JP2021057428A - Composition for thick film resistor, paste for thick film resistor and thick film resistor - Google Patents

Composition for thick film resistor, paste for thick film resistor and thick film resistor Download PDF

Info

Publication number
JP2021057428A
JP2021057428A JP2019178038A JP2019178038A JP2021057428A JP 2021057428 A JP2021057428 A JP 2021057428A JP 2019178038 A JP2019178038 A JP 2019178038A JP 2019178038 A JP2019178038 A JP 2019178038A JP 2021057428 A JP2021057428 A JP 2021057428A
Authority
JP
Japan
Prior art keywords
thick film
film resistor
ruthenium
composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019178038A
Other languages
Japanese (ja)
Inventor
勝弘 川久保
Katsuhiro Kawakubo
勝弘 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019178038A priority Critical patent/JP2021057428A/en
Publication of JP2021057428A publication Critical patent/JP2021057428A/en
Pending legal-status Critical Current

Links

Abstract

To provide a composition for thick film resistors which excels in resistance temperature coefficient and static electricity resistance and does not contain a lead component.SOLUTION: In a composition for thick film resistors which contains ruthenium-containing oxide powder and lead-free glass powder: the ruthenium-containing oxide powder is ruthenium oxide powder in which titanium oxide is solid-solubilized, with a percentage of the titanium in the contained titanium and ruthenium being 1 mol% or more to 20 mol% or less; the glass powder contains SiO2, B2O3 and RO (R indicates one or more alkaline earth elements selected from among Ca, Sr and Ba) and contains 10 or more to 50 or less mass part of SiO2, 8 or more to 30 or less mass part of B2O3 and 40 or more to 65 or less mass part of RO when the total of SiO2, B2O3 and RO is 100 mass part.SELECTED DRAWING: None

Description

本発明は、厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体に関する。 The present invention relates to a composition for a thick film resistor, a paste for a thick film resistor, and a thick film resistor.

一般にチップ抵抗器、ハイブリットIC、または抵抗ネットワーク等の厚膜抵抗体は、セラミック基板に厚膜抵抗体用組成物や、厚膜抵抗体用組成物を含む厚膜抵抗体用ペーストを印刷して焼成することによって形成されている。厚膜抵抗体用組成物は、導電粒子として酸化ルテニウムを代表とするルテニウム含有酸化物粉末とガラス粉末を主な成分としたものが広く用いられている。 Generally, for a thick film resistor such as a chip resistor, a hybrid IC, or a resistance network, a composition for a thick film resistor or a paste for a thick film resistor containing the composition for a thick film resistor is printed on a ceramic substrate. It is formed by firing. As the composition for a thick film resistor, a composition containing ruthenium-containing oxide powder typified by ruthenium oxide and glass powder as main components as conductive particles is widely used.

ルテニウム含有酸化物粉末とガラス粉末が厚膜抵抗体に用いられる理由は、空気中での焼成ができ、抵抗温度係数(TCR)を0に近づけることが可能であることに加え、広い領域の抵抗値の抵抗体が形成可能であることなどが挙げられる。 The reason why ruthenium-containing oxide powder and glass powder are used for thick film resistors is that they can be fired in air, the temperature coefficient of resistance (TCR) can be approached to 0, and resistance in a wide range is achieved. It is possible to form a value resistor.

ここで、抵抗温度係数は、25℃の抵抗値に対して−55℃と125℃での抵抗値により求められる温度係数で、以下の式で求められる。なお、以下の式中、R−55が−55℃における抵抗値、R25が25℃における抵抗値、R125が125℃における抵抗値、をそれぞれ意味する。−55℃と25℃の抵抗値から求められる抵抗温度係数を低温側TCR(COLD−TCR)といい、25℃と125℃の抵抗値から求められる抵抗温度係数を高温側TCR(HOT−TCR)という。 Here, the temperature coefficient of resistance is a temperature coefficient obtained by the resistance values at −55 ° C. and 125 ° C. with respect to the resistance value at 25 ° C., and is calculated by the following formula. In the following equation, R- 55 means the resistance value at −55 ° C., R 25 means the resistance value at 25 ° C., and R 125 means the resistance value at 125 ° C. The temperature coefficient of resistance obtained from the resistance values of -55 ° C and 25 ° C is called the low temperature side TCR (COLD-TCR), and the temperature coefficient of resistance obtained from the resistance values of 25 ° C and 125 ° C is called the high temperature side TCR (HOT-TCR). That is.

COLD−TCR(ppm/℃)=(R−55−R25)/R25/(−80)×10
HOT−TCR(ppm/℃)=(R125−R25)/R25/(100)×10
厚膜抵抗体では、COLD−TCRとHOT―TCRとの両者を0に近づけることが求められている。
COLD-TCR (ppm / ° C) = (R- 55- R 25 ) / R 25 / (-80) x 10 6
HOT-TCR (ppm / ° C) = (R 125- R 25 ) / R 25 / (100) × 10 6
In the thick film resistor, both COLD-TCR and HOT-TCR are required to be close to 0.

ルテニウム含有酸化物粉末とガラス粉末とを含む厚膜抵抗体用組成物では、その配合比によって抵抗値が変わる。ルテニウム含有酸化物粉末の配合比を多くすると抵抗値が下がり、ルテニウム含有酸化物粉末の配合比を少なくすると抵抗値が上がる。上記特性を利用して、厚膜抵抗体では、ルテニウム含有酸化物粉末とガラス粉末との配合比を調整して所望の抵抗値を出現させている。 In a composition for a thick film resistor containing a ruthenium-containing oxide powder and a glass powder, the resistance value changes depending on the blending ratio. Increasing the compounding ratio of the ruthenium-containing oxide powder lowers the resistance value, and decreasing the compounding ratio of the ruthenium-containing oxide powder increases the resistance value. Utilizing the above characteristics, in the thick film resistor, a desired resistance value is made to appear by adjusting the blending ratio of the ruthenium-containing oxide powder and the glass powder.

従来、厚膜抵抗体用組成物に最も使用されているルテニウム含有酸化物粉末としては、ルチル型の結晶構造を有する酸化ルテニウム(RuO)、パイロクロア型の結晶構造を有するルテニウム酸鉛(PbRu6.5)が挙げられる。これらはいずれも金属的な導電を示す酸化物である。ルテニウム酸鉛(PbRu6.5)は、酸化ルテニウム(RuO)よりも比抵抗が高いため、目的とする抵抗値に調整するための配合比を多くすることができる。一般に導電粒子の配合比が高い抵抗体は、静電気や過負荷電圧に対する抵抗値変動が小さい。このため抵抗値の高い領域では導電粒子としてルテニウム酸鉛(PbRu6.5)が使用されている。 Conventionally, the ruthenium-containing oxide powder most used in the composition for thick film resistors includes ruthenium oxide (RuO 2 ) having a rutile type crystal structure and lead ruthenium acid (Pb 2 ) having a pyrochlore type crystal structure. Ru 2 O 6.5 ) can be mentioned. All of these are oxides that exhibit metallic conductivity. Since lead ruthenium acid (Pb 2 Ru 2 O 6.5 ) has a higher specific resistance than ruthenium oxide (RuO 2 ), it is possible to increase the compounding ratio for adjusting to the target resistance value. Generally, a resistor having a high compounding ratio of conductive particles has a small fluctuation in resistance value with respect to static electricity and overload voltage. Therefore, lead ruthenate (Pb 2 Ru 2 O 6.5 ) is used as the conductive particles in the region where the resistance value is high.

厚膜抵抗体用組成物に用いられるガラス粉末には、一般的に厚膜抵抗体用ペーストの焼成温度よりも軟化点の低いガラスが用いられており、酸化鉛(PbO)を含むガラスが用いられていた。その理由としては、酸化鉛(PbO)はガラスの軟化点を下げる効果があり含有率を変えることによって広範囲に渡り軟化点を変えられることや、比較的化学的な耐久性が高いガラスが作れること、絶縁性が高く耐圧に優れていることが挙げられる。 As the glass powder used in the composition for thick film resistors, glass having a softening point lower than the firing temperature of the thick film resistor paste is generally used, and glass containing lead oxide (PbO) is used. Was being done. The reason is that lead oxide (PbO) has the effect of lowering the softening point of glass, and the softening point can be changed over a wide range by changing the content, and glass with relatively high chemical durability can be made. It has high insulation and excellent withstand voltage.

このように従来の厚膜抵抗体用組成物には、導電粒子であるルテニウム含有酸化物粉末、およびガラス粉末の両方について、鉛成分を含有した材料が用いられていた。しかしながら、鉛成分は人体への影響および公害の点から望ましくなく、鉛を含有しない厚膜抵抗体用組成物の開発が強く求められている。 As described above, in the conventional composition for a thick film resistor, a material containing a lead component has been used for both the ruthenium-containing oxide powder and the glass powder, which are conductive particles. However, the lead component is not desirable from the viewpoint of the influence on the human body and pollution, and the development of a lead-free composition for a thick film resistor is strongly required.

そこで、従来から鉛を含有しない厚膜抵抗体用組成物について検討がなされ、いくつかの提案がなされていた。 Therefore, conventionally, a composition for a thick film resistor containing no lead has been studied, and some proposals have been made.

例えば、特許文献1には、少なくとも実質的に鉛を含まないガラス組成物及び実質的に鉛を含まない所定の平均粒径の導電材料を含有し、これらが有機ビヒクルと混合されてなる抵抗体ペーストが開示されている。そして、導電材料としてルテニウム酸カルシウム、ルテニウム酸ストロンチウム、ルテニウム酸バリウムが挙げられている。 For example, Patent Document 1 contains a glass composition that is substantially free of lead and a conductive material having a predetermined average particle size that is substantially free of lead, and these are mixed with an organic vehicle. The paste is disclosed. Calcium ruthenate, strontium ruthenate, and barium ruthenate are mentioned as conductive materials.

特許文献2では、ガラス組成物に、導電性を与えるための金属元素を含む第1の導電性材料をあらかじめ溶解させてガラス材料を得る工程と、前記ガラス材料と、前記金属元素を含む第2の導電性材料と、ビヒクルとを混練する工程とを備えており、前記ガラス組成物及び前記第1及び第2の導電性材料は鉛を含まないことを特徴とする抵抗体ペーストの製造方法が提案されている。そして、第1、第2の導電性材料としてRuO等が挙げられている。 In Patent Document 2, a step of obtaining a glass material by previously dissolving a first conductive material containing a metal element for imparting conductivity to a glass composition, and a second step containing the glass material and the metal element. A method for producing a resistor paste, which comprises a step of kneading the conductive material and the vehicle, wherein the glass composition and the first and second conductive materials do not contain lead. Proposed. RuO 2 and the like are mentioned as the first and second conductive materials.

特許文献3では、(a)ルテニウム系導電性材料と(b)所定の組成の鉛およびカドミウムを含まないガラス組成物とのベース固形物を含有し、(a)および(b)の全てが有機媒体中に分散されていることを特徴とする厚膜ペースト組成物が提案されている。そして、ルテニウム系導電性材料としてルテニウム酸ビスマスが挙げられている。 Patent Document 3 contains a base solid of (a) a ruthenium-based conductive material and (b) a glass composition containing no lead and cadmium having a predetermined composition, and all of (a) and (b) are organic. Thick film paste compositions characterized by being dispersed in a medium have been proposed. Bismuth ruthenate is mentioned as a ruthenium-based conductive material.

特許文献4では、鉛成分を含まないルテニウム系導電性成分と、ガラスの塩基度(Po値)が0.4〜0.9である鉛成分を含まないガラスと、有機ビヒクルとを含む抵抗体組成物であって、これを高温で焼成して得られる厚膜抵抗体中にMSiAl結晶(M:Ba及び/又はSr)が存在することを特徴とする抵抗体組成物が提案されている。 In Patent Document 4, a resistor containing a ruthenium-based conductive component containing no lead component, a glass containing no lead component having a basicity (Po value) of 0.4 to 0.9, and an organic vehicle. A resistor composition which is a composition and is characterized in that MSi 2 Al 2 O 8 crystals (M: Ba and / or Sr) are present in a thick film resistor obtained by firing this at a high temperature. Proposed.

特許文献5には、酸化ルテニウムとSiO−B−KOガラスとを含む厚膜抵抗体が開示されている。 Patent Document 5 discloses a thick film resistor containing ruthenium oxide and SiO 2- B 2 O 3- K 2 O glass.

特開2005−129806号公報Japanese Unexamined Patent Publication No. 2005-129806 特開2003−7517号公報Japanese Unexamined Patent Publication No. 2003-7517 特開平8−253342号公報Japanese Unexamined Patent Publication No. 8-253342 特開2007−103594号公報JP-A-2007-103594 特開2001−196201号公報Japanese Unexamined Patent Publication No. 2001-196201

J.Electrochem.Soc.,1993,Vol.140,No.4,1034-1037J. Electrochem.Soc., 1993, Vol.140, No.4, 1034-1037

しかしながら、厚膜抵抗体では、抵抗値以外の特性も評価され、所定の特性を示すことが求められる。抵抗値以外の特性として代表的なものとしては、温度変化による抵抗値の変化を表す抵抗温度係数、静電気が印加された際の抵抗値変化を示す耐静電気特性等があり、いずれも抵抗値の変化が小さいことが要求される。これまでに提案されている、鉛を含有しない厚膜抵抗体用組成物を用いた厚膜抵抗体では、これらの要求特性をすべて満足させることが困難であった。 However, in a thick film resistor, characteristics other than the resistance value are also evaluated, and it is required to exhibit a predetermined characteristic. Typical characteristics other than the resistance value include the temperature coefficient of resistance, which indicates the change in resistance value due to temperature change, and the electrostatic resistance characteristic, which indicates the change in resistance value when static electricity is applied. Small changes are required. It has been difficult to satisfy all of these required characteristics with the thick film resistors using the lead-free thick film resistor compositions proposed so far.

上記従来技術の問題に鑑み、本発明の一側面では、抵抗温度係数、および耐静電気特性に優れた鉛成分を含有しない厚膜抵抗体用組成物を提供することを目的とする。 In view of the above problems of the prior art, one aspect of the present invention is to provide a composition for a thick film resistor which does not contain a lead component having excellent resistance temperature coefficient and static electricity resistance.

上記課題を解決するため本発明は、
ルテニウム含有酸化物粉末と、鉛を含まないガラス粉末とを含む厚膜抵抗体用組成物であって、
前記ルテニウム含有酸化物粉末は酸化チタンが固溶した酸化ルテニウム粉末であり、含有するチタンとルテニウムとのうち、チタンの割合が1mol%以上20mol%以下であり、
前記ガラス粉末は、SiOとBとRO(RはCa、Sr、Baから選択される1つ以上のアルカリ土類元素を示す)を含み、SiOとBとROの合計を100質量部とした場合に、SiOを10質量部以上50質量部以下、Bを8質量部以上30質量部以下、ROを40質量部以上65質量部以下の割合で含有する厚膜抵抗体用組成物を提供する。
In order to solve the above problems, the present invention
A composition for a thick film resistor containing a ruthenium-containing oxide powder and a lead-free glass powder.
The ruthenium-containing oxide powder is ruthenium oxide powder in which titanium oxide is solid-dissolved, and the ratio of titanium to the contained titanium and ruthenium is 1 mol% or more and 20 mol% or less.
The glass powder contains SiO 2 and B 2 O 3 and RO (R represents one or more alkaline earth elements selected from Ca, Sr and Ba), and of SiO 2 and B 2 O 3 and RO. When the total is 100 parts by mass, SiO 2 is contained in an amount of 10 parts by mass or more and 50 parts by mass or less, B 2 O 3 is contained in an amount of 8 parts by mass or more and 30 parts by mass or less, and RO is contained in a ratio of 40 parts by mass or more and 65 parts by mass or less. To provide a composition for a thick film resistor.

本発明の一側面によれば、抵抗温度係数、および耐静電気特性に優れた鉛成分を含有しない厚膜抵抗体用組成物を提供することができる。 According to one aspect of the present invention, it is possible to provide a composition for a thick film resistor which does not contain a lead component having excellent resistance temperature coefficient and static electricity resistance.

以下、本発明の厚膜抵抗体用組成物、厚膜抵抗体用ペースト、および厚膜抵抗体の一実施形態について説明する。
[厚膜抵抗体用組成物]
本実施形態に係る厚膜抵抗体用組成物は、ルテニウム含有酸化物粉末と、鉛を含まないガラス粉末とを含む厚膜抵抗体用組成物である。
Hereinafter, an embodiment of the composition for a thick film resistor, the paste for a thick film resistor, and the thick film resistor of the present invention will be described.
[Composition for thick film resistors]
The composition for a thick film resistor according to the present embodiment is a composition for a thick film resistor containing a ruthenium-containing oxide powder and a lead-free glass powder.

そして、ルテニウム含有酸化物粉末は酸化チタンが固溶した酸化ルテニウム粉末であり、含有するチタンとルテニウムとのうち、チタンの割合を1mol%以上20mol%以下とすることができる。 The ruthenium-containing oxide powder is a ruthenium oxide powder in which titanium oxide is solid-dissolved, and the ratio of titanium to the contained titanium and ruthenium can be 1 mol% or more and 20 mol% or less.

また、ガラス粉末は、SiOとBとRO(RはCa、Sr、Baから選択される1つ以上のアルカリ土類元素を示す)を含み、SiOとBとROの合計を100質量部とした場合に、SiOを10質量部以上50質量部以下、Bを8質量部以上30質量部以下、ROを40質量部以上65質量部以下の割合で含有することができる。 Further, the glass powder contains SiO 2 and B 2 O 3 and RO (R indicates one or more alkaline earth elements selected from Ca, Sr and Ba), and SiO 2 and B 2 O 3 and RO. When the total of is 100 parts by mass, SiO 2 is 10 parts by mass or more and 50 parts by mass or less, B 2 O 3 is 8 parts by mass or more and 30 parts by mass or less, and RO is 40 parts by mass or more and 65 parts by mass or less. Can be contained.

以下、本実施形態の厚膜抵抗体用組成物が含有する成分について説明する。
(ルテニウム含有酸化物粉末)
ルテニウム含有酸化物粉末である酸化ルテニウム粉末はルチル型の結晶構造を有しており、酸化チタンを固溶させることができる。本実施形態の厚膜抵抗体用組成物に用いる酸化チタンが固溶した酸化ルテニウム粉末は、その合成方法は特に限定されないが、液相を介した粉末合成法が適している。非特許文献1にゾル−ゲル法を用いた、酸化チタンが固溶した酸化ルテニウム粉末の合成方法が記載されており、例えば係る方法により酸化チタンが固溶した酸化ルテニウム粉末を合成できる。
Hereinafter, the components contained in the composition for a thick film resistor of the present embodiment will be described.
(Ruthenium-containing oxide powder)
The ruthenium oxide powder, which is a ruthenium-containing oxide powder, has a rutile-type crystal structure and can dissolve titanium oxide as a solid solution. The method for synthesizing ruthenium oxide powder in which titanium oxide is dissolved as used in the composition for a thick film resistor of the present embodiment is not particularly limited, but a powder synthesis method via a liquid phase is suitable. Non-Patent Document 1 describes a method for synthesizing ruthenium oxide powder in which titanium oxide is dissolved, using a sol-gel method. For example, ruthenium oxide powder in which titanium oxide is dissolved can be synthesized by such a method.

合成された酸化ルテニウム粉末に酸化チタンが固溶したことを確認するには、X線回折で、単相のルチル構造であることを確認すればよい。 In order to confirm that titanium oxide is dissolved in the synthesized ruthenium oxide powder, it is sufficient to confirm that it has a single-phase rutile structure by X-ray diffraction.

なお、ルテニウム含有酸化物粉末は、上述のように、酸化チタンが固溶した酸化ルテニウム粉末であり、鉛を含有しない。鉛を含有しないとは、鉛を意図して添加していないことを意味し、鉛の含有量が0であることを意味する。ただし、製造工程等で不純物成分、不可避成分として混入することを排除するものではない。 As described above, the ruthenium-containing oxide powder is a ruthenium oxide powder in which titanium oxide is dissolved as a solid solution, and does not contain lead. The fact that it does not contain lead means that lead is not intentionally added, and that the lead content is 0. However, it does not exclude mixing as an impurity component or an unavoidable component in the manufacturing process or the like.

ルテニウム含有酸化物粉末である酸化チタンが固溶した酸化ルテニウム粉末において、含有するチタンとルテニウムとのうち、チタンの割合を1mol%以上20mol%以下とすることが好ましい。ここでいう、ルテニウム含有酸化物粉末である酸化チタンが固溶した酸化ルテニウム粉末において、チタンとルテニウムとのうちとは、ルテニウム含有酸化物粉末が含有するチタンとルテニウムとの合計を100mol%とした場合の割合を意味する。すなわち、ルテニウム含有酸化物粉末は、含有するチタンとルテニウムのモル比が、Ti:Ru=0.01:0.99以上0.20:0.80以下であることが好ましい。 In the ruthenium oxide powder in which titanium oxide, which is a ruthenium-containing oxide powder, is solid-dissolved, the ratio of titanium to the contained titanium and ruthenium is preferably 1 mol% or more and 20 mol% or less. In the ruthenium oxide powder in which titanium oxide, which is a ruthenium-containing oxide powder, is dissolved, the total of titanium and ruthenium contained in the ruthenium-containing oxide powder is 100 mol%. Means the proportion of cases. That is, the ruthenium-containing oxide powder preferably contains a molar ratio of titanium to ruthenium of Ti: Ru = 0.01: 0.99 or more and 0.20: 0.80 or less.

なお、ルテニウム含有酸化物粉末が含有するチタンとルテニウムとのモル比は、出発原料の割合等により調整できる。 The molar ratio of titanium and ruthenium contained in the ruthenium-containing oxide powder can be adjusted by adjusting the ratio of starting materials and the like.

ルテニウム含有酸化物粉末が含有するチタンとルテニウムとのうち、チタンの割合を1mol%以上とすることで、該ルテニウム含有酸化物粉末を含有する厚膜抵抗体用組成物を用いて製造した厚膜抵抗体の静電気や、過負荷電圧の印加による抵抗値変化を抑制できる。また、ルテニウム含有酸化物粉末が含有するチタンとルテニウムとのうち、チタンの割合を20mol%以下とすることで、該ルテニウム含有酸化物粉末を含有する厚膜抵抗体用組成物を用いて製造した厚膜抵抗体の抵抗温度係数が過度にマイナスになることを防止できる。 A thick film produced by using a composition for a thick film resistor containing the ruthenium-containing oxide powder by setting the ratio of titanium to 1 mol% or more of titanium and ruthenium contained in the ruthenium-containing oxide powder. It is possible to suppress changes in resistance value due to static electricity of the resistor and application of overload voltage. Further, by setting the ratio of titanium to 20 mol% or less of titanium and ruthenium contained in the ruthenium-containing oxide powder, the composition for a thick film resistor containing the ruthenium-containing oxide powder was used. It is possible to prevent the temperature coefficient of resistance of the thick film resistor from becoming excessively negative.

抵抗温度係数は主に金属酸化物である添加剤を厚膜抵抗体用組成物に加えることでも調整が可能である。抵抗温度係数を減少させる、すなわちマイナス方向に調整することは比較的容易であり、添加剤としてはマンガン酸化物、ニオブ酸化物、チタン酸化物等が挙げられる。しかし、抵抗温度係数を増加させる、すなわちプラス方向に調整することは困難である。しかしながら、上述のように、本実施形態の厚膜抵抗体用組成物においては、所定のルテニウム含有酸化物粉末を用いることで、該厚膜抵抗体用組成物を用いて製造した厚膜抵抗体の抵抗温度係数が過度にマイナスになることを防止できるため、例えば必要に応じて添加剤を用いることで、抵抗温度係数を0に近づけることができる。 The temperature coefficient of resistance can also be adjusted by adding an additive, which is mainly a metal oxide, to the composition for a thick film resistor. It is relatively easy to reduce the temperature coefficient of resistance, that is, to adjust it in the negative direction, and examples of the additive include manganese oxide, niobium oxide, and titanium oxide. However, it is difficult to increase the temperature coefficient of resistance, that is, to adjust it in the positive direction. However, as described above, in the thick film resistor composition of the present embodiment, the thick film resistor produced by using the predetermined ruthenium-containing oxide powder is used. Since it is possible to prevent the temperature coefficient of resistance from becoming excessively negative, the temperature coefficient of resistance can be brought close to 0, for example, by using an additive as necessary.

本実施形態の厚膜抵抗体用組成物に用いるルテニウム含有酸化物粉末である、酸化チタンが固溶した酸化ルテニウム粉末の比表面積径は特に限定されないが、例えば5nm以上100nm以下であることが望ましい。酸化チタンが固溶した酸化ルテニウム粉末の比表面積径を5nm以上とすることで、酸化チタンが固溶した酸化ルテニウム粉末が過度に凝集することを抑制し、厚膜抵抗体用ペーストを容易に製造できる。また、酸化チタンが固溶した酸化ルテニウム粉末の比表面積径を100nm以下とすることで、得られる厚膜抵抗体について、静電気や過負荷電圧の印加による抵抗値変化を特に抑制できる。比表面積径の算出方法については、実施例で後述する。
(鉛を含まないガラス粉末)
本実施形態の厚膜抵抗体用組成物は、鉛を含まない所定の組成のガラス粉末を含むことができる。既述のルテニウム含有酸化物粉末に加えて、係るガラス粉末を含有することで、該厚膜抵抗体用組成物を用いて調製した厚膜抵抗体の温度係数を0に近づけることができる。なお、鉛を含まないガラス粉末とは、鉛を意図して添加していないことを意味し、鉛の含有量が0であることを意味する。ただし、製造工程等で不純物成分、不可避成分として混入することを排除するものではない。
The specific surface area diameter of the ruthenium oxide powder in which titanium oxide is dissolved, which is the ruthenium-containing oxide powder used in the composition for a thick film resistor of the present embodiment, is not particularly limited, but is preferably 5 nm or more and 100 nm or less, for example. .. By setting the specific surface area diameter of the ruthenium oxide powder in which titanium oxide is dissolved to 5 nm or more, it is possible to suppress excessive aggregation of the ruthenium oxide powder in which titanium oxide is dissolved and to easily produce a paste for a thick film resistor. it can. Further, by setting the specific surface area diameter of the ruthenium oxide powder in which titanium oxide is dissolved to 100 nm or less, it is possible to particularly suppress a change in the resistance value of the obtained thick film resistor due to the application of static electricity or an overload voltage. The method of calculating the specific surface area diameter will be described later in Examples.
(Lead-free glass powder)
The composition for a thick film resistor of the present embodiment can contain a glass powder having a predetermined composition containing no lead. By containing the glass powder in addition to the ruthenium-containing oxide powder described above, the temperature coefficient of the thick film resistor prepared by using the composition for the thick film resistor can be brought close to 0. The lead-free glass powder means that lead is not intentionally added, and that the lead content is zero. However, it does not exclude mixing as an impurity component or an unavoidable component in the manufacturing process or the like.

鉛を含有しないガラス粉末は、骨格となるSiO以外の金属酸化物を配合することによって焼成時の流動性を調整することができる。SiO以外の金属酸化物としては、BやROなどが用いられる。ここで、ROのRはCa、Sr、Baから選択された1種類以上のアルカリ土類元素を示す。このため、本実施形態の厚膜抵抗体用組成物に用いるガラス粉末としては、例えばSiとBとRとを含むガラス粉末を好適に用いることができる。Rについては、上述のようにCa、Sr、Baから選択された1種類以上のアルカリ土類元素を示す。 The lead-free glass powder can be adjusted in fluidity during firing by blending a metal oxide other than SiO 2 as a skeleton. As the metal oxide other than SiO 2 , B 2 O 3 or RO is used. Here, R of RO represents one or more kinds of alkaline earth elements selected from Ca, Sr, and Ba. Therefore, as the glass powder used in the composition for a thick film resistor of the present embodiment, for example, a glass powder containing Si, B, and R can be preferably used. For R, one or more alkaline earth elements selected from Ca, Sr, and Ba as described above are shown.

本実施形態の厚膜抵抗体用組成物が含有するガラス粉末は、ガラス組成におけるSiO、B、ROの合計を100質量部とした場合に、SiOを10質量部以上50質量部以下の割合で含有することが好ましい。これは、SiOの含有割合を10質量部以上とすることで容易にガラスとすることができ、50質量部以下とすることで流動性を高めることができるからである。 The glass powder contained in the composition for a thick film resistor of the present embodiment contains 10 parts by mass or more and 50 parts by mass of SiO 2 when the total of SiO 2 , B 2 O 3 , and RO in the glass composition is 100 parts by mass. It is preferably contained in a proportion of less than a portion. This is because glass can be easily produced by setting the content ratio of SiO 2 to 10 parts by mass or more, and the fluidity can be improved by setting the content to 50 parts by mass or less.

本実施形態の厚膜抵抗体用組成物のガラス粉末は、ガラス組成におけるSiO、B、ROの合計を100質量部とした場合に、Bを、8質量部以上30質量部以下の割合で含有することが好ましい。これは、Bの含有割合を8質量部以上とすることで、流動性を十分に高めることができ、30質量部以下とすることで耐候性を高めることができるからである。 The glass powder of the composition for a thick film resistor of the present embodiment has B 2 O 3 of 8 parts by mass or more and 30 parts by mass when the total of SiO 2 , B 2 O 3 and RO in the glass composition is 100 parts by mass. It is preferably contained in a proportion of parts by mass or less. This is because the fluidity can be sufficiently increased by setting the content ratio of B 2 O 3 to 8 parts by mass or more, and the weather resistance can be improved by setting the content ratio to 30 parts by mass or less.

さらに、本実施形態の厚膜抵抗体用組成物のガラス粉末は、ガラス組成におけるSiO、B、ROの合計を100質量部とした場合に、ROを、40質量部以上65質量部以下の割合で含有することが好ましい。これは、ROの含有割合を40質量部以上とすることで、該厚膜抵抗体用組成物を用いて得られる厚膜抵抗体の抵抗温度係数がマイナスになることを特に抑制できるからである。またROの含有割合を65質量部以下とすることで、ガラス成分の結晶化を抑制し、ガラスを形成し易くすることができる。なお、ガラス粉末が複数種のROを含む場合には、その合計が上記範囲を充足することが好ましい。 Further, the glass powder of the composition for a thick film resistor of the present embodiment has an RO of 40 parts by mass or more and 65 parts by mass when the total of SiO 2 , B 2 O 3 and RO in the glass composition is 100 parts by mass. It is preferably contained in a proportion of less than a portion. This is because by setting the RO content to 40 parts by mass or more, it is possible to particularly suppress that the temperature coefficient of resistance of the thick film resistor obtained by using the composition for the thick film resistor becomes negative. .. Further, by setting the RO content ratio to 65 parts by mass or less, crystallization of the glass component can be suppressed and glass can be easily formed. When the glass powder contains a plurality of types of RO, it is preferable that the total satisfies the above range.

本発明の発明者の検討によれば、抵抗温度係数がマイナスになりにくいルテニウム含有酸化物粉末、あるいは抵抗温度係数がマイナスになりにくいガラス粉末の単独では、抵抗温度係数が0に近い厚膜抵抗体を作ることが困難な場合がある。しかし、両者を組み合わせることによって、より確実に抵抗温度係数が0に近い厚膜抵抗体を作製できる。 According to the study by the inventor of the present invention, a thick film resistor having a resistance temperature coefficient close to 0 when used alone as a ruthenium-containing oxide powder having a resistance temperature coefficient that does not easily become negative or a glass powder having a resistance temperature coefficient that does not easily become negative. It can be difficult to build a body. However, by combining both, a thick film resistor having a temperature coefficient of resistance close to 0 can be produced more reliably.

本実施形態の厚膜抵抗体用組成物が含有するガラス粉末は、既述の様に、例えばSiOとBとROとを含むことが好ましい。ただし、係る成分に限定されるものではなく、例えば、ガラスの耐候性や焼成時の流動性を調整する目的で他の成分をさらに含有することもできる。その他の成分の例としては、Al、ZrO、TiO、SnO、ZnO、LiO、NaO、KO等が挙げられる。Alはガラスの分相を抑制しやすく、ZrO、TiOはガラスの耐候性を向上させる、SnO、ZnO、LiO、NaO、KO等はガラスの流動性を高める働きがある。 As described above, the glass powder contained in the composition for a thick film resistor of the present embodiment preferably contains, for example, SiO 2 , B 2 O 3, and RO. However, the component is not limited to this, and for example, other components may be further contained for the purpose of adjusting the weather resistance of the glass and the fluidity during firing. Examples of other components include Al 2 O 3 , ZrO 2 , TiO 2 , SnO 2 , ZnO, Li 2 O, Na 2 O, K 2 O and the like. Al 2 O 3 easily suppresses the phase separation of glass, ZrO 2 and TiO 2 improve the weather resistance of glass, SnO 2 , ZnO, Li 2 O, Na 2 O, K 2 O and the like improve the fluidity of glass. Has the function of increasing.

ガラスの焼成時の流動性に影響する尺度として軟化点がある。一般に、厚膜抵抗体を製造する際の、厚膜抵抗体用組成物等を焼成する温度は800℃以上900℃以下である。 The softening point is a measure that affects the fluidity of glass during firing. Generally, the temperature at which a composition for a thick film resistor is fired when producing a thick film resistor is 800 ° C. or higher and 900 ° C. or lower.

このように、厚膜抵抗体を製造する際の厚膜抵抗体用組成物等の焼成温度が800℃以上900℃以下の場合、本実施形態に係る厚膜抵抗体用組成物に用いるガラス粉末のガラスの軟化点は、600℃以上800℃以下が好ましく、600℃以上750℃以下がより好ましい。 As described above, when the firing temperature of the thick film resistor composition or the like when producing the thick film resistor is 800 ° C. or higher and 900 ° C. or lower, the glass powder used for the thick film resistor composition according to the present embodiment. The softening point of the glass is preferably 600 ° C. or higher and 800 ° C. or lower, and more preferably 600 ° C. or higher and 750 ° C. or lower.

ここで、軟化点は、ガラスを示差熱分析法(TG−DTA)にて大気中で、10℃/minで昇温、加熱し、得られた示差熱曲線の最も低温側の示差熱曲線の減少が発現する温度よりも高温側の次の示差熱曲線が減少するピークの温度である。 Here, the softening point is the differential thermal curve on the lowest temperature side of the obtained differential thermal curve obtained by heating and heating the glass at 10 ° C./min in the atmosphere by a differential thermal analysis method (TG-DTA). It is the temperature of the peak at which the next differential thermal curve on the higher temperature side than the temperature at which the decrease occurs decreases.

ガラスは、一般的に、所定の成分またはそれらの前駆体を目的とする配合にあわせて混合し、得られた混合物を溶融し急冷することによって製造できる。溶融温度は特に限定されないが例えば1400℃前後とすることができる。また、急冷の方法についても特に限定されないが、溶融物を冷水中に入れるか冷ベルト上に流すことにより行うことができる。ガラスの粉砕にはボールミル、遊星ミル、ビーズミルなど用いることができるが、粒度をシャープにするには湿式粉砕が望ましい。 Glass can generally be produced by mixing predetermined components or precursors thereof according to the desired formulation, melting the resulting mixture and quenching. The melting temperature is not particularly limited, but can be, for example, around 1400 ° C. Further, the method of quenching is not particularly limited, but it can be carried out by putting the melt in cold water or flowing it on a cold belt. A ball mill, a planetary mill, a bead mill, or the like can be used for crushing glass, but wet crushing is desirable for sharpening the particle size.

本実施形態の厚膜抵抗体用組成物が含有するガラス粉末の粒径も限定されない。本実施形態の厚膜抵抗体用組成物が含有するガラス粉末は、レーザー回折を利用した粒度分布計により測定した50%体積累計粒度が5μm以下が好ましく、3μm以下がより好ましく、さらに好ましくは1.5μm以下である。 The particle size of the glass powder contained in the thick film resistor composition of the present embodiment is also not limited. The glass powder contained in the composition for a thick film resistor of the present embodiment preferably has a 50% cumulative volume particle size of 5 μm or less, more preferably 3 μm or less, and further preferably 1 as measured by a particle size distribution meter using laser diffraction. It is 5.5 μm or less.

ただし、ガラス粉末の粒度を過度に小さくすると、生産性が低くなり、不純物等の混入も増える恐れがあることから、ガラス粉末の50%体積累計粒度は0.1μm以上が好ましい。
(厚膜抵抗体用組成物の組成について)
本実施形態の厚膜抵抗体用組成物では、該厚膜抵抗体用組成物を用いた厚膜抵抗体について、従来は困難であった面積抵抗値が80kΩより高い抵抗域においても、抵抗温度係数を0に近くすることが可能であり、特に高い効果を発揮できる。
However, if the particle size of the glass powder is made excessively small, the productivity may be lowered and the contamination of impurities and the like may increase. Therefore, the cumulative 50% volume particle size of the glass powder is preferably 0.1 μm or more.
(Regarding the composition of the composition for thick film resistors)
In the thick film resistor composition of the present embodiment, the resistance temperature of the thick film resistor using the thick film resistor composition is even in a resistance region where the area resistance value is higher than 80 kΩ, which was difficult in the past. The coefficient can be made close to 0, and a particularly high effect can be exhibited.

本実施形態の厚膜抵抗体用組成物が含有するルテニウム含有酸化物粉末と、ガラス粉末との混合割合は特に限定されず、厚膜抵抗体用組成物を用いて製造する厚膜抵抗体に要求される抵抗値等により選択できる。例えば、ルテニウム含有酸化物粉末とガラス粉末とのうち、ルテニウム含有酸化物粉末の割合が、5質量%以上50質量%以下であることが好ましい。すなわち、ルテニウム含有酸化物粉末の質量:ガラス粉末の質量=5:95以上50:50以下の範囲であることが好ましい。 The mixing ratio of the ruthenium-containing oxide powder contained in the composition for a thick film resistor of the present embodiment and the glass powder is not particularly limited, and the thick film resistor produced by using the composition for a thick film resistor It can be selected according to the required resistance value and the like. For example, the ratio of the ruthenium-containing oxide powder to the ruthenium-containing oxide powder and the glass powder is preferably 5% by mass or more and 50% by mass or less. That is, it is preferable that the mass of the ruthenium-containing oxide powder: the mass of the glass powder = 5:95 or more and 50:50 or less.

これは、本実施形態の厚膜抵抗体用組成物が含有するルテニウム含有酸化物粉末とガラス粉末との合計を100質量%とした場合に、ルテニウム含有酸化物粉末の割合を5質量%未満にすると、得られる厚膜抵抗体の抵抗値が高くなり過ぎて不安定となるおそれがあるからである。 This is because the ratio of the ruthenium-containing oxide powder is less than 5% by mass when the total of the ruthenium-containing oxide powder and the glass powder contained in the composition for a thick film resistor of the present embodiment is 100% by mass. Then, the resistance value of the obtained thick film resistor becomes too high and may become unstable.

また、本実施形態の厚膜抵抗体用組成物が含有するルテニウム含有酸化物粉末とガラス粉末との合計を100質量%とした場合に、ルテニウム含有酸化物粉末の割合を50質量%以下とすることで、得られる厚膜抵抗体の強度を十分に高くすることができ、脆くなることを特に確実に防ぐことができるからである。 Further, when the total of the ruthenium-containing oxide powder and the glass powder contained in the composition for a thick film resistor of the present embodiment is 100% by mass, the ratio of the ruthenium-containing oxide powder is 50% by mass or less. This is because the strength of the obtained thick film resistor can be sufficiently increased, and the brittleness can be prevented particularly surely.

本実施形態の厚膜抵抗体用組成物中のルテニウム含有酸化物粉末と、ガラス粉末との混合割合は、ルテニウム含有酸化物粉末の質量:ガラス粉末の質量=5:95以上40:60以下の範囲であることがより好ましい。すなわち、ルテニウム含有酸化物粉末とガラス粉末とのうち、ルテニウム含有酸化物粉末の割合を、5質量%以上40質量%以下とすることがより好ましい。 The mixing ratio of the ruthenium-containing oxide powder and the glass powder in the composition for the thick film resistor of the present embodiment is the mass of the ruthenium-containing oxide powder: the mass of the glass powder = 5:95 or more and 40:60 or less. More preferably, it is in the range. That is, it is more preferable that the ratio of the ruthenium-containing oxide powder to the ruthenium-containing oxide powder and the glass powder is 5% by mass or more and 40% by mass or less.

本実施形態の厚膜抵抗体用組成物には、厚膜抵抗体の抵抗値や抵抗温度係数や耐静電気特性、トリミング性の改善、調整を目的として一般に使用される添加剤を加えても良い。代表的な添加剤としてはNb、Ta、TiO、CuO、MnO、ZrO、Al、SiO、ZrSiO等が挙げられる。これらの添加剤を加えることでより優れた特性を有する抵抗体を作成できる。添加する量は目的によって調整されるが、ルテニウム含有酸化物粉末とガラス粉末との合計100質量部に対して、添加剤の添加量を20質量部以下とすることが好ましい。 An additive generally used for the purpose of improving or adjusting the resistance value, temperature coefficient of resistance, static electricity resistance, trimming property, and adjustment of the thick film resistor of the present embodiment may be added to the composition for a thick film resistor. .. Typical additives include Nb 2 O 5 , Ta 2 O 5 , TiO 2 , CuO, MnO 2 , ZrO 2 , Al 2 O 3 , SiO 2 , ZrSiO 4, and the like. By adding these additives, a resistor having better properties can be prepared. The amount to be added is adjusted according to the purpose, but it is preferable that the amount of the additive added is 20 parts by mass or less with respect to 100 parts by mass in total of the ruthenium-containing oxide powder and the glass powder.

なお、これらの成分は添加しないこともできる。すなわち本実施形態の厚膜抵抗体用組成物は、ルテニウム含有酸化物粉末と、ガラス粉末とから構成することもできる。 In addition, these components may not be added. That is, the composition for a thick film resistor of the present embodiment can also be composed of a ruthenium-containing oxide powder and a glass powder.

また、本実施形態の厚膜抵抗体用組成物は鉛を含有しない。このため、添加剤についても鉛を含有しない添加剤を用いることができる。既述の様に鉛を含有しないとは、鉛を意図して添加していないことを意味し、鉛の含有量が0であることを意味する。ただし、製造工程等で不純物成分、不可避成分として混入することを排除するものではない。
[厚膜抵抗体用ペースト]
本実施形態の厚膜抵抗体用ペーストの一構成例について説明する。
Moreover, the composition for a thick film resistor of this embodiment does not contain lead. Therefore, lead-free additives can be used as the additives. As described above, the fact that lead is not contained means that lead is not intentionally added, and that the lead content is 0. However, it does not exclude mixing as an impurity component or an unavoidable component in the manufacturing process or the like.
[Paste for thick film resistors]
An example of the configuration of the thick film resistor paste of the present embodiment will be described.

本実施形態の厚膜抵抗体用ペーストは、既述の厚膜抵抗体用組成物と、有機ビヒクルとを含むことができる。本実施形態の厚膜抵抗体用ペーストは、既述の厚膜抵抗体用組成物を有機ビヒクル中に分散した構成を有することが好ましい。 The thick film resistor paste of the present embodiment can contain the above-mentioned thick film resistor composition and an organic vehicle. The thick film resistor paste of the present embodiment preferably has a structure in which the above-mentioned thick film resistor composition is dispersed in an organic vehicle.

上述のように、本実施形態の厚膜抵抗体用ペーストは、有機ビヒクルと呼ばれる樹脂成分を溶剤に溶解した溶液中に、既述の厚膜抵抗体用組成物を分散することで調製できる。 As described above, the thick film resistor paste of the present embodiment can be prepared by dispersing the above-mentioned thick film resistor composition in a solution in which a resin component called an organic vehicle is dissolved in a solvent.

有機ビヒクルの樹脂や溶剤の種類、配合については特に限定されるものではない。有機ビヒクルの樹脂成分としては、例えばエチルセルロース、アクリル酸エステル、メタアクリル酸エステル、ロジン、マレイン酸エステル等から選択された1種類以上を用いることができる。 The type and composition of the resin and solvent of the organic vehicle are not particularly limited. As the resin component of the organic vehicle, for example, one or more selected from ethyl cellulose, acrylic acid ester, methacrylic acid ester, rosin, maleic acid ester and the like can be used.

また、溶剤としては、例えばターピネオール、ブチルカルビトール、ブチルカルビトールアセテート等から選択された1種類以上を用いることができる。なお、厚膜抵抗体用ペーストの乾燥を遅らせる目的で、沸点が高い溶剤を加えることもできる。また、必要に応じて、分散剤や可塑剤など加えることもできる。 Further, as the solvent, for example, one or more kinds selected from tarpineol, butyl carbitol, butyl carbitol acetate and the like can be used. A solvent having a high boiling point can also be added for the purpose of delaying the drying of the thick film resistor paste. Further, if necessary, a dispersant, a plasticizer, or the like can be added.

樹脂成分や、溶剤の配合比は、得られる厚膜抵抗体用ペーストに要求される粘度や、印刷、塗布方法等に応じて調整することができる。厚膜抵抗体用組成物に対する有機ビヒクルの割合は、特に限定されないが、厚膜抵抗体用組成物を100質量部とした場合に、有機ビヒクルの割合を例えば20質量部以上200質量部以下とすることができる。 The blending ratio of the resin component and the solvent can be adjusted according to the viscosity required for the obtained thick film resistor paste, the printing method, the coating method, and the like. The ratio of the organic vehicle to the composition for the thick film resistor is not particularly limited, but when the composition for the thick film resistor is 100 parts by mass, the ratio of the organic vehicle is, for example, 20 parts by mass or more and 200 parts by mass or less. can do.

ルテニウム含有酸化物粉末、ガラス粉末、添加剤等の分散方法、すなわち本実施形態の厚膜抵抗体用ペーストの製造方法は特に制限されない。例えば、スリーロールミル(3本ロールミル)、遊星ミル、ビーズミル等から選択される1種類以上を用いて、既述の厚膜抵抗体用組成物等を有機ビヒクル中に分散させることもできる。また、例えば既述の厚膜抵抗体用組成物をボールミルや擂潰(らいかい)機で混合してから、有機ビヒクル中に分散させることもできる。 The method for dispersing ruthenium-containing oxide powder, glass powder, additives and the like, that is, the method for producing the thick film resistor paste of the present embodiment is not particularly limited. For example, the above-mentioned composition for a thick film resistor can be dispersed in an organic vehicle by using one or more selected from a three-roll mill (three-roll mill), a planetary mill, a bead mill, and the like. Further, for example, the above-mentioned composition for a thick film resistor can be mixed with a ball mill or a grinding machine and then dispersed in an organic vehicle.

厚膜抵抗体用ペーストでは、無機原料粉末の凝集を解し、樹脂成分を溶解した溶剤、すなわち有機ビヒクル中に分散することが望ましい。一般に、粉末の粒径が小さくなると凝集が強くなり、二次粒子を形成し易くなる。このため、本実施形態の厚膜抵抗体用ペーストでは、二次粒子を解し、一次粒子に分散させることを容易にするために、脂肪酸等を分散剤として添加し、含有することもできる。
[厚膜抵抗体]
本実施形態の厚膜抵抗体の一構成例について説明する。
In the thick film resistor paste, it is desirable to disaggregate the inorganic raw material powder and disperse it in a solvent in which the resin component is dissolved, that is, an organic vehicle. In general, the smaller the particle size of the powder, the stronger the aggregation, and the easier it is to form secondary particles. Therefore, in the thick film resistor paste of the present embodiment, a fatty acid or the like can be added and contained as a dispersant in order to easily dissolve the secondary particles and disperse them in the primary particles.
[Thick film resistor]
An example of the configuration of the thick film resistor of the present embodiment will be described.

本実施形態の厚膜抵抗体は、既述の厚膜抵抗体用組成物、厚膜抵抗体用ペーストを用いて製造することができる。このため、本実施形態の厚膜抵抗体は、既述の厚膜抵抗体用組成物を含むことができ、既述のルテニウム含有酸化物粉末と、ガラス成分とを含むことができる。 The thick film resistor of the present embodiment can be produced by using the above-mentioned composition for thick film resistor and paste for thick film resistor. Therefore, the thick film resistor of the present embodiment can include the above-mentioned composition for a thick film resistor, and can include the above-mentioned ruthenium-containing oxide powder and a glass component.

なお、既述のように、厚膜抵抗体用組成物では、ルテニウム含有酸化物粉末とガラス粉末とのうち、ルテニウム含有酸化物粉末の割合を、5質量%以上50質量%以下とすることが好ましい。そして、本実施形態の厚膜抵抗体は、該厚膜抵抗体用組成物を用いて製造でき、得られる厚膜抵抗体内のガラス成分は、厚膜抵抗体用組成物のガラス粉末に由来する。このため、本実施形態の厚膜抵抗体は厚膜抵抗体用組成物と同様に、ルテニウム含有酸化物粉末と、ガラス成分とのうち、酸化ルテニウム粉末の割合が、5質量%以上50質量%以下であることが好ましく、5質量%以上40質量%以下であることがより好ましい。 As described above, in the composition for thick film resistors, the ratio of the ruthenium-containing oxide powder to the ruthenium-containing oxide powder and the glass powder may be 5% by mass or more and 50% by mass or less. preferable. The thick film resistor of the present embodiment can be produced by using the thick film resistor composition, and the obtained glass component in the thick film resistor is derived from the glass powder of the thick film resistor composition. .. Therefore, in the thick film resistor of the present embodiment, the ratio of the ruthenium oxide powder to the ruthenium-containing oxide powder and the glass component is 5% by mass or more and 50% by mass, as in the composition for the thick film resistor. It is preferably 5% by mass or more and 40% by mass or less.

本実施形態の厚膜抵抗体の製造方法は特に限定されないが、例えば既述の厚膜抵抗体用組成物を、セラミック基板上で焼成して形成することができる。また、既述の厚膜抵抗体用ペーストを、セラミック基板に塗布した後、焼成して形成することもできる。 The method for producing the thick film resistor of the present embodiment is not particularly limited, and for example, the above-mentioned composition for a thick film resistor can be formed by firing on a ceramic substrate. Further, the above-mentioned thick film resistor paste can be applied to a ceramic substrate and then fired to form the paste.

以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
1.ルテニウム含有酸化物粉末の評価
以下の実施例、比較例で使用したルテニウム含有酸化物粉末の形状・物性を評価するために、ICPによる組成分析、X線回折法による結晶構造の同定、格子定数、およびBET法による比表面積径の算出を行った。評価結果を表1に示す。
(1)組成分析
組成分析は、ICP発光分光分析器(VARIAN社製、725ES)を用いて行い、ルテニウム含有酸化物粉末が含有するチタンと、ルテニウムとのモル比を算出した。表1において、「化学分析によるTi:Ru比」の欄に結果を示す。
(2)格子定数
ルテニウム含有酸化物粉末のX線回折の結果から、リードベルト解析により、a軸とc軸の格子定数を算出した。
(3)比表面積径
比表面積径は比表面積と密度より算出できる。比表面積は測定が簡単にできるBET1点法を用いた。比表面積径をD1(nm)、密度をρ(g/cm)、比表面積をS(m/g)とし、粉末を真球とみなすと、以下の式(A)に示す関係式が成り立つ。このD1によって算出される粒径を比表面積径とする。
Specific examples and comparative examples will be described below, but the present invention is not limited to these examples.
1. 1. Evaluation of ruthenium-containing oxide powder
In order to evaluate the shape and physical properties of the ruthenium-containing oxide powder used in the following examples and comparative examples, composition analysis by ICP, identification of crystal structure by X-ray diffraction method, lattice constant, and specific surface area diameter by BET method. Was calculated. The evaluation results are shown in Table 1.
(1) Composition analysis The composition analysis was carried out using an ICP emission spectrophotometer (manufactured by VARIAN, 725ES), and the molar ratio of titanium contained in the ruthenium-containing oxide powder to ruthenium was calculated. In Table 1, the results are shown in the column of "Ti: Ru ratio by chemical analysis".
(2) Lattice constant From the result of X-ray diffraction of the ruthenium-containing oxide powder, the lattice constants of the a-axis and the c-axis were calculated by lead belt analysis.
(3) Specific surface area diameter The specific surface area diameter can be calculated from the specific surface area and the density. For the specific surface area, the BET 1-point method, which can be easily measured, was used. When the specific surface area diameter is D1 (nm), the density is ρ (g / cm 3 ), the specific surface area is S (m 2 / g), and the powder is regarded as a true sphere, the relational expression shown in the following formula (A) is obtained. It holds. The particle size calculated by D1 is defined as the specific surface area diameter.

D1(nm)=6×10/(ρ・S) ・・・(A)
ルテニウム含有酸化物粉末の密度は、ルテニウム、チタン、酸素の原子量、および酸化チタンの固溶割合から算出されるルチル型の単位結晶格子当たりの質量を、a軸とc軸の格子定数から算出されるルチル型の単位結晶格子当たりの体積で除して算出した。
2.ガラス粉末の評価
以下の実施例、比較例で使用したガラス粉末の組成、および以下の評価結果を表2に示す。
(1)軟化点、ガラス転移点
ガラス粉末の軟化点は、ガラス粉末を示差熱分析法(TG−DTA)にて大気中で毎分10℃昇温、加熱し、得られた示差熱曲線の最も低温側の示差熱曲線の減少が発現する温度よりも高温側の次の示差熱曲線が減少するピークの温度とした。
D1 (nm) = 6 × 10 3 / (ρ ・ S) ・ ・ ・ (A)
The density of the rutile-containing oxide powder is calculated from the mass per unit crystal lattice of the rutile type calculated from the atomic weights of rutilenium, titanium and oxygen, and the solid dissolution ratio of titanium oxide, from the lattice constants of the a-axis and c-axis. It was calculated by dividing by the volume per unit crystal lattice of the rutile type.
2. Evaluation of glass powder Table 2 shows the composition of the glass powder used in the following examples and comparative examples, and the following evaluation results.
(1) Softening point and glass transition point The softening point of the glass powder is the differential heat curve obtained by heating the glass powder at 10 ° C. per minute in the atmosphere by a differential thermal analysis method (TG-DTA). The temperature at which the next differential thermal curve on the higher temperature side decreases than the temperature at which the decrease in the differential thermal curve on the lowest temperature side appears is set.

ガラス転移点は、ガラス粉末を再溶融して得られるロッド状の試料を熱機械分析法(TMA)にて大気中で毎分10℃昇温、加熱し、得られた熱膨張曲線の屈曲点を示す温度とした。
(2)50%体積累計粒度
ガラス粉末はすべて50%体積累計粒度が1.3μm以上1.5μm以下となるようにボールミルにて粉砕した。50%体積累計粒度は、レーザー回折を利用した粒度分布計により測定した。
3.厚膜抵抗体の評価
以下の実施例、比較例で作製した厚膜抵抗体について、膜厚、面積抵抗値、25℃から−55℃までの抵抗温度係数(COLD−TCR)、25℃から125℃までの抵抗温度係数(HOT−TCR)、耐静電気特性を評価した。評価結果を表3に示す。
The glass transition point is the bending point of the obtained thermal expansion curve obtained by heating a rod-shaped sample obtained by remelting glass powder at a temperature of 10 ° C. per minute in the atmosphere by thermomechanical analysis (TMA). Was set to the temperature indicating.
(2) 50% cumulative volume particle size All glass powders were pulverized by a ball mill so that the 50% cumulative volume particle size was 1.3 μm or more and 1.5 μm or less. The 50% cumulative volume particle size was measured by a particle size distribution meter using laser diffraction.
3. 3. Evaluation of thick film resistors For the thick film resistors produced in the following examples and comparative examples, the film thickness, area resistance value, temperature coefficient of resistance (COLD-TCR) from 25 ° C to -55 ° C, and 25 ° C to 125. The temperature coefficient of resistance up to ° C. (HOT-TCR) and static electricity resistance were evaluated. The evaluation results are shown in Table 3.

なお、表3中では抵抗温度係数のCOLD−TCRをC−TCR、HOT−TCRをH−TCRと記載している。
(1)膜厚
膜厚は、以下の実施例、比較例において同様にして作製した5個の厚膜抵抗体について、触針の厚さ粗さ計(東京精密社製 型番:サーフコム480B)により膜厚を測定し、測定した値を平均することで算出した。
(2)面積抵抗値
面積抵抗値は、以下の実施例、比較例において同様にして作製した25個の厚膜抵抗体の抵抗値をデジタルマルチメーター(KEITHLEY社製、2001番)で測定した値を平均することで算出した。
(3)抵抗温度係数
抵抗温度係数は、以下の実施例、比較例において同様にして作製した5個の厚膜抵抗体を−55℃、25℃、125℃にそれぞれ15分保持してから抵抗値を測定し、各厚膜抵抗体の各温度での抵抗値をR−55、R25、R125とした。そして、各厚膜抵抗体について以下の式(B)、式(C)によってCOLD−TCRと、HOT−TCRとを計算し、5個の厚膜抵抗体の平均を以下の各実施例、比較例の厚膜抵抗体の抵抗温度係数(COLD−TCR、HOT−TCR)とした。抵抗温度係数は0に近いことが望ましく、−100ppm/℃≦抵抗温度係数≦100ppm/℃であることが優れた抵抗体の目安とされている。
COLD―TCR(ppm/℃)=(R−55−R25)/R25/(−80)×10 ・・・(B)
HOT―TCR(ppm/℃)=(R125−R25)/R25/(100)×10 ・・・(C)
(4)耐静電気特性
耐静電気特性は、200pFのコンデンサに2kVの電圧で電荷を充電し、厚膜抵抗体に放電した。放電は正負1回ずつ行い、静電気放電前後の抵抗値変化率を評価した。静電気放電前後の抵抗値変化率は、絶対値が小さいほど望ましい。
[実施例1〜4、比較例1〜3]
(酸化チタンが固溶した酸化ルテニウム粉末の合成)
塩化ルテニウムのエタノール溶液にナトリウムエトキシドを加えて得られたルテニウムエトキシドとチタンエトキシドを混合し、アンモニア水を加え酸化ルテニウムと酸化チタンの前駆体沈殿を得た。この沈殿物を洗浄、乾燥したのち、表1に示すように、700℃〜800℃で焙焼して酸化チタンが固溶した酸化ルテニウム粉末を得た。
In Table 3, the COLD-TCR of the temperature coefficient of resistance is described as C-TCR, and the HOT-TCR is described as H-TCR.
(1) Film thickness The film thickness was determined by using a stylus thickness roughness meter (model number: Surfcom 480B, manufactured by Tokyo Seimitsu Co., Ltd.) for five thick film resistors produced in the same manner in the following Examples and Comparative Examples. It was calculated by measuring the film thickness and averaging the measured values.
(2) Area resistance value The area resistance value is a value obtained by measuring the resistance value of 25 thick film resistors produced in the same manner in the following Examples and Comparative Examples with a digital multimeter (manufactured by KEYTHLEY, No. 2001). Was calculated by averaging.
(3) Temperature Coefficient of Resistance The temperature coefficient of resistance is determined by holding five thick film resistors produced in the same manner in the following Examples and Comparative Examples at −55 ° C., 25 ° C., and 125 ° C. for 15 minutes, respectively. The values were measured, and the resistance values of each thick film resistor at each temperature were set to R- 55 , R 25 , and R 125 . Then, the COLD-TCR and HOT-TCR are calculated for each thick film resistor by the following formulas (B) and (C), and the average of the five thick film resistors is compared with each of the following examples. The temperature coefficient of resistance (COLD-TCR, HOT-TCR) of the thick film resistor of the example was used. The temperature coefficient of resistance is preferably close to 0, and -100 ppm / ° C. ≤ temperature coefficient of resistance ≤ 100 ppm / ° C. is a guideline for an excellent resistor.
COLD-TCR (ppm / ° C) = (R- 55- R 25 ) / R 25 / (-80) x 10 6 ... (B)
HOT-TCR (ppm / ° C) = (R 125- R 25 ) / R 25 / (100) × 10 6 ... (C)
(4) Static electricity resistance The static electricity resistance is that a 200 pF capacitor is charged with a voltage of 2 kV and discharged to a thick film resistor. Discharge was performed once positively and negatively, and the rate of change in resistance value before and after electrostatic discharge was evaluated. The smaller the absolute value, the more desirable the rate of change in resistance value before and after electrostatic discharge.
[Examples 1 to 4, Comparative Examples 1 to 3]
(Synthesis of ruthenium oxide powder in which titanium oxide is dissolved)
Ruthenium ethoxide and titanium ethoxide obtained by adding sodium ethoxide to an ethanol solution of ruthenium chloride were mixed, and aqueous ammonia was added to obtain a precursor precipitate of ruthenium oxide and titanium oxide. After washing and drying this precipitate, as shown in Table 1, it was roasted at 700 ° C. to 800 ° C. to obtain ruthenium oxide powder in which titanium oxide was dissolved.

酸化ルテニウムa〜酸化ルテニウムcについては、ルテニウムの出発原料とチタンの出発原料とを、ルテニウムとチタンとの割合がモル比で、Ti:Ru=1:99、10:90、20:80となるように混合して用いた。 For ruthenium oxide a to ruthenium c oxide, the ratio of ruthenium to titanium is Ti: Ru = 1:99, 10:90, 20:80 in terms of the molar ratio of the starting material of ruthenium and the starting material of titanium. It was mixed and used as described above.

また、酸化チタンを固溶させなかった酸化ルテニウムdは、塩化ルテニウムのエタノール溶液にナトリウムエトキシドを加えて得られたルテニウムエトキシドに、アンモニア水を加え酸化ルテニウムとの前駆体沈殿を得た。この沈殿物を洗浄、乾燥したのち、700℃で焙焼して酸化ルテニウム粉末を得た。 Further, ruthenium oxide d in which titanium oxide was not dissolved was obtained by adding sodium ethoxide to an ethanol solution of ruthenium chloride and adding aqueous ammonia to obtain a precursor precipitate with ruthenium oxide. The precipitate was washed and dried, and then roasted at 700 ° C. to obtain ruthenium oxide powder.

実施例1〜実施例4、比較例3で用いた酸化チタンが固溶した酸化ルテニウム粉末と比較例1、比較例2で用いた酸化ルテニウムの格子定数と比表面積と密度とから、既述の式(A)を用いて算出した比表面積径を表1に示した。 From the lattice constant, specific surface area, and density of ruthenium oxide powder in which titanium oxide used in Examples 1 to 4 and Comparative Example 3 was dissolved, and ruthenium oxide used in Comparative Examples 1 and 2, as described above. Table 1 shows the specific surface area diameter calculated using the formula (A).

また、実施例1〜実施例4、比較例3で用いた酸化チタンが固溶した酸化ルテニウム粉末である酸化ルテニウムa〜酸化ルテニウムcは、X線回折のパターンより単相のルチル構造であることが確認された。
(厚膜抵抗体用組成物)
表3に示したように、実施例1〜4、比較例1〜3では、既述の酸化ルテニウムa〜酸化ルテニウムdのいずれかと、表2に示したガラス粉末A〜ガラス粉末Cのいずれかとを、表3に示した配合比となるように計量、混合して厚膜抵抗体用組成物を調製した。
Further, ruthenium oxide a to ruthenium c oxide, which are ruthenium oxide powders in which titanium oxide is dissolved as used in Examples 1 to 4 and Comparative Example 3, have a single-phase rutile structure based on the X-ray diffraction pattern. Was confirmed.
(Composition for thick film resistors)
As shown in Table 3, in Examples 1 to 4 and Comparative Examples 1 to 3, any of the above-mentioned ruthenium oxide a to ruthenium oxide d and any of the glass powders A to C shown in Table 2. Was weighed and mixed so as to have the compounding ratio shown in Table 3 to prepare a composition for a thick film resistor.

なお、実施例1〜実施例4、比較例1〜比較例3で使用したガラス粉末の組成を表2に示す。ガラス粉末はいずれも、50%体積累計粒度が1.3μm以上1.5μm以下となっていることを確認した。 Table 2 shows the compositions of the glass powders used in Examples 1 to 4 and Comparative Examples 1 to 3. It was confirmed that the 50% cumulative particle size of each glass powder was 1.3 μm or more and 1.5 μm or less.

比較例2では添加物としてTiO粉末をさらに添加した。 In Comparative Example 2, TiO 2 powder was further added as an additive.

ルテニウム含有酸化物粉末とガラス粉末との混合比率は、得られる厚膜抵抗体の面積抵抗値がおよそ100kΩとなるように調整した。
(厚膜抵抗体用ペーストの作製)
実施例1〜実施例4、比較例1〜比較例3の厚膜抵抗体用組成物100質量部を、有機ビヒクル43質量部中に3本ロールミルを用いて分散させて厚膜抵抗体用ペーストを作成した。なお、有機ビヒクルは、ターピネオール85質量%とエチルセルロース15質量%を混合し80℃で溶解して調製した。
(厚膜抵抗体の作製、評価)
予めアルミナ基板に焼成して形成された、1wt%のPd、99wt%のAgとを含む電極上に、各実施例、比較例で作製した厚膜抵抗体用ペーストを印刷した。次いで、150℃で5分間乾燥させた後、ピーク温度850℃で9分間、昇温時間と降温時間を含めたトータル30分間焼成し、厚膜抵抗体を形成した。厚膜抵抗体のサイズは抵抗体幅が1.0mm、抵抗体長さ(電極間)が1.0mmとなるようにした。
The mixing ratio of the ruthenium-containing oxide powder and the glass powder was adjusted so that the area resistance value of the obtained thick film resistor was about 100 kΩ.
(Preparation of paste for thick film resistors)
100 parts by mass of the thick film resistor composition of Examples 1 to 4 and Comparative Examples 1 to 3 was dispersed in 43 parts by mass of an organic vehicle using a three-roll mill to make a thick film resistor paste. It was created. The organic vehicle was prepared by mixing 85% by mass of tarpineol and 15% by mass of ethyl cellulose and dissolving at 80 ° C.
(Preparation and evaluation of thick film resistors)
The thick film resistor paste prepared in each Example and Comparative Example was printed on an electrode containing 1 wt% Pd and 99 wt% Ag, which was formed by firing on an alumina substrate in advance. Then, after drying at 150 ° C. for 5 minutes, firing was performed at a peak temperature of 850 ° C. for 9 minutes for a total of 30 minutes including a temperature raising time and a temperature lowering time to form a thick film resistor. The size of the thick film resistor was set so that the resistor width was 1.0 mm and the resistor length (between electrodes) was 1.0 mm.

形成された厚膜抵抗体は、膜厚、面積抵抗値、25℃から−55℃までの抵抗温度係数(COLD−TCR)、25℃から125℃までの抵抗温度係数(HOT−TCR)、耐静電気特性を測定した。評価結果を表3に示す。 The formed thick film resistor has a film thickness, an area resistance value, a temperature coefficient of resistance from 25 ° C. to −55 ° C. (COLD-TCR), a temperature coefficient of resistance from 25 ° C. to 125 ° C. (HOT-TCR), and resistance. The electrostatic characteristics were measured. The evaluation results are shown in Table 3.

Figure 2021057428
Figure 2021057428

Figure 2021057428
Figure 2021057428

Figure 2021057428
表3に示した結果によると、実施例1〜実施例4の厚膜抵抗体用組成物を用いた厚膜抵抗体は、抵抗温度係数が±100ppm/℃以内、静電気放電後の抵抗値変化率である耐静電気特性も±5%以内であり、優れた抵抗体といえる。
Figure 2021057428
According to the results shown in Table 3, the thick film resistors using the thick film resistor compositions of Examples 1 to 4 have a temperature coefficient of resistance within ± 100 ppm / ° C. and a change in resistance value after electrostatic discharge. The static electricity resistance characteristic, which is the rate, is also within ± 5%, and it can be said that it is an excellent resistor.

一方、比較例1の厚膜抵抗体用組成物を用いた厚膜抵抗体は、酸化チタンが固溶していない酸化ルテニウム粉末を用いた例であり、耐静電気特性が±5%の範囲を大きく超え、静電気を放電すると抵抗値の変化率が大きいことを確認できた。 On the other hand, the thick film resistor using the composition for the thick film resistor of Comparative Example 1 is an example using ruthenium oxide powder in which titanium oxide is not solid-dissolved, and the electrostatic resistance property is in the range of ± 5%. It was confirmed that the rate of change of the resistance value was large when the static electricity was discharged.

比較例2の厚膜抵抗体用組成物は、酸化チタンが固溶していない酸化ルテニウム粉末を用い、酸化チタンを個別に添加した例である。静電気放電後の抵抗値変化率の大きさは比較例1よりは小さいが、抵抗温度係数が大きくマイナスになっていることを確認できた。 The composition for a thick film resistor of Comparative Example 2 is an example in which titanium oxide is individually added using ruthenium oxide powder in which titanium oxide is not dissolved as a solid solution. Although the magnitude of the resistance value change rate after electrostatic discharge was smaller than that of Comparative Example 1, it was confirmed that the temperature coefficient of resistance was large and negative.

比較例3は、酸化チタンが固溶している酸化ルテニウム粉末を用い、本発明から外れている組成のガラスを用いた例である。静電気放電後の抵抗値変化率の大きさは小さいが、抵抗温度係数が大きくマイナスになっていることを確認できた。 Comparative Example 3 is an example in which ruthenium oxide powder in which titanium oxide is dissolved is used and glass having a composition different from the present invention is used. Although the magnitude of the resistance value change rate after electrostatic discharge was small, it was confirmed that the temperature coefficient of resistance was large and negative.

Claims (5)

ルテニウム含有酸化物粉末と、鉛を含まないガラス粉末とを含む厚膜抵抗体用組成物であって、
前記ルテニウム含有酸化物粉末は酸化チタンが固溶した酸化ルテニウム粉末であり、含有するチタンとルテニウムとのうち、チタンの割合が1mol%以上20mol%以下であり、
前記ガラス粉末は、SiOとBとRO(RはCa、Sr、Baから選択される1つ以上のアルカリ土類元素を示す)を含み、SiOとBとROの合計を100質量部とした場合に、SiOを10質量部以上50質量部以下、Bを8質量部以上30質量部以下、ROを40質量部以上65質量部以下の割合で含有する厚膜抵抗体用組成物。
A composition for a thick film resistor containing a ruthenium-containing oxide powder and a lead-free glass powder.
The ruthenium-containing oxide powder is ruthenium oxide powder in which titanium oxide is solid-dissolved, and the ratio of titanium to the contained titanium and ruthenium is 1 mol% or more and 20 mol% or less.
The glass powder contains SiO 2 and B 2 O 3 and RO (R represents one or more alkaline earth elements selected from Ca, Sr and Ba), and of SiO 2 and B 2 O 3 and RO. When the total is 100 parts by mass, SiO 2 is contained in an amount of 10 parts by mass or more and 50 parts by mass or less, B 2 O 3 is contained in an amount of 8 parts by mass or more and 30 parts by mass or less, and RO is contained in a ratio of 40 parts by mass or more and 65 parts by mass or less. Composition for thick film resistors.
前記ルテニウム含有酸化物粉末と前記ガラス粉末とのうち、前記ルテニウム含有酸化物粉末の割合が5質量%以上50質量%以下である請求項1に記載の厚膜抵抗体用組成物。 The composition for a thick film resistor according to claim 1, wherein the ratio of the ruthenium-containing oxide powder to the ruthenium-containing oxide powder and the glass powder is 5% by mass or more and 50% by mass or less. 前記ガラス粉末は、50%体積累計粒度が5μm以下である請求項1または請求項2に記載の厚膜抵抗体用組成物。 The composition for a thick film resistor according to claim 1 or 2, wherein the glass powder has a 50% cumulative volume particle size of 5 μm or less. 請求項1から請求項3のいずれか一項に記載の厚膜抵抗体用組成物と、有機ビヒクルとを含む厚膜抵抗体用ペースト。 A paste for a thick film resistor containing the composition for a thick film resistor according to any one of claims 1 to 3 and an organic vehicle. 請求項1から請求項3のいずれか一項に記載の厚膜抵抗体用組成物を含有する厚膜抵抗体。 A thick film resistor containing the composition for a thick film resistor according to any one of claims 1 to 3.
JP2019178038A 2019-09-27 2019-09-27 Composition for thick film resistor, paste for thick film resistor and thick film resistor Pending JP2021057428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019178038A JP2021057428A (en) 2019-09-27 2019-09-27 Composition for thick film resistor, paste for thick film resistor and thick film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019178038A JP2021057428A (en) 2019-09-27 2019-09-27 Composition for thick film resistor, paste for thick film resistor and thick film resistor

Publications (1)

Publication Number Publication Date
JP2021057428A true JP2021057428A (en) 2021-04-08

Family

ID=75271545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019178038A Pending JP2021057428A (en) 2019-09-27 2019-09-27 Composition for thick film resistor, paste for thick film resistor and thick film resistor

Country Status (1)

Country Link
JP (1) JP2021057428A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259718A (en) * 2003-02-24 2004-09-16 Sumitomo Metal Mining Co Ltd Ru-Ti-O FINE POWDER, ITS MANUFACTURING METHOD, AND THICK-FILM RESISTOR COMPOSITION USING IT
JP2005209744A (en) * 2004-01-20 2005-08-04 Tdk Corp Thick film resistor paste, thick film resistor, electronic component
JP2018092730A (en) * 2016-11-30 2018-06-14 住友金属鉱山株式会社 Composition for resistor and resistor paste containing the same furthermore thick film resistor therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259718A (en) * 2003-02-24 2004-09-16 Sumitomo Metal Mining Co Ltd Ru-Ti-O FINE POWDER, ITS MANUFACTURING METHOD, AND THICK-FILM RESISTOR COMPOSITION USING IT
JP2005209744A (en) * 2004-01-20 2005-08-04 Tdk Corp Thick film resistor paste, thick film resistor, electronic component
JP2018092730A (en) * 2016-11-30 2018-06-14 住友金属鉱山株式会社 Composition for resistor and resistor paste containing the same furthermore thick film resistor therewith

Similar Documents

Publication Publication Date Title
JP6256636B2 (en) Method for producing ruthenium oxide powder
KR102420736B1 (en) Composition for resistor, resistor paste containing same, and thick film resistor using same
JP7367547B2 (en) Thick film resistor composition, thick film resistor paste, and thick film resistor
JP2021057428A (en) Composition for thick film resistor, paste for thick film resistor and thick film resistor
TWI803673B (en) Composition for thick film resistors, paste for thick film resistors, and thick film resistors
JP2021057429A (en) Composition for thick film resistor, paste for thick film resistor and thick film resistor
JP2021057430A (en) Composition for thick film resistor, paste for thick film resistor and thick film resistor
TW201814727A (en) Lead-free thick film resistor composition, lead-free thick film resistor and production method thereof
JP6887615B2 (en) Glass containing bismuth ruthenate particles and its production method, thick film resistor composition and thick film resistor paste
JP2021050103A (en) Composition for thick film resistors, paste for thick film resistors, and thick film resistor
JP7279492B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
TW201920001A (en) Composition for thick film resistor, thick film resistance paste, and thick film resistor
JP7183507B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
WO2024024751A1 (en) Ruthenium oxide powder, composition for thick-film resistor, paste for thick-film resistor, and thick-film resistor
JP7110671B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7279551B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7273266B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
TW202413280A (en) Ruthenium oxide powder, composition for thick film resistor, paste for thick film resistor, thick film resistor
JP6804044B2 (en) A composition for a resistor, a resistor paste containing the same, and a thick film resistor using the same.
JP2023144072A (en) Thick film resistor composition, thick film resistor paste, and thick film resistor
JPH04125901A (en) Composition for thick film resistor
JP2020013913A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2018048052A (en) Metal oxide powder, method for producing metal oxide powder, composition for thick film resistor using the metal oxide powder, paste for thick film resistor, thick film resistor, and method for producing thick film resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20231222