JP2021054949A - Coating liquid, substrate with film and method for manufacturing the same - Google Patents

Coating liquid, substrate with film and method for manufacturing the same Download PDF

Info

Publication number
JP2021054949A
JP2021054949A JP2019179387A JP2019179387A JP2021054949A JP 2021054949 A JP2021054949 A JP 2021054949A JP 2019179387 A JP2019179387 A JP 2019179387A JP 2019179387 A JP2019179387 A JP 2019179387A JP 2021054949 A JP2021054949 A JP 2021054949A
Authority
JP
Japan
Prior art keywords
particles
film
composition
coating liquid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019179387A
Other languages
Japanese (ja)
Other versions
JP7324108B2 (en
Inventor
夕子 箱嶋
Yuko Hakojima
夕子 箱嶋
光章 熊澤
Mitsuaki Kumazawa
光章 熊澤
良 村口
Makoto Muraguchi
良 村口
小松 通郎
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2019179387A priority Critical patent/JP7324108B2/en
Publication of JP2021054949A publication Critical patent/JP2021054949A/en
Application granted granted Critical
Publication of JP7324108B2 publication Critical patent/JP7324108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

To provide a coating liquid capable of obtaining a film having excellent mold releasability and excellent adhesion to a substrate.SOLUTION: A coating liquid for film formation of the present invention comprises an ultraviolet curable first composition containing elemental fluorine, an ultraviolet curable second composition not containing elemental fluorine, first particles obtained by treating the surfaces of first inorganic oxide particles with a surfactant, second particles obtained by treating the surfaces of second inorganic oxide particles with a silane coupling agent, a cluster forming agent, and an organic solvent. The weight average molecular weight of the first composition and the second composition is 1,000 or more, the first composition and the second composition contain a carbon skeleton, and fluorine is bonded to a part of carbon of the first composition. The particle size of the first particles is smaller than 300 nm, and the particle size of the second particles is smaller than that of the first particles. When the first particles are dispersed in water, the ζ potential of the first particles is positive, and when the second particles are dispersed in water, the ζ potential of the second particles is negative.SELECTED DRAWING: None

Description

本発明は、基材上に離型性の膜を形成するための塗布液と膜付基材に関する。 The present invention relates to a coating liquid for forming a releasable film on a substrate and a substrate with a film.

従来、紫外線硬化性または熱硬化性のシリコーン化合物を離型剤としてPET等のフィルム基材上に塗布・成膜することにより、離型性フィルムが作製されていた。このような離型性フィルムは、離型性に優れるものの、膜と基材の密着性が十分ではない。例えば、離型性フィルムを電子部品等の保護フィルムとして使用するとき、電子部品から保護フィルムを剥離した際に、膜中のシリコーン化合物が電子部品に移ることがあった。そのため、離型剤にシリコーン化合物を全く含まない離型性フィルムが開発されている。例えば、離型剤にアクリル樹脂を使用した離型性フィルム(特許文献1を参照)や、離型剤にフッ素樹脂を使用した離型性フィルム(特許文献2を参照)が知られている。 Conventionally, a release film has been produced by applying and forming a film on a film substrate such as PET using an ultraviolet curable or thermosetting silicone compound as a release agent. Although such a releasable film is excellent in releasability, the adhesion between the film and the base material is not sufficient. For example, when a releasable film is used as a protective film for an electronic component or the like, the silicone compound in the film may be transferred to the electronic component when the protective film is peeled off from the electronic component. Therefore, a release film that does not contain any silicone compound in the release agent has been developed. For example, a release film using an acrylic resin as a release agent (see Patent Document 1) and a release film using a fluororesin as a release agent (see Patent Document 2) are known.

特開2004−079567号公報Japanese Unexamined Patent Publication No. 2004-079567 特開2001−129940号公報Japanese Unexamined Patent Publication No. 2001-129940

特許文献1の離型性フィルムは、離型層にアクリル樹脂を使用しているため、離型性が低い。特許文献2の離型性フィルムは、離型剤にフッ素樹脂を使用しているため、アクリル樹脂より離型性が高い。しかし、フッ素樹脂が溶剤へ溶け難いため、離型剤(膜)と基材の密着性が低い。また、フッ素樹脂の表面に凹凸を形成しにくいため、離型性を向上させにくい。 The releasable film of Patent Document 1 has low releasability because an acrylic resin is used for the releasable layer. Since the releasable film of Patent Document 2 uses a fluororesin as a releasing agent, it has higher releasability than an acrylic resin. However, since the fluororesin is difficult to dissolve in the solvent, the adhesion between the release agent (membrane) and the base material is low. Further, since it is difficult to form irregularities on the surface of the fluororesin, it is difficult to improve the releasability.

そこで、本発明の目的は、離型性と基材への密着性に優れた膜を形成可能な塗布液を提供することにある。 Therefore, an object of the present invention is to provide a coating liquid capable of forming a film having excellent releasability and adhesion to a substrate.

上述の目的を達成するために、本発明の塗布液は、フッ素元素を含む紫外線硬化性の第一組成物と、フッ素元素を含まない紫外線硬化性の第二組成物と、第一無機酸化物粒子の表面が界面活性剤で処理された第一粒子と、第二無機酸化物粒子の表面がシランカップリング剤で処理された第二粒子と、クラスター形成剤と、有機溶媒を含む。第一組成物と第二組成物は、重量平均分子量が1000以上であるとともに、炭素骨格を含む。第一組成物の炭素の一部にフッ素が結合している。第一粒子の粒子径は300nmより小さく、第二粒子の粒子径は第一粒子よりも小さい。第一粒子と第二粒子をそれぞれ水に分散させたとき、第一粒子のζ電位が正であり、第二粒子のζ電位が負である。このような塗布液により、離型性と、基材への密着性に優れた膜を得ることができる。 In order to achieve the above-mentioned object, the coating liquid of the present invention contains an ultraviolet curable first composition containing a fluorine element, an ultraviolet curable second composition containing no fluorine element, and a first inorganic oxide. It contains a first particle whose surface is treated with a surfactant, a second particle whose surface is a surface of a second inorganic oxide particle treated with a silane coupling agent, a cluster forming agent, and an organic solvent. The first composition and the second composition have a weight average molecular weight of 1000 or more and contain a carbon skeleton. Fluorine is bonded to a part of carbon of the first composition. The particle size of the first particle is smaller than 300 nm, and the particle size of the second particle is smaller than that of the first particle. When the first particle and the second particle are dispersed in water, the ζ potential of the first particle is positive and the ζ potential of the second particle is negative. With such a coating liquid, it is possible to obtain a film having excellent releasability and adhesion to a substrate.

本発明による塗布液は、フッ素元素を含む紫外線硬化性の第一組成物と、フッ素元素を含まない紫外線硬化性の第二組成物と、界面活性剤で表面処理された第一粒子と、シランカップリング剤で表面処理された第二粒子と、クラスター形成剤と、有機溶媒を含んでいる。 The coating liquid according to the present invention contains an ultraviolet curable first composition containing a fluorine element, an ultraviolet curable second composition containing no fluorine element, first particles surface-treated with a surfactant, and silane. It contains a second particle surface-treated with a coupling agent, a cluster-forming agent, and an organic solvent.

第一組成物は重量平均分子量が1000以上であり、分子内にフッ素を有するため、表面張力が低い。そのため、塗布液の乾燥時に、有機溶媒の揮発により生じる対流によって、第一組成物が膜の表面に移動しやすい。その結果、膜の表面に第一組成物が偏在することとなり、高い離型性が得られる。一方、膜の基材界面側には、第一組成物よりも相対的に表面張力の高い第二組成物が多くなる。この第二組成物が紫外線硬化性を有し、且つ溶剤にも溶けやすいため、硬化時に基材との十分な結合力を有する。そのため、膜と基材の密着性が優れる。このとき、第一組成物の分子量が1000より小さいと、第一組成物が第二組成物中に分散することとなり、第一組成物が膜の表面に偏在しにくくなる。 The first composition has a weight average molecular weight of 1000 or more and has fluorine in the molecule, so that the surface tension is low. Therefore, when the coating liquid is dried, the first composition easily moves to the surface of the film due to convection caused by the volatilization of the organic solvent. As a result, the first composition is unevenly distributed on the surface of the film, and high releasability can be obtained. On the other hand, on the interface side of the base material of the film, a large amount of the second composition has a relatively higher surface tension than the first composition. Since this second composition has ultraviolet curability and is easily dissolved in a solvent, it has a sufficient bonding force with a base material at the time of curing. Therefore, the adhesion between the film and the base material is excellent. At this time, if the molecular weight of the first composition is less than 1000, the first composition is dispersed in the second composition, and the first composition is less likely to be unevenly distributed on the surface of the film.

粒子が水に分散された状態で、第一粒子のζ電位は正、第二粒子のζ電位は負である。さらに、第一粒子は第一無機酸化物粒子の表面が界面活性剤で処理された粒子であり、且つ塗布液にクラスター形成剤が含まれる。これにより、塗布液を乾燥する過程で、第一粒子同士が相互作用して第一粒子の集合体(一次クラスター)が形成される。その後、一次クラスターと第二粒子がヘテロ凝集的に相互作用して二次クラスターが形成される。塗布液の乾燥時に膜中に発生する対流が、この二次クラスターを起点として、膜の表面に凹凸を形成する。二次クラスターが形成されない場合、凹凸は低くなると推定される。このとき、第二組成物の分子量が1000より小さいと、第二組成物と第一粒子の相溶性が高くなる場合がある。これにより、膜中で粒子が分散し、第一粒子が一次クラスターを形成しにくくなる。そのため、膜の表面に形成される凹凸が小さくなり、離型性が低下する。なお、第二粒子は第二無機酸化物粒子の表面がシランカップリング剤で処理された粒子である。 With the particles dispersed in water, the zeta potential of the first particle is positive and the zeta potential of the second particle is negative. Further, the first particles are particles in which the surface of the first inorganic oxide particles is treated with a surfactant, and the coating liquid contains a cluster-forming agent. As a result, in the process of drying the coating liquid, the first particles interact with each other to form an aggregate (primary cluster) of the first particles. After that, the primary cluster and the second particle interact heteroaggregately to form a secondary cluster. Convection generated in the film when the coating liquid dries forms irregularities on the surface of the film starting from this secondary cluster. If no secondary clusters are formed, the unevenness is estimated to be low. At this time, if the molecular weight of the second composition is smaller than 1000, the compatibility between the second composition and the first particles may increase. As a result, the particles are dispersed in the film, and it becomes difficult for the first particles to form a primary cluster. Therefore, the unevenness formed on the surface of the film becomes small, and the releasability is lowered. The second particles are particles in which the surface of the second inorganic oxide particles is treated with a silane coupling agent.

第一粒子の粒子径(D)と第二粒子の粒子径(D)はD<D<300nmの関係にある。第一粒子の粒子径が300nmより小さいため、第一粒子同士の相互作用が強くなる。そのため、一次クラスターが形成されやすい。また、第二粒子が第一粒子より小さいため、一次クラスターと第二粒子は相互作用が強くなる。そのため、ヘテロ凝集的に相互作用しやすくなり、二次クラスターが形成されやすい。 Particle size of the particle diameter of the first particles (D 1) second particles (D 2) is a relationship of D 2 <D 1 <300nm. Since the particle size of the first particles is smaller than 300 nm, the interaction between the first particles becomes strong. Therefore, a primary cluster is likely to be formed. Moreover, since the second particle is smaller than the first particle, the interaction between the primary cluster and the second particle becomes stronger. Therefore, they are likely to interact heteroaggregately and secondary clusters are likely to be formed.

このように、本発明の塗布液によれば、離型性と基材への密着性とを両立する膜を形成することができる。以下、塗布液に含まれる各構成要素について詳細に説明する。 As described above, according to the coating liquid of the present invention, it is possible to form a film having both releasability and adhesion to a substrate. Hereinafter, each component contained in the coating liquid will be described in detail.

[第一粒子、第二粒子]
第一粒子と第二粒子のζ電位の差は20〜60mVが好ましい。ζ電位の差が20mVより小さいと、第一粒子と第二粒子の静電引力が小さいため、塗布液の乾燥時に、一次クラスターと第二粒子の相互作用が弱くなり、ヘテロ凝集的に相互作用しにくくなる。これにより、膜の表面の凹凸が小さくなるため、十分な離型性が得られにくい。60mVより大きいと、第一粒子と第二粒子の静電引力が大きいため、第一粒子と第二粒子が塗布液中で凝集しやすくなる。ζ電位差は、30〜50mVがより好ましい。
[First particle, second particle]
The difference in ζ potential between the first particle and the second particle is preferably 20 to 60 mV. When the difference in zeta potential is smaller than 20 mV, the electrostatic attraction between the first particle and the second particle is small, so the interaction between the primary cluster and the second particle becomes weak when the coating liquid dries, and the interaction is heteroaggregative. It becomes difficult to do. As a result, the unevenness on the surface of the film becomes small, and it is difficult to obtain sufficient releasability. If it is larger than 60 mV, the electrostatic attraction of the first particles and the second particles is large, so that the first particles and the second particles tend to aggregate in the coating liquid. The ζ potential difference is more preferably 30 to 50 mV.

第一粒子の粒子径Dは10〜160nmが好ましい。10nmより小さいと、第一粒子の表面エネルギーが高いため、塗布液中で第一粒子が凝集しやすくなる。160nmより大きいと、塗布液の乾燥時に第一粒子同士の相互作用が不十分となるため、一次クラスターが形成されにくくなる。これにより、膜の表面の凹凸が小さくなり、十分な離型性が得られにくい。第一粒子の粒子径は20〜160nmがより好ましく、45〜120nmがさらに好ましい。45〜120nmの範囲にあると、クラスター形成剤と第一粒子とが相互作用するため、膜の表面の凹凸形成の起点として、十分なサイズの一次クラスターが得られる。そのため、優れた離型性が得られやすい。 The particle size D 1 of the first particle is preferably 10 to 160 nm. If it is smaller than 10 nm, the surface energy of the first particles is high, so that the first particles tend to aggregate in the coating liquid. If it is larger than 160 nm, the interaction between the first particles becomes insufficient when the coating liquid is dried, and it becomes difficult to form primary clusters. As a result, the unevenness on the surface of the film becomes small, and it is difficult to obtain sufficient releasability. The particle size of the first particle is more preferably 20 to 160 nm, further preferably 45 to 120 nm. In the range of 45 to 120 nm, the cluster-forming agent and the first particles interact with each other, so that a primary cluster having a sufficient size can be obtained as a starting point for forming irregularities on the surface of the film. Therefore, excellent releasability can be easily obtained.

第二粒子の粒子径Dは9〜100nmが好ましい。9nmより小さいと、第二粒子の表面エネルギーが高いため、塗布液中で第二粒子が凝集しやすくなる。100nmより大きいと、第二粒子のζ電位が小さくなるため、塗布液の乾燥時に第二粒子と一次クラスターがヘテロ凝集的に相互作用しにくくなる。そのため、二次クラスターが形成されにくくなる。これにより、膜の表面の凹凸が小さくなり、十分な離型性が得られにくい。第二粒子の粒子径は9〜80nmがより好ましく、9〜45nmがさらに好ましい。9〜45nmの範囲にあると、一次クラスターと第二粒子との粒子サイズ差や表面電位差によってヘテロ凝集的な相互作用が起こりやすいため、膜の表面に十分な凹凸が形成される。そのため、優れた離型性が得られやすい。 The particle size D 2 of the second particle is preferably 9 to 100 nm. If it is smaller than 9 nm, the surface energy of the second particles is high, so that the second particles tend to aggregate in the coating liquid. If it is larger than 100 nm, the ζ potential of the second particle becomes smaller, so that it becomes difficult for the second particle and the primary cluster to interact heteroaggregately when the coating liquid is dried. Therefore, it becomes difficult to form a secondary cluster. As a result, the unevenness on the surface of the film becomes small, and it is difficult to obtain sufficient releasability. The particle size of the second particle is more preferably 9 to 80 nm, further preferably 9 to 45 nm. When it is in the range of 9 to 45 nm, a heteroaggregative interaction is likely to occur due to a particle size difference or a surface potential difference between the primary cluster and the second particle, so that sufficient unevenness is formed on the surface of the film. Therefore, excellent releasability can be easily obtained.

粒子径の比(D/D)は2〜18が好ましい。この範囲にあると、一次クラスターに第二粒子がヘテロ凝集的に相互作用しやすくなるため、二次クラスターを形成し易くなる。これにより、膜の凹凸が高くなり、優れた離型性が得られる。この比(D/D)は6〜14がさらに好ましい。粒子径は、Malvern社製のゼータサイザーナノZSを用いて、動的光散乱法により測定される。 The particle size ratio (D 1 / D 2 ) is preferably 2 to 18. Within this range, the secondary particles are likely to interact heteroaggregately with the primary cluster, thus facilitating the formation of a secondary cluster. As a result, the unevenness of the film becomes high, and excellent releasability can be obtained. This ratio (D 1 / D 2 ) is more preferably 6-14. The particle size is measured by a dynamic light scattering method using a Zetasizer Nano ZS manufactured by Malvern.

第一粒子は、塗布液の固形分中に1〜30質量%含まれることが好ましい。第一粒子が1%よりも少ない場合は、凹凸の形成に十分な大きさの一次クラスターが形成されないため、膜の表面に高い凹凸が形成されない。そのため、優れた離型性が得られない。第一粒子が30%よりも多い場合は、塗布液中に配合できる第二粒子の量が相対的に少なくなるため、二次クラスターが得られにくくなる。これにより、膜の表面の凹凸が小さくなるため、離型性が高くなる。また、3〜20質量%含まれることがより好ましい。5〜10質量%含まれることがさらに好ましい。 The first particles are preferably contained in the solid content of the coating liquid in an amount of 1 to 30% by mass. When the amount of the first particles is less than 1%, primary clusters having a size sufficient for forming irregularities are not formed, so that high irregularities are not formed on the surface of the film. Therefore, excellent releasability cannot be obtained. When the amount of the first particles is more than 30%, the amount of the second particles that can be blended in the coating liquid is relatively small, so that it becomes difficult to obtain secondary clusters. As a result, the unevenness on the surface of the film is reduced, and the releasability is improved. Further, it is more preferably contained in an amount of 3 to 20% by mass. It is more preferably contained in an amount of 5 to 10% by mass.

第二粒子は塗布液の固形分中に15〜65質量%含まれることが好ましい。この範囲にあると、第二粒子が一次クラスターにヘテロ凝集的に相互作用するため、凹凸の形成に十分な大きさの二次クラスターが形成される。これにより、膜の表面の凹凸が高くなるため、離型性が向上する。また、20〜60質量%含まれることがより好ましい。30〜50質量%含まれることがさらに好ましい。 The second particles are preferably contained in the solid content of the coating liquid in an amount of 15 to 65% by mass. Within this range, the second particles interact heteroaggregately with the primary clusters, thus forming secondary clusters large enough to form irregularities. As a result, the unevenness of the surface of the film becomes high, so that the releasability is improved. Further, it is more preferably contained in an amount of 20 to 60% by mass. It is more preferably contained in an amount of 30 to 50% by mass.

第一粒子と第二粒子は塗布液中の固形分中に合計で20〜70質量%含まれることが好ましい。20質量%より少ない場合は、膜の表面の凹凸の形成に十分な大きさの二次クラスターが得られないため、膜の離型性が低下する。70質量%より大きい場合は、膜が粒子を多く含むため、膜にクラックが発生しやすい。また、密着性が低下する場合がある。30〜65質量%がより好ましく、40〜60質量%がさらに好ましい。 It is preferable that the first particles and the second particles are contained in the solid content in the coating liquid in a total amount of 20 to 70% by mass. If it is less than 20% by mass, secondary clusters having a size sufficient for forming irregularities on the surface of the film cannot be obtained, so that the releasability of the film is lowered. If it is larger than 70% by mass, the film contains a large amount of particles, so that the film is likely to crack. In addition, the adhesiveness may decrease. 30 to 65% by mass is more preferable, and 40 to 60% by mass is further preferable.

塗布液に含まれる第一粒子と第二粒子の重量比(第二粒子の重量/第一粒子の重量)は1〜10の範囲にあることが好ましい。これにより、一次クラスターに第二粒子がヘテロ凝集的に相互作用しやすくなる。これにより、膜の表面の凹凸が高くなるため、膜の離型性が向上する。2〜9がより好ましく、3〜8がさらに好ましい。 The weight ratio of the first particles to the second particles (weight of the second particles / weight of the first particles) contained in the coating liquid is preferably in the range of 1 to 10. This facilitates the heteroaggregative interaction of the second particles with the primary cluster. As a result, the unevenness of the surface of the film becomes high, so that the releasability of the film is improved. 2 to 9 are more preferable, and 3 to 8 are even more preferable.

第一無機酸化物粒子と第二無機酸化物粒子は公知の形状(球状、棒状、鎖状、繊維状、金平糖状や中空状等)でよい。特に、球状の粒子であることが好ましい。また、第一無機酸化物粒子と第二無機酸化物粒子には、珪素、アルミニウム、ジルコニウム、チタン、アンチモン、錫、およびインジウムから選ばれる少なくとも1種の元素が成分として含まれることが好ましい。特に、シリカを主成分とする粒子であることがより好ましい。このとき、第一無機酸化物粒子の形状は、第二無機酸化物粒子と同じ形状でも、異なる形状でも良い。また、第一無機酸化物粒子に含まれる元素は第二無機酸化物粒子に含まれる元素と同じでも、異なっても良い。 The first inorganic oxide particles and the second inorganic oxide particles may have known shapes (spherical, rod-shaped, chain-shaped, fibrous, konpeito-shaped, hollow-shaped, etc.). In particular, spherical particles are preferable. Further, it is preferable that the first inorganic oxide particles and the second inorganic oxide particles contain at least one element selected from silicon, aluminum, zirconium, titanium, antimony, tin, and indium as components. In particular, it is more preferable that the particles contain silica as a main component. At this time, the shape of the first inorganic oxide particles may be the same as or different from that of the second inorganic oxide particles. Further, the element contained in the first inorganic oxide particles may be the same as or different from the element contained in the second inorganic oxide particles.

第一粒子は、第一無機酸化物粒子100質量部に対して、1〜30質量部の界面活性剤によって表面処理されていることが好ましい。1質量部より少ないと、塗布液中で、第一粒子の分散性が悪いため、第一粒子が凝集しやすくなり、塗布液の保存安定性が悪くなる場合がある。30質量部より多いと、第一無機酸化物粒子と相互作用していない界面活性剤が塗布液中に多く存在するため、膜の表面にブリードアウトしやすい。そのため、膜の表面に保護フィルム等を貼る際に、保護フィルムに界面活性剤が転写され、離型後の工程に悪影響を及ぼす場合がある。3〜10質量部がより好ましい。この範囲にあると、塗布液中での第一粒子の分散安定性が保持される。また、造膜過程において、第一粒子とクラスター形成剤との相互作用により、膜の表面の凹凸形成の起点として十分なサイズの一次クラスターが形成されるため、優れた離型性が得られやすい。 The first particles are preferably surface-treated with 1 to 30 parts by mass of a surfactant with respect to 100 parts by mass of the first inorganic oxide particles. If it is less than 1 part by mass, the dispersibility of the first particles in the coating liquid is poor, so that the first particles tend to aggregate and the storage stability of the coating liquid may deteriorate. If it is more than 30 parts by mass, a large amount of surfactant that does not interact with the first inorganic oxide particles is present in the coating liquid, so that it is easy to bleed out to the surface of the film. Therefore, when a protective film or the like is attached to the surface of the film, the surfactant may be transferred to the protective film, which may adversely affect the process after mold release. More preferably, 3 to 10 parts by mass. Within this range, the dispersion stability of the first particles in the coating liquid is maintained. Further, in the film forming process, the interaction between the first particle and the cluster forming agent forms a primary cluster having a sufficient size as a starting point for forming irregularities on the surface of the film, so that excellent releasability can be easily obtained. ..

界面活性剤には、カチオン性、非イオン性及びアニオン性の界面活性剤を用いることができる。このうち、カチオン性、非イオン性の界面活性剤が好ましい。このような界面活性剤を用いると、第一粒子のζ電位が正になりやすい。特に、非イオン性の界面活性剤が好ましい。負に帯電している粒子の表面に界面活性剤を処理した場合に、凝集が抑制される。非イオン性の界面活性剤の中でも、アミン系の界面活性剤がさらに好ましい。第一粒子が水分散された際に、第一粒子のζ電位が正に帯電しやすくなる。また、第一粒子がMIBK等の有機溶媒に分散された際には、第一粒子のζ電位が負に帯電し易くなる。界面活性剤として、具体的には、第一工業製薬株式会社製のアミラヂン(登録商標)C−1802、プライサーフ(登録商標)A―212E、プライサーフAL等が挙げられる。アミラヂンC−1802はアミン系の非イオン性界面活性剤である。 As the surfactant, cationic, nonionic and anionic surfactants can be used. Of these, cationic and non-ionic surfactants are preferable. When such a surfactant is used, the ζ potential of the first particle tends to be positive. In particular, nonionic surfactants are preferred. Aggregation is suppressed when a surfactant is applied to the surface of the negatively charged particles. Among the nonionic surfactants, amine-based surfactants are more preferable. When the first particles are dispersed in water, the zeta potential of the first particles tends to be positively charged. Further, when the first particles are dispersed in an organic solvent such as MIBK, the ζ potential of the first particles tends to be negatively charged. Specific examples of the surfactant include Amiradin (registered trademark) C-1802, Plysurf (registered trademark) A-212E, and Plysurf AL manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. Amiladin C-1802 is an amine-based nonionic surfactant.

第二粒子は、第二無機酸化物粒子100質量部に対して、1〜50質量部のシランカップリング剤により表面処理されることが好ましい。1質量部より少ないと、塗布液中で、第二粒子の分散性が悪いため、第二粒子が凝集しやすくなり、塗布液の保存安定性が悪くなる。また、第二粒子がアクリロイル基やメタアクリロイル基を有する場合に、第二粒子は第一組成物や第二組成物と結合しにくくなるため、膜の硬度や耐摩耗性が低下する。50質量部より多いと、粒子と結合していないシランカップリング剤が塗布液中に多く存在するため、膜の表面にブリードアウトしやすい。そのため、膜の表面に保護フィルム等を貼る際に、保護フィルムにシランカップリング剤が転写され、離型後の工程に悪影響を及ぼす場合がある。5〜30質量部がより好ましく、特に10〜20質量部が好ましい。この範囲にあると、塗布液中での第二粒子の分散安定性が保持される。また、造膜過程において、一次クラスターと第二粒子とが電位的にヘテロ凝集的な相互作用を起こしやすいため、膜の表面に十分なサイズの凹凸が形成される。そのため、優れた離型性が得られやすい。 The second particles are preferably surface-treated with 1 to 50 parts by mass of a silane coupling agent with respect to 100 parts by mass of the second inorganic oxide particles. If it is less than 1 part by mass, the dispersibility of the second particles in the coating liquid is poor, so that the second particles are likely to aggregate and the storage stability of the coating liquid is deteriorated. Further, when the second particles have an acryloyl group or a meta-acryloyl group, the second particles are less likely to bond with the first composition or the second composition, so that the hardness and abrasion resistance of the film are lowered. If it is more than 50 parts by mass, a large amount of the silane coupling agent that is not bonded to the particles is present in the coating liquid, so that it is easy to bleed out to the surface of the film. Therefore, when a protective film or the like is attached to the surface of the film, the silane coupling agent may be transferred to the protective film, which may adversely affect the process after mold release. 5 to 30 parts by mass is more preferable, and 10 to 20 parts by mass is particularly preferable. Within this range, the dispersion stability of the second particles in the coating liquid is maintained. Further, in the film-forming process, the primary cluster and the second particle are likely to undergo a potentially hetero-aggregating interaction, so that irregularities of a sufficient size are formed on the surface of the film. Therefore, excellent releasability can be easily obtained.

シランカップリング剤は、ビニル基、アクリロイル基またはメタクリロイル基等の二重結合を含む官能基を有することが好ましい。これにより、膜の硬化時に第二粒子のシランカップリング剤が第二組成物と化学結合するため、膜の硬度が向上する。シランカップリング剤の具体例を表1に示す。 The silane coupling agent preferably has a functional group containing a double bond such as a vinyl group, an acryloyl group or a methacryloyl group. As a result, when the film is cured, the silane coupling agent of the second particles chemically bonds with the second composition, so that the hardness of the film is improved. Specific examples of the silane coupling agent are shown in Table 1.

Figure 2021054949
Figure 2021054949

[クラスター形成剤]
クラスター形成剤は、塗布液中の第一粒子と第二粒子の合計100質量部に対し、1〜30質量部含むことが好ましい。クラスター形成剤の量が1質量部より少ないと、クラスター形成剤と第一粒子の相互作用が不十分となるため、凹凸の形成に十分な大きさの一次クラスターが得られない。そのため、離型性が低下する。30質量部よりも多いと、塗布液の安定性が悪くなる場合がある。また、5〜25質量部であることがより好ましく、10〜20質量部であることがさらに好ましい。
[Cluster-forming agent]
The cluster forming agent is preferably contained in an amount of 1 to 30 parts by mass with respect to a total of 100 parts by mass of the first particles and the second particles in the coating liquid. If the amount of the cluster-forming agent is less than 1 part by mass, the interaction between the cluster-forming agent and the first particles is insufficient, so that a primary cluster having a size sufficient for forming irregularities cannot be obtained. Therefore, the releasability is reduced. If it is more than 30 parts by mass, the stability of the coating liquid may deteriorate. Further, it is more preferably 5 to 25 parts by mass, and further preferably 10 to 20 parts by mass.

クラスター形成剤として、アクリル系、アクリルシリコーン系、シリコーン系およびフッ素系の表面調整剤が例示できる。これらの表面調整剤の少なくとも一種を用いることにより、塗布液の乾燥時に一次クラスターと第二粒子がヘテロ凝集的に相互作用しやすくなり、二次クラスターが形成されやすい。アクリル系の表面調整剤として、楠本化成社製のディスパロン(登録商標)UVX−271、UVX−272、UVX−3750、UVX−35、UVX−36が挙げられる。アクリルシリコーン系の表面調整剤として、楠本化成社製のディスパロンNSH−8430HF、LHP−810、NSF−8363、UVX−2280、UVX−2285が挙げられる。シリコーン系の表面調整剤として、楠本化成社製のLS−430、LS−220、LS−240、LS−260、LS−280、LS−480が挙げられる。フッ素系の表面調整剤として、DIC社製のF−555、F−558、ネオス社製のフタージェント(登録商標)208G、212Pが挙げられる。 Examples of the cluster forming agent include acrylic, acrylic silicone-based, silicone-based and fluorine-based surface conditioners. By using at least one of these surface conditioners, the primary cluster and the secondary particles are likely to interact heteroaggregately when the coating liquid is dried, and secondary clusters are likely to be formed. Examples of the acrylic surface conditioner include Disparon (registered trademark) UVX-271, UVX-272, UVX-3750, UVX-35, and UVX-36 manufactured by Kusumoto Kasei Co., Ltd. Examples of the acrylic silicone-based surface conditioner include Disparon NSH-8430HF, LHP-8430, NSF-8363, UVX-2280, and UVX-2285 manufactured by Kusumoto Kasei Co., Ltd. Examples of the silicone-based surface conditioner include LS-430, LS-220, LS-240, LS-260, LS-280, and LS-480 manufactured by Kusumoto Kasei Co., Ltd. Examples of the fluorine-based surface conditioner include F-555 and F-558 manufactured by DIC Corporation and Futagent (registered trademark) 208G and 212P manufactured by Neos Corporation.

[第一組成物、第二組成物]
第一組成物の重量平均分子量は30000以下が好ましい。30000より大きいと、塗布液中で、第一組成物と粒子の相溶性が低いため、塗布液の安定性が低下する場合がある。20000以下がより好ましい。第一組成物の重量平均分子量は、4000〜12000が特に好ましい。この範囲にあると、第一組成物が膜の表面に偏在しやすいため、離型性に優れた膜が得られやすい。
[First composition, second composition]
The weight average molecular weight of the first composition is preferably 30,000 or less. If it is larger than 30,000, the compatibility between the first composition and the particles is low in the coating liquid, so that the stability of the coating liquid may decrease. More preferably 20000 or less. The weight average molecular weight of the first composition is particularly preferably 4000 to 12000. Within this range, the first composition tends to be unevenly distributed on the surface of the film, so that a film having excellent releasability can be easily obtained.

第一組成物は塗布液の固形分中に1〜20質量%含まれることが好ましい。1質量%より少ないと、膜の表面のフッ素元素が少ないため、離型性が低くなる。20質量%より多いと、膜付基材から転写紙や製品等が離型される際に、第一組成物が転写紙や製品等に移りやすくなる。第一組成物は、塗布液の固形分中に2〜15質量%含まれることがより好ましく、3〜10質量%含まれることがさらに好ましい。3〜10質量%の範囲にあると、フッ素が膜の表面に均質に存在するため、優れた離型性が得られる。また、膜の密着性にも優れる。 The first composition is preferably contained in the solid content of the coating liquid in an amount of 1 to 20% by mass. If it is less than 1% by mass, the amount of fluorine elements on the surface of the film is small, so that the releasability is low. If it is more than 20% by mass, the first composition is likely to be transferred to the transfer paper or the product when the transfer paper or the product is released from the film-attached base material. The first composition is more preferably contained in the solid content of the coating liquid in an amount of 2 to 15% by mass, and further preferably contained in an amount of 3 to 10% by mass. When it is in the range of 3 to 10% by mass, fluorine is homogeneously present on the surface of the film, so that excellent mold releasability can be obtained. In addition, the adhesion of the film is also excellent.

第一組成物は2つ以上のアクリロイル基またはメタクリロイル基を有することが好ましい。これにより、第二組成物がアクリロイル基またはメタクリロイル基を有する場合に、第一組成物と第二組成物が化学結合する。そのため、膜付基材から転写紙や製品等が離型される際に、第一組成物が転写紙や製品等に移りにくくなる。第一組成物として、ダイキン工業社製のオプツール(登録商標)DAC−HP、DIC社製のメガファック(登録商標)RSシリーズ、フロロテクノロジー社製のフロロサーフ(登録商標)シリーズ、信越化学工業社製KY−1203等を挙げることができる。 The first composition preferably has two or more acryloyl or methacryloyl groups. Thereby, when the second composition has an acryloyl group or a methacryloyl group, the first composition and the second composition are chemically bonded. Therefore, when the transfer paper or product is released from the film-attached base material, the first composition is less likely to be transferred to the transfer paper or product. As the first composition, Optool (registered trademark) DAC-HP manufactured by Daikin Industries, Ltd., Megafuck (registered trademark) RS series manufactured by DIC, Fluorosurf (registered trademark) series manufactured by Fluorotechnology, and Shin-Etsu Chemical Co., Ltd. KY-1203 and the like can be mentioned.

第二組成物の重量平均分子量は20000以下が好ましい。20000より大きいと、塗布液中で、第二組成物と粒子の相溶性が悪くなるため、塗布液の安定性が低下する場合がある。10000以下がより好ましく、5000以下がさらに好ましい。5000以下であると、塗布液中で、第二組成物が第一粒子や第二粒子と相溶する。一方、造膜過程では、第二組成物の疎水性が第一粒子や第二粒子より高いため、二次クラスターの形成を助長する。これにより、膜の表面に十分な凹凸を形成するため、優れた離型性が得られやすい。 The weight average molecular weight of the second composition is preferably 20000 or less. If it is larger than 20000, the compatibility between the second composition and the particles in the coating liquid deteriorates, so that the stability of the coating liquid may decrease. 10000 or less is more preferable, and 5000 or less is further preferable. When it is 5000 or less, the second composition is compatible with the first particles and the second particles in the coating liquid. On the other hand, in the film-forming process, the hydrophobicity of the second composition is higher than that of the first particles and the second particles, which promotes the formation of secondary clusters. As a result, sufficient unevenness is formed on the surface of the film, so that excellent releasability can be easily obtained.

第二組成物は塗布液の固形分中に10〜70質量%含まれることが好ましい。10質量%より低いと、基材と結合する第二組成物の量が少なくなるため、密着性が低下する場合がある。70質量%より多いと、膜の表面に偏在するフッ素の量が少なくなる。また、二次クラスターが小さくなるため、離型性が低下する場合がある。第二組成物は15〜50質量%含まれることがより好ましく、20〜30質量%がさらに好ましい。 The second composition is preferably contained in the solid content of the coating liquid in an amount of 10 to 70% by mass. If it is lower than 10% by mass, the amount of the second composition bonded to the base material is small, so that the adhesion may be lowered. When it is more than 70% by mass, the amount of fluorine unevenly distributed on the surface of the film is reduced. In addition, since the secondary cluster becomes small, the releasability may decrease. The second composition is more preferably contained in an amount of 15 to 50% by mass, further preferably 20 to 30% by mass.

第二組成物はアクリロイル基またはメタクリロイル基を有することが好ましい。これにより、硬度および密着性が向上する。アクリロイル基の数は、2〜15が好ましい。2〜10がより好ましい。8〜10がさらに好ましい。アクリロイル基またはメタクリロイル基の数が多いと、硬度が向上する。また、第二組成物はウレタン結合を有することが好ましい。第二組成物として、新中村化学工業社製のNKオリゴUA−33H、ダイセル・オルネクス株式会社製のEBECRYL(登録商標)8402、EBECRYL3708、日本合成化学工業社製の紫光(登録商標)UV−7550B等を挙げることができる。このような第二組成物を含む塗布液を用いて得られる膜は、離型性、密着性、硬度、および耐熱性に優れている。 The second composition preferably has an acryloyl group or a methacryloyl group. This improves hardness and adhesion. The number of acryloyl groups is preferably 2 to 15. 2 to 10 are more preferable. 8 to 10 are more preferable. A large number of acryloyl or methacryloyl groups improves hardness. Moreover, it is preferable that the second composition has a urethane bond. As the second composition, NK oligo UA-33H manufactured by Shin-Nakamura Chemical Industry Co., Ltd., EBECRYL (registered trademark) 8402, EBECRYL3708 manufactured by Daicel Ornex Co., Ltd., and Shikou (registered trademark) UV-7550B manufactured by Nippon Synthetic Chemical Industry Co., Ltd. And so on. The film obtained by using the coating liquid containing such a second composition is excellent in releasability, adhesion, hardness, and heat resistance.

第一組成物の表面張力STは22mN/m以下であり、第二組成物の表面張力STは28mN/m以上32mN/m以下であり、第二組成物と第一組成物の表面張力の差は7.5mN/m以上であることが好ましい。この範囲にあると、第一組成物が膜の表面に偏在しやすい。また、塗布液の乾燥時に発生する膜中の対流が、二次クラスターを起点として、膜の表面に凹凸を形成しやすくなる。第一組成物の表面張力は21mN/m以下がより好ましい。第二組成物の表面張力は29mN/m以上31mN/m以下がより好ましい。これらの差は8.0以上がより好ましい。なお、第一組成物の表面張力の下限は10mN/m以上が好ましい。 The surface tension ST A of the first composition is 22 mN / m or less, the surface tension ST B of the second composition is 28 mN / m or more and 32 mN / m or less, and the surface tensions of the second composition and the first composition are The difference is preferably 7.5 mN / m or more. Within this range, the first composition tends to be unevenly distributed on the surface of the film. In addition, the convection in the film generated when the coating liquid dries tends to form irregularities on the surface of the film starting from the secondary cluster. The surface tension of the first composition is more preferably 21 mN / m or less. The surface tension of the second composition is more preferably 29 mN / m or more and 31 mN / m or less. These differences are more preferably 8.0 or more. The lower limit of the surface tension of the first composition is preferably 10 mN / m or more.

[アクリレートモノマー]
塗布液は、重量平均分子量が100〜1000で、2〜6個のアクリロイル基を有するアクリレートモノマーを含むことが好ましい。重量平均分子量がこの範囲にあると、塗布液の粘度が低下するため、塗布液の安定性やハンドリング性が向上しやすい。また、硬化時に、アクリレートモノマーは第二組成物より反応速度が低いため、塗布液の硬化の反応速度が下がる。これにより、膜と基材の結合数が増えるため、密着性が向上する。2〜4個のアクリレート基を有することがより好ましく、2〜3個のアクリレート基を有することがさらに好ましい。
[Acrylate monomer]
The coating liquid preferably contains an acrylate monomer having a weight average molecular weight of 100 to 1000 and having 2 to 6 acryloyl groups. When the weight average molecular weight is in this range, the viscosity of the coating liquid is lowered, so that the stability and handling of the coating liquid are likely to be improved. Further, at the time of curing, the reaction rate of the acrylate monomer is lower than that of the second composition, so that the reaction rate of curing of the coating liquid is lowered. As a result, the number of bonds between the film and the base material is increased, so that the adhesion is improved. It is more preferable to have 2 to 4 acrylate groups, and even more preferably to have 2 to 3 acrylate groups.

アクリレートモノマーは塗布液の固形分中に1〜5質量%含まれることが好ましい。1質量%より少ないと、塗布液の安定性や密着性が向上しにくい。5質量%より多いと、第二組成物と粒子の相溶性が高すぎるため、二次クラスターが小さくなる。これにより、膜の表面に形成される凹凸が低くなり、所望の離型性が得られない。アクリレートモノマーは1〜2質量%含まれることがより好ましい。アクリレートモノマーの具体例を表2に示す。 The acrylate monomer is preferably contained in the solid content of the coating liquid in an amount of 1 to 5% by mass. If it is less than 1% by mass, it is difficult to improve the stability and adhesion of the coating liquid. If it is more than 5% by mass, the compatibility between the second composition and the particles is too high, and the secondary cluster becomes small. As a result, the unevenness formed on the surface of the film is reduced, and the desired releasability cannot be obtained. It is more preferable that the acrylate monomer is contained in an amount of 1 to 2% by mass. Specific examples of the acrylate monomer are shown in Table 2.

Figure 2021054949
Figure 2021054949

[有機溶媒]
有機溶媒は、塗布液中に50〜90質量%含まれることが好ましい。50質量%より少ないと、塗布液の安定性が低下する場合がある。また、90質量%より多いと、粘度が低くなるため、5μm以上の厚さの膜を形成する際に、均一に塗工することが難しい。そのため、膜ムラや外観不良が発生する場合がある。60〜85質量%がより好ましく、70〜80質量%がさらに好ましい。
[Organic solvent]
The organic solvent is preferably contained in the coating liquid in an amount of 50 to 90% by mass. If it is less than 50% by mass, the stability of the coating liquid may decrease. On the other hand, if it is more than 90% by mass, the viscosity becomes low, and it is difficult to apply the film uniformly when forming a film having a thickness of 5 μm or more. Therefore, film unevenness and poor appearance may occur. 60 to 85% by mass is more preferable, and 70 to 80% by mass is further preferable.

有機溶媒のSP値は11以下が好ましい。11より大きいと、第一組成物と有機溶媒の相溶性が不十分となるため、塗布液の乾燥時に、膜中の対流が第一組成物を膜の表面に移動させにくくなる。そのため、膜の表面へ第一組成物が偏在しにくくなり、膜の離型性が十分に得られない。SP値は、Fedorsの計算方法(R.F.Fedors,Polym.Eng.Sci.,14(2),147−154(1974))によって求めることができる。なお、SP値は10.5以下がより好ましい。 The SP value of the organic solvent is preferably 11 or less. If it is larger than 11, the compatibility between the first composition and the organic solvent becomes insufficient, and it becomes difficult for convection in the film to move the first composition to the surface of the film when the coating liquid is dried. Therefore, the first composition is less likely to be unevenly distributed on the surface of the film, and the releasability of the film cannot be sufficiently obtained. The SP value can be obtained by the calculation method of Fedors (RF Fedors, Polymer. Eng. Sci., 14 (2), 147-154 (1974)). The SP value is more preferably 10.5 or less.

さらに、塗布液は、SP値と沸点の異なる複数種の有機溶媒を含むことが好ましい。複数種の有機溶媒のうち、最も高い沸点を有する第一有機溶媒のSP値は11(cal/cm1/2以下であることが好ましい。このような第一有機溶媒を含む塗布液によれば、乾燥時に、第一有機溶媒と第一組成物の相溶性が良くなる。これにより、第一有機溶媒が最後に蒸発する際に、第一有機溶媒と共に第一組成物が膜の表面に移動するため、フッ素成分が膜の表面に偏在する。第一有機溶媒は、第一組成物100質量部に対して、塗布液中に100質量部以上含まれることが好ましい。これにより、第一組成物が膜の表面に偏在しやすくなる。また、500質量部以上含むことがさらに好ましい。なお、第一有機溶媒と沸点の異なる第二有機溶媒は、SP値が11(cal/cm1/2より大きくても良い。 Further, the coating liquid preferably contains a plurality of types of organic solvents having different SP values and boiling points. Among the plurality of types of organic solvents, the SP value of the first organic solvent having the highest boiling point is preferably 11 (cal / cm 3 ) 1/2 or less. According to the coating liquid containing such a primary organic solvent, the compatibility between the primary organic solvent and the first composition is improved during drying. As a result, when the first organic solvent is finally evaporated, the first composition moves to the surface of the film together with the first organic solvent, so that the fluorine component is unevenly distributed on the surface of the film. The first organic solvent is preferably contained in 100 parts by mass or more in the coating liquid with respect to 100 parts by mass of the first composition. As a result, the first composition tends to be unevenly distributed on the surface of the film. Further, it is more preferable to contain 500 parts by mass or more. The SP value of the second organic solvent having a boiling point different from that of the first organic solvent may be larger than 11 (cal / cm 3 ) 1/2.

SP値が11以下の有機溶媒として、メチルイソブチルケトン(SP値8.3)、メチルエチルケトン(SP値9.3)、プロピレングリコールモノメチルエーテル(SP値10.2)ジエチルエーテル(SP値9.0)、アセトン(SP値9.1)、メチルシクロヘキサノン(SP値10.0)等を挙げることができる。 As organic solvents having an SP value of 11 or less, methyl isobutyl ketone (SP value 8.3), methyl ethyl ketone (SP value 9.3), propylene glycol monomethyl ether (SP value 10.2), diethyl ether (SP value 9.0) , Acetone (SP value 9.1), methylcyclohexanone (SP value 10.0) and the like.

[その他成分]
塗布液には、必要に応じて他の成分(光重合開始剤、レべリング剤等)が添加される。光重合開始剤は、公知のものを特に制限なく使用することができる。このとき光重合開始剤は、塗布液の固形分中に1〜20質量%含まれることが好ましい。1質量%より少ないと、硬化反応が進みにくくなるため、硬度が下がりやすくなる。20質量%より多いと、膜中の第二組成物の割合が少なくなるため、膜の硬度や耐摩耗性が低下しやすくなる。光重合開始剤含有量は1〜10質量%がより好ましい。
[Other ingredients]
Other components (photopolymerization initiator, leveling agent, etc.) are added to the coating liquid as needed. As the photopolymerization initiator, known ones can be used without particular limitation. At this time, the photopolymerization initiator is preferably contained in the solid content of the coating liquid in an amount of 1 to 20% by mass. If it is less than 1% by mass, the curing reaction is difficult to proceed, so that the hardness tends to decrease. If it is more than 20% by mass, the proportion of the second composition in the film is small, so that the hardness and wear resistance of the film are likely to decrease. The content of the photopolymerization initiator is more preferably 1 to 10% by mass.

基材との濡れ性や膜の表面のレベリング性等を調整するために、塗布液にレベリング剤を添加しても良い。レベリング剤は、塗布液の固形分中に0.05〜5.0質量%含まれることが好ましい。0.05質量%より少ないと、レベリング効果が発現され難いため、膜ムラや外観不良が発生する場合がある。5.0質量%より多いと、レベリング剤が膜中や膜と基材の界面にも存在しやすくなるため、膜の硬度、耐摩耗性および密着性が低下しやすくなる。レベリング剤は0.1〜2.5質量%含まれることがより好ましい。レベリング剤として、アクリル系、アクリルシリコーン系、シリコーン系、およびフッ素系のレベリング剤が例示できる。但し、レベリング剤は、クラスター形成剤に用いた種類とは異なるものが好ましい。クラスター形成剤とレベリング剤の種類が異なることにより、クラスター形成剤とレベリング剤のそれぞれの効果が十分に発揮される。 A leveling agent may be added to the coating liquid in order to adjust the wettability with the base material, the leveling property of the film surface, and the like. The leveling agent is preferably contained in the solid content of the coating liquid in an amount of 0.05 to 5.0% by mass. If it is less than 0.05% by mass, the leveling effect is unlikely to be exhibited, so that film unevenness or poor appearance may occur. If it is more than 5.0% by mass, the leveling agent is likely to be present in the film or at the interface between the film and the base material, so that the hardness, wear resistance and adhesion of the film are likely to be lowered. It is more preferable that the leveling agent is contained in an amount of 0.1 to 2.5% by mass. Examples of the leveling agent include acrylic, acrylic silicone-based, silicone-based, and fluorine-based leveling agents. However, the leveling agent is preferably different from the type used for the cluster forming agent. Since the types of the cluster-forming agent and the leveling agent are different, the effects of the cluster-forming agent and the leveling agent are fully exhibited.

<塗布液の製造方法>
塗布液の製造工程は、界面活性剤で表面処理された第一粒子を準備する第一工程と、シランカップリング剤で表面処理された第二粒子を準備する第二工程と、第一組成物、第二組成物、第一粒子、第二粒子およびクラスター形成剤を混合する第三工程と、を含む。
<Manufacturing method of coating liquid>
The coating liquid manufacturing process includes a first step of preparing first particles surface-treated with a surfactant, a second step of preparing second particles surface-treated with a silane coupling agent, and a first composition. , A third step of mixing the second composition, the first particles, the second particles and the cluster-forming agent.

第一工程では、第一無機酸化物粒子と界面活性剤を混合した後で、この混合液を攪拌することが好ましい。攪拌時に、混合液を加熱することが好ましい。加熱により、第一無機酸化物粒子の表面に界面活性剤が十分に吸着するため、塗布液中で第一粒子が凝集しにくくなる。また、反応時間が短くなる。加熱温度は40〜60℃が、加熱時間は10〜30時間が好ましい。第一工程により、第一粒子は塗布液中で安定に分散される。 In the first step, it is preferable to stir the mixed solution after mixing the first inorganic oxide particles and the surfactant. It is preferable to heat the mixed solution at the time of stirring. By heating, the surfactant is sufficiently adsorbed on the surface of the first inorganic oxide particles, so that the first particles are less likely to aggregate in the coating liquid. Also, the reaction time is shortened. The heating temperature is preferably 40 to 60 ° C., and the heating time is preferably 10 to 30 hours. By the first step, the first particles are stably dispersed in the coating liquid.

第二工程では、第二無機酸化物粒子、シランカップリング剤、水および脱水触媒を混合した後で、この混合液を攪拌することが好ましい。攪拌時に、混合液を加熱することが好ましい。加熱により、第二無機酸化物粒子とシランカップリング剤の加水分解縮合反応が速くなるため、反応時間が短くなる。加熱温度は40〜60℃が、加熱時間は3〜30時間が好ましい。混合液の攪拌後に溶媒を置換することが好ましい。この第二工程により、シランカップリング剤が第二無機酸化物粒子と十分に結合するため、第二粒子が塗布液中で安定に分散される。 In the second step, it is preferable to stir the mixed solution after mixing the second inorganic oxide particles, the silane coupling agent, water and the dehydration catalyst. It is preferable to heat the mixed solution at the time of stirring. By heating, the hydrolysis-condensation reaction between the second inorganic oxide particles and the silane coupling agent becomes faster, so that the reaction time becomes shorter. The heating temperature is preferably 40 to 60 ° C., and the heating time is preferably 3 to 30 hours. It is preferable to replace the solvent after stirring the mixture. By this second step, the silane coupling agent is sufficiently bonded to the second inorganic oxide particles, so that the second particles are stably dispersed in the coating liquid.

第三工程では、第一粒子、第二粒子およびクラスター形成剤を混合してクラスター前駆体を調製した後で、第一組成物と第二組成物を混合することが好ましい。さらに、第一粒子とクラスター形成剤を混合した後に、第二粒子を混合することにより、クラスター前駆体を調製することが好ましい。これにより、塗布液の乾燥時に、一次クラスターに第二粒子がヘテロ凝集的に相互作用しやすくなるため、二次クラスターを形成しやすくなる。そのため、膜の表面の凹凸が高くなる。加熱温度は20〜60℃が、加熱時間は1〜30時間が好ましい。 In the third step, it is preferable to mix the first particle, the second particle and the cluster forming agent to prepare a cluster precursor, and then mix the first composition and the second composition. Further, it is preferable to prepare a cluster precursor by mixing the first particles and the cluster forming agent and then mixing the second particles. As a result, when the coating liquid is dried, the secondary particles are likely to interact with the primary cluster in a hetero-aggregating manner, so that the secondary cluster is likely to be formed. Therefore, the unevenness of the surface of the film becomes high. The heating temperature is preferably 20 to 60 ° C., and the heating time is preferably 1 to 30 hours.

[膜付基材]
基材上に塗布液を塗布し、乾燥させた後、硬化させることによって膜付基材を得ることができる。塗布液を乾燥させて得られた膜を硬化させることにより、塗布液に含まれる第一組成物と第二組成物が硬化して、それぞれフッ素系樹脂と硬化樹脂となる。乾燥とは、塗布後の基材を50〜150℃に加熱し、溶媒を揮発させて除去することを表している。塗布液の乾燥後、膜に紫外線を照射することにより、膜を硬化させる。紫外線の照射は、窒素雰囲気下で行うことが好ましい。
[Base material with film]
A base material with a film can be obtained by applying a coating liquid on the base material, drying the base material, and then curing the coating liquid. By curing the film obtained by drying the coating liquid, the first composition and the second composition contained in the coating liquid are cured to become a fluororesin and a cured resin, respectively. Drying means heating the base material after coating to 50 to 150 ° C. to volatilize and remove the solvent. After the coating liquid is dried, the film is cured by irradiating the film with ultraviolet rays. The irradiation of ultraviolet rays is preferably carried out in a nitrogen atmosphere.

膜付基材は、二次クラスターを起点として、塗布液の乾燥時の膜中の対流により、膜の表面に凹凸が形成されている。これにより、高い離型性が得られる。このとき、膜中の二次クラスターは粒子径が300nmより小さい第一粒子と、粒子径が第一粒子よりも小さい第二粒子から形成されていることが好ましい。二次クラスターの大きさは500〜7000nmである。500nmより小さいと、膜の表面に形成される凹凸が小さくなる。そのため、離型性が悪くなる。7000nmより大きいと、密着性が悪くなる場合がある。このとき、クラスター形成されていない第一粒子や第二粒子が膜中に存在してもよい。また、500nm以下の一次クラスター、二次クラスターや粒子が含まれていても良い。二次クラスターの大きさは750〜5000nmがより好ましい。 In the base material with a film, irregularities are formed on the surface of the film due to convection in the film when the coating liquid is dried, starting from the secondary cluster. As a result, high releasability can be obtained. At this time, the secondary clusters in the film are preferably formed of first particles having a particle size smaller than 300 nm and second particles having a particle size smaller than that of the first particles. The size of the secondary cluster is 500-7000 nm. If it is smaller than 500 nm, the unevenness formed on the surface of the film becomes small. Therefore, the releasability is deteriorated. If it is larger than 7000 nm, the adhesion may be deteriorated. At this time, first particles and second particles that are not clustered may be present in the film. Further, primary clusters, secondary clusters and particles having a diameter of 500 nm or less may be contained. The size of the secondary cluster is more preferably 750 to 5000 nm.

膜の表面の平均粗さ(R)は150〜1000nmであり、最大高低差(Rmax)は1500〜5000nmである。平均粗さや最大高低差は、第一粒子と第二粒子の平均粒子径、第一粒子と第二粒子の添加量やクラスター形成剤の添加量等によって調整できる。平均粗さは200〜800nmであることがより好ましく、300〜600nmがさらに好ましい。最大高低差は2500〜5000nmであることがより好ましく、3000〜4500nmがさらに好ましい。 The average roughness (Ra ) of the surface of the film is 150 to 1000 nm, and the maximum height difference (R max ) is 1500 to 5000 nm. The average roughness and the maximum height difference can be adjusted by adjusting the average particle size of the first particle and the second particle, the amount of the first particle and the second particle added, the amount of the cluster forming agent added, and the like. The average roughness is more preferably 200 to 800 nm, still more preferably 300 to 600 nm. The maximum height difference is more preferably 2500 to 5000 nm, and even more preferably 3000 to 4500 nm.

膜付基材の膜は、フッ素樹脂と硬化性樹脂を含み、フッ素樹脂は膜の表面側に偏在していることが好ましい。フッ素樹脂の偏在の程度は、X線光電子分光分析を用いてフッ素原子の割合を測定することにより推定できる。膜の表面のフッ素原子の割合(X[%])と、膜の表面から700nmの深さのフッ素原子の割合(X700[%])の比から、膜中のフッ素原子の偏在の程度が分かる。この比(X/X700)が3.0〜8.0、Xが30〜40であれば、離型性に優れた膜となる。この比は4.0〜6.0がより好ましい。フッ素原子の割合は、炭素、酸素、ケイ素、フッ素の合計の原子数に対する、フッ素原子数である。炭素、酸素、ケイ素、フッ素の原子の割合は、それぞれC1s、O1s、Si2p、F1sのピークをX線光電子分光分析で測定することにより決定できる。X線光電子分光分析装置は、島津製作所社製のKRATOS ULTRA2を使用した。スペクトル測定条件は、X−Ray:300W、Pass Energy:Wide160eV,Narrow80eV、分析径:110μm、Charge Neutralizer:Onで行っている。Ion gunは、Ar Gass Cluster Ionを用いて、加速電圧:5kV、Cluster size:3000、Paster size:1.0×1.0mm、エッチングレート:25.0mm/min(PLGA:ポリラクト・ポリ乳酸・グリコール酸共重合体)で測定を実施した。解析は、C1s(C−H)の結合エネルギーの較正は285.0eVで実施した。C1sのピークのエネルギー強度は284〜286eVで観測している。O1sは532〜534eV、Si2pは103〜104eV、F1sは687〜689eVで観測している。膜の表面から700nmの深さでの測定では、28分間のArエッチングを行っている。また、X[%]と、膜の表面から100nmの深さのフッ素原子の割合X100[%]の比(X/X100)が1.0〜4.0の範囲にあることが好ましい。1.5〜2.5の範囲にあることがより好ましい。この範囲にあることで、離型性に優れた膜となる。さらに、(X/X100)は(X/X700)より小さいことが好ましい。 The film of the base material with a film contains a fluororesin and a curable resin, and the fluororesin is preferably unevenly distributed on the surface side of the film. The degree of uneven distribution of the fluororesin can be estimated by measuring the proportion of fluorine atoms using X-ray photoelectron spectroscopy. From the ratio of the ratio of fluorine atoms on the surface of the film (X o [%]) to the ratio of fluorine atoms at a depth of 700 nm from the surface of the film (X 700 [%]), the degree of uneven distribution of fluorine atoms in the film I understand. When this ratio (X o / X 700 ) is 3.0 to 8.0 and X 0 is 30 to 40, the film has excellent releasability. This ratio is more preferably 4.0 to 6.0. The ratio of fluorine atoms is the number of fluorine atoms to the total number of atoms of carbon, oxygen, silicon, and fluorine. The proportions of carbon, oxygen, silicon, and fluorine atoms can be determined by measuring the peaks of C1s, O1s, Si2p, and F1s by X-ray photoelectron spectroscopy. As the X-ray photoelectron spectroscopic analyzer, KRATOS ULTRA2 manufactured by Shimadzu Corporation was used. The spectrum measurement conditions are X-Ray: 300 W, Pass Energy: Wide160eV, Now80eV, analysis diameter: 110 μm, Charge Neutralizer: On. Ion gun uses Ar Gass Cruster Ion, acceleration voltage: 5 kV, Cruster size: 3000, Paster size: 1.0 x 1.0 mm, etching rate: 25.0 mm / min (PLGA: polylactopolylactic acid glycol). The measurement was carried out with an acid copolymer). The analysis performed the calibration of the binding energy of C1s (CH) at 285.0 eV. The energy intensity of the peak of C1s is observed at 284 to 286 eV. O1s is observed at 532 to 534 eV, Si2p is observed at 103 to 104 eV, and F1s is observed at 687 to 689 eV. In the measurement at a depth of 700 nm from the surface of the film, Ar etching is performed for 28 minutes. Further, the X o [%], is the ratio of the proportion X 100 [%] of fluorine atoms from the surface of 100nm depth of the film (X o / X 100) is in the range of 1.0 to 4.0 preferable. More preferably, it is in the range of 1.5 to 2.5. Within this range, the film has excellent releasability. Further, (X o / X 100 ) is preferably smaller than (X o / X 700).

以下に、本発明の実施例を具体的に説明する。なお、塗布液の調製条件の概要と、粒子のζ電位を表3に示す。 Hereinafter, embodiments of the present invention will be specifically described. Table 3 shows the outline of the preparation conditions of the coating liquid and the ζ potential of the particles.

[実施例1]
シリカ粒子のメタノール分散液(日揮触媒化成社製:ELCOM(登録商標)V−8901、平均粒子径120nm、固形分濃度20.5質量%)100gと界面活性剤(C−1802)1.03gを混合した。50℃で20時間攪拌した後に、固形分濃度21.31質量%である第一粒子のメタノール分散液を得た。
[Example 1]
100 g of a methanol dispersion of silica particles (manufactured by JGC Catalysts and Chemicals, Inc .: ELCOM (registered trademark) V-8901, average particle size 120 nm, solid content concentration 20.5% by mass) and 1.03 g of surfactant (C-1802). Mixed. After stirring at 50 ° C. for 20 hours, a methanol dispersion of the first particles having a solid content concentration of 21.31% by mass was obtained.

シリカアルミナ粒子のメタノール分散液(日揮触媒化成社製:OSCAL(登録商標)1132、平均粒子径12nm、固形分濃度40.5質量%)100gと、シランカップリング剤としてγ-メタアクリロオキシプロピルトリメトキシシラン(KBM−503)6.08gと、超純水を8.8gと、5%アンモニア水0.4gを混合した。50℃で6時間攪拌した後、ロータリーエバポレーターで溶媒をMIBKに置換することにより、固形分濃度45.44質量%である第二粒子のMIBK分散液を得た。 100 g of a methanol dispersion of silica-alumina particles (manufactured by JGC Catalysts and Chemicals, OSCAL (registered trademark) 1132, average particle size 12 nm, solid content concentration 40.5% by mass) and γ-methacrylooxypropyl as a silane coupling agent 6.08 g of trimethoxysilane (KBM-503), 8.8 g of ultrapure water, and 0.4 g of 5% aqueous ammonia were mixed. After stirring at 50 ° C. for 6 hours, the solvent was replaced with MIBK using a rotary evaporator to obtain a MIBK dispersion of second particles having a solid content concentration of 45.44% by mass.

なお、第一粒子の分散液、および第二粒子の分散液を水で固形分0.5質量%に希釈して試料を調製し、Malvern社製ゼータサイザーナノシリーズ ナノ−ZSでζ電位を測定した。その結果を表3に示す。 A sample was prepared by diluting the dispersion of the first particle and the dispersion of the second particle with water to a solid content of 0.5% by mass, and the ζ potential was measured with the Zetasizer Nano Series Nano-ZS manufactured by Malvern. did. The results are shown in Table 3.

第一粒子のメタノール分散液9.76g、第二粒子のMIBK分散液29.63gとクラスター形成剤(楠本化成社製:ディスパロンLHP−810、固形分濃度10.0質量%)20.00gを混合することにより、クラスター前駆体を調製した。 9.76 g of methanol dispersion liquid of the first particle, 29.63 g of MIBK dispersion liquid of the second particle and 20.00 g of cluster forming agent (manufactured by Kusumoto Kasei Co., Ltd .: Disparon LHP-810, solid content concentration 10.0% by mass) are mixed. To prepare a cluster precursor.

このクラスター前駆体59.39gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)8.00gと、有機溶媒17.42g(MIBK12.50g、PGME4.92g)と、レベリング剤(楠本化成社製:ディスパロンNSH−8430HF、固形分濃度10.0質量%)4.72gと、光重合開始剤(IGM社製:Omnirad(登録商標)184)0.48gを混合することにより、固形分濃度27.85質量%の塗布液を調製した。以降の実施例及び比較例でも、レベリング剤としてディスパロンNSH−8430HFを、光重合開始剤としてOmnirad184を用いた。 59.39 g of this cluster precursor, 10.00 g of the first composition (RS-90), 8.00 g of the second composition (UA-33H), and 17.42 g of an organic solvent (MIBK 12.50 g, PGME 4.92 g). ), 4.72 g of a leveling agent (manufactured by Kusumoto Kasei Co., Ltd .: Disparon NSH-8430HF, solid content concentration 10.0% by mass), and 0.48 g of a photopolymerization initiator (manufactured by IGM: Omnirad (registered trademark) 184). By mixing, a coating liquid having a solid content concentration of 27.85% by mass was prepared. In the following examples and comparative examples, Disparon NSH-8430HF was used as the leveling agent, and Omnirad 184 was used as the photopolymerization initiator.

塗布液を、厚さ188μmの易接着層付PETフィルム(東洋紡社製:A4300)にバーコーター法(#24)で塗布した。80℃で120秒間乾燥した後、N雰囲気下で300mJ/cmの紫外線を照射することにより、膜付基材を得た。平均膜厚を、デジタルゲージ(小野測器社製:ST−0230)により測定した。膜厚は全ての実施例と比較例で10μmであった。 The coating liquid was applied to a PET film with an easy-adhesion layer (manufactured by Toyobo Co., Ltd .: A4300) having a thickness of 188 μm by the bar coater method (# 24). After drying at 80 ° C. for 120 seconds, a substrate with a film was obtained by irradiating with ultraviolet rays of 300 mJ / cm 2 in an N 2 atmosphere. The average film thickness was measured with a digital gauge (manufactured by Ono Sokki Co., Ltd .: ST-0230). The film thickness was 10 μm in all Examples and Comparative Examples.

離型性、密着性、R、Rmax、クラスターの大きさ等の膜付基材の膜特性は以下の方法により測定および評価した。また、塗布液の保存安定性は以下の方法により評価した。その結果を表4に示す。また、膜中のフッ素原子の割合を前述の方法で測定した。その結果を表5に示す。後述の実施例や比較例についても同様に膜付基材を作製し、測定・評価した。 The film properties of the substrate with a film, such as releasability, adhesion, Ra , R max , and cluster size, were measured and evaluated by the following methods. The storage stability of the coating liquid was evaluated by the following method. The results are shown in Table 4. Moreover, the ratio of fluorine atoms in the film was measured by the above-mentioned method. The results are shown in Table 5. Similarly, a substrate with a film was prepared, measured and evaluated in Examples and Comparative Examples described later.

[離型性の評価]
膜付基材の膜に、18mm幅のセロハンテープ(ニチバン社製)を20mmの長さで貼り付け、テープを指で剥いだ時の剥ぎやすさを以下の評価基準で評価した。
[Evaluation of releasability]
A cellophane tape (manufactured by Nichiban Co., Ltd.) having a width of 18 mm was attached to the film of the base material with a film to a length of 20 mm, and the ease of peeling when the tape was peeled off with a finger was evaluated according to the following evaluation criteria.

評価基準:
抵抗無く剥げる :◎
少し抵抗があるが、簡単に剥げる :○
抵抗があるが、剥げる :△
抵抗があり、力強く引き上げると剥げる :×
Evaluation criteria:
Peel off without resistance: ◎
There is a little resistance, but it can be easily peeled off: ○
There is resistance, but it peels off: △
There is resistance, and if you pull it up strongly, it will come off: ×

[密着性の評価]
膜付基材上の膜に、ナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作った。これらの升目にセロハンテ−プを接着させた後、セロハンテ−プを剥離した。膜が剥離せずに残存している升目の数を数えて、以下の評価基準で評価した。
[Evaluation of adhesion]
The film on the substrate with a film was scratched with a knife at intervals of 1 mm in length and width, and 11 parallel scratches were made to make 100 squares. After adhering the cellophane tape to these squares, the cellophane tape was peeled off. The number of squares remaining without peeling of the film was counted and evaluated according to the following evaluation criteria.

評価基準:
残存している升目の数100個 :◎
残存している升目の数90〜99個 :○
残存している升目の数85〜89個 :△
残存している升目の数84個以下 :×
Evaluation criteria:
Number of remaining squares 100: ◎
Number of remaining squares 90-99: ○
Number of remaining squares 85-89: △
Number of remaining squares 84 or less: ×

[平均粗さ(R)、面内最大高低差(Rmax)の測定]
原子間力顕微鏡(AFM)を用いて、50μm角の平均粗さ(R)、面内最大高低差(Rmax)を測定した。
[Measurement of average roughness ( Ra ) and maximum in-plane height difference (R max)]
Using an atomic force microscope (AFM), the average roughness ( Ra ) of 50 μm square and the maximum in-plane height difference (Rmax) were measured.

[クラスターサイズ]
膜付基材を樹脂に埋め込んで、膜の断面をミクロトームで切断し、切断面を走査型電子顕微鏡(SEM)で測定し、膜中に存在するクラスターのサイズを測定した。
[Cluster size]
The membrane-attached substrate was embedded in a resin, the cross section of the membrane was cut with a microtome, the cut surface was measured with a scanning electron microscope (SEM), and the size of clusters present in the membrane was measured.

[塗布液の保存安定性]
塗料を100mLの遮光ポリ容器に入れた後、冷蔵庫(0〜10℃)で1ヶ月間保存した。その後、遮光ポリ容器を10回、手でシェイクした。この塗料をPETフィルム上に塗工した後、以下の評価基準で膜を評価した。
[Storage stability of coating liquid]
The paint was placed in a 100 mL light-shielding plastic container and then stored in a refrigerator (0-10 ° C.) for 1 month. Then, the light-shielding plastic container was shaken by hand 10 times. After applying this paint on a PET film, the film was evaluated according to the following evaluation criteria.

評価基準:
塗料は容易に分散し、離型性と密着性も初期と同様の特性が得られる :◎
塗料の分散性は低下するが、離型性と密着性は初期と同等の特性が得られる :○
塗料の分散性は低下し、離型性と密着性も初期と比較して低下する :△
塗料は完全に分散せず、離型性と密着性は初期より大幅に低下する :×
Evaluation criteria:
The paint disperses easily, and the same releasability and adhesion properties as in the initial stage can be obtained: ◎
The dispersibility of the paint is reduced, but the releasability and adhesion are the same as those at the initial stage: ○
The dispersibility of the paint is reduced, and the releasability and adhesion are also reduced compared to the initial stage: △
The paint is not completely dispersed, and the releasability and adhesion are significantly reduced from the initial stage: ×

[実施例2]
界面活性剤(C−1802)4.12gを混合する以外は実施例1と同様にして、第一粒子のメタノール分散液(固形分濃度23.65質量%)を調製した。
[Example 2]
A methanol dispersion of the first particles (solid content concentration 23.65% by mass) was prepared in the same manner as in Example 1 except that 4.12 g of the surfactant (C-1802) was mixed.

これ以降、第二組成物8.00gの代わりに、第二組成物7.20gとアクリレートモノマー(新中村化学工業社製:NKエステルA−DCP−LC3)0.80gを用いた以外は実施例1と同様に、固形分濃度27.72質量%の塗布液を調製した。 Subsequent examples, except that 7.20 g of the second composition and 0.80 g of an acrylate monomer (manufactured by Shin-Nakamura Chemical Industry Co., Ltd .: NK ester A-DCP-LC3) were used instead of 8.00 g of the second composition. In the same manner as in 1, a coating liquid having a solid content concentration of 27.72% by mass was prepared.

[実施例3]
シリカ粒子の水分散液(日揮触媒化成社製:カタロイド(登録商標)SI−50、平均粒子径25nm、固形分濃度40.5質量%)1000gにイオン交換水1025gを加えた後、陽イオン交換樹脂(三菱ケミカル社製:SK−1BH)135gを添加し、1時間攪拌した。陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱ケミカル社製:SANUPC)135gを添加し、1時間攪拌した。再び陽イオン交換樹脂(SK−1BH)135gを添加し、1時間攪拌することにより固形分濃度20質量%のシリカ粒子分散液を調製した。
[Example 3]
After adding 1025 g of ion exchange water to 1000 g of an aqueous dispersion of silica particles (manufactured by JGC Catalysts and Chemicals, Inc .: Cataloid® SI-50, average particle diameter 25 nm, solid content concentration 40.5% by mass), cation exchange 135 g of a resin (manufactured by Mitsubishi Chemical Co., Ltd .: SK-1BH) was added, and the mixture was stirred for 1 hour. After separating the cation exchange resin, 135 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SANUPC) was added, and the mixture was stirred for 1 hour. 135 g of a cation exchange resin (SK-1BH) was added again, and the mixture was stirred for 1 hour to prepare a silica particle dispersion having a solid content concentration of 20% by mass.

この分散液の溶媒を限外濾過膜でメタノールに置換して固形分濃度20.5重量%のメタノール分散液を得た。このメタノール分散液100gと界面活性剤(C−1802)2.06gを混合した後、50℃で20時間攪拌することにより固形分濃度22.1質量%の第一粒子のメタノール分散液を得た。 The solvent of this dispersion was replaced with methanol by an ultrafiltration membrane to obtain a methanol dispersion having a solid content concentration of 20.5% by weight. After mixing 100 g of this methanol dispersion and 2.06 g of a surfactant (C-1802), the mixture was stirred at 50 ° C. for 20 hours to obtain a first-particle methanol dispersion having a solid content concentration of 22.1% by mass. ..

この第一粒子のメタノール分散液を用いること以外は実施例1と同様にして、クラスター前駆体を調製した。これ以降は、実施例2と同様に、固形分濃度27.59質量%の塗布液を調製した。 A cluster precursor was prepared in the same manner as in Example 1 except that the methanol dispersion of the first particles was used. From this point onward, a coating solution having a solid content concentration of 27.59% by mass was prepared in the same manner as in Example 2.

[実施例4]
シランカップリング剤(KBM−503)20.25gを用いること以外は実施例1と同様にして、固形分濃度60.75質量%である第二粒子のMIBK分散液を得た。
[Example 4]
A MIBK dispersion of second particles having a solid content concentration of 60.75% by mass was obtained in the same manner as in Example 1 except that 20.25 g of a silane coupling agent (KBM-503) was used.

この第二粒子のMIBK分散液を用いること以外は実施例1と同様に、クラスター前駆体を調製した。これ以降は実施例2と同様に、固形分濃度32.05質量%の塗布液を調製した。 A cluster precursor was prepared in the same manner as in Example 1 except that the MIBK dispersion of the second particles was used. From this point onward, a coating solution having a solid content concentration of 32.05% by mass was prepared in the same manner as in Example 2.

[実施例5]
シリカアルミナ粒子の水分散液(日揮触媒化成社製:カタロイドSI−80、平均粒子径80nm、固形分濃度40.5質量%)1000gにイオン交換水1025gを加えた後、陽イオン交換樹脂(SK−1BH)135gを添加し、1時間攪拌した。陽イオン交換樹脂を分離した後、陰イオン交換樹脂(SANUPC)135gを添加し、1時間攪拌した。再び陽イオン交換樹脂(SK−1BH)135gを添加し、1時間攪拌することにより、固形分濃度20質量%のシリカ粒子分散液を調製した。
[Example 5]
After adding 1025 g of ion-exchanged water to 1000 g of an aqueous dispersion of silica-alumina particles (manufactured by JGC Catalysts and Chemicals, Inc .: Cataloid SI-80, average particle diameter 80 nm, solid content concentration 40.5% by mass), a cation exchange resin (SK) -1BH) 135 g was added and stirred for 1 hour. After separating the cation exchange resin, 135 g of an anion exchange resin (SANUPC) was added, and the mixture was stirred for 1 hour. 135 g of a cation exchange resin (SK-1BH) was added again, and the mixture was stirred for 1 hour to prepare a silica particle dispersion having a solid content concentration of 20% by mass.

この分散液の溶媒を限外濾過膜でメタノールに置換して固形分濃度20.5重量%のメタノール分散液を得た。 The solvent of this dispersion was replaced with methanol by an ultrafiltration membrane to obtain a methanol dispersion having a solid content concentration of 20.5% by weight.

このメタノール分散液100gと、シランカップリング剤としてγ-メタアクリロオキシプロピルトリメトキシシラン(KBM−503)6.08gと、超純水を8.8gと、5%アンモニア水0.4gを混合した後、50℃で6時間攪拌した。その後、溶媒をロータリーエバポレーターでMIBKに置換し、固形分濃度45.44質量%である第二粒子を含むMIBK分散液を得た。 100 g of this methanol dispersion, 6.08 g of γ-methacrylooxypropyltrimethoxysilane (KBM-503) as a silane coupling agent, 8.8 g of ultrapure water, and 0.4 g of 5% ammonia water are mixed. After that, the mixture was stirred at 50 ° C. for 6 hours. Then, the solvent was replaced with MIBK using a rotary evaporator to obtain a MIBK dispersion liquid containing the second particles having a solid content concentration of 45.44% by mass.

この第二粒子を含むMIBK分散液29.63g、実施例1で調製した第一粒子を含むメタノール分散液9.76gとクラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。 By mixing 29.63 g of the MIBK dispersion liquid containing the second particles, 9.76 g of the methanol dispersion liquid containing the first particles prepared in Example 1, and 20.00 g of the cluster forming agent (LHP-810), the cluster precursor The body was prepared.

このクラスター前駆体を用いること以外は実施例2と同様に、固形分濃度27.49質量%の塗布液を調製した。 A coating solution having a solid content concentration of 27.49% by mass was prepared in the same manner as in Example 2 except that this cluster precursor was used.

[実施例6]
実施例1で調製した第一粒子のメタノール分散液4.88g、実施例1で調製した第二粒子のMIBK分散液14.81gとクラスター形成剤(LHP−810)20.00gを混合して、クラスター前駆体を調製した。
[Example 6]
4.88 g of the methanol dispersion of the first particle prepared in Example 1, 14.81 g of the MIBK dispersion of the second particle prepared in Example 1 and 20.00 g of the cluster forming agent (LHP-810) were mixed. Cluster precursors were prepared.

このクラスター前駆体39.69gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)12.60gと、アクリレートモノマー(A−DCP)1.40gと、有機溶媒30.75g(MIBK22.10g、PGME8.65g)と、レベリング剤4.72gと、光重合開始剤0.84gを混合することにより、固形分濃度26.08質量%の塗布液を調製した。 39.69 g of this cluster precursor, 10.00 g of the first composition (RS-90), 12.60 g of the second composition (UA-33H), 1.40 g of the acrylate monomer (A-DCP), and organic A coating solution having a solid content concentration of 26.08% by mass was prepared by mixing 30.75 g of a solvent (22.10 g of MIBK, 8.65 g of PGME), 4.72 g of a leveling agent, and 0.84 g of a photopolymerization initiator.

[実施例7]
実施例1で調製した第一粒子のメタノール分散液25.61g、実施例1で調製した第二粒子のMIBK分散液12.96gとクラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。
[Example 7]
By mixing 25.61 g of the first particle methanol dispersion prepared in Example 1, 12.96 g of the second particle MIBK dispersion prepared in Example 1, and 20.00 g of the cluster forming agent (LHP-810). , Cluster precursors were prepared.

このクラスター前駆体58.57gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)5.40gと、アクリレートモノマー(A−DCP)0.60gと、有機溶媒20.35g(MIBK12.50g、PGME7.85g)と、レベリング剤4.72gと、光重合開始剤0.36gを混合することにより、固形分濃度21.18質量%の塗布液を調製した。 58.57 g of this cluster precursor, 10.00 g of the first composition (RS-90), 5.40 g of the second composition (UA-33H), 0.60 g of the acrylate monomer (A-DCP), and organic A coating solution having a solid content concentration of 21.18% by mass was prepared by mixing 20.35 g of a solvent (12.50 g of MIBK, 7.85 g of PGME), 4.72 g of a leveling agent, and 0.36 g of a photopolymerization initiator.

[実施例8]
実施例1で調製した第一粒子のメタノール分散液9.76g、実施例1で調製した第二粒子のMIBK分散液29.63gとクラスター形成剤(LHP−810)2.00gを混合することにより、クラスター前駆体を調製した。
[Example 8]
By mixing 9.76 g of the first particle methanol dispersion prepared in Example 1, 29.63 g of the second particle MIBK dispersion prepared in Example 1, and 2.00 g of the cluster forming agent (LHP-810). , Cluster precursors were prepared.

このクラスター前駆体41.39gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒35.42g(MIBK25.20g、PGME10.22g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度25.69質量%の塗布液を調製した。 41.39 g of this cluster precursor, 10.00 g of the first composition (RS-90), 7.20 g of the second composition (UA-33H), 0.80 g of the acrylate monomer (A-DCP), and organic. A coating solution having a solid content concentration of 25.69% by mass was prepared by mixing 35.42 g of a solvent (25.20 g of MIBK, 10.22 g of PGME), 4.72 g of a leveling agent, and 0.48 g of a photopolymerization initiator.

[実施例9]
実施例1で調製したクラスター前駆体59.39gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒17.42g(MIBK12.50g、PGME4.92g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度27.85質量%の塗布液を調製した。
[Example 9]
59.39 g of the cluster precursor prepared in Example 1, 10.00 g of the first composition (RS-90), 7.20 g of the second composition (UA-33H), and 0 of the acrylate monomer (A-DCP). A solid content concentration of 27.85% by mass is applied by mixing .80 g, 17.42 g of an organic solvent (MIBK 12.50 g, PGME 4.92 g), 4.72 g of a leveling agent, and 0.48 g of a photopolymerization initiator. The solution was prepared.

[実施例10]
実施例1の第二組成物のUA−33Hの代わりに、ダイセル・オルネクス株式会社製のEBECRYL 3708を用いた。これ以外は、実施例9と同様にして塗布液を調製した。
[Example 10]
Instead of UA-33H of the second composition of Example 1, EBECRYL 3708 manufactured by Daicel Ornex Co., Ltd. was used. Except for this, a coating liquid was prepared in the same manner as in Example 9.

[実施例11]
実施例1で調製した第一粒子のメタノール分散液9.76gと、実施例1で調製した第二粒子のMIBK分散液29.63gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒17.42g(MIBK12.50g、PGME4.92g)と、クラスター形成剤(LHP−810)20.00gと、レベリング剤4.72gと、光重合開始剤0.48gを混合して固形分濃度27.49質量%の塗布液を調製した。
[Example 11]
9.76 g of the first particle methanol dispersion prepared in Example 1, 29.63 g of the second particle MIBK dispersion prepared in Example 1, and 10.00 g of the first composition (RS-90). 7.20 g of the second composition (UA-33H), 0.80 g of the acrylate monomer (A-DCP), 17.42 g of the organic solvent (MIBK 12.50 g, PGME 4.92 g), and a cluster former (LHP-810). 20.00 g, 4.72 g of the leveling agent, and 0.48 g of the photopolymerization initiator were mixed to prepare a coating liquid having a solid content concentration of 27.49% by mass.

[比較例1]
実施例1で調製した第二粒子のMIBK分散液34.57gとクラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。
[Comparative Example 1]
A cluster precursor was prepared by mixing 34.57 g of the second particle MIBK dispersion prepared in Example 1 and 20.00 g of a cluster forming agent (LHP-810).

このクラスター前駆体54.57gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒22.24g(MIBK9.70g、PGME12.54g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度27.66質量%の塗布液を調製した。 54.57 g of this cluster precursor, 10.00 g of the first composition (RS-90), 7.20 g of the second composition (UA-33H), 0.80 g of the acrylate monomer (A-DCP), and organic A coating solution having a solid content concentration of 27.66% by mass was prepared by mixing 22.24 g of a solvent (9.70 g of MIBK, 12.54 g of PGME), 4.72 g of a leveling agent, and 0.48 g of a photopolymerization initiator.

[比較例2]
実施例1で調製した第一粒子を含むメタノール分散液36.59gとクラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。
[Comparative Example 2]
A cluster precursor was prepared by mixing 36.59 g of the methanol dispersion containing the first particles prepared in Example 1 and 20.00 g of the cluster forming agent (LHP-810).

このクラスター前駆体56.59gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)6.75gと、アクリレートモノマー(A−DCP)0.75gと、有機溶媒20.75g(MIBK12.60g、PGME8.15g)と、レベリング剤4.72gと、光重合開始剤0.45gを混合することにより、固形分濃度19.21質量%の塗布液を調製した。 56.59 g of this cluster precursor, 10.00 g of the first composition (RS-90), 6.75 g of the second composition (UA-33H), 0.75 g of the acrylate monomer (A-DCP), and organic. A coating solution having a solid content concentration of 19.21% by mass was prepared by mixing 20.75 g of a solvent (12.60 g of MIBK, 8.15 g of PGME), 4.72 g of a leveling agent, and 0.45 g of a photopolymerization initiator.

この塗布液を用いて、実施例1のバーコーターを#34に変更した以外は実施例1と同様に膜付基材を作製した。 Using this coating liquid, a substrate with a film was prepared in the same manner as in Example 1 except that the bar coater of Example 1 was changed to # 34.

[比較例3]
シリカ粒子(日揮触媒化成社製:SW1.4、平均粒子径1400nm、固形分濃度100質量%)をメタノールに20.50質量%で分散させた分散液100g、界面活性剤(C−1802)1.03gを混合した。50℃で20時間攪拌した後、固形分濃度21.31質量%である第一粒子のメタノール分散液を得た。
[Comparative Example 3]
100 g of a dispersion liquid in which silica particles (manufactured by JGC Catalysts and Chemicals Co., Ltd .: SW1.4, average particle diameter 1400 nm, solid content concentration 100% by mass) are dispersed in methanol at 20.50% by mass, surfactant (C-1802) 1 .03 g was mixed. After stirring at 50 ° C. for 20 hours, a methanol dispersion of the first particles having a solid content concentration of 21.31% by mass was obtained.

この第一粒子のメタノール分散液36.59gとクラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。 A cluster precursor was prepared by mixing 36.59 g of the first particle methanol dispersion and 20.00 g of a cluster forming agent (LHP-810).

このクラスター前駆体56.59gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)6.75gと、アクリレートモノマー(A−DCP)0.75gと、有機溶媒20.75g(MIBK12.60g、PGME8.15g)と、レベリング剤4.72gと、光重合開始剤0.45gを混合することにより、固形分濃度19.21質量%の塗布液を調製した。 56.59 g of this cluster precursor, 10.00 g of the first composition (RS-90), 6.75 g of the second composition (UA-33H), 0.75 g of the acrylate monomer (A-DCP), and organic. A coating solution having a solid content concentration of 19.21% by mass was prepared by mixing 20.75 g of a solvent (12.60 g of MIBK, 8.15 g of PGME), 4.72 g of a leveling agent, and 0.45 g of a photopolymerization initiator.

この塗布液を用いて、バーコーターを#34に変更した以外は、実施例1と同様に膜付基材を作製した。 Using this coating liquid, a substrate with a film was prepared in the same manner as in Example 1 except that the bar coater was changed to # 34.

[比較例4]
OSCAL1132を100g、界面活性剤(C−1802)6.18gとメタノール97.56gを混合した。50℃で20時間攪拌した後、固形分濃度25.13質量%である第一粒子のメタノール分散液を得た。
[Comparative Example 4]
100 g of OSCAL 1132, 6.18 g of surfactant (C-1802) and 97.56 g of methanol were mixed. After stirring at 50 ° C. for 20 hours, a methanol dispersion of the first particles having a solid content concentration of 25.13% by mass was obtained.

この第一粒子を含むメタノール分散液9.76g、実施例5で調製した第二粒子のMIBK分散液29.63gとクラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。 A cluster precursor by mixing 9.76 g of a methanol dispersion containing the first particles, 29.63 g of the second-particle MIBK dispersion prepared in Example 5, and 20.00 g of a cluster-forming agent (LHP-810). Was prepared.

このクラスター前駆体59.39gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒17.42g(MIBK12.50g、PGME4.92g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度27.85質量%の塗布液を調製した。 59.39 g of this cluster precursor, 10.00 g of the first composition (RS-90), 7.20 g of the second composition (UA-33H), 0.80 g of the acrylate monomer (A-DCP), and organic A coating solution having a solid content concentration of 27.85% by mass was prepared by mixing 17.42 g of a solvent (12.50 g of MIBK, 4.92 g of PGME), 4.72 g of a leveling agent, and 0.48 g of a photopolymerization initiator.

[比較例5]
シリカの水分散液(日揮触媒化成社製:SS−300、平均粒子径300nm、SiO濃度20.5重量%)1000gにイオン交換水25gを加えた後、陽イオン交換樹脂(SK−1BH)135gを添加し、1時間攪拌した。陽イオン交換樹脂を分離した後、陰イオン交換樹脂(SANUPC)135gを添加し、1時間攪拌した。再び陽イオン交換樹脂(SK−1BH)135gを添加後、1時間攪拌することにより、SiO濃度20重量%のシリカ粒子分散液を調製した。
[Comparative Example 5]
After adding 25 g of ion-exchanged water to 1000 g of an aqueous dispersion of silica (manufactured by JGC Catalysts and Chemicals, SS-300, average particle size 300 nm, SiO 2 concentration 20.5% by weight), a cation exchange resin (SK-1BH) 135 g was added and stirred for 1 hour. After separating the cation exchange resin, 135 g of an anion exchange resin (SANUPC) was added, and the mixture was stirred for 1 hour. After adding 135 g of the cation exchange resin (SK-1BH) again, the mixture was stirred for 1 hour to prepare a silica particle dispersion having a SiO 2 concentration of 20% by weight.

この分散液の溶媒を限外濾過膜でメタノールに置換することにより、固形分濃度20.5重量%のメタノール分散液を得た。 The solvent of this dispersion was replaced with methanol by an ultrafiltration membrane to obtain a methanol dispersion having a solid content concentration of 20.5% by weight.

このメタノール分散液100gと界面活性剤(C−1802)1.03gを混合した後、50℃で20時間攪拌することにより、固形分濃度21.31質量%である第一粒子のメタノール分散液を得た。 After mixing 100 g of this methanol dispersion and 1.03 g of a surfactant (C-1802), the mixture is stirred at 50 ° C. for 20 hours to obtain a first-particle methanol dispersion having a solid content concentration of 21.31% by mass. Obtained.

シリカの水分散液(日揮触媒化成社製:SS−160、平均粒子径160nm、固形分濃度20.5重量%)1000gにイオン交換水25gを加えた後、陽イオン交換樹脂(SK−1BH)135gを添加し、1時間攪拌して脱アルカリ処理した。陽イオン交換樹脂を分離した後、陰イオン交換樹脂(SANUPC)135gを添加し、1時間攪拌した。再び陽イオン交換樹脂(SK−1BH)135gを添加し、1時間攪拌することにより、固形分濃度20重量%のシリカ粒子分散液を調製した。 After adding 25 g of ion-exchanged water to 1000 g of an aqueous dispersion of silica (manufactured by JGC Catalysts and Chemicals, SS-160, average particle size 160 nm, solid content concentration 20.5% by weight), a cation exchange resin (SK-1BH) 135 g was added, and the mixture was stirred for 1 hour to dealkalinate. After separating the cation exchange resin, 135 g of an anion exchange resin (SANUPC) was added, and the mixture was stirred for 1 hour. 135 g of a cation exchange resin (SK-1BH) was added again, and the mixture was stirred for 1 hour to prepare a silica particle dispersion having a solid content concentration of 20% by weight.

この分散液の溶媒を限外濾過膜でメタノールに置換することにより、固形分濃度20.5重量%のメタノール分散液を得た。 The solvent of this dispersion was replaced with methanol by an ultrafiltration membrane to obtain a methanol dispersion having a solid content concentration of 20.5% by weight.

このメタノール分散液100gと、シランカップリング剤としてKBM−503を3.04gと、超純水を8.8gと、5%アンモニア水0.4gを混合した後、50℃で6時間攪拌した。その後、ロータリーエバポレーターで溶媒をMIBKに置換することにより、固形分濃度45.44質量%である第二粒子を含むMIBK分散液を得た。 After mixing 100 g of this methanol dispersion, 3.04 g of KBM-503 as a silane coupling agent, 8.8 g of ultrapure water, and 0.4 g of 5% aqueous ammonia, the mixture was stirred at 50 ° C. for 6 hours. Then, the solvent was replaced with MIBK using a rotary evaporator to obtain a MIBK dispersion liquid containing the second particles having a solid content concentration of 45.44% by mass.

第一粒子を含むメタノール分散液9.76gと、第二粒子を含むMIBK分散液29.63gと、クラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。 A cluster precursor was prepared by mixing 9.76 g of a methanol dispersion containing the first particles, 29.63 g of a MIBK dispersion containing the second particles, and 20.00 g of a cluster-forming agent (LHP-810).

このクラスター前駆体を用いること以外は実施例1と同様にして、固形分濃度27.49質量%の塗布液を調製した。 A coating solution having a solid content concentration of 27.49% by mass was prepared in the same manner as in Example 1 except that this cluster precursor was used.

[比較例6]
界面活性剤としてノイゲン(登録商標)TDS−70(第一工業製薬社製、固形分濃度100質量%)2.06gを用いた以外は実施例1と同様にして、固形分濃度22.10質量%である第一粒子のメタノール分散液を得た。
[Comparative Example 6]
The same as in Example 1 except that 2.06 g of Neugen (registered trademark) TDS-70 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., solid content concentration 100% by mass) was used as the surfactant, and the solid content concentration was 22.10% by mass. %, A methanol dispersion of the first particles was obtained.

この第一粒子のメタノール分散液を用いて実施例1と同様にクラスター前駆体を調製した。これ以降は、実施例2と同様に、固形分濃度27.93質量%の塗布液を調製した。 A cluster precursor was prepared in the same manner as in Example 1 using the methanol dispersion of the first particles. From this point onward, a coating solution having a solid content concentration of 27.93% by mass was prepared in the same manner as in Example 2.

[比較例7]
実施例1で調製した第一粒子のMIBK分散液9.76gと、実施例1で調製した第二粒子のMIBK分散液29.63gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒37.42g(MIBK26.70g、PGME10.72g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度25.49質量%の塗布液を調製した。
[Comparative Example 7]
9.76 g of the first particle MIBK dispersion prepared in Example 1, 29.63 g of the second particle MIBK dispersion prepared in Example 1, and 10.00 g of the first composition (RS-90). 7.20 g of the second composition (UA-33H), 0.80 g of the acrylate monomer (A-DCP), 37.42 g of the organic solvent (MIBK 26.70 g, 10.72 g of PGME), 4.72 g of the leveling agent, and light. A coating liquid having a solid content concentration of 25.49% by mass was prepared by mixing 0.48 g of a polymerization initiator.

[比較例8]
実施例1で調製したクラスター前駆体59.39gと、重量平均分子量が154.1の第一組成物(大阪有機化学工業社製:ビスコート3F、固形分濃度100質量%)1.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒26.42g(MIBK19.00g、PGME7.42g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度27.49質量%の塗布液を調製した。
[Comparative Example 8]
59.39 g of the cluster precursor prepared in Example 1 and 1.00 g of the first composition having a weight average molecular weight of 154.1 (manufactured by Osaka Organic Chemical Industry Co., Ltd .: Viscoat 3F, solid content concentration 100% by mass). (2) Composition (UA-33H) 7.20 g, acrylate monomer (A-DCP) 0.80 g, organic solvent 26.42 g (MIBK 19.00 g, PGME 7.42 g), leveling agent 4.72 g, and photopolymerization. A coating solution having a solid content concentration of 27.49% by mass was prepared by mixing 0.48 g of the initiator.

[比較例9]
実施例1で調製したクラスター前駆体59.39gと、第一組成物(RS−90)10.00gと、アクリレートモノマー(共栄社化学社製:ライトアクリレート(登録商標)DPE−6A)8.00gと、有機溶媒17.42g(MIBK12.50g、PGME4.92g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度27.49質量%の塗布液を調製した。
[Comparative Example 9]
59.39 g of the cluster precursor prepared in Example 1, 10.00 g of the first composition (RS-90), and 8.00 g of an acrylate monomer (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate (registered trademark) DPE-6A). , 17.42 g of organic solvent (MIBK 12.50 g, PGME 4.92 g), 4.72 g of leveling agent, and 0.48 g of photopolymerization initiator are mixed to prepare a coating solution having a solid content concentration of 27.49% by mass. did.

[比較例10]
OSCAL1132を100gと界面活性剤(C−1802)12.15gを混合した。50℃で20時間攪拌した後、固形分濃度49.95質量%である第二粒子のメタノール分散液を得た。
[Comparative Example 10]
100 g of OSCAL 1132 and 12.15 g of surfactant (C-1802) were mixed. After stirring at 50 ° C. for 20 hours, a methanol dispersion of second particles having a solid content concentration of 49.95% by mass was obtained.

この第二粒子のMIBK分散液29.63g、実施例1で調製した第一粒子を含むメタノール分散液9.76gとクラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。 By mixing 29.63 g of the MIBK dispersion liquid of the second particles, 9.76 g of the methanol dispersion liquid containing the first particles prepared in Example 1, and 20.00 g of the cluster forming agent (LHP-810), the cluster precursor Was prepared.

クラスター前駆体59.39gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒17.42g(MIBK12.50g、PGME4.92g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度27.94質量%の塗布液を調製した。 59.39 g of cluster precursor, 10.00 g of first composition (RS-90), 7.20 g of second composition (UA-33H), 0.80 g of acrylate monomer (A-DCP), and organic solvent. A coating solution having a solid content concentration of 27.94% by mass was prepared by mixing 17.42 g (MIBK 12.50 g, PGME 4.92 g), 4.72 g of the leveling agent, and 0.48 g of the photopolymerization initiator.

[比較例11]
ELCOM V−8901を100gと、シランカップリング剤としてKBM−5036.08gと、超純水を8.8gと、5%アンモニア水0.4gを混合した。50℃で6時間攪拌した後、ロータリーエバポレーターで溶媒をMIBKに置換することにより、固形分濃度23.0質量%である第一粒子のMIBK分散液を得た。
[Comparative Example 11]
100 g of ELCOM V-8901, KBM-5036.08 g as a silane coupling agent, 8.8 g of ultrapure water, and 0.4 g of 5% ammonia water were mixed. After stirring at 50 ° C. for 6 hours, the solvent was replaced with MIBK using a rotary evaporator to obtain a MIBK dispersion of the first particles having a solid content concentration of 23.0% by mass.

この第一粒子を含むMIBK分散液9.76g、実施例1で調製した第二粒子のMIBK分散液29.63gとクラスター形成剤(LHP−810)20.00gを混合することにより、クラスター前駆体を調製した。
クラスター前駆体59.39gと、第一組成物(RS−90)10.00gと、第二組成物(UA−33H)7.20gと、アクリレートモノマー(A−DCP)0.80gと、有機溶媒17.42g(MIBK12.50g、PGME4.92g)と、レベリング剤4.72gと、光重合開始剤0.48gを混合することにより、固形分濃度27.65質量%の塗布液を調製した。
A cluster precursor by mixing 9.76 g of the MIBK dispersion containing the first particles, 29.63 g of the second-particle MIBK dispersion prepared in Example 1, and 20.00 g of the cluster-forming agent (LHP-810). Was prepared.
59.39 g of cluster precursor, 10.00 g of first composition (RS-90), 7.20 g of second composition (UA-33H), 0.80 g of acrylate monomer (A-DCP), and organic solvent. A coating solution having a solid content concentration of 27.65% by mass was prepared by mixing 17.42 g (MIBK 12.50 g, PGME 4.92 g), 4.72 g of the leveling agent, and 0.48 g of the photopolymerization initiator.

Figure 2021054949
Figure 2021054949

Figure 2021054949
Figure 2021054949

Figure 2021054949
Figure 2021054949

Claims (9)

フッ素元素を含む紫外線硬化性の第一組成物と、フッ素元素を含まない紫外線硬化性の第二組成物と、第一無機酸化物粒子の表面が界面活性剤で処理された第一粒子と、第二無機酸化物粒子の表面がシランカップリング剤で処理された第二粒子と、クラスター形成剤と、有機溶媒と、を含む膜形成用の塗布液であって、
前記第一組成物と前記第二組成物の重量平均分子量が1000以上であり、
前記第一組成物と前記第二組成物は炭素骨格を含み、
前記第一組成物の炭素の一部にフッ素が結合しており、
前記第一粒子の粒子径が300nmより小さく、
前記第二粒子の粒子径が第一粒子よりも小さく、
前記第一粒子を水に分散させた場合に、前記第一粒子のζ電位が正であり、
前記第二粒子を水に分散させた場合に、前記第二粒子のζ電位が負であることを特徴とする塗布液。
An ultraviolet curable first composition containing a fluorine element, an ultraviolet curable second composition containing no fluorine element, and first particles in which the surface of the first inorganic oxide particles is treated with a surfactant. A coating liquid for forming a film containing the second particles whose surface is treated with a silane coupling agent, a cluster forming agent, and an organic solvent.
The weight average molecular weights of the first composition and the second composition are 1000 or more.
The first composition and the second composition contain a carbon skeleton and
Fluorine is bonded to a part of the carbon of the first composition,
The particle size of the first particle is smaller than 300 nm,
The particle size of the second particle is smaller than that of the first particle,
When the first particles are dispersed in water, the ζ potential of the first particles is positive,
A coating liquid characterized in that the ζ potential of the second particles is negative when the second particles are dispersed in water.
前記第一粒子のζ電位と前記第二粒子のζ電位の差が20〜60mVであることを特徴とする請求項1に記載の塗布液。 The coating liquid according to claim 1, wherein the difference between the ζ potential of the first particle and the ζ potential of the second particle is 20 to 60 mV. 前記第一粒子の平均粒子径が10〜160nmであり、前記第二粒子の平均粒子径が9〜100nmであることを特徴とする請求項1または2に記載の塗布液。 The coating liquid according to claim 1 or 2, wherein the average particle size of the first particles is 10 to 160 nm, and the average particle size of the second particles is 9 to 100 nm. 前記第一組成物が2つ以上のアクリロイル基またはメタクリロイル基を有することを特徴とする請求項1〜3のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 3, wherein the first composition has two or more acryloyl groups or methacryloyl groups. 前記第二組成物が2つ以上のアクリロイル基またはメタクリロイル基を有することを特徴とする請求項1〜4のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 4, wherein the second composition has two or more acryloyl groups or methacryloyl groups. 重量平均分子量が100〜1000で、アクリロイル基を2〜6個有するアクリレートモノマーを含むことを特徴とする請求項1〜5のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 5, wherein the coating liquid has a weight average molecular weight of 100 to 1000 and contains an acrylate monomer having 2 to 6 acryloyl groups. 基材の表面に膜が形成された膜付基材であって、
前記膜に平均粒子径が500〜7000nmのクラスターが含まれており、
前記膜の表面は、平均粗さ(R)が150〜1000nm、最大高低差(Rmax)が1500〜5000であり、
X線光電子分光分析で測定した、膜表面のフッ素原子の割合(X)と膜表面から700nmの深さのフッ素原子の割合(X700)の比(X/X700)が下記関係式を満たし、
3.0<X/X700<8.0
且つ、Xが30<X<40を満たすことを特徴とする膜付基材。
A base material with a film in which a film is formed on the surface of the base material.
The film contains clusters having an average particle size of 500 to 7000 nm.
The surface of the film has an average roughness ( Ra ) of 150 to 1000 nm and a maximum height difference (R max ) of 1500 to 5000.
The ratio (X 0 / X 700 ) of the ratio of fluorine atoms on the film surface (X 0 ) to the ratio of fluorine atoms at a depth of 700 nm from the film surface (X 700 ) measured by X-ray photoelectron spectroscopy is the following relational expression. The filling,
3.0 <X o / X 700 <8.0
Moreover, a base material with a film, characterized in that X o satisfies 30 <X 0 <40.
前記X線光電子分光分析で測定した、前記膜表面のフッ素原子の割合(X)と、膜表面から100nmの深さのフッ素原子の割合(X100)との比(X/X100)と、前記膜表面から700nmの深さのフッ素原子の割合(X700)が下記関係式を満たすことを特徴とする請求項7に記載の膜付基材。
1.0<X/X100<4.0
/X100 < X/X700
Was measured by the X-ray photoelectron spectroscopy, a ratio of fluorine atoms in the film surface (X o), the proportion of fluorine atoms in a depth of 100nm from the membrane surface ratio of the (X 100) (X o / X 100) The substrate with a film according to claim 7 , wherein the ratio of fluorine atoms (X 700 ) at a depth of 700 nm from the film surface satisfies the following relational expression.
1.0 <X o / X 100 <4.0
X o / X 100 <X o / X 700
請求項1〜6のいずれか一項に記載の塗布液を基材上に塗布する工程と、
前記塗布液を乾燥させ膜を形成する工程と、
前記膜を硬化させる工程と、を含む膜付基材の製造方法。
The step of applying the coating liquid according to any one of claims 1 to 6 onto the substrate, and
The step of drying the coating liquid to form a film and
A method for producing a substrate with a film, which comprises a step of curing the film.
JP2019179387A 2019-09-30 2019-09-30 Coating liquid, base material with film, and method for producing the same Active JP7324108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019179387A JP7324108B2 (en) 2019-09-30 2019-09-30 Coating liquid, base material with film, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019179387A JP7324108B2 (en) 2019-09-30 2019-09-30 Coating liquid, base material with film, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2021054949A true JP2021054949A (en) 2021-04-08
JP7324108B2 JP7324108B2 (en) 2023-08-09

Family

ID=75270745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019179387A Active JP7324108B2 (en) 2019-09-30 2019-09-30 Coating liquid, base material with film, and method for producing the same

Country Status (1)

Country Link
JP (1) JP7324108B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830910A (en) * 1987-11-18 1989-05-16 Minnesota Mining And Manufacturing Company Low adhesion compositions of perfluoropolyethers
JP2014141075A (en) * 2012-12-27 2014-08-07 Jgc Catalysts & Chemicals Ltd Substrate with hard coat film and coating liquid for forming hard coat film
JP2015071240A (en) * 2013-10-02 2015-04-16 リンテック株式会社 Release film
JP2018202840A (en) * 2017-06-09 2018-12-27 株式会社ダイセル Release film for transfer and method for producing mat-like molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830910A (en) * 1987-11-18 1989-05-16 Minnesota Mining And Manufacturing Company Low adhesion compositions of perfluoropolyethers
JP2014141075A (en) * 2012-12-27 2014-08-07 Jgc Catalysts & Chemicals Ltd Substrate with hard coat film and coating liquid for forming hard coat film
JP2015071240A (en) * 2013-10-02 2015-04-16 リンテック株式会社 Release film
JP2018202840A (en) * 2017-06-09 2018-12-27 株式会社ダイセル Release film for transfer and method for producing mat-like molding

Also Published As

Publication number Publication date
JP7324108B2 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
CA2668135A1 (en) Double layer coating, its preparation and its use for rendering ultra water-repellent and antireflective the surfaces to which it is applied
JP2014501295A (en) Interpenetrating polymer layer
JP7197563B2 (en) Hollow particle dispersion
JP6333454B1 (en) Method for forming water / oil repellent coating and water / oil repellent coating
KR20190039427A (en) Hollow particles and uses thereof
WO2020179412A1 (en) Lamination film
TW201945072A (en) Hollow particle, method for manufacturing the same and use thereof
JP7406485B2 (en) Inorganic oxide fine particle dispersion
JP5877708B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
CN110650996B (en) Hard coating film
JP2018103534A (en) Hard coat film and method for producing the same
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
WO2018135099A1 (en) Hard-coat film and method for manufacturing same
JP7324108B2 (en) Coating liquid, base material with film, and method for producing the same
CN111100489A (en) From type hard coating, from type membrane and photovoltaic module
EP4091815A1 (en) Laminated film
JP7223746B2 (en) Coating liquid for film formation and method for producing film-coated substrate
JP2011110787A (en) Base material with transparent film, and coating liquid for forming transparent film
JP2006022258A (en) Composition, molding and manufacturing process of cured coated film
JP4616414B2 (en) Water-repellent film and method for producing the same
JP2010053173A (en) Method of producing dispersion of resin-coated metal oxide particles, coating liquid for forming transparent coating film containing the resin-coated metal oxide particles, and base material coated with transparent coating film
KR102409048B1 (en) Photocurable resin composition, cured film, base material with coating film and method for producing the same, and anti-fogging treatment method for base material
JP2021146651A (en) Laminate
EP4342591A1 (en) Layered product
CN110914057B (en) Hard coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230728

R150 Certificate of patent or registration of utility model

Ref document number: 7324108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150