands and contracts following the heat transfer material even if the heat transfer material to which the base material 20 is attached expands and contracts. There is a possibility that a gap may be formed between the base material 20 and the heat transfer object. On the other hand, when the elongation rate of the base material 20 is larger than 50,000 ppm, the strength of the base material 20 may be weakened or the heat transfer property of the base material 20 may be deteriorated. The elongation rate of such a base material 20 is determined by the average fiber length of the metal fibers, the average fiber diameter of the metal fibers, the space factor of the metal fibers in the base material 20, the distance between the metal fibers, and the like. The “elongation rate of the base material 20” in the present specification means a value measured in accordance with JIS P8113 (ISO 1924-2). Specifically, the area of the test piece is adjusted to be 15 mm × 180 mm, and the measurement is performed at a tensile speed of 30 mm / min using a tensile tester (product name: RTG1210 manufactured by A & D Co., Ltd.). Can be done.

本実施の形態により基材20は、少なくとも上述した金属繊維を含んでいるため、基材20に柔軟性および被伝熱物への追従性を持たせることができるようになる。具体的には、例えば基材20が取り付けられた被伝熱物が伸縮した場合でも、このような被伝熱物の伸縮に合わせて基材20が伸縮することにより、被伝熱物と基材20との間に隙間が形成されてしまうことを防止することができる。 According to the present embodiment, since the base material 20 contains at least the above-mentioned metal fibers, the base material 20 can be provided with flexibility and followability to the heat transfer object. Specifically, for example, even when the heat-transferred material to which the base material 20 is attached expands and contracts, the base material 20 expands and contracts in accordance with the expansion and contraction of the heat-transferred material, so that the heat-transferred material and the base are formed. It is possible to prevent a gap from being formed between the material 20 and the material 20.

次に、伝熱部30の構成について説明する。図1乃至図3に示すように、伝熱部30は、基材20から外側に延びる複数の棒状部材を有しており、各棒状部材は格子線の各交点上に配置されている。このような各棒状部材は例えば金属等から構成されている。より好ましくは、基材20に含まれる金属繊維を構成する金属の種類と、伝熱部30の各棒状部材を構成する金属の種類とが同一である。この場合には、基材20および伝熱部30が同じ種類の金属から形成されていることにより、基材20と伝熱部30との間で界面腐食が生じることを抑制することができる。すなわち、基材20に含まれる金属繊維を構成する金属の種類と、伝熱部30の各棒状部材を構成する金属の種類とが異なる場合には、両者の金属の間の電位差により電流が流れてしまい金属に穴が形成されてしまうおそれがある。 Next, the configuration of the heat transfer unit 30 will be described. As shown in FIGS. 1 to 3, the heat transfer portion 30 has a plurality of rod-shaped members extending outward from the base material 20, and each rod-shaped member is arranged on each intersection of lattice lines. Each such rod-shaped member is made of, for example, metal or the like. More preferably, the type of metal constituting the metal fiber contained in the base material 20 and the type of metal constituting each rod-shaped member of the heat transfer portion 30 are the same. In this case, since the base material 20 and the heat transfer portion 30 are made of the same type of metal, it is possible to suppress the occurrence of interfacial corrosion between the base material 20 and the heat transfer portion 30. That is, when the type of metal constituting the metal fiber contained in the base material 20 and the type of metal constituting each rod-shaped member of the heat transfer portion 30 are different, a current flows due to the potential difference between the two metals. There is a risk that holes will be formed in the metal.

上述したように、基材20に含まれる金属繊維を構成する金属の種類と、伝熱部30の各棒状部材を構成する金属の種類とが同一であることが好ましいが、本実施の形態はこのような態様に限定されることはない。他の態様として、基材20に含まれる金属繊維を構成する金属の種類と、伝熱部30の各棒状部材を構成する金属の種類とが互いに異なる伝熱体10が用いられてもよい。 As described above, it is preferable that the type of metal constituting the metal fiber contained in the base material 20 and the type of metal constituting each rod-shaped member of the heat transfer portion 30 are the same. It is not limited to such an aspect. As another embodiment, a heat transfer body 10 in which the type of metal constituting the metal fiber contained in the base material 20 and the type of metal constituting each rod-shaped member of the heat transfer unit 30 are different from each other may be used.

また、図3および図4に示すように、伝熱部30を構成する各棒状部材は、一部分が基材20の金属繊維に融着し、その他の部分が露出している。なお、図4に示すように、伝熱部30を構成する各棒状部材の端部が、基材20の厚さ方向において当該基材20の途中の箇所まで延びていてもよい。あるいは、図5に示すように、伝熱部30を構成する各棒状部材が、基材20を貫通していてもよい。本明細書では、「基材20の金属繊維に融着する」とは、焼結、伝熱性物質による接合等を含むものである。 Further, as shown in FIGS. 3 and 4, a part of each rod-shaped member constituting the heat transfer portion 30 is fused to the metal fiber of the base material 20, and the other part is exposed. As shown in FIG. 4, the end portion of each rod-shaped member constituting the heat transfer portion 30 may extend to a portion in the middle of the base material 20 in the thickness direction of the base material 20. Alternatively, as shown in FIG. 5, each rod-shaped member constituting the heat transfer portion 30 may penetrate the base material 20. In the present specification, "fusing to the metal fiber of the base material 20" includes sintering, bonding with a heat conductive substance, and the like.

例えば、伝熱部30を構成する各棒状部材の長さは、0.5〜50mmの範囲内の大きさであることが好ましく、1mm〜30mmの範囲内の大きさであることがより好ましい。さらに好ましくは、伝熱部30を構成する各棒状部材の長さは5mm〜20mmの範囲内の大きさである。また、伝熱部30を構成する各棒状部材の直径は、0.1〜5mmの範囲内の大きさであることが好ましく、0.5〜3mmの範囲内の大きさであることがより好ましい。この範囲内であれば、十分な伝熱効果を得ることができる。 For example, the length of each rod-shaped member constituting the heat transfer portion 30 is preferably in the range of 0.5 to 50 mm, and more preferably in the range of 1 mm to 30 mm. More preferably, the length of each rod-shaped member constituting the heat transfer portion 30 is in the range of 5 mm to 20 mm. The diameter of each rod-shaped member constituting the heat transfer portion 30 is preferably in the range of 0.1 to 5 mm, more preferably in the range of 0.5 to 3 mm. .. Within this range, a sufficient heat transfer effect can be obtained.

このような基材20および伝熱部30を備えた伝熱体10の製造方法について説明する。まず、金属繊維等を水中に分散させて抄造スラリーを得る。次に、得られた抄造スラリーをバッチ式抄造装置に投入する。そして、抄造スラリーが投入されたバッチ式抄造装置の槽内に、伝熱部30となる棒状部材を、下部が抄造網に接し、上部は固定した状態でセットする。その後、濾水することで、少なくとも金属繊維を含む基材20に伝熱部30の各棒状部材が法線方向に立った伝熱体10を得ることができる。なお、濾水した後で、伝熱部30となる棒状部材を基材20に立ててもよい。そして、基材20に伝熱部30の各棒状部材が法線方向に立った状態を保ったまま、例えば水素ガス75%、窒素ガス25%の雰囲気中で焼結することで、伝熱部30を構成する棒状部材の一部分が基材20の金属繊維に融着した伝熱体10を得ることができる。 A method of manufacturing the heat transfer body 10 provided with such a base material 20 and a heat transfer unit 30 will be described. First, a papermaking slurry is obtained by dispersing metal fibers and the like in water. Next, the obtained papermaking slurry is put into a batch papermaking machine. Then, in the tank of the batch-type papermaking apparatus into which the papermaking slurry is charged, a rod-shaped member to be the heat transfer portion 30 is set in a state where the lower part is in contact with the papermaking net and the upper part is fixed. After that, by filtering water, it is possible to obtain a heat transfer body 10 in which each rod-shaped member of the heat transfer portion 30 stands in the normal direction on the base material 20 containing at least metal fibers. After filtering the water, a rod-shaped member to be the heat transfer portion 30 may be erected on the base material 20. Then, while each rod-shaped member of the heat transfer portion 30 stands on the base material 20 in the normal direction, the heat transfer portion is sintered by sintering in an atmosphere of, for example, 75% hydrogen gas and 25% nitrogen gas. It is possible to obtain a heat transfer body 10 in which a part of the rod-shaped member constituting the 30 is fused to the metal fiber of the base material 20.

次に、伝熱体10を被伝熱物に取り付ける方法について説明する。まず、発熱する電気部品や電子部品等の被伝熱物の放熱を行う場合について述べる。被伝熱物の放熱を行うために、伝熱体10の基材20を被伝熱物に取り付ける。被伝熱物における基材20が取り付けられる箇所が平面である場合には、融着、ボルド止め、ネジ止め、接着剤等により伝熱体10の基材20が被伝熱物に取り付けられる。また、伝熱体10の基材20を被伝熱物に取り付ける代わりに、単に被伝熱物の上に伝熱体10の基材20を載せるだけでもよい。また、被伝熱物における基材20が取り付けられる箇所が平面ではなく曲面や凹凸面、粗面であっても、基材20は少なくとも金属繊維を含むため、被伝熱物における基材20が取り付けられる箇所の形状に沿って基材20を変形させることができ、よって基材20と被伝熱物との間に隙間が生じることを抑制することができる。 Next, a method of attaching the heat transfer body 10 to the heat transfer object will be described. First, a case of dissipating heat from a heat-transferred object such as an electric component or an electronic component that generates heat will be described. In order to dissipate heat from the heat transfer object, the base material 20 of the heat transfer body 10 is attached to the heat transfer object. When the portion of the heat transfer material to which the base material 20 is attached is a flat surface, the base material 20 of the heat transfer body 10 is attached to the heat transfer material by fusion, boulding, screwing, adhesive or the like. Further, instead of attaching the base material 20 of the heat transfer body 10 to the heat transfer object, the base material 20 of the heat transfer body 10 may be simply placed on the heat transfer object. Further, even if the portion of the heat-transferred material to which the base material 20 is attached is not a flat surface but a curved surface, an uneven surface, or a rough surface, the base material 20 contains at least metal fibers, so that the base material 20 in the heat-transferred material is present. The base material 20 can be deformed along the shape of the portion to be attached, and thus it is possible to suppress the formation of a gap between the base material 20 and the heat transfer object.

伝熱体10の基材20を被伝熱物に取り付ける際に、基材20の中に、または基材20と被伝熱物との間に、熱伝導性グリース等の伝熱補助剤を注入してもよい。伝熱補助剤としては、液状の樹脂、好ましくは液状の熱硬化性樹脂が用いられる。また、伝熱補助剤として、熱伝導性フィラーを含む液状のゴムが用いられてもよい。このような伝熱補助剤を基材20の中に、または基材20と被伝熱物との間に注入することにより、より効率よく被伝熱物から放熱することができるようになる。とりわけ、基材20が金属繊維不織布を含む場合には、金属繊維不織布が伝熱補助剤の保持体を兼ね、基材20に伝熱補助剤を保持させることができるようになるので、被伝熱物が伸縮しても基材20の中や基材20と被伝熱物との間から伝熱補助剤が漏れ出てしまうことを抑制することができる。 When attaching the base material 20 of the heat transfer body 10 to the heat transfer object, a heat transfer aid such as heat conductive grease is applied into the base material 20 or between the base material 20 and the heat transfer object. It may be injected. As the heat transfer aid, a liquid resin, preferably a liquid thermosetting resin is used. Further, as the heat transfer aid, a liquid rubber containing a heat conductive filler may be used. By injecting such a heat transfer auxiliary agent into the base material 20 or between the base material 20 and the heat transfer object, heat can be dissipated from the heat transfer object more efficiently. In particular, when the base material 20 contains a metal fiber non-woven fabric, the metal fiber non-woven fabric also serves as a holder for the heat transfer auxiliary agent, and the base material 20 can hold the heat transfer auxiliary agent. Even if the heat transfer material expands and contracts, it is possible to prevent the heat transfer aid from leaking into the base material 20 or between the base material 20 and the heat transfer material.

伝熱体10の基材20が被伝熱物に取り付けられたときに、被伝熱物が伸縮した場合でも、基材20が少なくとも金属繊維を含むことによりこの基材20に柔軟性および被伝熱物への追従性を持たせることができ、よって基材20と被伝熱物との間に隙間が生じなくなる。このため、十分な伝熱性を維持することができる。また、基材20の金属繊維にその一部分が融着している伝熱部30におけるその他の部分が露出しているため、伝熱体10は十分な伝熱効果を得ることができる。 When the base material 20 of the heat transfer body 10 is attached to the heat transfer object, even if the heat transfer object expands and contracts, the base material 20 contains at least metal fibers to provide flexibility and cover to the base material 20. It is possible to have the ability to follow the heat transfer material, so that no gap is formed between the base material 20 and the heat transfer material. Therefore, sufficient heat transfer can be maintained. Further, since the other portion of the heat transfer portion 30 in which a part thereof is fused to the metal fiber of the base material 20 is exposed, the heat transfer body 10 can obtain a sufficient heat transfer effect.

次に、冷却水や冷却ガス等の媒体が中を通るパイプの外周面に伝熱体10を取り付けることにより、周囲の環境から熱を奪って冷却するような熱交換器の一部として伝熱体10を用いる場合について図6を用いて説明する。図6に示すように、被伝熱物として用いられるパイプ40の外周面に伝熱体10の基材20を融着、ボルド止め、ネジ止め、接着剤等により取り付ける。この際に、基材20は少なくとも金属繊維を含むため、パイプの外周面の曲面に沿って基材20を曲げることができ、よって基材20とパイプ40との間に隙間が生じることを抑制することができる。このため、十分な伝熱性を維持することができる。また、パイプ40の外周面に伝熱体10の基材20を取り付ける際に、基材20の中に、または基材20とパイプ40との間に、上述した熱伝導性グリース等の伝熱補助剤を注入する。このことにより、より効率よく周囲の環境から熱を奪って冷却することができるようになる。 Next, by attaching the heat transfer body 10 to the outer peripheral surface of the pipe through which a medium such as cooling water or cooling gas passes, heat transfer is performed as a part of a heat exchanger that takes heat from the surrounding environment and cools it. The case where the body 10 is used will be described with reference to FIG. As shown in FIG. 6, the base material 20 of the heat transfer body 10 is attached to the outer peripheral surface of the pipe 40 used as the heat transfer material by fusion, boulding, screwing, adhesive or the like. At this time, since the base material 20 contains at least metal fibers, the base material 20 can be bent along the curved surface of the outer peripheral surface of the pipe, thereby suppressing the formation of a gap between the base material 20 and the pipe 40. can do. Therefore, sufficient heat transfer can be maintained. Further, when the base material 20 of the heat transfer body 10 is attached to the outer peripheral surface of the pipe 40, heat transfer such as the above-mentioned heat conductive grease is performed in the base material 20 or between the base material 20 and the pipe 40. Inject an adjunct. This makes it possible to more efficiently remove heat from the surrounding environment and cool it.

周囲の環境から熱を奪って冷却するためにパイプ40に伝熱体10の基材20が取り付けられたときに、パイプ40が伸縮した場合でも、基材20が少なくとも金属繊維を含むことによりこの基材20に柔軟性および被伝熱物への追従性を持たせることができ、よって基材20とパイプ40との間に隙間が生じなくなる。このため、十分な伝熱性を維持することができる。また、この場合でも、基材20の金属繊維にその一部分が融着している伝熱部30におけるその他の部分が露出しているため、伝熱体10は十分な伝熱効果を得ることができる。 Even if the base material 20 of the heat transfer body 10 is attached to the pipe 40 in order to remove heat from the surrounding environment and cool the pipe 40, even if the pipe 40 expands and contracts, the base material 20 contains at least metal fibers. The base material 20 can be provided with flexibility and followability to the heat transfer object, so that a gap is not formed between the base material 20 and the pipe 40. Therefore, sufficient heat transfer can be maintained. Further, even in this case, since the other part of the heat transfer portion 30 in which a part thereof is fused to the metal fiber of the base material 20 is exposed, the heat transfer body 10 can obtain a sufficient heat transfer effect. it can.

なお、本実施の形態では、図6に示すように、少なくとも金属繊維を含む基材20と、一部分が基材20の金属繊維に融着し、その他の部分が露出している伝熱部30と、基材20が取り付けられる被伝熱物(具体的には、パイプ40)とを組み合わせることにより、熱交換ユニットが構成されている。また、このような熱交換ユニットにおいて、基材20と被伝熱物との間、または基材20に伝熱補助剤が含まれている。 In the present embodiment, as shown in FIG. 6, a heat transfer portion 30 containing at least a metal fiber and a part thereof fused to the metal fiber of the base material 20 and the other part is exposed. The heat exchange unit is configured by combining the heat transfer material (specifically, the pipe 40) to which the base material 20 is attached. Further, in such a heat exchange unit, a heat transfer auxiliary agent is contained between the base material 20 and the heat transfer object, or in the base material 20.

なお、本実施の形態による伝熱体や熱交換ユニットは、上述したような態様に限定されることはなく、様々な変更を加えることができる。 The heat transfer body and the heat exchange unit according to the present embodiment are not limited to the above-described aspects, and various changes can be made.

例えば、伝熱部の各棒状部材は格子線の各交点上に配置されるものに限定されない。他の態様に係る伝熱体として、伝熱部の各棒状部材が基材上にランダムに配置されるものが用いられてもよい。 For example, each rod-shaped member of the heat transfer portion is not limited to the one arranged on each intersection of the grid lines. As the heat transfer body according to another aspect, one in which each rod-shaped member of the heat transfer portion is randomly arranged on the base material may be used.

また、本実施の形態による伝熱体として、図7に示すような構成のものが用いられてもよい。図7に示す伝熱体10aは、被伝熱物に取り付けられるべき平板状の基材20と、基材20に取り付けられている複数の板状部材から構成される伝熱部32とを備えている。図7に示す伝熱体10aにおける基材20は、図1乃至図6に示す伝熱体10における基材20と略同一の構成となっているためその説明を省略する。伝熱部32は、基材20から外側に延びる複数の板状部材を有しており、各板状部材は略平行に延びるよう配置されている。このような各板状部材は例えば金属等から構成されている。より好ましくは、基材20に含まれる金属繊維を構成する金属の種類と、伝熱部32の各板状部材を構成する金属の種類とが同一である。この場合には、基材20および伝熱部32が同じ種類の金属から形成されていることにより、基材20と伝熱部32との間で界面腐食が生じることを抑制することができる。なお、本実施の形態はこのような態様に限定されることはない。他の態様において、基材20に含まれる金属繊維を構成する金属の種類と、伝熱部32の各板状部材を構成する金属の種類とが互いに異なっていてもよい。 Further, as the heat transfer body according to the present embodiment, a heat transfer body having a configuration as shown in FIG. 7 may be used. The heat transfer body 10a shown in FIG. 7 includes a flat plate-shaped base material 20 to be attached to the heat transfer object, and a heat transfer portion 32 composed of a plurality of plate-shaped members attached to the base material 20. ing. Since the base material 20 in the heat transfer body 10a shown in FIG. 7 has substantially the same configuration as the base material 20 in the heat transfer body 10 shown in FIGS. 1 to 6, the description thereof will be omitted. The heat transfer portion 32 has a plurality of plate-shaped members extending outward from the base material 20, and each plate-shaped member is arranged so as to extend substantially in parallel. Each such plate-shaped member is made of, for example, metal or the like. More preferably, the type of metal constituting the metal fiber contained in the base material 20 and the type of metal constituting each plate-shaped member of the heat transfer portion 32 are the same. In this case, since the base material 20 and the heat transfer portion 32 are made of the same type of metal, it is possible to suppress the occurrence of interfacial corrosion between the base material 20 and the heat transfer portion 32. The present embodiment is not limited to such an embodiment. In another aspect, the type of metal constituting the metal fiber contained in the base material 20 and the type of metal constituting each plate-shaped member of the heat transfer portion 32 may be different from each other.

また、伝熱部32を構成する各板状部材は、一部分が基材20の金属繊維に融着し、その他の部分が露出している。なお、伝熱部32を構成する各板状部材の端部が、基材20の厚さ方向において当該基材20の途中の箇所まで延びていてもよい。あるいは、伝熱部32を構成する各板状部材が、基材20を貫通していてもよい。伝熱部32を構成する各板状部材の長さは、1〜50mmの範囲内の大きさであることが好ましく、10mm〜30mmの範囲内の大きさであることがより好ましい。また、伝熱部32を構成する各板状部材の厚さは、0.1〜5mmの範囲内の大きさであることが好ましく、0.5〜3mmの範囲内の大きさであることがより好ましい。 Further, a part of each plate-shaped member constituting the heat transfer portion 32 is fused to the metal fiber of the base material 20, and the other part is exposed. The end of each plate-shaped member constituting the heat transfer portion 32 may extend to a portion in the middle of the base material 20 in the thickness direction of the base material 20. Alternatively, each plate-shaped member constituting the heat transfer portion 32 may penetrate the base material 20. The length of each plate-shaped member constituting the heat transfer portion 32 is preferably in the range of 1 to 50 mm, and more preferably in the range of 10 mm to 30 mm. The thickness of each plate-shaped member constituting the heat transfer portion 32 is preferably in the range of 0.1 to 5 mm, and preferably in the range of 0.5 to 3 mm. More preferred.

図7に示すような伝熱体10aを用いた場合にも、図1乃至図6に示すような伝熱体10を用いた場合と同様に、被伝熱物に取り付けられるべき基材20が少なくとも金属繊維を含むことによりこの基材20に柔軟性および被伝熱物への追従性を持たせることができ、また、基材20の金属繊維にその一部分が融着している伝熱部32におけるその他の部分が露出しているため十分な伝熱効果を得ることができる。 Even when the heat transfer body 10a as shown in FIG. 7 is used, the base material 20 to be attached to the heat transfer object is the same as when the heat transfer body 10 as shown in FIGS. 1 to 6 is used. By containing at least a metal fiber, the base material 20 can be made flexible and followable to a heat transferable object, and a heat transfer portion in which a part thereof is fused to the metal fiber of the base material 20. Since the other parts of 32 are exposed, a sufficient heat transfer effect can be obtained.

また、更に別の例として、伝熱体の伝熱部は、棒状部材や板状部材以外の形状の部材から形成されていてもよい。また、伝熱部の材料は金属であることに限定されない。 Further, as yet another example, the heat transfer portion of the heat transfer body may be formed of a member having a shape other than the rod-shaped member or the plate-shaped member. Further, the material of the heat transfer part is not limited to metal.

また、伝熱体の基材として、少なくとも金属繊維を含むものであれば、金属繊維不織布以外のものが用いられてもよい。また、基材の形状は平板状に限定されることはない。 Further, as the base material of the heat transfer body, a material other than the metal fiber non-woven fabric may be used as long as it contains at least metal fibers. Further, the shape of the base material is not limited to the flat plate shape.

10 伝熱体
10a 伝熱体
20 基材
30 伝熱部
32 伝熱部
40 パイプ

10 Heat transfer body 10a Heat transfer body 20 Base material 30 Heat transfer part 32 Heat transfer part 40 Pipe

Claims (16)

少なくとも金属繊維を含む、被伝熱物に取り付けられるべき基材と、
一部分が前記基材の金属繊維に融着し、その他の部分が露出している伝熱部と、
を備えた、伝熱体。
A substrate to be attached to the heat transfer material, including at least metal fibers,
A heat transfer part in which a part is fused to the metal fiber of the base material and the other part is exposed.
A heat transfer body equipped with.
前記基材は平板状である、請求項1記載の伝熱体。 The heat transfer body according to claim 1, wherein the base material is a flat plate. 前記伝熱部は、前記基材から外側に延びる棒状部材を含む、請求項1または2記載の伝熱体。 The heat transfer body according to claim 1 or 2, wherein the heat transfer unit includes a rod-shaped member extending outward from the base material. 前記伝熱部において前記棒状部材は複数設けられており、各前記棒状部材は格子線の各交点上に配置されている、請求項3記載の伝熱体。 The heat transfer body according to claim 3, wherein a plurality of the rod-shaped members are provided in the heat transfer portion, and each of the rod-shaped members is arranged on each intersection of lattice lines. 前記伝熱部は、前記基材から外側に延びる板状部材を含む、請求項1または2記載の伝熱体。 The heat transfer body according to claim 1 or 2, wherein the heat transfer portion includes a plate-shaped member extending outward from the base material. 前記伝熱体において前記板状部材は複数設けられており、各前記板状部材は略平行に延びるよう配置されている、請求項5記載の伝熱体。 The heat transfer body according to claim 5, wherein a plurality of the plate-shaped members are provided in the heat transfer body, and each of the plate-shaped members is arranged so as to extend substantially in parallel. JIS P8113に準拠した前記基材の伸び率は50ppm〜50,000ppmの範囲内の大きさである、請求項1乃至6のいずれか一項に記載の伝熱体。 The heat transfer body according to any one of claims 1 to 6, wherein the elongation rate of the base material according to JIS P8113 is in the range of 50 ppm to 50,000 ppm. JIS P8113に準拠した前記基材の伸び率は100ppm〜20,000ppmの範囲内の大きさである、請求項7記載の伝熱体。 The heat transfer body according to claim 7, wherein the elongation rate of the base material according to JIS P8113 is in the range of 100 ppm to 20,000 ppm. JIS P8113に準拠した前記基材の伸び率は200ppm〜5,000ppmの範囲内の大きさである、請求項8記載の伝熱体。 The heat transfer body according to claim 8, wherein the elongation rate of the base material according to JIS P8113 is in the range of 200 ppm to 5,000 ppm. 前記基材の前記金属繊維は銅繊維またはアルミニウム繊維である、請求項1乃至9のいずれか一項に記載の伝熱体。 The heat transfer body according to any one of claims 1 to 9, wherein the metal fiber of the base material is a copper fiber or an aluminum fiber. 前記基材の前記金属繊維は不織布である、請求項1乃至10のいずれか一項に記載の伝熱体。 The heat transfer body according to any one of claims 1 to 10, wherein the metal fiber of the base material is a non-woven fabric. 前記基材および前記伝熱部は同じ材料から形成されている、請求項1乃至11のいずれか一項に記載の伝熱体。 The heat transfer body according to any one of claims 1 to 11, wherein the base material and the heat transfer portion are made of the same material. 少なくとも金属繊維を含む基材と、
一部分が前記基材の金属繊維に融着し、その他の部分が露出している伝熱部と、
前記基材が取り付けられる被伝熱物と、
を備えた、熱交換ユニット。
With a substrate containing at least metal fibers
A heat transfer part in which a part is fused to the metal fiber of the base material and the other part is exposed.
The heat transfer material to which the base material is attached and
A heat exchange unit equipped with.
前記基材と前記被伝熱物との間、または前記基材に伝熱補助剤が含まれている、請求項13記載の熱交換ユニット。 The heat exchange unit according to claim 13, wherein a heat transfer auxiliary agent is contained between the base material and the heat transfer object, or the base material. 少なくとも金属繊維を含む基材と、一部分が前記基材の金属繊維に融着し、その他の部分が露出している伝熱部とを有する伝熱体を準備する工程と、
前記伝熱体の前記基材を被伝熱物に取り付ける工程と、
を備えた、伝熱体取付方法。
A step of preparing a heat transfer body having a base material containing at least a metal fiber and a heat transfer portion having a heat transfer portion in which a part is fused to the metal fiber of the base material and the other part is exposed.
The step of attaching the base material of the heat transfer body to the heat transfer object, and
A heat transfer body mounting method equipped with.
前記伝熱体の前記基材を前記被伝熱物に取り付ける工程において、前記基材と前記被伝熱物との間または前記基材に伝熱補助剤を供給する、請求項15記載の伝熱体取付方法。 15. The transfer according to claim 15, wherein in the step of attaching the base material of the heat transfer body to the heat transfer object, a heat transfer auxiliary agent is supplied between the base material and the heat transfer object or to the base material. Hot body mounting method.
JP2019185960A 2019-10-09 2019-10-09 Heat transfer body, heat exchange unit, and heat transfer body attaching method Pending JP2021060167A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019185960A JP2021060167A (en) 2019-10-09 2019-10-09 Heat transfer body, heat exchange unit, and heat transfer body attaching method
PCT/JP2020/030697 WO2021070470A1 (en) 2019-10-09 2020-08-12 Heat transfer body, heat exchange unit and heat transfer body mounting method
TW109128089A TW202129872A (en) 2019-10-09 2020-08-18 Heat transfer body, heat exchange unit and method for mounting heat transfer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019185960A JP2021060167A (en) 2019-10-09 2019-10-09 Heat transfer body, heat exchange unit, and heat transfer body attaching method

Publications (1)

Publication Number Publication Date
JP2021060167A true JP2021060167A (en) 2021-04-15

Family

ID=75381362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019185960A Pending JP2021060167A (en) 2019-10-09 2019-10-09 Heat transfer body, heat exchange unit, and heat transfer body attaching method

Country Status (3)

Country Link
JP (1) JP2021060167A (en)
TW (1) TW202129872A (en)
WO (1) WO2021070470A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230142606A (en) * 2021-03-25 2023-10-11 가부시키가이샤 도모에가와 세이시쇼 heating element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937599Y2 (en) * 1980-08-08 1984-10-18 住友電気工業株式会社 Heat exchanger
JP2003056901A (en) * 2001-08-10 2003-02-26 Toto Ltd Electric water heater with reheating function
JP4336534B2 (en) * 2002-07-19 2009-09-30 臼井国際産業株式会社 Heat transfer tube with corrosion resistance
JP2009287834A (en) * 2008-05-29 2009-12-10 Kiyotomo Tanaka Heat exchanger
JP4959671B2 (en) * 2008-12-22 2012-06-27 シャープ株式会社 FUEL CELL SYSTEM AND ELECTRONIC DEVICE HAVING THE SAME

Also Published As

Publication number Publication date
WO2021070470A1 (en) 2021-04-15
TW202129872A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
JPWO2018003957A1 (en) Vapor chamber
CN212673920U (en) Heat radiator
WO2021070470A1 (en) Heat transfer body, heat exchange unit and heat transfer body mounting method
US20170067702A1 (en) Heat transfer device and method of making heat transfer device
JP7240429B2 (en) Heat dissipation materials and semiconductor modules
JP7202460B2 (en) Heat sink with carbon nanostructure-based fibers
US20230282495A1 (en) Temperature control unit
JP2002372387A (en) Heat transfer body
WO2022202247A1 (en) Thermal conductor
CN109712951B (en) Heat dissipation structure
JP6698046B2 (en) Heat conduction sheet
JP7288961B2 (en) temperature control unit
WO2018003958A1 (en) Heat sink structure
TW202226887A (en) Heating structure and manufacturing method thereof
TWI738499B (en) Cooling device and cooling system using the cooling device
JP2019054218A (en) Heat sink
US20230105760A1 (en) Metal fiber molded body, temperature regulation unit, and method for manufacturing metal fiber molded body
TW202403217A (en) Pipe heating structure and piping heating structure connection
JP6266044B2 (en) Heat sink structure
JP2018173193A (en) Heat sink
JP2020066648A (en) Thermal conductive composite material and heat release sheet
CN102538521A (en) Spiral divergence highly radiating body and manufacturing method thereof
JP2018004164A (en) Heat sink structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240304

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240510