JP2021056192A - Cosmic ray and radiation countermeasure material search system in space environment - Google Patents

Cosmic ray and radiation countermeasure material search system in space environment Download PDF

Info

Publication number
JP2021056192A
JP2021056192A JP2019188971A JP2019188971A JP2021056192A JP 2021056192 A JP2021056192 A JP 2021056192A JP 2019188971 A JP2019188971 A JP 2019188971A JP 2019188971 A JP2019188971 A JP 2019188971A JP 2021056192 A JP2021056192 A JP 2021056192A
Authority
JP
Japan
Prior art keywords
radiation
radiation shielding
materials
molecular
cosmic ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019188971A
Other languages
Japanese (ja)
Inventor
博文 船水
Hirobumi Funamizu
博文 船水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019188971A priority Critical patent/JP2021056192A/en
Publication of JP2021056192A publication Critical patent/JP2021056192A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a search system for promoting the development of cosmic ray and radiation shielding materials which are light-weight, rich in flexibility, excellent in weather resistance, and in consideration of safety to a human body.SOLUTION: Before conducting a shielding performance evaluation test, the molecule starting required for material development, such as electron density in organic materials, such as a chemical in new development of a radiation shielding material, a compound and amino acid, a molecular structure, the electron density, an electron orbit and an energy state of the molecule are predicted to efficiently manufacture a cosmic radiation shielding material. Polylactic acid, a polyurethane prepolymer, and an elastomeric material are targeted to be used as a main material, a metal element and a compound are targeted to be used as a sub material, and these information are inputted into a search software linked to a personal computer, whereby an optimum material is searched and then, an optimum condition is presented.SELECTED DRAWING: Figure 1

Description

本発明は、宇宙空間における宇宙線およびガンマ線および中性子線遮蔽材に関する。 The present invention relates to cosmic ray and gamma ray and neutron ray shielding materials in outer space.

地球大気外で観測される宇宙線には様々な粒子が含まれます。気球や人工衛星などの観測結果によれば、その典型的なものは電離した原子核(原子から電子を剥ぎ取られた状態のもの)であり、前述の狭義の宇宙線にあたります。宇宙線のおよそ90%は陽子(電離した水素原子核)、およそ9%がアルファ粒子(電離したヘリウム原子核)、残りが炭素や酸素、鉄などの原子核です。
原子核以外に目を向けると、レプトン(leptons)と呼ばれる種類の粒子も含まれています。レプトンのうち最も有名なものは電子であり、また前述したミュー粒子もレプトンです。宇宙線電子は超新星残骸や中性子星(neutron stars)で加速されていることが分かっており、陽子に比べると100分の1程度の頻度で地球に飛来していることが観測から分かっています。地表に降り注ぐミュー粒子は、手のひらの大きさ(約100cm)におよそ1秒間に1個降り注ぎ、そのほとんどが私たちの体を素通りしていきます。高エネルギーの宇宙線陽子や宇宙線アルファ粒子が星間媒質中の水素やヘリウム原子核に衝突すると、地球大気中で起きる二次粒子の生成と同様に、パイ中間子(pions)を生成します。このパイ中間子のうちπ粒子(中性パイ中間子、パイゼロ、neutral pions)は2つのガンマ線に崩壊します(π→2γ)。また高エネルギーの宇宙線電子が星間磁場で進行方向を曲げられとガンマ線が放出されたり、電子が星間中の光子(photons)に衝突するとその光子が強いエネルギーを持つようになります。このようなガンマ線が超新星残骸や活動銀河核などの高エネルギー天体から地球に届きます。放射線遮蔽素材は、原子力施設、医療施設において作業者を放射線から防護する手段が必要とされている。また宇宙環境においては宇宙線、粒子線、中性子線、ガンマ(γ)線などの影響が地球上に比べて数段高く、これを防ぐ手段は現状ではガンマ(γ)線には厚みのある鉛板、タングステン素材でしか防ぐことができないと言われている。
Cosmic rays observed outside the Earth's atmosphere contain various particles. According to the observation results of balloons and artificial satellites, the typical one is an ionized nucleus (a state in which electrons are stripped from the atom), which corresponds to the above-mentioned cosmic rays in the narrow sense. About 90% of cosmic rays are protons (ionized hydrogen nuclei), about 9% are alpha particles (ionized helium nuclei), and the rest are nuclei such as carbon, oxygen, and iron.
Looking beyond the atomic nucleus, it also contains a type of particle called leptons. The most famous of the leptons are electrons, and the muons mentioned above are also leptons. It is known that cosmic ray electrons are accelerated by supernova remnants and neutron stars, and it is known from observations that they fly to the earth about one-hundredth as often as protons. The muons that fall on the surface of the earth fall on the size of the palm (about 100 cm 2 ) once per second, and most of them pass through our bodies. When high-energy cosmic ray protons and cosmic ray alpha particles collide with hydrogen and helium nuclei in the interstellar medium, they produce pions, similar to the formation of secondary particles that occur in the Earth's atmosphere. Of these pions, π 0 particles (neutral pions, pions, neutral pions) decay into two gamma rays (π 0 → 2γ). In addition, when high-energy cosmic ray electrons are bent in the direction of travel by the interstellar magnetic field, gamma rays are emitted, or when the electrons collide with photons in the interstellar space, the photons have strong energy. Such gamma rays reach the Earth from high-energy objects such as supernova remnants and active galactic nuclei. Radiation shielding materials require means to protect workers from radiation in nuclear facilities and medical facilities. In the space environment, the effects of cosmic rays, particle beams, neutron rays, gamma (γ) rays, etc. are much higher than on the earth, and the means to prevent this is currently thick lead for gamma (γ) rays. It is said that it can only be prevented with plates and tungsten materials.

一般に比重の高い物質はガンマ線の遮蔽に優れているため、従来は金属鉛、金属鉛を含有する素材がガンマ線の遮蔽材として利用されてきた。しかし、金属鉛には吸引毒性という人体毒性があり廃棄の時にも環境負荷が大きいといわれている。そこで、金属鉛に代わる物質としてタングステンを含む素材が提案されている。 In general, a substance having a high specific gravity is excellent in shielding gamma rays, so conventionally, a material containing metallic lead or metallic lead has been used as a shielding material for gamma rays. However, metallic lead has a human toxicity called suction toxicity, and it is said that it has a large environmental load even at the time of disposal. Therefore, a material containing tungsten has been proposed as a substance to replace metallic lead.

一般に作業者の全身を覆う放射線防護服では金属元素を含有させて特殊素材やタングステンを網目にした素材での加工製品がある。また放射能汚染された核廃棄物などを貯蔵する中間貯蔵施設の建設ではコンクリートによる施設の建設と防水シートの提案がされている。しかしながら、宇宙環境においては人体への有害性の高い鉛素材は有効ではない。 In general, radiation protective clothing that covers the entire body of a worker includes processed products made of a special material containing a metal element and a meshed material of tungsten. In addition, in the construction of an interim storage facility for storing radioactively contaminated nuclear waste, construction of a facility using concrete and a tarpaulin have been proposed. However, lead materials, which are highly harmful to the human body, are not effective in the space environment.

地球から最も離れた場所に存在する宇宙線検出器はボイジャー探査機(1号と2号)です。太陽系内の宇宙線陽子は、ボイジャーでは運動エネルギーが1MeV(10eV)程度のものまで測定されています。これは光速の5%程度の速さしか持たず、宇宙線としてはかなり低エネルギーのものです。一方、人類がこれまでに観測した宇宙線の最大エネルギーは1020eVを超えています。これは粒子加速器を使って人工的に到達できるエネルギー6.5TeV(6.5×1012eV)を7桁以上も上回るものです。このような宇宙線の加速がどの天体で生じているのか、またその粒子が陽子なのかそれ以外のものなのかなど、これまでの観測結果からは未解明の問題です。宇宙線は低エネルギー(10eV)のものから最高エネルギー(>1020eV)のものまで、その到来個数がエネルギーのおよそ−3乗にに比例することが分かっています。したがって、エネルギーが上がれば上がるほど、地球に降り注ぐ宇宙線の個数は急激に減少するのです。The cosmic ray detectors that exist farthest from the earth are the Voyager spacecraft (Nos. 1 and 2). Cosmic ray protons in the solar system, the Voyager has been measured up to what is the kinetic energy of about 1MeV (10 6 eV). It has only about 5% of the speed of light, which is quite low energy for cosmic rays. On the other hand, the maximum energy of cosmic rays that human beings have observed so far exceeds 10 20 eV. This is more than 7 orders of magnitude higher than the energy of 6.5 TeV (6.5 x 10 12 eV) that can be artificially reached using a particle accelerator. It is an unclear problem from the observation results so far, such as which celestial body the acceleration of cosmic rays occurs in, and whether the particles are protons or other things. Cosmic rays up to the highest energy from that of the low-energy (10 9 eV) (> 10 20 eV), we found that the incoming number is proportional to approximately -3 square of the energy. Therefore, the higher the energy, the sharper the number of cosmic rays that fall on the earth.

一方で月面や火星など地球の磁場や大気による宇宙線防御ができないような環境下においては、宇宙ステーションにおける、クルーの睡眠場所でもあるゆりかご、宇宙服など宇宙環境における居住環境分野では全身を覆う宇宙服、居住空間における防護素材として宇宙線、粒子線、ガンマ(γ)線、中性子線にたいする放射線防護を備えた軽量で遮蔽性能がある新素材の要求が近々の課題である。 On the other hand, in an environment such as the moon or Mars where cosmic rays cannot be protected by the earth's magnetic field or atmosphere, the entire body is covered in the living environment field in the space environment such as the cradle, which is also the sleeping place for crew members, and space suits at the space station. As a protective material for space suits and living spaces, there is an urgent need for a new lightweight material with radiation protection against cosmic rays, particle rays, gamma (γ) rays, and neutron rays, which has shielding performance.

JAXAの文献から、次世代有人探査ミッションの安全な実現に向けて,GCRに対する効果的な遮蔽設計確立のため,PHITSコードを用いた以下検討を実施した結果新規遮蔽材料(水素リッチ材料)の適用可能性、既存遮蔽材料(PE)を使用した最適化、遮蔽材料の組成改良が,GCRの遮蔽効果に与える影響は小さく,PE設置以上に軽量かつ効果的な遮蔽は困難であると報告されている。
第14回「宇宙環境シンポジウム」講演論文集 報告書番号:R17JG3210 報告書番号:R18JG3210
From the JAXA literature, the application of a new shielding material (hydrogen-rich material) as a result of conducting the following studies using the PHITS code in order to establish an effective shielding design for GCR toward the safe realization of next-generation manned exploration missions. It has been reported that the possibility, optimization using existing shielding material (PE), and improvement of the composition of the shielding material have a small effect on the shielding effect of GCR, and it is difficult to shield lightly and effectively more than PE installation. There is.
Proceedings of the 14th "Space Environment Symposium" Report number: R17JG3210 Report number: R18JG3210

上記文献にある宇宙環における放射線遮蔽素材は高いエネルギーの宇宙線(エネルギーは500MKeV以上である。)に対する十分な遮蔽性能を持ち加工性にも優れ、耐候性にも優れた素材は無かった。The radiation shielding material in the space ring described in the above document has sufficient shielding performance against high energy cosmic rays (energy is 500 MKeV or more), is excellent in workability, and is not excellent in weather resistance.

本発明は、
より薄く軽量で柔軟性に富む宇宙線および放射線に対する遮蔽素材を効率よく開発するのに最適な分子探索を効率的に探索するシステムとして提供することが特徴である。
The present invention
It is characterized by providing a system that efficiently searches for the optimum molecular search for efficiently developing thinner, lighter, and more flexible cosmic ray and radiation shielding materials.

本発明は基盤となる素材と遮蔽効果をもたらす金属系元素や化合物、アミノ酸など有機物の間で見いだされた関係式と最適な素材を合成する為に必要な化学的条件および量子物理的条件、量子化学的条件を組み合わせを素早く探索するためのシステムを構築することで宇宙線および放射線遮蔽に最適な素材をすばやく探索し、実験前に機能性を予測することで素材開発コスト削減と開発時間の短縮を提供する。 The present invention presents the relational expressions found between the underlying material and organic substances such as metal elements, compounds, and amino acids that provide a shielding effect, and the chemical and quantum physical conditions and quantum conditions necessary for synthesizing the optimum material. By building a system for quickly searching for combinations of chemical conditions, we can quickly search for the best materials for cosmic radiation and radiation shielding, and by predicting functionality before experiments, we can reduce material development costs and shorten development time. I will provide a.

図1は放射線遮蔽素材に最適な化学物質および有機物を探索するための次世代探索システムの概要説明図である。FIG. 1 is a schematic explanatory view of a next-generation search system for searching for the optimum chemical substances and organic substances for radiation shielding materials.

以下に本発明の実施形態についてはシリコーン、エラストマー、金属元素、化合物、金属元素を含む化合物、酸化物、混合物およびアミノ酸など生体に関する有機物などの化学的データを使用する。
本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的範囲において適宜変更を加えて実施することができる。
本発明のエックス線又はガンマ線遮蔽材は、ジルコニウム元素又はバリウム元素を含む添加剤及びタングステンカーバイトまたはタングステン粉末、少なくとも1種のビスマス化合物、ニッケル粉末、ニッケル化合物、カーボンナノチューブ、フラーレン、アミノ酸など生体に関する有機物からなる群から選ばれる1種以上と、シリコーンゴムまたはポリ尿酸、ポリウレタンプレポリマーとを含有することを特徴とする。
Hereinafter, for the embodiments of the present invention, chemical data such as silicones, elastomers, metal elements, compounds, compounds containing metal elements, oxides, mixtures and organic substances related to living organisms such as amino acids are used.
The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the present invention.
The X-ray or gamma-ray shielding material of the present invention is an additive containing a zirconium element or a barium element and an organic substance related to a living body such as tungsten carbide or tungsten powder, at least one bismuth compound, nickel powder, nickel compound, carbon nanotube, fullerene, and amino acid. It is characterized by containing one or more selected from the group consisting of, silicone rubber, polyuric acid, and a polyurethane prepolymer.

<添加剤>
本発明に用いられる添加剤は、ジルコニウム元素又はバリウム元素またはタングステンカーバイトまたはタングステン粉末を含む単体又は化合物の1種以上もしくは少なくとも1種のビスマス化合物、ニッケル粉末、ニッケル化合物、カーボンナノチューブ、フラーレンである。例えば、添加剤は、各元素を含む、金属(単体)、酸化物、塩化物、水酸化物、オキソ酸塩等であり、それらの混合物であっても構わない。また、本発明で使用される探索化学物質として添加剤には、ジルコニウム元素又はバリウム元素又はタングステンカーバイトまたはタングステン粉末以外の周期表にある他の元素を含んでいてもよい。
<Additives>
The additives used in the present invention are one or more or at least one bismuth compound, nickel powder, nickel compound, carbon nanotube, fullerene, which is a simple substance or compound containing zirconium element or barium element or tungsten carbide or tungsten powder. .. For example, the additive may be a metal (elemental substance), an oxide, a chloride, a hydroxide, an oxoacid salt or the like containing each element, and may be a mixture thereof. In addition, the additive as the exploratory chemical substance used in the present invention may contain elements other than zirconium element or barium element or tungsten carbide or tungsten powder in the periodic table.

本発明の宇宙線およびガンマ線遮蔽材探索システムにおける上記添加剤の含有量は化合物の分子エネルギー、分子構造、分子起動、電子軌道、電子スピンに関する情報から最適な条件を導きだしたものをもとに、宇宙線、ガンマ線、中性子線に対して最適な遮蔽性能を有するか、シミュレーションした結果から基材および添加剤の配合比率を決定できることが特徴である。
配合比率の例としては製品のガンマ線遮蔽効果が確保できる点で、1質量%以上が好ましく、10質量%以上がさらに好ましい。また、ガンマ線遮蔽材の上記添加剤の含有量は、添加剤のシリコーンゴム中への分散性が確保できる点で、90質量%以下が好ましく、60質量%以下がさらに好ましい。ガンマ線遮蔽材に2種以上の添加剤を含有させる場合は、添加剤の合計量が、耐久性を十分に考慮した物性性能を有する範囲内にあればよい。本発明における添加剤の含有量は、EDX等を使用した元素分析により求める。
The content of the above additive in the cosmic ray and gamma ray shielding material search system of the present invention is based on the optimum conditions derived from the information on the molecular energy, molecular structure, molecular activation, electron orbit, and electron spin of the compound. It is characterized by having optimum shielding performance against cosmic rays, gamma rays, and neutron rays, or by being able to determine the blending ratio of the base material and additives from the results of simulation.
As an example of the blending ratio, 1% by mass or more is preferable, and 10% by mass or more is more preferable, because the gamma ray shielding effect of the product can be secured. The content of the additive in the gamma ray shielding material is preferably 90% by mass or less, more preferably 60% by mass or less, in that the dispersibility of the additive in the silicone rubber can be ensured. When two or more kinds of additives are contained in the gamma ray shielding material, the total amount of the additives may be within a range having physical properties and performance in consideration of durability. The content of the additive in the present invention is determined by elemental analysis using EDX or the like.

ジルコニウム元素を含む添加剤として、具体的には、例えば、金属ジルコニウム、ジルコン(ZrSiO)、酸化ジルコニウム(IV)(ZrO)、タングステン酸ジルコニウム(IV)(Zr(WO)、塩化ジルコニウム(III)(ZrCl)、塩化ジルコニウム(IV)(ZrCl)等が挙げられる。なかでも、取り扱い性良好、入手容易、低コストの観点から、ジルコン(ZrSiO)を用いることが好ましいなど安全性を考慮した条件を提示する。Specific examples of the additive containing the zirconium element include metallic zirconium, zirconium (ZrSiO 4 ), zirconium oxide (IV) (ZrO 2 ), zirconium tungate (IV) (Zr (WO 4 ) 2 ), and chloride. Examples thereof include zirconium (III) (ZrCl 3 ) and zirconium chloride (IV) (ZrCl 4). Among them, conditions considering safety such as preferable use of zircon (ZrSiO 4 ) are presented from the viewpoints of good handleability, easy availability, and low cost.

バリウム元素を含む添加剤としては、具体的には、例えば、金属バリウム、ジルコン(ZrSiO)、酸化バリウム(BaO)、炭酸バリウム(BaCO)、チタン酸バリウム(BaTiO)、硫酸バリウム(BaSO)等が挙げられる。前記硫酸バリウムとしては、重晶石を粉砕して脱鉄洗浄、硫酸バリウム(バライト粉)と沈降性硫酸バリウムのいずれを用いてもよい。なかでも、安全性、取り扱い性良好、入手容易、低コストの観点から、沈降性硫酸バリウムを用いることが好ましいなど安全性を考慮した条件を提示する。Specific examples of the additive containing barium element include metal barium, zircon (ZrSiO 4 ), barium oxide (BaO), barium carbonate (BaCO 3 ), barium titanate (BaTIO 3 ), and barium sulfate (BaSO). 4 ) and the like. As the barium sulfate, any of barium sulfate (barium powder) and precipitated barium sulfate may be used after crushing barite and washing with iron. In particular, from the viewpoints of safety, good handleability, easy availability, and low cost, conditions considering safety such as preferable use of sedimentary barium sulfate are presented.

<シリコーンゴム>
本発明に用いられるシリコーンゴムもしくはポリ尿酸、ポリウレタンプレポリマーは、本発明の宇宙線、エックス線又はガンマ線遮蔽材の母材として使用され、シリコーン樹脂のうち常温でゴム状のものであれば、特に限定されること無く適宜選択して用いることができる。
<Silicone rubber>
The silicone rubber, polyuric acid, or polyurethane prepolymer used in the present invention is used as a base material for the cosmic ray, X-ray, or gamma ray shielding material of the present invention, and is particularly limited as long as it is a silicone resin that is rubbery at room temperature. It can be appropriately selected and used without being used.

このシリコーンゴムの主骨格はオルガノポリシロキサンであり、そのケイ素原子に結合する基として様々な基を有してもよい。ここで、ケイ素原子に結合する基は特に限定されるものではなく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ベンジル基、フェネチル基等のアラルキル基;3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基のほか、これらの基の水素原子が部分的に他の原子又は結合基で置換されたものを挙げることができる。これらの官能基を選択して導入することにより、シリコーンゴムを、例えば、加熱硬化型あるいは常温硬化型のもの、硬化機構が縮合型あるいは付加型のものとすることができる。本発明に用いられるシリコーンゴムとしては、架橋(加硫)したものも、未架橋(未加硫)のものも、両者の混合物も、いずれを使用することもできる。The main skeleton of this silicone rubber is an organopolysiloxane, which may have various groups as a group bonded to its silicon atom. Here, the group bonded to the silicon atom is not particularly limited, and for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group; a vinyl group, an allyl group and a butenyl group. , Alkenyl groups such as pentenyl group and hexenyl group; aryl groups such as phenyl group, trill group, xsilyl group and naphthyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aralkyl groups such as benzyl group and phenethyl group; 3- In addition to alkyl halide groups such as a chloropropyl group and a 3,3,3-trifluoropropyl group, those in which the hydrogen atom of these groups is partially substituted with another atom or a bonding group can be mentioned. By selecting and introducing these functional groups, the silicone rubber can be, for example, a heat-curable type or a room temperature-curable type, and a condensation type or an addition type having a curing mechanism. As the silicone rubber used in the present invention, either a crosslinked (vulcanized) one, an uncrosslinked (unvulcanized) one, or a mixture of both can be used.

本発明に用いられるシリコーンゴムの配合量は、上記添加剤等を十分に分散して母材として機能する範囲であれば、特に限定されることなく設定することが可能である。シリコーンゴムの含有量として、10質量%以上が好ましく、30質量%以上がさらに好ましい。10質量%以上であることで、添加剤等を十分に分散し得てガンマ線遮蔽材を任意の形状に成形しやすい。また、シート状の成形品とした場合に、シートに十分な可撓性を付与しやすい。上限は、ガンマ線遮蔽材の遮蔽性能を考慮すれば、90質量%が好ましく、より好ましくは80質量%である。エックス線又はガンマ線遮蔽材における上記シリコーンゴムの含有量は、元素分析及び29Si−NMRの測定結果から算出する。The blending amount of the silicone rubber used in the present invention can be set without particular limitation as long as the above additives and the like are sufficiently dispersed and function as a base material. The content of the silicone rubber is preferably 10% by mass or more, more preferably 30% by mass or more. When it is 10% by mass or more, additives and the like can be sufficiently dispersed, and the gamma ray shielding material can be easily formed into an arbitrary shape. Further, when a sheet-shaped molded product is formed, it is easy to impart sufficient flexibility to the sheet. The upper limit is preferably 90% by mass, more preferably 80% by mass, in consideration of the shielding performance of the gamma ray shielding material. The content of the silicone rubber in the X-ray or gamma ray shielding material is calculated from the measurement results of elemental analysis and 29 Si-NMR.

前述のように、本発明のエックス線又はガンマ線遮蔽材は、未加硫のまま使用することもできるが、公知の架橋剤等を含有させて処理を行い架橋(加硫)して使用することもできる。本発明におけるシリコーンゴムの架橋(加硫)方法は、未加硫のシリコーンゴムの有する官能基に応じて適宜選択されるものである。官能基の示す反応機構としては、(1)有機過酸化物加硫剤による架橋方法、(2)付加反応による方法等が知られており、それぞれ、好適な硬化用触媒若しくは架橋剤が公知である。As described above, the X-ray or gamma ray shielding material of the present invention can be used as it is unvulcanized, but it can also be used after being treated by containing a known cross-linking agent or the like and cross-linked (vulcanized). it can. The method for cross-linking (vulcanizing) the silicone rubber in the present invention is appropriately selected according to the functional groups of the unvulcanized silicone rubber. As the reaction mechanism exhibited by the functional group, (1) a cross-linking method using an organic peroxide vulcanizing agent, (2) a method using an addition reaction and the like are known, and suitable curing catalysts or cross-linking agents are known, respectively. is there.

例えば、有機過酸化物加硫剤としては、公知のパーオキサイドが使用でき、例えばベンゾイルパーオキサイド、2,4ジクロロベンゾイルパーオキサイド、ジクミルパーオキサイド、ジターシャリーブチルパーオキサイド、2,5ジメチル2,5ジターシャリーブチルパーオキシヘキサン、パラクロロベンゾイルパーオキサイド、ターシャリーブチルクミルパーオキサイド、ターシャリーブチルパーベンゾエート等を用いることができ、ビニル基等の不飽和の官能基を有す未加硫シリコーンゴムに対し適量配合することができる。For example, as the organic peroxide vulcanizer, known peroxides can be used, for example, benzoyl peroxide, 2,4 dichlorobenzoyl peroxide, dicumyl peroxide, ditershally butyl peroxide, 2,5 dimethyl 2, 5 Ditersary butyl peroxyhexane, parachlorobenzoyl peroxide, tertiary butyl cumyl peroxide, tertiary butyl perbenzoate, etc. can be used, and unvulcanized silicone rubber having an unsaturated functional group such as a vinyl group. Can be blended in an appropriate amount.

ビニル基等の不飽和の官能基を有す未加硫シリコーンゴムに対しては、付加反応型の架橋剤であるハイドロジェン基含有ポリオルガノシロキサンを採用することも可能である。その際、白金化合物等の周知の硬化用触媒を併用することが好ましい。これらは、未加硫シリコーンゴムに対し適量配合すればよい。For unvulcanized silicone rubber having an unsaturated functional group such as a vinyl group, it is also possible to use a hydrogen group-containing polyorganosiloxane which is an addition reaction type cross-linking agent. At that time, it is preferable to use a well-known curing catalyst such as a platinum compound in combination. These may be blended in an appropriate amount with unvulcanized silicone rubber.

本発明のガンマ線遮蔽材には、柔軟性等の性能の向上を目的として、シリコーンゴム以外の合成ゴム若しくは天然ゴムを、シリコーンゴムにさらに添加することもできる。このような合成ゴム若しくは天然ゴムとしては、例えば、イソプレンゴム、ブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、各種天然ゴム等が挙げられる。ただし、これらのゴムは必須ではなく、含まれなくても構わない。In the gamma ray shielding material of the present invention, synthetic rubber or natural rubber other than silicone rubber may be further added to the silicone rubber for the purpose of improving performance such as flexibility. Examples of such synthetic rubber or natural rubber include isoprene rubber, butadiene rubber, butyl rubber, ethylene propylene rubber, and various natural rubbers. However, these rubbers are not essential and may not be included.

<物性調整剤>
本発明のガンマ線遮蔽材には、さらに、その遮蔽性能をより向上したり、その他有用な性質を付与したりすることを目的に、物性調整剤を、本発明の目的を損なわない範囲で添加することができる。例えば、クレー、珪藻土等の補強性充填剤、酸化鉄、酸化セリウム等の耐熱剤、顔料、難燃剤、耐熱性向上剤、酸化防止剤、離型剤、加工助剤、接着性付与剤、有機溶媒等を挙げることができる。また、ジルコニウム元素又はバリウム元素、またはタングステンカーバイトまたはタングステン粉末を含む添加剤以外の、従来ガンマ線遮蔽に有効とされている元素を含む物質を含有させてもよい。
<Physical characteristic adjuster>
To the gamma ray shielding material of the present invention, a physical property adjusting agent is added to the gamma ray shielding material within a range that does not impair the object of the present invention, for the purpose of further improving the shielding performance or imparting other useful properties. be able to. For example, reinforcing fillers such as clay and diatomaceous earth, heat-resistant agents such as iron oxide and cerium oxide, pigments, flame-retardant agents, heat-resistant improvers, antioxidants, mold release agents, processing aids, adhesive-imparting agents, and organic materials. Examples include a solvent. Further, it may contain a substance containing an element conventionally considered to be effective for gamma ray shielding, other than an additive containing a zirconium element or a barium element, or a tungsten carbide or a tungsten powder.

上記の物性調整剤のうち、水酸化アルミニウム、水酸化マグネシウム又は炭酸カルシウムのいずれか1つ以上を採用することが、本発明のガンマ線遮蔽材に難燃性を付与できるために好ましい。ガンマ線遮蔽材に難燃性を付与することにより、作業着のような、難燃性の基材を使用することが求められる分野への適用が有利となる。Among the above physical property adjusting agents, it is preferable to use any one or more of aluminum hydroxide, magnesium hydroxide or calcium carbonate because the gamma ray shielding material of the present invention can be imparted with flame retardancy. By imparting flame retardancy to the gamma ray shielding material, it is advantageous to apply it to fields where a flame retardant base material is required to be used, such as work clothes.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

〈実施例1〜15〉
電子軌道、電子軌道、分子エネルギー、分子構造、分子起動、情報をもとにパソコンに情報を入力して、最適な分子化合物条件を探索した。
この結果シリコーンゴム、エラストマー、金属元素、金属化合物、酸化物を用いた宇宙線、放射線遮蔽素材について最適な適合素材とその配合を導き出した。
<Examples 1 to 15>
Information was input to a personal computer based on electron orbits, electron orbits, molecular energy, molecular structure, molecular activation, and information to search for optimal molecular compound conditions.
As a result, the optimum compatible materials and their formulations were derived for silicone rubber, elastomers, metal elements, metal compounds, cosmic rays using oxides, and radiation shielding materials.

<ガンマ線の減衰率の測定>
放射線源としてユウロピウム(Eu)152標準線源を用い、鉛ブロック製のコリメータの反対側にGe半導体検出器を配置した。前記コリメータと前記検出器との間に、ビニル袋にいれたシート状の試験体を置き、10〜60keV、60〜300keV、300〜1500keVの範囲のガンマ線スペクトルとセシウム(Cs)137を用い300〜700keVの範囲のガンマ線スペクトルを測定した。つづいて、前記試料に換えて空のビニル袋を挿入して、同様のガンマ線スペクトルを測定した。
<Measurement of gamma ray attenuation rate>
A Europium (Eu) 152 standard radiation source was used as the radiation source, and a Ge semiconductor detector was placed on the opposite side of the lead block collimator. A sheet-shaped test piece placed in a vinyl bag is placed between the collimator and the detector, and a gamma ray spectrum in the range of 10 to 60 keV, 60 to 300 keV, and 300 to 1500 keV and cesium (Cs) 137 are used to prepare 300 to 300. Gamma ray spectra in the 700 keV range were measured. Subsequently, an empty vinyl bag was inserted in place of the sample, and the same gamma ray spectrum was measured.

各試料の、上記エネルギー領域(ROI:Region−Of−Interest)内における光電ピークとコンプトン散乱成分のカウント数を積分し、それぞれの計数積分値(N)を得る。各計数積分値を測定時間で割って、単位時間当たりの計数率を算出した。前記コリメータと前記検出部との間に前記遮蔽材がない場合の計数率(n)と、それらの間に前記遮蔽材を置いた場合の計数率(n)とを用いて、前記各遮蔽材の放射線遮蔽率を算出した。
n=n・exp(−μ・ρ・x)
遮蔽率={1−exp(−μ・ρ・x)}×100
上記の各記号は、それぞれ、exp:指数関数、μ:試料の質量減弱係数(cm/g)、ρ:試料の密度(g/cm)、x:試料の厚さ(cm)を表す。
The counts of the photoelectric peak and the Compton scattering component in the energy region (ROI: Region-Of-Interest) of each sample are integrated to obtain the respective count integral value (N). The count rate per unit time was calculated by dividing each count integral value by the measurement time. Each of the shields is made using the count rate (n 0 ) when there is no shielding material between the collimator and the detection unit and the count rate (n) when the shield material is placed between them. The radiation shielding rate of the material was calculated.
n = n 0 · exp (−μ · ρ · x)
Shielding rate = {1-exp (-μ ・ ρ ・ x)} × 100
Each of the above symbols represents exp: exponential function, μ: sample mass attenuation coefficient (cm 2 / g), ρ: sample density (g / cm 3 ), and x: sample thickness (cm). ..

<ガンマ線の減衰率の推算>
上記した各材料の密度と配合比から遮蔽材全体の試料の密度(ρ)を算出し、20mmにおける遮蔽率を算出した。計算に用いた各材料の密度は、下記のとおりである。
シリコーンゴム:1.14g/cm
ジルコン:4.7g/cm
硫酸バリウム:4.3g/cm
<Estimation of gamma ray attenuation rate>
The density (ρ) of the sample of the entire shielding material was calculated from the density and the compounding ratio of each of the above-mentioned materials, and the shielding rate at 20 mm was calculated. The densities of each material used in the calculation are as follows.
Silicone rubber: 1.14 g / cm 3
Zircon: 4.7 g / cm 3
Barium sulfate: 4.3 g / cm 3

〈ガンマ線の質量減弱係数の測定〉
放射線源としてユウロピウム(Eu)152、セシウム(Cs)137を用いて鉛ブロック製のコリメータの反対側にGe半導体検出器を配置した。前期コリメータと前記検出器との間に、シート状の試験体(開発したい素材)を置き300〜700KeVの範囲のガンマ線スペクトルを測定した。
<Measurement of mass attenuation coefficient of gamma rays>
A Ge semiconductor detector was placed on the opposite side of a lead block collimator using europium (Eu) 152 and cesium (Cs) 137 as radio sources. A sheet-shaped test piece (material to be developed) was placed between the early collimator and the detector, and a gamma ray spectrum in the range of 300 to 700 KeV was measured.

各試料について質量減弱率と線減弱率を計算した

Figure 2021056192
Figure 2021056192
Mass attenuation and line attenuation were calculated for each sample
Figure 2021056192
Figure 2021056192

Figure 2021056192
Figure 2021056192

〈宇宙線によるアミノ酸変性について〉
加水分解後のアミノ酸分析の結果,照射によりアミノ酸量は微減し,28000Gy照射でも80%程度のアミノ酸が残存した.以上のことから,重粒子照射によりHSAの二次構造,三次構造が変化し,アミノ酸鎖も切断されるが,構成するアミノ酸自体の分解は限られることを示している.同条件でアミノ酸水溶液に照射した場合は,より多く分解が進んだ.また,乾燥状態や凍結状態でHSAに照射した場合は,液体状態で照射した場合と異なり,二次構造や分子量に変化が見られず,安定であることがわかった.つまり,宇宙環境でも結合型アミノ酸(タンパク質など)は液体の水のない状態では安定に存在しうることを示している.
<Amino acid denaturation by cosmic rays>
As a result of amino acid analysis after hydrolysis, the amount of amino acids decreased slightly by irradiation, and about 80% of amino acids remained even after irradiation with 28,000 Gy. From the above, it is shown that the secondary structure and tertiary structure of HSA are changed by heavy particle irradiation, and the amino acid chain is also cleaved, but the decomposition of the constituent amino acids themselves is limited. When the amino acid aqueous solution was irradiated under the same conditions, more decomposition proceeded. It was also found that when HSA was irradiated in a dry or frozen state, the secondary structure and molecular weight did not change, and it was stable, unlike the case where it was irradiated in a liquid state. In other words, it is shown that bound amino acids (proteins, etc.) can exist stably even in the space environment in the absence of liquid water.

本発明の実施例の素材のガンマ線に対する質量減弱係数、線減弱係数から素材の密度と比重が重要な要素であることが示された。
質量減弱係数と線減弱係数を推測することで基盤素材の原料や添加物質の種類に関係なく、放射線遮蔽素材を開発できる。
From the mass attenuation coefficient and the line attenuation coefficient of the material of the example of the present invention with respect to gamma rays, it was shown that the density and specific gravity of the material are important factors.
By estimating the mass attenuation coefficient and the line attenuation coefficient, it is possible to develop a radiation shielding material regardless of the type of raw material or additive substance of the base material.

Claims (10)

電子軌道、電子軌道、分子エネルギー、分子構造、分子起動、イオン半径情報をもとにパソコンに情報を入力して、最適な分子化合物条件を探索した。
この結果シリコーンゴム、エラストマー、金属元素、金属化合物、酸化物を用いた宇宙線、放射線遮蔽素材について最適な適合素材とその配合を導き出した。
主たる原料はポリ尿酸、ポリウレタンプレポリマー、もしくはシリコーン、エラストマー、樹脂、副材料を金属元素、化合物、アミノ酸など有機物を使用した次世代宇宙線および放射線対策素材開発システム
Information was input to a personal computer based on electron orbit, electron orbit, molecular energy, molecular structure, molecular activation, and ionic radius information to search for optimal molecular compound conditions.
As a result, the optimum compatible materials and their formulations were derived for silicone rubber, elastomers, metal elements, metal compounds, cosmic rays using oxides, and radiation shielding materials.
Next-generation cosmic ray and radiation countermeasure material development system that uses polyuric acid, polyurethane prepolymer, silicone, elastomer, resin, and organic substances such as metal elements, compounds, and amino acids as auxiliary materials.
電子軌道、電子軌道、分子エネルギー、分子構造、分子起動、イオン半径情報をもとにパソコンに情報を入力して、最適な分子化合物条件を探索した。
この結果シリコーンゴム、エラストマー、金属元素、金属化合物、酸化物を用いた宇宙線、放射線遮蔽素材について最適な適合素材とその配合を導き出した。
主たる原料はポリ尿酸、ポリウレタンプレポリマー、もしくはシリコーン、エラストマー、樹脂、副材料を金属元素、化合物、アミノ酸など有機物を使用した次世代宇宙線および放射線対策素材開発システムソフト
Information was input to a personal computer based on electron orbit, electron orbit, molecular energy, molecular structure, molecular activation, and ionic radius information to search for optimal molecular compound conditions.
As a result, the optimum compatible materials and their formulations were derived for silicone rubber, elastomers, metal elements, metal compounds, cosmic rays using oxides, and radiation shielding materials.
Next-generation cosmic ray and radiation countermeasure material development system software that uses polyuric acid, polyurethane prepolymer, or silicone, elastomer, resin, and organic substances such as metal elements, compounds, and amino acids as auxiliary materials.
線減弱係数が0.07〜0.30の放射線遮蔽素材、主たる原料はポリ尿酸、ポリウレタンプレポリマー、もしくはシリコーン、エラストマー、樹脂、副材料を金属元素、化合物、アミノ酸など有機物を使用した次世代宇宙線および放射線対策素材開発システムの分子起動計算アルゴリズムRadiation shielding material with a line attenuation coefficient of 0.07 to 0.30, the main raw material is polyuric acid, polyurethane prepolymer, or silicone, elastomer, resin, next-generation space using organic substances such as metal elements, compounds, amino acids as auxiliary materials Molecular activation calculation algorithm for line and radiation countermeasure material development system 線減弱係数が0.3〜1.17の放射線遮蔽素材、主たる原料はポリ尿酸、ポリウレタンプレポリマー、もしくはシリコーン、エラストマー、樹脂、副材料を金属元素、化合物、アミノ酸など有機物を使用した次世代宇宙線および放射線対策素材開発システムの分子起動計算アルゴリズムRadiation shielding material with line attenuation coefficient of 0.3 to 1.17, main raw material is polyuric acid, polyurethane prepolymer, or silicone, elastomer, resin, next-generation space using organic substances such as metal elements, compounds, amino acids as auxiliary materials Molecular activation calculation algorithm for line and radiation countermeasure material development system 線減弱係数が0.01〜0.07の放射線遮蔽素材、主たる原料はポリ尿酸、ポリウレタンプレポリマー、もしくはシリコーン、エラストマー、樹脂、副材料を金属元素、化合物、アミノ酸など有機物を使用した次世代宇宙線および放射線対策素材開発システムの分子軌道計算アルゴリズムRadiation shielding material with a line attenuation coefficient of 0.01 to 0.07, the main raw material is polyuric acid, polyurethane prepolymer, or silicone, elastomer, resin, next-generation space using organic substances such as metal elements, compounds, amino acids as auxiliary materials Molecular orbital calculation algorithm for line and radiation countermeasure material development system 請求項1に記載のイオン半径が120pm以下の元素を組み合わせた、宇宙線および放射線遮蔽塗布剤、スプレー剤、およびシート、放射線防護素材、放射線遮蔽建築材、放射線防護服。A cosmic ray and radiation shielding coating agent, a spraying agent, and a sheet, a radiation protective material, a radiation shielding building material, and a radiation protective clothing, which are a combination of elements having an ionic radius of 120 pm or less according to claim 1. 請求項1に記載のイオン半径が7pm〜74pmの元素を組み合わせた、宇宙線および放射線遮蔽塗布剤、スプレー剤、およびシート、放射線防護素材、放射線遮蔽建築材、放射線防護服。A cosmic ray and radiation shielding coating agent, a spraying agent, and a sheet, a radiation protective material, a radiation shielding building material, and a radiation protective clothing, which are a combination of elements having an ionic radius of 7 pm to 74 pm according to claim 1. 請求項1に記載のイオン半径が50pm〜135pmの元素を組み合わせた、宇宙線および放射線遮蔽塗布剤、スプレー剤、およびシート、放射線防護素材、放射線遮蔽建築材、放射線防護服。A cosmic ray and radiation shielding coating agent, a spraying agent, and a sheet, a radiation protective material, a radiation shielding building material, and a radiation protective clothing, which are a combination of elements having an ionic radius of 50 pm to 135 pm according to claim 1. 請求項7に記載の宇宙線および放射線遮蔽塗布剤、スプレー剤、およびシート、放射線防護素材、放射線遮蔽建築材、放射線防護服。The cosmic ray and radiation shielding coating agent, spraying agent, and sheet, radiation protective material, radiation shielding building material, and radiation protective clothing according to claim 7. 請求項8に記載の宇宙線および放射線遮蔽塗布剤、スプレー剤、およびシート特に宇宙環境および医療施設で使用する放射線防護素材、放射線遮蔽建築材、放射線防護服。The cosmic ray and radiation shielding coating agent, spraying agent, and sheet according to claim 8, particularly radiation protective materials, radiation shielding building materials, and radiation protective clothing used in the space environment and medical facilities.
JP2019188971A 2019-09-27 2019-09-27 Cosmic ray and radiation countermeasure material search system in space environment Pending JP2021056192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019188971A JP2021056192A (en) 2019-09-27 2019-09-27 Cosmic ray and radiation countermeasure material search system in space environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019188971A JP2021056192A (en) 2019-09-27 2019-09-27 Cosmic ray and radiation countermeasure material search system in space environment

Publications (1)

Publication Number Publication Date
JP2021056192A true JP2021056192A (en) 2021-04-08

Family

ID=75272536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019188971A Pending JP2021056192A (en) 2019-09-27 2019-09-27 Cosmic ray and radiation countermeasure material search system in space environment

Country Status (1)

Country Link
JP (1) JP2021056192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536947A (en) * 2022-10-13 2022-12-30 上海卫星装备研究所 Composite material for space charged particle radiation protection and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536947A (en) * 2022-10-13 2022-12-30 上海卫星装备研究所 Composite material for space charged particle radiation protection and preparation method thereof
CN115536947B (en) * 2022-10-13 2023-08-11 上海卫星装备研究所 Composite material for space charged particle radiation protection and preparation method thereof

Similar Documents

Publication Publication Date Title
Poltabtim et al. Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM rubber composites
Toyen et al. Flexible, lead-free, gamma-shielding materials based on natural rubber/metal oxide composites
KR101527796B1 (en) Method for preparing textile composite for sheilding radiation
Bijanu et al. Metal-polymer composites for radiation protection: a review
El-Khatib et al. Conductive natural and waste rubbers composites-loaded with lead powder as environmental flexible gamma radiation shielding material
Mirji et al. 24. Radiation shielding materials: A brief review on methods, scope and significance
Okonkwo et al. Development, characterization, and properties of polymeric nanoarchitectures for radiation attenuation
Singh et al. Gamma-ray and neutron shielding efficiency of Pb-free gadolinium-based glasses
JP2007085865A (en) Radiation-shielding sheet and x-ray apparatus using the same
Amirabadi et al. Study of neutron and gamma radiation protective shield
Thumwong et al. Enhanced X-ray shielding properties of NRL gloves with nano-Bi2O3 and their mechanical properties under aging conditions
JP2021056192A (en) Cosmic ray and radiation countermeasure material search system in space environment
Ozel et al. Production of microstructured BaZrO3 and Ba2P2O7-based polymer shields for protection against ionizing photons
Evcin et al. Production of barite and boroncarbide doped radiation shielding polymer composite panels
TW200426855A (en) Amorphous composition for high level radiation and environmental protection
US9006695B2 (en) Use of a mixture comprising erbium and praseodymium as a radiation attenuating composition, radiation attenuating material, and article providing protection against ionising radiation and comprising such a composition
Akman et al. Gamma, charged particle and neutron radiation shielding capacities of ternary composites having polyester/barite/tungsten boride
Sahadath et al. Calculation of gamma-ray attenuation parameters for locally developed ilmenite-magnetite (IM) concrete
Zeng et al. Development of polymer composites in radiation shielding applications: a review
JP2022129016A (en) COSMIC RAY AND RADIATION RAY COUNTERMEASURE MATERIAL DEVELOPMENT SYSTEM Ver3 IN SPACE ENVIRONMENT
Mortazavi et al. Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors
Tashlykov et al. An extensive experimental study on the role of micro-size pozzolana in enhancing the gamma-ray shielding properties of high-density polyethylene
Salawu et al. Assessment of radiation shielding properties of polymer-lead (II) oxide composites
Okonkwo et al. Construction of radiation attenuating polymeric nanocomposites and multifaceted applications: A review
Haque et al. Fabrication and characterization of shielding properties of heavy mineral reinforced polymer composite materials for radiation protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712