JP2021046305A - Sprinkling method of granular powder - Google Patents

Sprinkling method of granular powder Download PDF

Info

Publication number
JP2021046305A
JP2021046305A JP2019170654A JP2019170654A JP2021046305A JP 2021046305 A JP2021046305 A JP 2021046305A JP 2019170654 A JP2019170654 A JP 2019170654A JP 2019170654 A JP2019170654 A JP 2019170654A JP 2021046305 A JP2021046305 A JP 2021046305A
Authority
JP
Japan
Prior art keywords
powder
granular material
control operation
amount
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019170654A
Other languages
Japanese (ja)
Other versions
JP7356851B2 (en
Inventor
知大 中澤
Tomohiro Nakazawa
知大 中澤
良輔 真鍋
Ryosuke Manabe
良輔 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2019170654A priority Critical patent/JP7356851B2/en
Publication of JP2021046305A publication Critical patent/JP2021046305A/en
Application granted granted Critical
Publication of JP7356851B2 publication Critical patent/JP7356851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

To provide a sprinkling method capable of executing sprinkling of granular powder with a small error and high control responsiveness by keeping constant the sprinkling amount of the granular powder.SOLUTION: A sprinkling method of granular powder includes a step in which granular powder discharged from a hopper is conveyed in one direction by conveyance means to be sprinkled. In this sprinkling method, total mass of the hopper and the granular powder stored in the hopper is measured for each time s (seconds), and a difference between the measured total mass and the total mass measured a time t (seconds) (0<s<t) before is calculated, and the difference is divided by t (seconds), to measure an amount of change per unit time of the total mass. By controlling conveyance capability of the conveyance means in accordance with the amount of change, conveyance capability control operation for matching sprinkling amount per unit time of granular powder to be sprinkled with target sprinkling amount per unit time is performed. Further, after time u (seconds) (0<s≤u<t) from the first conveyance capability control operation, second conveyance capability control operation is performed continuously after the first conveyance capability control operation.SELECTED DRAWING: Figure 2

Description

本発明は、粉粒体の散布方法に関する。 The present invention relates to a method for spraying powder or granular material.

種々の製品の製造において、連続搬送される基材等の被散布物に対して均一に粉粒体を散布させることが望まれている。このような課題を解決するために、本出願人は、ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布する工程を備えた粉粒体の散布方法を提案した(特許文献1参照)。この方法は、ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全質量を連続して計量し、該全質量が閾値を下回ったら、該全質量が初期設定質量となるまで該ホッパー内に該粉粒体を補充する粉粒体補充操作と、前記全質量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作とを独立して行うものである。 In the production of various products, it is desired to uniformly spray the powder or granular material on the object to be sprayed such as the base material which is continuously transported. In order to solve such a problem, the applicant proposes a method for spraying the powder or granular material, which comprises a step of transporting the powder or granular material discharged from the hopper in a predetermined direction by a transporting means and spraying the powder or granular material. (See Patent Document 1). In this method, the total mass of the hopper and the powder or granular material stored in the hopper is continuously measured, and when the total mass falls below the threshold value, the total mass is in the hopper until the initial set mass is reached. By performing a powder or granular material replenishment operation for replenishing the powder or granular material, measuring the amount of change in the total mass per unit time, and controlling the transport capacity of the transport means according to the change amount, the transport means The transfer capacity control operation is performed independently so that the amount of the powder or granular material sprayed by the above-mentioned powder or granular material is equal to the target amount of spraying per unit time.

特開2017−94294号公報JP-A-2017-94294

上述した散布方法は、連続搬送される被散布物に対して均一に粉粒体を散布させることができるものであるが、粉粒体の供給安定性を向上させ、且つ粉粒体散布後の被散布物の品質を更に向上させる点で改善の余地があった。 The above-mentioned spraying method can uniformly spray the powder or granular material on the object to be continuously transported, but it improves the supply stability of the powder or granular material and after the powder or granular material is sprayed. There was room for improvement in further improving the quality of the sprayed material.

したがって、本発明は、従来技術を改良した粉粒体の散布方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for spraying powder or granular material, which is an improvement of the prior art.

本発明は、ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布する工程を備えた粉粒体の散布方法であって、
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全質量を所定時間s(秒)毎に計量し、計量した該全質量と、所定時間t(秒)(ただし0<s<tである。)前に計量した該全質量との差分を算出し、その差分をt(秒)で除することで、該全質量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量を、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作を行い、
第1の前記搬送能力制御操作から所定時間u(秒)(ただし、0<s≦u<tである。)後に、第1の前記搬送能力制御操作に連続して、第2の前記搬送能力制御操作を行う、粉粒体の散布方法を提供するものである。
The present invention is a method for spraying powder or granular material, comprising a step of transporting and spraying the powder or granular material discharged from the hopper in a predetermined direction by a transporting means.
The total mass of the hopper and the powder or granular material stored in the hopper is weighed every predetermined time s (seconds), and the measured total mass and the predetermined time t (seconds) (where 0 <s <t) are measured. By calculating the difference from the previously weighed total mass and dividing the difference by t (seconds), the amount of change in the total mass per unit time is measured, and according to the amount of change. By controlling the transport capacity of the transport means, the transport capacity control operation is performed so that the amount of the powder or granular material sprayed by the transport means is matched with the target spray amount per unit time. And
After a predetermined time u (seconds) (where 0 <s ≦ u <t) from the first transfer capacity control operation, the second transfer capacity is succeeded by the first transfer capacity control operation. It provides a method of spraying powder or granular material for performing a controlled operation.

本発明によれば、粉粒体の散布量を一定にして、粉粒体の散布を少ない誤差で且つ高い制御応答性で行うことができる。 According to the present invention, the amount of powder or granular material sprayed can be kept constant, and the powder or granular material can be sprayed with a small error and high control response.

図1は、本発明で用いられる粉粒体の散布装置の一実施形態を模式的に示す側面図である。FIG. 1 is a side view schematically showing an embodiment of a powder or granular material spraying device used in the present invention. 図2は、ホッパー及び該ホッパー内に貯蔵される粉粒体の全質量の計測値に基づき、該全質量の単位時間当たりの変化量を算出する方法を説明する図である。FIG. 2 is a diagram illustrating a method of calculating the amount of change of the total mass per unit time based on the measured value of the total mass of the hopper and the powder or granular material stored in the hopper. 図3は、図1に示す粉粒体散布装置における排出口及びその近傍を模式的に示す側面図である。FIG. 3 is a side view schematically showing a discharge port and its vicinity in the powder or granular material spraying device shown in FIG. 図4(a)は、実施例1で行われた粉粒体の散布における実測散布量の経時変化を示すグラフであり、図4(b)は、比較例1で行われた粉粒体の散布における実測散布量の経時変化を示すグラフである。FIG. 4A is a graph showing the time course of the actual measurement amount of the powder or granular material sprayed in Example 1, and FIG. 4B is a graph of the powder or granular material performed in Comparative Example 1. It is a graph which shows the time-dependent change of the measured spraying amount in spraying.

以下、本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には、本発明に好適に用いられる粉粒体の散布装置の一実施形態が示されている。図1に示す散布装置1は、粉粒体Pを内部に一時的に貯蔵するホッパー2と、ホッパー2から排出された粉粒体Pを一方向(搬送方向X)に搬送して、連続搬送される基材100上に散布する搬送手段3とを備えている。ホッパー2は、搬送手段3と、後述する受取手段30との上方に位置している。基材100は、例えば図1に示すように、搬送ロールやベルトコンベア等の公知の搬送装置により連続搬送することができる。なお、基材100及びその搬送装置は、散布装置1を構成するものではない。 Hereinafter, the present invention will be described based on the preferred embodiment with reference to the drawings. FIG. 1 shows an embodiment of a powder or granular material spraying device preferably used in the present invention. The spraying device 1 shown in FIG. 1 transports the hopper 2 that temporarily stores the powder or granular material P inside and the powder or granular material P discharged from the hopper 2 in one direction (transportation direction X), and continuously transports the powder or granular material P. A transport means 3 for spraying on the base material 100 to be formed is provided. The hopper 2 is located above the transport means 3 and the receiving means 30, which will be described later. As shown in FIG. 1, for example, the base material 100 can be continuously conveyed by a known transfer device such as a transfer roll or a belt conveyor. The base material 100 and its transport device do not constitute the spraying device 1.

図1に示すホッパー2は、上底が下底より長い台形形状となっている貯蔵部20と、該貯蔵部20の下端に連接され、該側面視において長方形形状をなす直方体形状の排出部21とを備える。貯蔵部20は、その内部に空間を有し、該空間に粉粒体Pを一時的に貯蔵できるようになっている。粉粒体Pは、貯蔵部20の上部開口を通じ、粉体供給装置90によって貯蔵部20内の空間に供給される。排出部21は、その内部に形成された粉粒体Pの移動路22と、排出部21の下端に形成された粉粒体Pの排出口23とを有する。貯蔵部20の内部空間、移動路22及び排出口23はそれぞれ連通しており、移動路22を介して、一時的に貯蔵された粉粒体Pを排出口23から排出できるようになっている。 The hopper 2 shown in FIG. 1 has a trapezoidal storage portion 20 whose upper bottom is longer than the lower bottom, and a rectangular parallelepiped discharge portion 21 which is connected to the lower end of the storage portion 20 and has a rectangular shape in a side view. And. The storage unit 20 has a space inside thereof, and the powder or granular material P can be temporarily stored in the space. The powder or granular material P is supplied to the space inside the storage unit 20 by the powder supply device 90 through the upper opening of the storage unit 20. The discharge unit 21 has a moving path 22 for the powder or granular material P formed inside the discharge unit 21, and a discharge port 23 for the powder or granular material P formed at the lower end of the discharge unit 21. The internal space of the storage unit 20, the moving path 22, and the discharging port 23 communicate with each other, and the temporarily stored powder or granular material P can be discharged from the discharging port 23 via the moving path 22. ..

図1に示す搬送手段3は、ホッパー2から排出された粉粒体Pを受け取る平板状の受取手段30と、受取手段30を振動させる振動発生手段31とを備える。搬送手段3は、粉粒体Pと接触する部位である受取手段30の上面30aと、排出口23との間に所定の間隔Gが形成されるように配置されている。振動発生手段31は、粉粒体Pと接触しない部位である受取手段30の下面30bに固定されている。振動発生手段31は、これを作動させて振動を発生させることによって、振動発生手段31と接触している受取手段30に振動を伝播させ、受取手段30上の粉粒体Pを所定の方向(搬送方向X)に搬送できるようになっている。 The transport means 3 shown in FIG. 1 includes a flat plate-shaped receiving means 30 for receiving the powder or granular material P discharged from the hopper 2 and a vibration generating means 31 for vibrating the receiving means 30. The transporting means 3 is arranged so that a predetermined distance G is formed between the upper surface 30a of the receiving means 30, which is a portion in contact with the powder or granular material P, and the discharge port 23. The vibration generating means 31 is fixed to the lower surface 30b of the receiving means 30, which is a portion that does not come into contact with the powder or granular material P. By operating this to generate vibration, the vibration generating means 31 propagates the vibration to the receiving means 30 in contact with the vibration generating means 31, and causes the powder or granular material P on the receiving means 30 to move in a predetermined direction ( It can be transported in the transport direction X).

振動発生手段31としては、受取手段30上の粉粒体Pを所望の一方向に搬送させ得る振動成分を発生可能なものであれば良く、例えば、圧電セラミック等の圧電素子、振動フィーダ等の公知の振動発生手段が挙げられる。中でも振動フィーダは、振動発生手段31として好ましく用いられる。また、振動発生手段31の振動数は、粉粒体の搬送性並びに散布の均一性及び定量性を向上させる観点から、好ましくは50Hz以上、更に好ましくは100Hz以上であり、そして、好ましくは500Hz以下、更に好ましくは300Hz以下である。より具体的には、好ましくは50Hz以上500Hz以下であり、更に好ましくは100Hz以上300Hz以下である。振動発生手段31の振動数は、例えば後述する制御部40によって制御することができる。 The vibration generating means 31 may be any as long as it can generate a vibration component capable of transporting the powder or granular material P on the receiving means 30 in a desired direction. For example, a piezoelectric element such as a piezoelectric ceramic, a vibration feeder, or the like. Known vibration generating means can be mentioned. Among them, the vibration feeder is preferably used as the vibration generating means 31. The frequency of the vibration generating means 31 is preferably 50 Hz or higher, more preferably 100 Hz or higher, and preferably 500 Hz or lower, from the viewpoint of improving the transportability of the powder or granular material and the uniformity and quantitativeness of spraying. , More preferably 300 Hz or less. More specifically, it is preferably 50 Hz or more and 500 Hz or less, and more preferably 100 Hz or more and 300 Hz or less. The frequency of the vibration generating means 31 can be controlled by, for example, a control unit 40 described later.

散布装置1は、振動発生手段31に印加する電圧及び周波数を制御して、振動発生手段31を作動させる制御部40を備える。制御部40は、振動発生手段31の振動数及び振幅の少なくとも一方を制御して、受取手段30上の粉粒体Pの搬送状態を制御する。詳細には、振動発生手段31が作動しないように制御部40によって制御されている場合には、受取手段30は振動していないので、受取手段30上の粉粒体Pの搬送は停止又は抑制されている。この状態から振動発生手段31を作動させると、受取手段30が振動を開始することによって、受取手段30上の粉粒体Pの停止又は抑制が解除され、粉粒体Pは搬送方向Xに搬送される。その後、搬送された粉粒体Pは、図1に示すように、受取手段30の端部から落下して、受取手段30の下方を連続搬送されている基材100上に散布される。 The spraying device 1 includes a control unit 40 that controls the voltage and frequency applied to the vibration generating means 31 to operate the vibration generating means 31. The control unit 40 controls at least one of the frequency and the amplitude of the vibration generating means 31 to control the transport state of the powder or granular material P on the receiving means 30. Specifically, when the control unit 40 is controlled so that the vibration generating means 31 does not operate, the receiving means 30 does not vibrate, so that the transport of the powder or granular material P on the receiving means 30 is stopped or suppressed. Has been done. When the vibration generating means 31 is operated from this state, the receiving means 30 starts vibration, so that the stop or suppression of the powder or granular material P on the receiving means 30 is released, and the powder or granular material P is conveyed in the conveying direction X. Will be done. After that, as shown in FIG. 1, the conveyed powder or granular material P falls from the end of the receiving means 30 and is sprayed on the base material 100 which is continuously conveyed below the receiving means 30.

制御部40は、上述のとおり、受取手段30の振動数及び振幅の少なくとも一方を制御して、振動の強弱を制御する機能を有する。これに加えて、制御部40は、後述する計量装置50から送信された計量データを受信できるようになっている。更に制御部40は、ホッパー2の貯蔵部20上に設置されている粉体供給装置90に接続されており、貯蔵部20内への粉粒体Pの供給も制御する機能を有する。制御部40としては、例えば制御処理用ソフトウエアがインストールされたコンピュータを用いることができる。 As described above, the control unit 40 has a function of controlling at least one of the frequency and the amplitude of the receiving means 30 to control the strength of the vibration. In addition to this, the control unit 40 can receive the weighing data transmitted from the weighing device 50 described later. Further, the control unit 40 is connected to the powder supply device 90 installed on the storage unit 20 of the hopper 2, and has a function of controlling the supply of the powder or granular material P into the storage unit 20. As the control unit 40, for example, a computer in which control processing software is installed can be used.

ホッパー2には、ホッパー2の質量と、ホッパー2内に貯蔵されている粉粒体Pの質量との合計である全質量を連続して計量可能な計量装置50が取り付けられている。連続して計量可能とは、全質量の計量が経時的に行われることを指し、具体的には計量データのサンプリングタイムが1秒以下であることをいう。計量装置50によって計量された全質量の計量データは、データが取得されるたびに、上述した制御部40に送信され、該データに基づいて、受取手段30の振動数及び振幅の少なくとも一方を制御したり、粉体供給装置90による粉粒体Pの供給も制御したりできるようになっている。計量装置50の具体例としては電気式計量器が挙げられ、具体的には、ロードセル式計量器や電磁式計量器、音叉式計量器等を用いることができる。 The hopper 2 is equipped with a weighing device 50 capable of continuously measuring the total mass, which is the total mass of the mass of the hopper 2 and the mass of the powder or granular material P stored in the hopper 2. The continuous measurement means that the total mass is measured over time, and specifically, the sampling time of the measurement data is 1 second or less. The measurement data of the total mass measured by the measuring device 50 is transmitted to the control unit 40 described above each time the data is acquired, and based on the data, at least one of the frequency and the amplitude of the receiving means 30 is controlled. It is also possible to control the supply of the powder or granular material P by the powder supply device 90. A specific example of the measuring device 50 is an electric measuring instrument, and specifically, a load cell type measuring instrument, an electromagnetic measuring instrument, a tuning fork type measuring instrument, or the like can be used.

次に、散布装置1を用いて、連続搬送されるシート状の基材100上に粉粒体Pを散布する方法について説明する。まず、ホッパー2内に貯留されている粉粒体Pを排出口23から落下させ、搬送手段3の受取手段30上に散布する。このとき、ホッパー2内の粉粒体Pの質量は粉粒体Pの落下に伴って次第に減少していく。ホッパー2内の粉粒体Pの質量Wpは、ホッパー2の質量Whと、ホッパー2内に残存する粉粒体Pの質量Wpとの合計である全質量Wtの形で計量装置50によって連続的に計量される。ホッパー2内の粉粒体Pの質量を容易に測定する観点から、全質量Wtの連続計量に先立ち、粉粒体Pをホッパー2内に充填した状態での全質量Wtを予め測定しておくことが好ましい。 Next, a method of spraying the powder or granular material P on the sheet-shaped base material 100 that is continuously conveyed by using the spraying device 1 will be described. First, the powder or granular material P stored in the hopper 2 is dropped from the discharge port 23 and sprayed on the receiving means 30 of the transport means 3. At this time, the mass of the powder or granular material P in the hopper 2 gradually decreases as the powder or granular material P falls. The mass Wp of the powder or granular material P in the hopper 2 is continuous by the measuring device 50 in the form of the total mass Wt which is the sum of the mass Wh of the hopper 2 and the mass Wp of the powder or granular material P remaining in the hopper 2. Weighed in. From the viewpoint of easily measuring the mass of the powder or granular material P in the hopper 2, the total mass Wt in the state where the powder or granular material P is filled in the hopper 2 is measured in advance prior to the continuous measurement of the total mass Wt. Is preferable.

次いで、搬送手段3における受取手段30上に落下した粉粒体Pが、所定量で安定的に基材100上に散布されるように、振動発生手段31によって、受取手段30に付与される振動を制御して、粉粒体Pの搬送能力の制御を行う。粉粒体Pの搬送能力とは、単位時間当たりに搬送される粉粒体の質量、及び粉粒体Pの搬送速度の少なくとも一方を指す。 Next, the vibration applied to the receiving means 30 by the vibration generating means 31 so that the powder or granular material P dropped on the receiving means 30 in the transporting means 3 is stably scattered on the base material 100 in a predetermined amount. To control the transport capacity of the powder or granular material P. The transport capacity of the powder or granular material P refers to at least one of the mass of the powder or granular material transported per unit time and the transport speed of the powder or granular material P.

振動発生手段31による振動の制御は、具体的には以下の基準に従い行われることが好ましい。すなわち、全質量Wtを連続的に測定し、全質量Wtの単位時間当たりの変化量ΔWを算出する。任意の時間における全質量をWt1とし、該時間から所定時間t経過する前の全質量をWt2としたときに、変化量ΔWは、各時間における全質量Wt1,Wt2の差分を所定時間tで除した「(Wt2−Wt1)/t」の式として表される。上述のとおり、ホッパー2内の粉粒体Pの質量は粉粒体Pの落下に伴って次第に減少していくのに対して、ホッパー2自体の質量は不変であるから、各全質量Wt1,Wt2の大小関係は、所定時間tを経過する前の全質量Wt2のほうが大きく、「Wt1<Wt2」の関係となる。このように算出される変化量ΔWは、ホッパー2内に残存する粉粒体Pの質量Wpの減少速度に等しい。 Specifically, the vibration control by the vibration generating means 31 is preferably performed according to the following criteria. That is, the total mass Wt is continuously measured, and the amount of change ΔW of the total mass Wt per unit time is calculated. When the total mass at an arbitrary time is Wt1 and the total mass before a predetermined time t elapses from that time is Wt2, the change amount ΔW is the difference between the total masses Wt1 and Wt2 at each time divided by the predetermined time t. It is expressed as the formula of "(Wt2-Wt1) / t". As described above, the mass of the powder or granular material P in the hopper 2 gradually decreases as the powder or granular material P falls, whereas the mass of the hopper 2 itself does not change. The magnitude relationship of Wt2 is larger for the total mass Wt2 before the elapse of the predetermined time t, and the relationship is "Wt1 <Wt2". The amount of change ΔW calculated in this way is equal to the rate of decrease in the mass Wp of the powder or granular material P remaining in the hopper 2.

全質量Wtの単位時間当たりの変化量ΔWは、例えば以下の方法で算出することができる。すなわち、任意の時間における全質量Wt1を所定時間s(秒)毎に計量し、計量した全質量Wt1と、所定時間t(秒)(ただし、0(ゼロ)<s<tである。)前に計量した全質量Wt2との差分を算出し、その値をt(秒)で除した値を変化量ΔWと算出することができる。変化量ΔWの具体例としては、図2に示すように、所定時間sを0.5秒とし、所定時間tを5秒としてそれぞれ設定して、0.5秒ごとに全質量Wtを測定するとともに、最新の測定値である全質量Wt1と、5秒前の測定値である全質量Wt2との差分をとり、その差分を所定時間t(同図では5秒)で除すことで、変化量ΔWを算出することができる。 The amount of change ΔW of the total mass Wt per unit time can be calculated by, for example, the following method. That is, the total mass Wt1 at an arbitrary time is weighed every predetermined time s (seconds), and before the measured total mass Wt1 and the predetermined time t (seconds) (however, 0 (zero) <s <t). The difference from the total mass Wt2 measured in 1 can be calculated, and the value obtained by dividing the value by t (seconds) can be calculated as the amount of change ΔW. As a specific example of the amount of change ΔW, as shown in FIG. 2, the predetermined time s is set to 0.5 seconds, the predetermined time t is set to 5 seconds, and the total mass Wt is measured every 0.5 seconds. At the same time, the difference is taken between the latest measured value of total mass Wt1 and the measured value 5 seconds ago, total mass Wt2, and the difference is divided by a predetermined time t (5 seconds in the figure) to change. The quantity ΔW can be calculated.

このように得られた変化量ΔWに応じて、搬送手段3の搬送能力を制御し、該搬送手段3によって基材100上に散布される粉粒体Pの単位時間当たりの散布量ΔSを、単位時間当たりの目標散布量ΔStに一致させる搬送能力制御操作を行う。搬送能力制御操作において、例えば散布量を単位時間当たりの質量に基づいて制御する場合には、変化量ΔWと、散布量ΔSとは同一のものとみなすことができる。搬送能力制御操作において、変化量ΔWが目標散布量ΔStよりも少ない場合には、搬送手段3の搬送能力を高めて、散布量ΔSを増加させる操作を行う。また、変化量ΔWが目標散布量ΔStよりも多い場合には、搬送手段3の搬送能力を低くして散布量ΔSを減少させる操作を行う。 The transport capacity of the transport means 3 is controlled according to the change amount ΔW thus obtained, and the spray amount ΔS per unit time of the powder or granular material P sprayed on the base material 100 by the transport means 3 is determined. A transport capacity control operation is performed to match the target spray amount ΔSt per unit time. In the transport capacity control operation, for example, when the spray amount is controlled based on the mass per unit time, the change amount ΔW and the spray amount ΔS can be regarded as the same. In the transport capacity control operation, when the change amount ΔW is smaller than the target spray amount ΔSt, the transport capacity of the transport means 3 is increased to increase the spray amount ΔS. When the change amount ΔW is larger than the target spray amount ΔSt, the transport capacity of the transport means 3 is lowered to reduce the spray amount ΔS.

本発明における粉粒体Pの搬送能力を制御する操作は、最新の搬送能力制御操作と、その直前に行われた搬送能力制御操作との間の時間uが、直前に行われた搬送能力制御操作において算出された変化量ΔWに応じて変化するように制御されることを特徴の一つとしている。つまり、最新の搬送能力制御操作の直前に行われた搬送能力制御操作として行われる第1の搬送能力制御操作から所定時間u(秒)(ただし、0<s≦u<tである。)後に、最新の搬送能力制御操作として行われる第2の搬送能力制御操作を行うものである。このような構成となっていることによって、直前に行われた搬送能力制御操作の結果が適切であったか否かを早期にモニタリングすることができるので、粉粒体の散布量をより早期に一定にすることができ、その結果、粉粒体供給を安定的に行うことができるとともに、粉粒体の散布を、ロスが少なく且つ散布誤差を低減させて安定的に行うことができる。以下の説明では、変化量ΔWと、散布量ΔSとを同一のものとして説明し、第1の搬送能力制御操作を「第1制御操作」ともいい、第1制御操作に連続して行われる第2の搬送能力制御操作を「第2制御操作」ともいう。 In the operation of controlling the transport capacity of the powder or granular material P in the present invention, the time u between the latest transport capacity control operation and the transport capacity control operation performed immediately before the operation is the transport capacity control performed immediately before. One of the features is that it is controlled so as to change according to the amount of change ΔW calculated in the operation. That is, after a predetermined time u (seconds) (however, 0 <s ≦ u <t) from the first transfer capacity control operation performed as the transfer capacity control operation performed immediately before the latest transfer capacity control operation. , The second transport capacity control operation performed as the latest transport capacity control operation is performed. With such a configuration, it is possible to monitor at an early stage whether or not the result of the transport capacity control operation performed immediately before is appropriate, so that the amount of powder or granular material sprayed can be made constant earlier. As a result, the powder or granular material can be stably supplied, and the powder or granular material can be stably sprayed with less loss and reduced spraying error. In the following description, the change amount ΔW and the spray amount ΔS will be described as the same, and the first transport capacity control operation is also referred to as a “first control operation”, and the first control operation is continuously performed. The transport capacity control operation of 2 is also referred to as a "second control operation".

所定時間u(秒)は、第1制御操作において制御された粉粒体Pの単位時間当たりの散布量ΔSが目標散布量ΔStと一致していない場合には、短くなるように制御されることが好ましい。また、所定時間u(秒)は、第1制御操作において制御された粉粒体Pの単位時間当たりの散布量ΔSが目標散布量ΔStと一致している場合には、同一又は長くなるように制御されることも好ましい。これらの場合の所定時間uの制御は、いずれも制御部40によって行うことができる。 The predetermined time u (seconds) is controlled to be shortened when the spray amount ΔS per unit time of the powder or granular material P controlled in the first control operation does not match the target spray amount ΔSt. Is preferable. Further, the predetermined time u (seconds) is set to be the same or longer when the spray amount ΔS per unit time of the powder or granular material P controlled in the first control operation matches the target spray amount ΔSt. It is also preferable to be controlled. In each of these cases, the control unit 40 can control the predetermined time u.

散布量ΔSが目標散布量ΔStと一致していない場合には、粉粒体の散布をより安定的に行う観点から、次の搬送能力制御操作をより早期に行って散布量ΔSを制御する必要があるので、第1制御操作が行われたあと早期に第2制御操作が行われ、散布量ΔSが目標散布量ΔStと一致するように制御される。一方、散布量ΔSが目標散布量ΔStと一致している場合には、粉粒体の散布が安定的に行われているので、次の搬送能力制御操作は必ずしも早期に行う必要がない。したがって、後者の場合、時間uは、粉粒体散布におけるモニタリングの欠落が生じない最大時間であるt(秒)未満の時間で制御することができる。このような構成とすることによって、散布量ΔSが目標散布量ΔStと一致していない場合には、変化量ΔWを早期且つ精密に算出して、散布量ΔSの制御を応答性高く行うことができるとともに、散布量ΔSが目標散布量ΔStと一致している場合には、制御部40における演算負荷を少なくできるという利点を有する。なお、目標散布量ΔStと一致するとは、目標散布量ΔStを基準とする一定の範囲内に、散布量ΔSが含まれることを包含する意味である。 When the spray amount ΔS does not match the target spray amount ΔSt, it is necessary to control the spray amount ΔS by performing the next transport capacity control operation earlier from the viewpoint of more stable spraying of the powder or granular material. Therefore, the second control operation is performed early after the first control operation is performed, and the spray amount ΔS is controlled so as to match the target spray amount ΔSt. On the other hand, when the spraying amount ΔS matches the target spraying amount ΔSt, the powder or granular material is stably sprayed, so that the next transport capacity control operation does not necessarily have to be performed at an early stage. Therefore, in the latter case, the time u can be controlled in a time less than t (seconds), which is the maximum time at which monitoring is not lost in the powder or granular material spraying. With such a configuration, when the spray amount ΔS does not match the target spray amount ΔSt, the change amount ΔW can be calculated quickly and accurately, and the spray amount ΔS can be controlled with high responsiveness. In addition, when the spray amount ΔS matches the target spray amount ΔSt, there is an advantage that the calculation load in the control unit 40 can be reduced. Note that the agreement with the target spray amount ΔSt means that the spray amount ΔS is included in a certain range based on the target spray amount ΔSt.

図2は、粉粒体の質量計測と、粉粒体の散布量とに基づいて、時間uを制御する方法の具体例を示すグラフである。本実施形態においては、まず、目標散布量ΔStを基準値として、基準値±(基準値×5%)の範囲の閾値を設定し、この範囲内に散布量ΔSが含まれれば、目標散布量ΔStと一致すると判定するようにしておく。この閾値は、例えば制御部40で設定することができる。次いで、時間sを0.5秒、時間tを5秒として設定して粉粒体Pの散布を開始し、5秒当たりの全質量Wの変化量に相当する第1回目の散布量ΔS1を測定し、該散布量ΔS1に応じて、第1回目の搬送能力制御操作を行う。測定された散布量ΔS1と、目標散布量ΔStとを比較して、散布量ΔS1が目標散布量ΔStの範囲外であることを制御部40が判定し、この判定に基づいて、該制御部40が振動発生手段31から発生する振動を制御する。図2に示す散布量ΔS1は、目標散布量ΔStの下限値を下回っているので、粉粒体Pの搬送能力が増加するように制御される。これとともに、制御部40による前記判定に基づいて、次の搬送能力制御操作を開始する時間u1が1秒となるように、制御部40によって制御される。 FIG. 2 is a graph showing a specific example of a method of controlling the time u based on the mass measurement of the powder or granular material and the amount of the powder or granular material sprayed. In the present embodiment, first, a threshold value in the range of the reference value ± (reference value × 5%) is set with the target spray amount ΔSt as the reference value, and if the spray amount ΔS is included in this range, the target spray amount is included. It is determined that it matches ΔSt. This threshold value can be set by, for example, the control unit 40. Next, the time s was set to 0.5 seconds and the time t was set to 5 seconds, and the spraying of the powder or granular material P was started, and the first spraying amount ΔS1 corresponding to the change amount of the total mass W per 5 seconds was set. The measurement is performed, and the first transfer capacity control operation is performed according to the spray amount ΔS1. The measured spray amount ΔS1 is compared with the target spray amount ΔSt, and the control unit 40 determines that the spray amount ΔS1 is out of the range of the target spray amount ΔSt. Based on this determination, the control unit 40 Controls the vibration generated from the vibration generating means 31. Since the spray amount ΔS1 shown in FIG. 2 is below the lower limit of the target spray amount ΔSt, the transport capacity of the powder or granular material P is controlled to increase. At the same time, based on the determination by the control unit 40, the control unit 40 controls the time u1 for starting the next transfer capacity control operation to be 1 second.

続いて、時間u1の経過後に、5秒当たりの全質量Wの変化量に相当する第2回目の散布量ΔS2を測定し、該散布量ΔS2に応じて、第2回目の搬送能力制御操作を行う。測定された散布量ΔS2と、目標散布量ΔStとを比較して、散布量ΔS2が目標散布量ΔStの範囲内であることを制御部40が判定し、この判定に基づいて、該制御部40が振動発生手段31から発生する振動を制御する。図2に示す散布量ΔS2は、目標散布量ΔStの範囲内であるので、粉粒体Pの搬送能力が抑制されるか、あるいは一定となるように制御される。これとともに、制御部40による前記判定に基づいて、次の搬送能力制御操作を開始する時間u2が、時間u1よりも長い時間である2.5秒となるように、制御部40によって制御される。時間u2が時間u1よりも長い時間となるように制御される理由の一つとして、散布量ΔS2が粉粒体の散布が安定的に行われる範囲に制御されていると判定されているので、散布量ΔS2を維持できる搬送能力を維持していれば、粉粒体の散布を安定的に行うことができ、次の搬送能力制御操作を早期に行う必要がないことが挙げられる。 Subsequently, after the lapse of time u1, the second spraying amount ΔS2 corresponding to the amount of change in the total mass W per 5 seconds is measured, and the second transport capacity control operation is performed according to the spraying amount ΔS2. Do. By comparing the measured spray amount ΔS2 with the target spray amount ΔSt, the control unit 40 determines that the spray amount ΔS2 is within the range of the target spray amount ΔSt, and based on this determination, the control unit 40 Controls the vibration generated from the vibration generating means 31. Since the spray amount ΔS2 shown in FIG. 2 is within the range of the target spray amount ΔSt, the transport capacity of the powder or granular material P is suppressed or controlled to be constant. At the same time, based on the determination by the control unit 40, the control unit 40 controls the time u2 for starting the next transfer capacity control operation to be 2.5 seconds, which is longer than the time u1. .. One of the reasons why the time u2 is controlled to be longer than the time u1 is that the spraying amount ΔS2 is determined to be controlled within a range in which the powder or granular material is stably sprayed. If the transport capacity capable of maintaining the spray amount ΔS2 is maintained, the powder or granular material can be stably sprayed, and it is not necessary to perform the next transport capacity control operation at an early stage.

更に、時間u2の経過後に、5秒当たりの全質量Wの変化量に相当する第3回目の散布量ΔS3を測定し、該散布量ΔS3に応じて、第3回目の搬送能力制御操作を行う。図2に示す散布量ΔS3は、上述した散布量ΔS2と同様に目標散布量ΔStの範囲内となっているので、散布量ΔS3が目標散布量ΔStの範囲内であることを制御部40が判定し、この判定に基づいて、該制御部40が振動発生手段31から発生する振動が一定となるように、振動発生手段31に印加する電圧及び周波数を制御する。その結果、粉粒体Pの搬送能力が一定となるように制御される。これとともに、制御部40による前記判定に基づいて、次の搬送能力制御操作を開始する時間u3が、時間u2と同一の時間である2.5秒となるように、制御部40によって制御される。この制御は、散布量ΔS3を維持できる搬送能力を維持していれば、粉粒体の散布を安定的に行うことができ、次の搬送能力制御操作を早期に行う必要がないためである。また同様に、時間u3の経過後に、5秒当たりの全質量Wの変化量に相当する第4回目の散布量ΔS4を測定し、該散布量ΔS4に応じて、第4回目の搬送能力制御操作を行う。これ以降は、上述した搬送能力及び所定時間uの制御が連続して行われる。図2に示す実施形態では、説明の便宜上、時間u3は時間u2と同一の時間に制御されている状態を説明したが、これに代えて、時間u3は、時間u2である2.5秒よりも長い時間で、且つ、粉粒体散布におけるモニタリングの欠落が生じない最大時間である時間t=5秒未満の時間で制御されていてもよい。 Further, after the lapse of time u2, the third spraying amount ΔS3 corresponding to the change amount of the total mass W per 5 seconds is measured, and the third transport capacity control operation is performed according to the spraying amount ΔS3. .. Since the spray amount ΔS3 shown in FIG. 2 is within the range of the target spray amount ΔSt as in the above-mentioned spray amount ΔS2, the control unit 40 determines that the spray amount ΔS3 is within the range of the target spray amount ΔSt. Then, based on this determination, the control unit 40 controls the voltage and frequency applied to the vibration generating means 31 so that the vibration generated from the vibration generating means 31 becomes constant. As a result, the transport capacity of the powder or granular material P is controlled to be constant. At the same time, based on the determination by the control unit 40, the control unit 40 controls the time u3 for starting the next transfer capacity control operation so that the time u3 is 2.5 seconds, which is the same time as the time u2. .. This control is because if the transport capacity capable of maintaining the spray amount ΔS3 is maintained, the powder or granular material can be stably sprayed, and it is not necessary to perform the next transport capacity control operation at an early stage. Similarly, after the lapse of time u3, the fourth spraying amount ΔS4 corresponding to the amount of change in the total mass W per 5 seconds is measured, and the fourth transport capacity control operation is performed according to the spraying amount ΔS4. I do. After that, the above-mentioned transport capacity and the control of the predetermined time u are continuously performed. In the embodiment shown in FIG. 2, for convenience of explanation, the state in which the time u3 is controlled to the same time as the time u2 has been described, but instead, the time u3 is set to the time u2 of 2.5 seconds. It may be controlled for a long time and a time of less than t = 5 seconds, which is the maximum time at which monitoring is not lost in the spraying of powder or granular material.

第(n+1)回目(ただし、nは正の整数である。)の搬送能力制御操作は、時間uの経過後に、時間t(秒)当たりの全質量Wの変化量に相当する第n回目の散布量ΔSnを測定し、搬送能力制御操作を行う。測定された散布量ΔSnと、目標散布量ΔStとを比較して、制御部40が判定し、この判定に基づいて、該制御部40が振動発生手段31から発生する振動を制御する。 The (n + 1) th (where n is a positive integer) transport capacity control operation is the nth (n + 1) th time corresponding to the amount of change in the total mass W per time t (seconds) after the lapse of time u. The spray amount ΔSn is measured, and the transport capacity control operation is performed. The measured spray amount ΔSn is compared with the target spray amount ΔSt, and the control unit 40 determines, and based on this determination, the control unit 40 controls the vibration generated from the vibration generating means 31.

詳細には、散布量ΔSnが目標散布量ΔStの範囲内である場合、散布量は目標とする量に制御されているので、粉粒体Pの搬送能力が抑制されるか、あるいは一定となるように制御される。これとともに、前記判定に基づいて、制御部40によって、第(n+1)回目の搬送能力制御操作を開始する時間uα(秒)(ただし、0<s≦uα<t)が選択され、第n回目の搬送能力制御操作から時間uα経過後に、第n回目の搬送能力制御操作に連続して、第(n+1)回目の搬送能力制御操作を行う。この場合、時間uαは、好ましくは、第(n−1)回目の搬送能力制御操作から第n回目の搬送能力制御操作までの時間uγ以上、時間t(秒)未満の時間で制御される。 Specifically, when the spray amount ΔSn is within the range of the target spray amount ΔSt, the spray amount is controlled to the target amount, so that the transport capacity of the powder or granular material P is suppressed or becomes constant. Is controlled. At the same time, based on the determination, the control unit 40 selects the time uα (seconds) (where 0 <s ≦ uα <t) for starting the (n + 1) th transfer capacity control operation, and the nth time. After a lapse of time uα from the transport capacity control operation of No. 1, the (n + 1) th transport capacity control operation is performed following the nth transport capacity control operation. In this case, the time uα is preferably controlled in a time uγ or more and less than a time t (seconds) from the (n-1) th transport capacity control operation to the nth transport capacity control operation.

散布量ΔSnが目標散布量ΔStの下限値を下回っている場合、散布量は目標とする量に達していないので、散布量が増加するように、すなわち粉粒体Pの搬送能力が増加するように制御される。これとともに、前記判定に基づいて、制御部40によって、第(n+1)回目の搬送能力制御操作を開始する時間uβ(秒)(ただし、uα≧uβ、0<s≦uβ<t)が選択され、第n回目の搬送能力制御操作から時間uβ(秒)経過後に、第n回目の搬送能力制御操作に連続して、第(n+1)回目の搬送能力制御操作を行う。この場合、時間uβは、好ましくは、第(n−1)回目の搬送能力制御操作から第n回目の搬送能力制御操作までの時間uγ未満に制御され、また、好ましくはuα>uβとなるように制御される。 When the spray amount ΔSn is less than the lower limit of the target spray amount ΔSt, the spray amount has not reached the target amount, so that the spray amount is increased, that is, the transport capacity of the powder or granular material P is increased. Is controlled by. At the same time, based on the determination, the control unit 40 selects the time uβ (seconds) (where uα ≧ uβ, 0 <s ≦ uβ <t) for starting the (n + 1) th transport capacity control operation. After a lapse of time uβ (seconds) from the nth transport capacity control operation, the (n + 1) th transport capacity control operation is performed following the nth transport capacity control operation. In this case, the time uβ is preferably controlled to be less than the time uγ from the (n-1) th transport capacity control operation to the nth transport capacity control operation, and preferably uα> uβ. Is controlled by.

散布量ΔSnが目標散布量ΔStの上限値を上回っている場合、散布量は目標とする量よりも多くなっているので、散布量が減少するように、すなわち粉粒体Pの搬送能力が減少するように制御される。これとともに、前記判定に基づいて、制御部40によって、第(n+1)回目の搬送能力制御操作を開始する時間uβが選択され、第n回目の搬送能力制御操作から時間uβ(秒)経過後に、第n回目の搬送能力制御操作に連続して、第(n+1)回目の搬送能力制御操作を行う。この場合、時間uβは、上述と同様に、好ましくは、第(n−1)回目の搬送能力制御操作から第n回目の搬送能力制御操作までの時間uγ未満に制御され、また、好ましくはuα>uβとなるように制御される。 When the spray amount ΔSn exceeds the upper limit of the target spray amount ΔSt, the spray amount is larger than the target amount, so that the spray amount decreases, that is, the transport capacity of the powder or granular material P decreases. It is controlled to do. At the same time, based on the determination, the control unit 40 selects the time uβ for starting the (n + 1) th transport capacity control operation, and after the time uβ (seconds) elapses from the nth transport capacity control operation, Following the nth transfer capacity control operation, the (n + 1) th transfer capacity control operation is performed. In this case, the time uβ is preferably controlled to be less than the time uγ from the (n-1) th transport capacity control operation to the nth transport capacity control operation, and is preferably uα, as described above. > Uβ is controlled.

搬送手段3の搬送能力は、例えば振動発生手段31の振動の振幅及び周波数の少なくとも一方を、制御部40を介して変更することで制御することができる。同様に、所定時間uは、粉粒体Pの単位時間当たりの散布量ΔSと目標散布量ΔStとの比較を制御部40内で行って、この比較結果に基づいて、制御部40を介して制御することができる。振動発生手段31の制御には、例えばP制御(比例制御)、PI制御又はPID制御などの公知のフィードバック制御方法を採用することができる。これらの各種の制御方法における係数は、散布対象物への散布を行う前に、試運転を行って予め決定することができる。 The transport capacity of the transport means 3 can be controlled, for example, by changing at least one of the amplitude and frequency of the vibration of the vibration generating means 31 via the control unit 40. Similarly, for the predetermined time u, the spray amount ΔS per unit time of the powder or granular material P and the target spray amount ΔSt are compared in the control unit 40, and based on the comparison result, the powder or granular material P is compared through the control unit 40. Can be controlled. For the control of the vibration generating means 31, for example, a known feedback control method such as P control (proportional control), PI control or PID control can be adopted. The coefficients in these various control methods can be determined in advance by performing a trial run before spraying on the object to be sprayed.

粉粒体の散布においては、ホッパー2内に残存する粉粒体Pの量に応じて、粉粒体Pの受取手段30への落下量に差が生じる場合があり、その結果、粉粒体の散布量にばらつきが生じてしまうことがある。このような落下量の差の発生を抑制して、粉粒体の散布を定量的且つ安定的に行う観点から、全質量Wtを連続して計量している状態において、ホッパー2の質量と、ホッパー2内の粉粒体Pの最大充填状態で質量との合計である全質量Wmに対する所定割合の質量を閾値として設定し、測定される全質量Wtが該閾値を下回ったら、初期設定質量、すなわち最大充填状態での全質量Wmとなるまで、ホッパー2内に粉粒体Pを補充する粉粒体補充操作を行うことが好ましい。この粉粒体補充操作は、先に述べた搬送能力制御操作とは独立して行われる。「独立して行われる」とは、粉粒体補充操作と搬送能力制御操作とを、別個の制御系を用いて行うこと意図するものではなく、一つの制御系のみを用い、粉粒体補充操作と搬送能力制御操作とを並列処理によって行うことも包含される。 In spraying the powder or granular material, the amount of the powder or granular material P falling onto the receiving means 30 may differ depending on the amount of the powder or granular material P remaining in the hopper 2, and as a result, the powder or granular material may be sprayed. The amount of spraying may vary. From the viewpoint of suppressing the occurrence of such a difference in the amount of falling and spraying the powder or granular material quantitatively and stably, the mass of the hopper 2 and the mass of the hopper 2 are measured in a state where the total mass Wt is continuously measured. In the maximum packed state of the powder or granular material P in the hopper 2, a predetermined ratio of mass to the total mass Wm, which is the total with the mass, is set as a threshold value, and when the measured total mass Wt falls below the threshold value, the initial set mass, That is, it is preferable to perform the powder or granular material replenishment operation of replenishing the powder or granular material P in the hopper 2 until the total mass Wm in the maximum filled state is reached. This powder or granular material replenishment operation is performed independently of the transport capacity control operation described above. "Performed independently" is not intended to perform the powder or granular material replenishment operation and the transport capacity control operation using separate control systems, and the powder or granular material replenishment is performed using only one control system. It also includes performing the operation and the transport capacity control operation by parallel processing.

詳細には、最大充填状態での全質量Wmを100質量%としたときに、全質量Wtは、好ましくは40質量%以上、更に好ましくは80質量%以上、また、好ましくは100質量%以下に維持した状態で粉粒体Pを散布する。上述のとおり、ホッパー2自体の質量は不変であるから、経時的に測定される全質量Wtは、ホッパー2内に残存する粉粒体Pの質量の減少に伴って減少するので、例えば、最大充填状態での全質量Wmが40質量%となったとき、すなわち「全質量Wm×0.4」の値を閾値として設定し、全質量Wtが全質量Wm×0.4を下回ったら、初期設定質量となるまで粉粒体補充操作を行うことが好ましい。なお「下回ったら」とは、全質量Wtが閾値を下回ったその時点だけでなく、閾値を下回った後の時点も包含する。この粉粒体補充操作は、制御部40から粉体供給装置90に向けて動作指令を発し、粉体供給装置90によって粉粒体Pをホッパー2内に供給することで行われる。 Specifically, when the total mass Wm in the maximum filled state is 100% by mass, the total mass Wt is preferably 40% by mass or more, more preferably 80% by mass or more, and preferably 100% by mass or less. The powder or granular material P is sprayed in a maintained state. As described above, since the mass of the hopper 2 itself is invariant, the total mass Wt measured with time decreases as the mass of the powder or granular material P remaining in the hopper 2 decreases. Therefore, for example, the maximum When the total mass Wm in the filled state becomes 40% by mass, that is, when the value of "total mass Wm x 0.4" is set as the threshold value and the total mass Wt falls below the total mass Wm x 0.4, the initial stage is reached. It is preferable to perform the powder / granular material replenishment operation until the set mass is reached. The term "if it falls below" includes not only the time point when the total mass Wt falls below the threshold value but also the time point after the total mass Wt falls below the threshold value. This powder or granular material replenishment operation is performed by issuing an operation command from the control unit 40 to the powder supply device 90 and supplying the powder or granular material P into the hopper 2 by the powder supply device 90.

上述した粉粒体補充操作によってホッパー2内に粉粒体Pを供給している間も、全質量Wtの計量は連続して行われている。全質量Wtの計量を正確に行って、散布量ΔSを目標散布量ΔStに一致させるように、散布量の正確且つ精密な制御を行う観点から、粉粒体補充操作を行っている間は、搬送能力制御操作を休止することが好ましい。またこれとともに、搬送能力制御操作を休止している間は、搬送手段3の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておくことも好ましい。搬送能力制御操作の休止及び搬送手段3の搬送能力の保持は、第1制御操作又は第2制御操作の前又は後で行われてもよく、各制御操作の間に行われてもよい。 While the powder or granular material P is being supplied into the hopper 2 by the powder or granular material replenishment operation described above, the total mass Wt is continuously measured. During the powder or granular material replenishment operation, from the viewpoint of accurately and precisely controlling the spray amount so that the total mass Wt is accurately measured and the spray amount ΔS matches the target spray amount ΔSt. It is preferable to suspend the transport capacity control operation. At the same time, it is also preferable to maintain the transport capacity of the transport means 3 at the transport capacity immediately before the suspension of the transport capacity control operation while the transport capacity control operation is suspended. The suspension of the transport capacity control operation and the retention of the transport capacity of the transport means 3 may be performed before or after the first control operation or the second control operation, or may be performed between the respective control operations.

搬送能力制御操作の休止は、粉粒体補充操作の完了後、すなわち全質量Wtが、初期設定質量である最大充填状態での全質量Wmに達した後、全質量Wtが所定時間にわたり連続して減少したときに解除されることが好ましい。全質量Wtが所定時間にわたり連続して減少した以降は、搬送能力制御操作が再開される。このように制御されていることによって、全質量Wtの計測並びに搬送能力及び所定時間uの制御を正確にかつ精度良く行うことができ、その結果、粉粒体の散布を応答性高く且つ精度良く行うことができる。 The suspension of the transport capacity control operation is such that the total mass Wt continues for a predetermined time after the completion of the powder or granular material replenishment operation, that is, after the total mass Wt reaches the total mass Wm in the maximum filled state, which is the initial set mass. It is preferable that it is released when it decreases. After the total mass Wt is continuously reduced for a predetermined time, the transport capacity control operation is restarted. By being controlled in this way, it is possible to accurately and accurately control the total mass Wt, the transport capacity, and the predetermined time u, and as a result, the powder or granular material is sprayed with high responsiveness and accuracy. It can be carried out.

「全質量Wtが所定時間にわたり連続して減少したとき」とは、例えば全質量Wtの計測を0.5秒ごとに連続して行っている場合には、粉粒体補充操作の完了後、全質量Wtが0.5秒前よりも少ない状態が5回継続した場合のことである。この処理は制御部40において行われ、該制御部40における判断の結果、振動発生手段31の作動指令が制御部40から振動発生手段31に向けて発せられる。 "When the total mass Wt decreases continuously over a predetermined time" means, for example, when the total mass Wt is continuously measured every 0.5 seconds, after the completion of the powder or granular material replenishment operation, This is the case where the total mass Wt is less than 0.5 seconds ago and continues 5 times. This process is performed by the control unit 40, and as a result of the determination in the control unit 40, an operation command of the vibration generating means 31 is issued from the control unit 40 toward the vibration generating means 31.

所定時間s,t,uの関係について、0<s≦u<tの関係を満たすことを条件として、t/sの値は好ましくは1以上、更に好ましくは50以上、好ましくは3000以下、更に好ましくは2000以下である。また、u/sの値は好ましくは1以上、更に好ましくは2以上、好ましくは100以下、更に好ましくは50以下である。また、t/uの値は好ましくは1以上、更に好ましくは2以上、好ましくは100以下、更に好ましくは50以下である。なお、上述した各時間u1,u2,u3,uα,uβ,uγはそれぞれ、所定時間uと同義である。 Regarding the relationship of s, t, u for a predetermined time, the value of t / s is preferably 1 or more, more preferably 50 or more, preferably 3000 or less, and further, provided that the relationship of 0 <s ≦ u <t is satisfied. It is preferably 2000 or less. The u / s value is preferably 1 or more, more preferably 2 or more, preferably 100 or less, still more preferably 50 or less. The value of t / u is preferably 1 or more, more preferably 2 or more, preferably 100 or less, still more preferably 50 or less. The above-mentioned time u1, u2, u3, uα, uβ, and uγ are synonymous with the predetermined time u, respectively.

所定時間s,t,uは、0<s≦u<tの関係を満たすことを条件として、sの値は好ましくは0.1秒以上、更に好ましくは0.5秒以上、好ましくは10秒以下、更に好ましくは1秒以下である。また、uの値は好ましくは0.5秒以上、更に好ましくは1秒以上、好ましくは10秒以下、更に好ましくは5秒以下である。また、tの値は好ましくは1秒以上、更に好ましくは5秒以上、好ましくは300秒以下、更に好ましくは30秒以下である。これに加えて、プログラムによる制御負荷を低減させる観点から、u及びtは、それぞれsの倍数であることも好ましく、また、0<s<u<tの関係であることも好ましい。なお、上述した各時間u1,u2,u3,uα,uβ,uγはそれぞれ、所定時間uと同義である。 The predetermined time s, t, u is preferably 0.1 seconds or longer, more preferably 0.5 seconds or longer, preferably 10 seconds, provided that the relationship of 0 <s ≦ u <t is satisfied. Hereinafter, it is more preferably 1 second or less. The value of u is preferably 0.5 seconds or longer, more preferably 1 second or longer, preferably 10 seconds or shorter, still more preferably 5 seconds or shorter. The value of t is preferably 1 second or longer, more preferably 5 seconds or longer, preferably 300 seconds or shorter, and even more preferably 30 seconds or shorter. In addition to this, from the viewpoint of reducing the control load by the program, u and t are each preferably a multiple of s, and preferably have a relationship of 0 <s <u <t. The above-mentioned time u1, u2, u3, uα, uβ, and uγ are synonymous with the predetermined time u, respectively.

粉粒体Pの詰まりを抑制し、ホッパー2の排出口23から円滑に粉粒体Pを排出する観点から、受取手段30の上面30aと排出口23との間隔G(図1及び図3参照)は、粉粒体Pの最大粒子径rに対して、好ましくは1倍以上、より好ましくは1.5倍以上、更に好ましくは2倍以上、そして、好ましくは10倍以下、より好ましくは8倍以下、更に好ましくは5倍以下である。より具体的には、間隔Gは、粉粒体Pの最大粒子径rに対して、好ましくは1倍以上10倍以下、より好ましくは1.5倍以上8倍以下、更に好ましくは2倍以上5倍以下である。 From the viewpoint of suppressing clogging of the powder or granular material P and smoothly discharging the powder or granular material P from the discharge port 23 of the hopper 2, the distance G between the upper surface 30a of the receiving means 30 and the discharge port 23 (see FIGS. 1 and 3). ) Is preferably 1 time or more, more preferably 1.5 times or more, still more preferably 2 times or more, and preferably 10 times or less, more preferably 8 times or more with respect to the maximum particle size r of the powder or granular material P. It is twice or less, more preferably five times or less. More specifically, the interval G is preferably 1 time or more and 10 times or less, more preferably 1.5 times or more and 8 times or less, and further preferably 2 times or more with respect to the maximum particle size r of the powder or granular material P. It is 5 times or less.

粉粒体Pの最大粒子径rは、その形状に応じた方法で測定することができる。粉粒体Pの最大粒子径rの測定方法は、例えば乾式篩法(JIS Z8815−1994)、動的光散乱法、レーザー回折法、遠心沈降法、重力沈降法、画像イメージング法、FFF(フィールド・フロー・フラクショネーション)法、静電気検知体法、コールター法等が挙げられる。これらのうち、レーザー回折法又はコールター法で測定した最大粒子径rを採用することが、再現性及び精度の点から好ましい。 The maximum particle size r of the powder or granular material P can be measured by a method according to its shape. The method for measuring the maximum particle size r of the powder or granular material P is, for example, a dry sieve method (JIS Z8815-1994), a dynamic light scattering method, a laser diffraction method, a centrifugal sedimentation method, a gravity sedimentation method, an image imaging method, or an FFF (field).・ Flow fractionation) method, static electricity detector method, Coulter method, etc. can be mentioned. Of these, it is preferable to use the maximum particle size r measured by the laser diffraction method or the Coulter method from the viewpoint of reproducibility and accuracy.

散布装置1を用いた散布の対象となる粉粒体Pとしては、例えば紙粉、パルプ、木粉、吸水性ポリマー粒子、砂糖、活性炭、小麦粉、ポリエチレンペレット、ポリプロピレンペレット、ポリエチレンテレフタレートチップ、ポリカーボネートチップ、ポリエチレングラニュール、ポリアクリル酸ブチルビーズ等の有機物の粉粒体や、金属粉、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、ガラス、石灰等の無機物の粉粒体が挙げられる。これらの粉粒体Pは、粘着剤等のバインダーが更に混合、添加又は被覆され、粘着性を有するものとなっていてもよい。粉粒体Pの形状は特に制限されず、例えば、球状、碁石状、楕円形、楕円柱、針状、キュービック状等が挙げられる。 Examples of the powder or granular material P to be sprayed using the spraying device 1 include paper powder, pulp, wood powder, water-absorbent polymer particles, sugar, activated charcoal, wheat flour, polyethylene pellets, polypropylene pellets, polyethylene terephthalate chips, and polycarbonate chips. , Polypropylene granules, butyl beads polyacrylate and the like, and inorganic powders and granules such as metal powder, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, glass and lime. These powders and granules P may be made to have adhesiveness by further mixing, adding or coating a binder such as an adhesive. The shape of the powder or granular material P is not particularly limited, and examples thereof include a spherical shape, a gostone shape, an elliptical shape, an elliptical pillar shape, a needle shape, and a cubic shape.

基材100は、例えばシート状の基材や、シート状の基材の上に組成物や機能性を有する材料が塗布又は散布された積層体等が挙げられる。シート状の基材としては、各種製法による繊維シート、不織布、樹脂フィルム、織物、編物、紙等、及びこれらのうちの同種又は異種のものを複数枚積層した積層体等が挙げられる。シート状の基材の上に材料が塗布又は散布された積層体としては、例えば塩などの電解質が散布された積層体や、ホットメルト接着剤、被酸化性金属及び水を含む発熱組成物等が塗布された積層体等が挙げられる。 Examples of the base material 100 include a sheet-shaped base material, a laminate in which a composition or a material having functionality is applied or sprayed on the sheet-shaped base material. Examples of the sheet-like base material include fiber sheets, non-woven fabrics, resin films, woven fabrics, knitted fabrics, papers, etc. produced by various manufacturing methods, and laminates in which a plurality of the same or different kinds of these are laminated. Examples of the laminate in which the material is applied or sprayed on the sheet-like base material include a laminate in which an electrolyte such as salt is sprayed, a hot melt adhesive, a heat-generating composition containing an oxidizing metal, and water. Examples thereof include a laminate coated with.

散布装置1を用いて、連続搬送されるシート状の基材上に粉粒体を散布する粉粒体の散布方法の一例として、被酸化性金属の粒子、及び水を含む発熱シートを製造する際に、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子、金属粒子、固形の電解質等を散布して、発熱組成物を形成する方法が挙げられる。この発熱組成物の層に、塩化ナトリウム等の電解質や吸水性ポリマーといった粉粒体を、本発明の散布装置を用いて散布することにより、これら粉粒体が均一な状態で配置された発熱体を得ることができる。このような発熱体であれば、発熱ムラの少ない、優れた発熱特性を得られることが期待できる。なお、本発明の装置及び粉粒体の散布方法は、発熱体の製造方法において好ましいものであるが、他の機能性シートの製造方法にも適用可能である。例えば、連続搬送される繊維シートからなるシート状の基材上に、吸水性ポリマーの粒子を散布し、吸水性シートを製造することができる。 As an example of a method of spraying powder or granular material on a sheet-like base material that is continuously conveyed by using the spraying device 1, a heat-generating sheet containing particles of an oxidizable metal and water is produced. At this time, a method of forming a heat-generating composition by spraying particles of a highly water-absorbent polymer, metal particles, a solid electrolyte, or the like on a sheet-like base material made of a fiber sheet that is continuously conveyed can be mentioned. By spraying powders and granules such as an electrolyte such as sodium chloride and a water-absorbing polymer on the layer of this heating composition using the spraying device of the present invention, these powders and granules are arranged in a uniform state. Can be obtained. With such a heating element, it can be expected that excellent heat generation characteristics with less heat generation unevenness can be obtained. Although the apparatus and the method of spraying the powder or granular material of the present invention are preferable in the method for producing a heating element, they can also be applied to other methods for producing a functional sheet. For example, a water-absorbent sheet can be produced by spraying particles of a water-absorbent polymer on a sheet-like base material made of a fiber sheet that is continuously conveyed.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば、排出口23から排出された粉粒体Pを、受取手段30の搬送方向Xに対して先端部から均一に散布する観点から、搬送方向X以外からの散布を防止するために、受取手段30の側面にガイドを設けても良い。斯かる平板部材からなる受取手段30の材質は特に制限されないが、例えば、各種プラスチックや各種金属などが挙げられる。 Although the present invention has been described above based on the preferred embodiment, the present invention is not limited to the above embodiment. For example, from the viewpoint of uniformly spraying the powder or granular material P discharged from the discharge port 23 from the tip portion with respect to the transport direction X of the receiving means 30, in order to prevent spraying from other than the transport direction X, the receiving means A guide may be provided on the side surface of the 30. The material of the receiving means 30 made of such a flat plate member is not particularly limited, and examples thereof include various plastics and various metals.

また、移動路22における粉粒体Pの流れを定常流化させて、基材100の幅方向に均一に定量性良く粉粒体Pを散布する観点から、排出口23の平面視形状は、長方形形状、楕円形形状等の「一方向に長い形状」であることが好ましい。排出口23の平面視形状における長手方向は、粉粒体Pの搬送方向Xと交差するように配置されることが好ましく、粉粒体Pの搬送方向と直交するように配置されることが好ましい。粉粒体Pの搬送方向Xと直交する方向を幅方向としたときに、排出口23の幅方向における最大長さDに対する排出口23の長手方向における最大長さWの比は、好ましくは2以上1000以下、更に好ましくは5以上100以下である。 Further, from the viewpoint of making the flow of the powder or granular material P in the moving path 22 steady and uniformly and quantitatively spraying the powder or granular material P in the width direction of the base material 100, the shape of the discharge port 23 in a plan view is It is preferably a "long shape in one direction" such as a rectangular shape or an elliptical shape. The longitudinal direction of the discharge port 23 in the plan view shape is preferably arranged so as to intersect the transport direction X of the powder or granular material P, and is preferably arranged so as to be orthogonal to the transport direction of the powder or granular material P. .. When the direction orthogonal to the transport direction X of the powder or granular material P is the width direction, the ratio of the maximum length W in the longitudinal direction of the discharge port 23 to the maximum length D in the width direction of the discharge port 23 is preferably 2. It is 1000 or more, more preferably 5 or more and 100 or less.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to such examples.

〔実施例1〕
図1に示す構成を有する散布装置1を用いて、粉粒体(吸水性ポリマー粒子)の散布を一方向に連続搬送される基材(パルプ、搬送速度51m/分)上に行った。計量装置50としてロードセル(A&D製)を用い、時間sを0.5秒として、全質量Wtを連続して計量した。搬送能力制御操作における所定時間tは5秒とした。制御部40による振動発生手段31の制御はPI制御に基づく振幅制御を行い、時間uを、粉粒体の散布質量が(目標散布質量±目標散布質量×5%)の範囲外である場合には1秒とし、粉粒体の散布質量が(目標散布質量±目標散布質量×5%)の範囲内である場合には2.5秒となるように設定した。粉体供給装置90による粉粒体の供給は、「最大充填状態での全質量Wm×0.8」の値を閾値として設定し、計測される全質量Wtが全質量Wm×0.8を下回った時点で搬送能力制御操作を休止して、初期設定質量となるまで粉粒体補充操作を行った。搬送能力制御操作を休止してから再開するまでの時間は、0.5秒間隔で全質量Wtを計量し、全質量Wtが1.0秒前よりも少ない状態が5回継続するまでとした。これらの条件下に、50分間にわたり粉粒体の散布を行ったときの該粉粒体の散布質量を、目標散布質量に対する比率として算出し、図4(a)に示した。同様に、粉粒体の散布質量の算術平均値及び標準偏差を、目標散布質量に対する百分率として、図4(a)に示した。
[Example 1]
Using the spraying device 1 having the configuration shown in FIG. 1, the powder or granular material (water-absorbent polymer particles) was sprayed on a base material (pulp, transport speed 51 m / min) continuously transported in one direction. A load cell (manufactured by A & D) was used as the weighing device 50, and the total mass Wt was continuously measured with a time s of 0.5 seconds. The predetermined time t in the transport capacity control operation was set to 5 seconds. The control unit 40 controls the vibration generating means 31 based on the PI control, and the time u is when the spraying mass of the powder or granular material is out of the range (target spraying mass ± target spraying mass × 5%). Was set to 1 second, and was set to 2.5 seconds when the spraying mass of the powder or granular material was within the range of (target spraying mass ± target spraying mass × 5%). For the supply of powder or granular material by the powder supply device 90, the value of "total mass Wm x 0.8 in the maximum filled state" is set as a threshold value, and the measured total mass Wt is total mass Wm x 0.8. When the mass fell below the limit, the transport capacity control operation was suspended, and the powder or granular material replenishment operation was performed until the initial set mass was reached. The time from when the transport capacity control operation was paused to when it was resumed was set so that the total mass Wt was measured at 0.5 second intervals until the total mass Wt remained less than 1.0 second ago five times. .. Under these conditions, the spraying mass of the powder or granular material when the powder or granular material was sprayed for 50 minutes was calculated as a ratio to the target spraying mass and is shown in FIG. 4 (a). Similarly, the arithmetic mean value and standard deviation of the spray mass of the powder or granular material are shown in FIG. 4 (a) as a percentage with respect to the target spray mass.

〔比較例1〕
図1に示す構成を有する散布装置1を用いて、時間uを、粉粒体の散布質量と目標散布質量との関係によらず5秒に一律設定した他は、実施例1と同様に粉粒体の散布を行った。結果を図4(b)に示す。
[Comparative Example 1]
Using the spraying device 1 having the configuration shown in FIG. 1, the time u was uniformly set to 5 seconds regardless of the relationship between the spraying mass of the powder or granular material and the target spraying mass. Granules were sprayed. The results are shown in FIG. 4 (b).

図4(a)及び(b)に示すように、実施例1の制御方法では、比較例1の制御方法と比較して、散布量が目標散布量を超過する回数が少なく、粉粒体の散布量が応答性高く制御されていることが判る。これに加えて、実施例1の制御方法では、散布量のばらつきを示す標準偏差が比較例1の制御方法よりも小さくなっているので、粉粒体の散布量を高い精度で一定とすることができる。したがって、本発明によれば、粉粒体の散布量を一定にして、粉粒体の散布を少ない誤差で且つ高い制御応答性で安定的に行うことができる。
As shown in FIGS. 4A and 4B, in the control method of Example 1, the number of times the spray amount exceeds the target spray amount is less than that of the control method of Comparative Example 1, and the powder or granular material is used. It can be seen that the spray amount is controlled with high responsiveness. In addition to this, in the control method of Example 1, the standard deviation indicating the variation in the spray amount is smaller than that of the control method of Comparative Example 1, so that the spray amount of the powder or granular material should be kept constant with high accuracy. Can be done. Therefore, according to the present invention, the amount of powder or granular material sprayed can be kept constant, and the powder or granular material can be stably sprayed with a small error and high control response.

Claims (5)

ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布する工程を備えた粉粒体の散布方法であって、
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全質量を所定時間s(秒)毎に計量し、計量した該全質量と、所定時間t(秒)(ただし0<s<tである。)前に計量した該全質量との差分を算出し、その差分をt(秒)で除することで、該全質量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量を、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作を行い、
第1の前記搬送能力制御操作から所定時間u(秒)(ただし、0<s≦u<tである。)後に、第1の前記搬送能力制御操作に連続して、第2の前記搬送能力制御操作を行う、粉粒体の散布方法。
A method for spraying powder or granular material, which comprises a step of transporting the powder or granular material discharged from the hopper in a predetermined direction by a transporting means and spraying the powder or granular material.
The total mass of the hopper and the powder or granular material stored in the hopper is weighed every predetermined time s (seconds), and the measured total mass and the predetermined time t (seconds) (where 0 <s <t) are measured. By calculating the difference from the previously weighed total mass and dividing the difference by t (seconds), the amount of change in the total mass per unit time is measured, and according to the amount of change. By controlling the transport capacity of the transport means, the transport capacity control operation is performed so that the amount of the powder or granular material sprayed by the transport means is matched with the target spray amount per unit time. And
After a predetermined time u (seconds) (where 0 <s ≦ u <t) from the first transfer capacity control operation, the second transfer capacity is succeeded by the first transfer capacity control operation. A method of spraying powder or granular material that performs control operations.
前記所定時間u(秒)は、第1の前記搬送能力制御操作において制御された前記粉粒体の単位時間当たりの散布量が前記目標散布量と一致していない場合には短くなるように制御され、
第1の前記搬送能力制御操作において制御された前記粉粒体の単位時間当たりの散布量が前記目標散布量と一致している場合には同一又は長くなるように制御される、請求項1に記載の粉粒体の散布方法。
The predetermined time u (seconds) is controlled so as to be shortened when the spray amount per unit time of the powder or granular material controlled in the first transport capacity control operation does not match the target spray amount. Being done
According to claim 1, when the amount of the powder or granular material sprayed per unit time controlled in the first transport capacity control operation is the same as or longer than the target amount of spraying, the powder or granular material is controlled to be the same or longer. The method for spraying the powder or granular material described.
前記全質量を連続して計量し、該全質量が閾値を下回ったら、該全質量が初期設定質量となるまで該ホッパー内に該粉粒体を補充する粉粒体補充操作を前記搬送能力制御操作とは独立して行い、
前記粉粒体補充操作を行っている間は、前記搬送能力制御操作を休止して、前記搬送手段の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておく、請求項1又は2に記載の粉粒体の散布方法。
The total mass is continuously measured, and when the total mass falls below the threshold value, the transfer capacity control is performed by performing a powder or granular material replenishment operation for replenishing the powder or granular material in the hopper until the total mass reaches the initial set mass. Performed independently of the operation
The claim that the transport capacity control operation is suspended during the powder or granular material replenishment operation, and the transport capacity of the transport means is maintained at the transport capacity immediately before the suspension of the transport capacity control operation. The method for spraying powder or granular material according to 1 or 2.
前記粉粒体補充操作の完了後、前記全質量が所定時間にわたり連続して減少したときに、前記搬送能力制御操作を再開する、請求項3に記載の粉粒体の散布方法。 The method for spraying powder or granular material according to claim 3, wherein the transport capacity control operation is restarted when the total mass continuously decreases for a predetermined time after the completion of the powder or granular material replenishment operation. 第2の前記搬送能力制御操作から所定時間uα(秒)(ただし、0<s≦uα<tである。)後に、第2の前記搬送能力制御操作に連続して、第3の前記搬送能力制御操作を行い、
前記所定時間uαは、第2の前記搬送能力制御操作において制御された前記粉粒体の単位時間当たりの散布量が前記目標散布量と一致していない場合には、前記所定時間uよりも短くなるように制御され、
第2の前記搬送能力制御操作において制御された前記粉粒体の単位時間当たりの散布量が前記目標散布量と一致している場合には、前記所定時間uと同一又は長くなるように制御される、請求項1ないし4のいずれか一項に記載の粉粒体の散布方法。
After a predetermined time uα (seconds) (where 0 <s ≦ uα <t) from the second transfer capacity control operation, the third transfer capacity is succeeded by the second transfer capacity control operation. Perform control operations
The predetermined time uα is shorter than the predetermined time u when the spraying amount of the powder or granular material controlled in the second transport capacity control operation per unit time does not match the target spraying amount. Controlled to be
When the spraying amount of the powder or granular material controlled in the second transport capacity control operation per unit time matches the target spraying amount, it is controlled to be the same as or longer than the predetermined time u. The method for spraying powder or granular material according to any one of claims 1 to 4.
JP2019170654A 2019-09-19 2019-09-19 How to spread powder and granules Active JP7356851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019170654A JP7356851B2 (en) 2019-09-19 2019-09-19 How to spread powder and granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170654A JP7356851B2 (en) 2019-09-19 2019-09-19 How to spread powder and granules

Publications (2)

Publication Number Publication Date
JP2021046305A true JP2021046305A (en) 2021-03-25
JP7356851B2 JP7356851B2 (en) 2023-10-05

Family

ID=74877692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170654A Active JP7356851B2 (en) 2019-09-19 2019-09-19 How to spread powder and granules

Country Status (1)

Country Link
JP (1) JP7356851B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094294A (en) * 2015-11-26 2017-06-01 花王株式会社 Granule scattering method and granule scattering device, and granule containing article manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094294A (en) * 2015-11-26 2017-06-01 花王株式会社 Granule scattering method and granule scattering device, and granule containing article manufacturing method

Also Published As

Publication number Publication date
JP7356851B2 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP2017094294A (en) Granule scattering method and granule scattering device, and granule containing article manufacturing method
TWI682884B (en) Powder and granule dispersion device, powder and granule dispersion method, and method for manufacturing powder and granule-containing article
WO2013084831A1 (en) Application method for powder and application device and method for manufacturing heating element using same
JP6828829B2 (en) Powder supply equipment and 3D laminated modeling equipment
JP2010094507A (en) Device for dosing powdery or granular substance into capsule or the like
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
JP2019052013A (en) Powder particle spraying device and method for producing powder particle-containing article
JP2021046305A (en) Sprinkling method of granular powder
JP6893276B1 (en) Powder / granular material spraying device and powder / granular material spraying method
JP2004177375A (en) Combinational measuring device
WO2019220748A1 (en) Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article
WO2021166731A1 (en) Method for spraying particulate matter and method for producing article containing particulate matter
TWI794602B (en) Powder supply device, resin molding device, powder supply method, and method for manufacturing resin molded products
JP5661481B2 (en) Weighing object supply device and seasoning device provided with the supply device
JP7228475B2 (en) Granule sprayer
JP6882125B2 (en) Granule spraying device
JP6688710B2 (en) Powder-granulating device and powder-granulating method
JP2021133267A (en) Dispersal method for granular powder, and production method for granular powder-including article
JPH01148916A (en) Quantitative weighing apparatus
JP6682321B2 (en) Method for manufacturing inorganic plate
JP2019073373A (en) Granular material sprayer
JP2016120987A (en) Granule spraying apparatus and spraying method of granule
JP7043662B1 (en) Gas transfer type ultrasonic squirt fine powder quantitative supply system and gas transfer type ultrasonic squirt fine powder quantitative supply method
JPS63201595A (en) Method of coating granulated powder material
JP6647568B2 (en) Combination weighing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R151 Written notification of patent or utility model registration

Ref document number: 7356851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151