JP2021042215A - 1,3-butylene glycol product - Google Patents

1,3-butylene glycol product Download PDF

Info

Publication number
JP2021042215A
JP2021042215A JP2020186343A JP2020186343A JP2021042215A JP 2021042215 A JP2021042215 A JP 2021042215A JP 2020186343 A JP2020186343 A JP 2020186343A JP 2020186343 A JP2020186343 A JP 2020186343A JP 2021042215 A JP2021042215 A JP 2021042215A
Authority
JP
Japan
Prior art keywords
butylene glycol
column
product
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020186343A
Other languages
Japanese (ja)
Other versions
JP6890709B2 (en
Inventor
泰照 梶川
Yasuteru Kajikawa
泰照 梶川
裕貴 手島
Yuki Tejima
裕貴 手島
雄一郎 平井
Yuichiro Hirai
雄一郎 平井
圭輔 小野
Keisuke Ono
圭輔 小野
碧 梅原
Midori Umehara
碧 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74863813&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021042215(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2019162352A external-priority patent/JP6804602B1/en
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2020186343A priority Critical patent/JP6890709B2/en
Publication of JP2021042215A publication Critical patent/JP2021042215A/en
Application granted granted Critical
Publication of JP6890709B2 publication Critical patent/JP6890709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a high-purity 1,3-butylene glycol product which is odorless and is less likely to increase in acid concentration with a lapse of time even when it contains water.SOLUTION: In a gas chromatographic analysis under specific conditions, an area ratio of a peak of 1,3-butylene glycol is 99.5% or more. When the relative retention time of the peak of 1,3-butylene glycol is 1.0, an area ratio of a peak appearing in the relative retention time in the range of 1.35 to 1.45 is more than 0 ppm and 10 ppm or less. The acid concentration (in terms of acetic acid) after holding the 90 wt.% aqueous solution at 100°C for 1 week is 0.0015 wt.% or less. A component applicable to the peak which appears in the relative retention time in the range of 1.35 to 1.45 includes an ester product of acetic acid and 1,3-butylene glycol.SELECTED DRAWING: Figure 1

Description

本発明は1,3−ブチレングリコール製品に関する。 The present invention relates to 1,3-butylene glycol products.

1,3−ブチレングリコールは無色透明、無臭の液体であり、低揮発性、低毒性、高吸湿性等の性質を備え、化学的安定性に優れる。このため、1,3−ブチレングリコールの用途は各種の合成樹脂、界面活性剤の原料をはじめ、化粧品、吸湿剤、高沸点溶剤、不凍液の素材等の多岐にわたっている。特に近年では、1,3−ブチレングリコールは保湿剤として優れた性質を有することが注目されており、化粧品業界での需要が拡大している。 1,3-butylene glycol is a colorless, transparent, odorless liquid, has properties such as low volatility, low toxicity, and high hygroscopicity, and is excellent in chemical stability. For this reason, 1,3-butylene glycol has a wide range of uses, including raw materials for various synthetic resins and surfactants, as well as cosmetics, hygroscopic agents, high boiling point solvents, and antifreeze materials. Particularly in recent years, attention has been paid to 1,3-butylene glycol having excellent properties as a moisturizer, and the demand in the cosmetics industry is expanding.

従来の製造方法で得られる1,3−ブチレングリコールは、水を含有した状態に長期間置くと酸濃度(酸性度)が上昇するという問題があった。酸濃度が上昇する原因は定かではなかったが、粗1,3−ブチレングリコールに含まれる副産物に関係すると考えられていた。 The 1,3-butylene glycol obtained by the conventional production method has a problem that the acid concentration (acidity) increases when it is left in a water-containing state for a long period of time. The cause of the increase in acid concentration was not clear, but it was thought to be related to the by-products contained in the crude 1,3-butylene glycol.

化粧品は水を含むことが一般的であり、製造から一般消費者が実際に使用するまでに長い期間を要する。また、化粧品は保存安定性等の観点から液性が厳密に調整されている。従来の方法で得られた1,3−ブチレングリコールを化粧品に使用する場合、酸濃度の上昇により化粧品の液性バランスが崩れ、本来発揮されるべき効果が失われる可能性がある。また、化粧品の酸濃度の上昇により、使用者の肌荒れ等が発生する可能性もある。また、水を含まない化粧品であっても、使用時や保管時に吸湿することにより、その酸濃度が上昇することもあった。このため、粗1,3−ブチレングリコールから副産物を除去し、1,3−ブチレングリコールを高純度化することが求められていた。 Cosmetics generally contain water, and it takes a long time from manufacture to actual use by general consumers. In addition, the liquid properties of cosmetics are strictly adjusted from the viewpoint of storage stability and the like. When 1,3-butylene glycol obtained by a conventional method is used in cosmetics, the liquid balance of the cosmetics may be disturbed due to an increase in acid concentration, and the effect that should be exhibited may be lost. In addition, an increase in the acid concentration of cosmetics may cause rough skin of the user. In addition, even cosmetics that do not contain water may have an increased acid concentration due to moisture absorption during use or storage. Therefore, it has been required to remove by-products from the crude 1,3-butylene glycol to purify the 1,3-butylene glycol.

純度の高い1,3−ブチレングリコールを得る方法として、アセトアルドール類の水素還元により得られた粗1,3−ブチレングリコールに対し、苛性ソーダを添加して蒸留を行う方法が提案されている。また、高沸点物を除いた粗1,3−ブチレングリコールにアルカリ金属塩基を添加して加熱処理した後、1,3−ブチレングリコールを留出させアルカリ金属化合物及び高沸点物を残渣として分離し、続いて1,3−ブチレングリコール留分から低沸点物を留去する方法等が提案されている(特許文献1〜6)。この様に、純度の高い1,3−ブチレングリコールを得るために様々な1,3−ブチレングリコールの精製方法が提案されてきた。 As a method for obtaining 1,3-butylene glycol having high purity, a method of adding caustic soda to crude 1,3-butylene glycol obtained by hydrogen reduction of acetaldehydes and performing distillation has been proposed. Further, after adding an alkali metal base to crude 1,3-butylene glycol excluding high boiling point and heat-treating, 1,3-butylene glycol was distilled off to separate the alkali metal compound and high boiling point residue as a residue. Subsequently, a method of distilling a low boiling point substance from the 1,3-butylene glycol distillate has been proposed (Patent Documents 1 to 6). As described above, various methods for purifying 1,3-butylene glycol have been proposed in order to obtain highly pure 1,3-butylene glycol.

特開平7−258129号公報Japanese Unexamined Patent Publication No. 7-258129 国際公開第00/07969号International Publication No. 00/07969 特開2001−213822号公報Japanese Unexamined Patent Publication No. 2001-213822 特開2001−213824号公報Japanese Unexamined Patent Publication No. 2001-213824 特開2001−213825号公報Japanese Unexamined Patent Publication No. 2001-213825 特開2001−213828号公報Japanese Unexamined Patent Publication No. 2001-213828

しかしながら、これらの精製方法から得られる1,3−ブチレングリコール製品も依然として副産物が含まれており、臭気を有するという問題や、水を含むと経時により酸濃度が上昇するという問題があった。 However, the 1,3-butylene glycol products obtained from these purification methods still contain by-products, and have a problem of having an odor and a problem that the acid concentration increases with time when water is contained.

従って、本発明の目的は、無臭であって、水を含む状態においても経時による酸濃度の上昇を生じにくい、高純度の1,3−ブチレングリコール製品を提供することにある。 Therefore, an object of the present invention is to provide a high-purity 1,3-butylene glycol product which is odorless and hardly causes an increase in acid concentration with time even in a state containing water.

本発明者らは、上記目的を達成するため鋭意検討した結果、従来の製造方法で得られる1,3−ブチレングリコール製品の酸濃度が上昇する原因の一つが、1,3−ブチレングリコール製品に含まれる副産物が水の存在下において加水分解され、有機酸(例えば酢酸)が生じることであることを突き止めた。そして、粗1,3−ブチレングリコールの製造方法を改良することにより、無臭であって、水を含む状態においても経時による酸濃度の上昇が生じにくい、高純度の1,3−ブチレングリコール製品が得られることを見出した。本発明はこれらの知見に基づいて完成させたものである。 As a result of diligent studies to achieve the above object, the present inventors have found that 1,3-butylene glycol products are one of the causes of the increase in the acid concentration of 1,3-butylene glycol products obtained by the conventional production method. It was found that the by-products contained were hydrolyzed in the presence of water to produce organic acids (eg acetic acid). By improving the method for producing crude 1,3-butylene glycol, a high-purity 1,3-butylene glycol product that is odorless and does not easily increase the acid concentration with time even when it contains water can be obtained. Found to be obtained. The present invention has been completed based on these findings.

すなわち、本発明では、下記条件のガスクロマトグラフィー分析において、
1,3−ブチレングリコールのピークの相対保持時間を1.0としたとき、相対保持時間が1.35〜1.45の範囲に現れるピークの面積率が100ppm以下である1,3−ブチレングリコール製品を提供する。
(ガスクロマトグラフィー分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
That is, in the present invention, in the gas chromatography analysis under the following conditions,
When the relative retention time of the peaks of 1,3-butylene glycol is 1.0, the area ratio of the peaks appearing in the relative retention time range of 1.35 to 1.45 is 100 ppm or less. Providing products.
(Conditions for gas chromatography analysis)
Analytical column: A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 μm × length 30 m × inner diameter 0.25 mm)
Temperature rise conditions: After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, the temperature is raised to 160 ° C. at 2 ° C./min and held for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
Sample introduction temperature: 250 ° C
Carrier gas: Gas flow rate of helium column: 1 mL / min Detector and detection temperature: Hydrogen flame ionization detector (FID), 280 ° C

上記1,3−ブチレングリコール製品は、90重量%水溶液を100℃で1週間保持した後の酸濃度(酢酸換算)が0.002重量%以下であることが好ましい。 The 1,3-butylene glycol product preferably has an acid concentration (acetic acid equivalent) of 0.002% by weight or less after holding a 90% by weight aqueous solution at 100 ° C. for 1 week.

上記1,3−ブチレングリコール製品における1,3−ブチレングリコールは、アセトアルドール、パラアルドール、及びアルドキサンからなる群より選択される少なくとも1つの化合物の還元体であることが好ましい。 The 1,3-butylene glycol in the above 1,3-butylene glycol product is preferably a reduced product of at least one compound selected from the group consisting of acetaldehyde, paraaldol, and aldoxane.

本発明の1,3−ブチレングリコール製品は、無臭であって、水を含む状態においても経時による酸濃度の上昇がないため、化粧品や保湿剤等の用途に好適に使用される。 The 1,3-butylene glycol product of the present invention is odorless and does not increase the acid concentration with time even when it contains water, so that it is suitably used for applications such as cosmetics and moisturizers.

本発明の1,3−ブチレングリコール製品に関する製造方法(精製方法)のフローチャートである。It is a flowchart of the manufacturing method (purification method) about the 1,3-butylene glycol product of this invention. 実施例1における1,3−ブチレングリコール製品のガスクロマトグラフィー分析のチャートである。It is a chart of the gas chromatography analysis of the 1,3-butylene glycol product in Example 1. 比較例1における1,3−ブチレングリコール製品のガスクロマトグラフィー分析のチャートである。It is a chart of the gas chromatography analysis of the 1,3-butylene glycol product in Comparative Example 1.

本発明の1,3−ブチレングリコール製品は、下記条件のガスクロマトグラフィー分析において、1,3−ブチレングリコールのピークの相対保持時間を1.0としたとき、相対保持時間が1.35〜1.45の範囲に現れるピークの面積率が100ppm以下であることを特徴とする。 The 1,3-butylene glycol product of the present invention has a relative retention time of 1.35 to 1 when the relative retention time of the peak of 1,3-butylene glycol is 1.0 in the gas chromatography analysis under the following conditions. The peak area ratio appearing in the range of .45 is 100 ppm or less.

(ガスクロマトグラフィー分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
(Conditions for gas chromatography analysis)
Analytical column: A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 μm × length 30 m × inner diameter 0.25 mm)
Temperature rise conditions: After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, the temperature is raised to 160 ° C. at 2 ° C./min and held for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
Sample introduction temperature: 250 ° C
Carrier gas: Gas flow rate of helium column: 1 mL / min Detector and detection temperature: Hydrogen flame ionization detector (FID), 280 ° C

上記ピークの面積率は、例えば、100ppm以下が好ましく、より好ましくは50ppm以下、さらに好ましくは20ppm以下、特に好ましくは10ppm以下である。なお、本発明において、ピークの「面積率」とは、チャートに現れる全てのピークの面積の和に対する特定のピークの面積の割合を意味するものである。また、全てのピークとは、例えば、1,3−ブチレングリコールのピークの相対保持時間を1.0としたとき、相対保持時間が7.8まで分析を継続して停止した場合に現れるピークの全てを意味する。上記ピークの面積率が上記範囲にあることにより、臭気の発生や、水を含む状態における経時による酸濃度の上昇が低減される傾向がある。 The area ratio of the peak is, for example, preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 20 ppm or less, and particularly preferably 10 ppm or less. In the present invention, the "area ratio" of the peak means the ratio of the area of a specific peak to the sum of the areas of all the peaks appearing on the chart. In addition, all peaks are, for example, peaks appearing when the relative retention time of the peak of 1,3-butylene glycol is 1.0 and the analysis is continuously stopped until the relative retention time is 7.8. Means everything. When the area ratio of the peak is in the above range, the generation of odor and the increase in acid concentration with time in a state containing water tend to be reduced.

上記条件のガスクロマトグラフィー分析において、1,3−ブチレングリコールのピークの相対保持時間を1.0としたときの相対保持時間が1.35〜1.45の範囲に現れるピークに該当する成分としては、例えば、酢酸と1,3−ブチレングリコールとのエステル体が挙げられる。すなわち、本発明の1,3−ブチレングリコール製品は、副産物としての前記エステル体の含有量が少ないことが好ましい。 In the gas chromatography analysis under the above conditions, as a component corresponding to the peak whose relative retention time appears in the range of 1.35 to 1.45 when the relative retention time of the peak of 1,3-butylene glycol is 1.0. For example, an ester form of acetic acid and 1,3-butylene glycol can be mentioned. That is, the 1,3-butylene glycol product of the present invention preferably has a low content of the ester as a by-product.

本発明の1,3−ブチレングリコール製品において、上記条件のガスクロマトグラフィー分析における1,3−ブチレングリコールのピークの面積率は、例えば、99.5%以上であることが好ましく、より好ましくは99.7%以上、さらに好ましくは99.8%以上、特に好ましくは99.9%以上である。上記ピークの面積率が上記範囲にあることにより、臭気の発生や、水を含む状態における経時による酸濃度の上昇が低減される傾向がある。 In the 1,3-butylene glycol product of the present invention, the area ratio of the peak of 1,3-butylene glycol in the gas chromatography analysis under the above conditions is preferably, for example, 99.5% or more, more preferably 99. It is 7.7% or more, more preferably 99.8% or more, and particularly preferably 99.9% or more. When the area ratio of the peak is in the above range, the generation of odor and the increase in acid concentration with time in a state containing water tend to be reduced.

本発明の1,3−ブチレングリコール製品では、上記条件のガスクロマトグラフィー分析における1,3−ブチレングリコールのピークの相対保持時間を1.0としたときの、相対保持時間が1.6〜1.8の範囲に現れるピークの面積率が、例えば、2000ppm以下であることが好ましく、より好ましくは1000ppm以下、さらに好ましくは600ppm以下、特に好ましくは200ppm以下である。上記ピークの面積率が上記範囲にあることにより、臭気の発生や経時による着色が低減される傾向がある。上記面積率の下限は、例えば、10ppm、20ppm、50ppm、又は100ppmであってもよい。 In the 1,3-butylene glycol product of the present invention, the relative retention time is 1.6 to 1 when the relative retention time of the peak of 1,3-butylene glycol in the gas chromatography analysis under the above conditions is 1.0. The area ratio of the peak appearing in the range of .8 is, for example, preferably 2000 ppm or less, more preferably 1000 ppm or less, still more preferably 600 ppm or less, and particularly preferably 200 ppm or less. When the area ratio of the peak is in the above range, the generation of odor and the coloring due to aging tend to be reduced. The lower limit of the area ratio may be, for example, 10 ppm, 20 ppm, 50 ppm, or 100 ppm.

上記条件のガスクロマトグラフィー分析において、1,3−ブチレングリコールのピークの相対保持時間を1.0としたときの相対保持時間が1.6〜1.8の範囲に現れるピークに該当する成分としては、例えば、原料(アセトアルデヒド)の三量体の水素化物が挙げられる。すなわち、本発明の1,3−ブチレングリコール製品は、副産物としての前記水素化物の含有量が少ないことが好ましい。 In the gas chromatography analysis under the above conditions, when the relative retention time of the peak of 1,3-butylene glycol is 1.0, the relative retention time appears in the range of 1.6 to 1.8 as a component corresponding to the peak. For example, a hydride of a trimer of a raw material (acetaldehyde) can be mentioned. That is, the 1,3-butylene glycol product of the present invention preferably has a low content of the hydride as a by-product.

本発明の1,3−ブチレングリコール製品において、90重量%水溶液を100℃で1週間保持した後の酸濃度(酢酸換算)は特に限定されないが、例えば、0.002重量%以下であることが好ましく、より好ましくは0.0015重量%以下、さらに好ましくは0.001重量%以下、特に好ましくは0.0005重量%以下である。上記酸濃度の上限は、例えば、0.00005重量%、0.0001重量%であってもよい。なお、90重量%水溶液とは、1,3−ブチレングリコール製品と水(例えば純水)とを混合し、1,3−ブチレングリコール製品が90重量%となる様に調整した水溶液を意味する。また、本発明の1,3−ブチレングリコール製品(100℃で1週間保持する前)において、90重量%水溶液の酸濃度(酢酸換算)は、上記範囲内であることが好ましい。 In the 1,3-butylene glycol product of the present invention, the acid concentration (acetic acid equivalent) after holding the 90% by weight aqueous solution at 100 ° C. for 1 week is not particularly limited, but may be, for example, 0.002% by weight or less. It is preferably 0.0015% by weight or less, more preferably 0.001% by weight or less, and particularly preferably 0.0005% by weight or less. The upper limit of the acid concentration may be, for example, 0.00005% by weight or 0.0001% by weight. The 90% by weight aqueous solution means an aqueous solution prepared by mixing a 1,3-butylene glycol product and water (for example, pure water) so that the 1,3-butylene glycol product is 90% by weight. Further, in the 1,3-butylene glycol product of the present invention (before holding at 100 ° C. for 1 week), the acid concentration (acetic acid equivalent) of the 90% by weight aqueous solution is preferably within the above range.

本発明の1,3−ブチレングリコール製品の90重量%水溶液の酸濃度(酢酸換算)について、100℃で1週間保持した後の酸濃度の保持前の酸濃度に対する比率[(100℃1週間保持後の酸濃度)/(保持前の酸濃度)×100(%)]は、特に限定されないが、200%以下が好ましく、より好ましくは150%以下、さらに好ましくは120%以下である。 Regarding the acid concentration (acetic acid equivalent) of the 90% by weight aqueous solution of the 1,3-butylene glycol product of the present invention, the ratio of the acid concentration after holding at 100 ° C. for 1 week to the acid concentration before holding [(100 ° C. for 1 week holding) The subsequent acid concentration) / (acid concentration before retention) × 100 (%)] is not particularly limited, but is preferably 200% or less, more preferably 150% or less, still more preferably 120% or less.

本発明の1,3−ブチレングリコール製品における1,3−ブチレングリコールは、例えば、(1)アセトアルドール類の還元体、(2)1,3−ブチレンオキサイドの加水分解物、(3)エリスリトールの選択的水素化分解物、(4)ブタジエンへの選択的水付加物、(5)n−ブタナール−3−オンの水素化物、(6)1−ブタノール−3−オンの水素化物、(7)3−ヒドロキシ−1−ブタン酸の水素化物、(8)β−ブチロラクトンの水素化物、及び(9)ジケテンの水素化物が挙げられる。なお、本発明の1,3−ブチレングリコールは上記(1)〜(9)のうちの一種又は二種以上の混合物であってもよい。 The 1,3-butylene glycol in the 1,3-butylene glycol product of the present invention is, for example, (1) a reduced product of acetoaldoles, (2) a hydrolyzate of 1,3-butylene oxide, and (3) erythritol. Selective hydrocracked product, (4) Selective water addition to butadiene, (5) N-butanol-3-one hydride, (6) 1-butanol-3-one hydride, (7) Examples thereof include hydrides of 3-hydroxy-1-butanoic acid, (8) hydrides of β-butyrolactone, and (9) hydrides of diketen. The 1,3-butylene glycol of the present invention may be one or a mixture of two or more of the above (1) to (9).

本発明の1,3−ブチレングリコール製品における1,3−ブチレングリコールは(1)アセトアルドール類の還元体であることが好ましい。また、アセトアルドール類の還元体としては、1,3−ブチレングリコールの収率の観点からは、アセトアルドール類の液相還元体であることが好ましい。その理由は、アセトアルドール類が高沸点であることと、アセトアルドール類が熱に不安定であって、高温では容易に脱水反応を起こしてクロトンアルデヒド等になること、さらに、高温における脱水反応と還元反応(水添反応)は前者の反応速度が速いこと、にある。すなわち、アセトアルドール類を気相還元する場合には反応系内を高温とする必要があるが、アセトアルドール類を高温に付すと脱水反応を起こしてクロトンアルデヒド等が生じ、その後の還元反応によりブタノール等の副産物が生じる。このため、目的とする1,3−ブチレングリコールの収率が相対的に低下することとなる。したがって、高純度の1,3−ブチレングリコール製品を得るためには、気相還元よりも液相還元を行うことが好ましい。ここで、アセトアルドール類の還元体としての1,3−ブチレングリコールとは、アセトアルドール類を水素還元する方法により得られる1,3−ブチレングリコールと言い換えることができる。同様に、アセトアルドール類の液相還元体としての1,3−ブチレングリコールとは、アセトアルドール類を液相にて水素還元する方法により得られる1,3−ブチレングリコールと言い換えることができる。また、1,3−ブチレンオキサイドの加水分解物としての1,3−ブチレングリコールとは、1,3−ブチレンオキサイドを加水分解することにより得られる1,3−ブチレングリコールと言い換えることができる。 The 1,3-butylene glycol in the 1,3-butylene glycol product of the present invention is preferably (1) a reduced form of acetaldehydes. The reduced form of acetaldehyde is preferably a liquid phase reduced form of acetaldehyde from the viewpoint of the yield of 1,3-butylene glycol. The reason is that acetaldehydes have a high boiling point, acetaldehydes are heat-unstable, and they easily undergo a dehydration reaction at high temperatures to become crotonaldehyde, etc., and further, dehydration reactions at high temperatures. The reduction reaction (hydrogenation reaction) is due to the fact that the former reaction rate is high. That is, when acetaldehydes are reduced in gas phase, it is necessary to raise the temperature inside the reaction system. However, when acetaldehydes are exposed to high temperatures, a dehydration reaction occurs to generate crotonaldehyde, etc., and the subsequent reduction reaction causes butanol. And other by-products are produced. Therefore, the yield of the target 1,3-butylene glycol is relatively lowered. Therefore, in order to obtain a high-purity 1,3-butylene glycol product, it is preferable to carry out liquid phase reduction rather than gas phase reduction. Here, 1,3-butylene glycol as a reduced form of acetaldehyde can be rephrased as 1,3-butylene glycol obtained by a method of reducing acetaldehyde with hydrogen. Similarly, 1,3-butylene glycol as a liquid phase reducer of acetaldehyde can be rephrased as 1,3-butylene glycol obtained by a method of hydrogen reducing acetaldehyde in the liquid phase. Further, 1,3-butylene glycol as a hydrolyzate of 1,3-butylene oxide can be paraphrased as 1,3-butylene glycol obtained by hydrolyzing 1,3-butylene oxide.

一般的に、1,3−ブチレングリコールを製造する場合、その製造過程において副産物が産生する。例えば、アセトアルドール類の水素還元により1,3−ブチレングリコールを製造する場合、アセトアルデヒド、ブチルアルデヒド、クロトンアルデヒド、アセトン、メチルビニルケトン等の不飽和結合を有する低沸点物(低沸点化合物)や、これらの縮合物、1,3−ブチレングリコールと上記低沸点物との縮合物(例えば、1,3−ブチレングリコールとアセトアルドールとのアセタール体)等が副生する。また、原料となるアセトアルドール類に不純物として含まれる酢酸や、アセトアルドール類の製造において使用した苛性ソーダを中和するために使用される酢酸と、1,3−ブチレングリコールの縮合物(酢酸と1,3−ブチレングリコールとのエステル体)が副生する。 Generally, when 1,3-butylene glycol is produced, a by-product is produced in the production process. For example, when 1,3-butylene glycol is produced by hydrogen reduction of acetaldehydes, low boiling point substances (low boiling point compounds) having unsaturated bonds such as acetaldehyde, butylaldehyde, crotonaldehyde, acetone, and methyl vinyl ketone are used. These condensates, condensates of 1,3-butylene glycol and the above low boiling point substances (for example, acetal compounds of 1,3-butylene glycol and acetaldehyde) and the like are by-produced. In addition, acetic acid contained as an impurity in acetaldehyde as a raw material, acetic acid used for neutralizing caustic soda used in the production of acetaldehyde, and a condensate of 1,3-butylene glycol (acetic acid and 1). , 3-Butylene glycol (ester) is by-produced.

そして、これらの副産物は臭気原因物質や酸性原因物質としての性質を有し得る。特に、上記エステル体は臭気原因物質と酸性原因物質としての両方の性質を有するものであると考えられる。これは、上記エステル体が水により加水分解されると、酢酸が発生するためである。また、上記アセタール体は臭気原因物質としての性質を色濃く有するものであると考えられる。なお、1,3−ブチレングリコールには、上記アセタール体やエステル体以外にも、臭気原因物質や酸性原因物質に相当する副産物が含まれると考えられる。ここで、臭気原因物質とは、それ自身が現に臭気を発している物質だけでなく、経時的に臭気を発するものに変化する物質も含むものとして定義される。また、酸性原因物質とは、水を含むと経時により酸濃度が上昇する物質と定義される。 And these by-products can have properties as an odor-causing substance or an acid-causing substance. In particular, the ester is considered to have both properties as an odor-causing substance and an acid-causing substance. This is because acetic acid is generated when the ester is hydrolyzed by water. Further, it is considered that the acetal body has a strong property as an odor-causing substance. In addition to the acetal form and ester form, 1,3-butylene glycol is considered to contain by-products corresponding to odor-causing substances and acid-causing substances. Here, the odor-causing substance is defined as including not only a substance that actually emits an odor but also a substance that changes to a substance that emits an odor over time. Further, the acid-causing substance is defined as a substance whose acid concentration increases with time when it contains water.

これらの副産物、特に、上記のアセタール体やエステル体は、従来の蒸留等の精製手段を用いても完全に取り除くことは難しい。これは、精製段階において、粗1,3−ブチレングリコールが高温条件に付されることや、アルカリ処理に付されることにより、新たな副産物が産生するためであると考えられる。このため、上述の通り、特許文献1〜6の1,3−ブチレングリコール製品が多くの副産物を含むことから臭気を有し、さらに水を含む状態において経時による酸濃度の上昇が生じる。したがって、純度の高い1,3−ブチレングリコール製品を得るためには粗1,3−ブチレングリコールを精製する方法を改良するだけでは充分でなく、粗1,3−ブチレングリコールの製造方法そのものを改良することが必要であるといえる。 It is difficult to completely remove these by-products, particularly the above-mentioned acetal form and ester form, even by using conventional purification means such as distillation. It is considered that this is because the crude 1,3-butylene glycol is subjected to high temperature conditions in the purification stage and is subjected to alkaline treatment to produce new by-products. Therefore, as described above, the 1,3-butylene glycol products of Patent Documents 1 to 6 have an odor because they contain many by-products, and the acid concentration increases with time in a state of further containing water. Therefore, in order to obtain a high-purity 1,3-butylene glycol product, it is not enough to improve the method for purifying the crude 1,3-butylene glycol, but also to improve the method for producing the crude 1,3-butylene glycol. It can be said that it is necessary to do.

1,3−ブチレングリコールの製造にはアセトアルドール類を含む水添原料が使用される。アセトアルドール類は水素還元により1,3−ブチレングリコールとなる化合物であれば特に限定されないが、例えば、アセトアルドール、その環化二量体であるパラアルドール、アセトアルデヒドの一種の環状3量体であるアルドキサン、及びこれらの混合物等が挙げられる。 Hydrogenated raw materials containing acetaldehyde are used for the production of 1,3-butylene glycol. The acetaldols are not particularly limited as long as they are compounds that become 1,3-butylene glycol by hydrogen reduction, and are, for example, acetaldol, its cyclized dimer paraaldol, and a kind of cyclic trimer of acetaldehyde. Examples thereof include aldoxane and a mixture thereof.

アセトアルドール類(例えばアセトアルドールやパラアルドール)の製造方法は特に限定されないが、例えば、塩基性触媒の存在下におけるアセトアルデヒドのアルドール縮合反応により得られたものでも、アルドキサンの熱分解等で得られたものであってもよい。上記の反応により得られたアセトアルドール類を含む反応粗液を酸により中和して、1,3−ブチレングリコールの製造に使用してもよい。この様な反応粗液は、アセトアルドール類以外にも、アセトアルデヒド、クロトンアルデヒド、他のアルデヒド成分、低沸点物、アルデヒドダイマーやトリマー等の高沸点物、水、塩等が含まれ得る。なお、本明細書において、1,3−ブチレングリコールよりも沸点の低い化合物を「低沸点物」、1,3−ブチレングリコールよりも沸点の高い化合物を「高沸点物」とそれぞれ称する場合がある。 The method for producing acetaldehydes (for example, acetaldehyde and paraaldol) is not particularly limited. For example, even those obtained by the aldol condensation reaction of acetaldehyde in the presence of a basic catalyst can be obtained by thermal decomposition of aldoxane or the like. It may be a thing. The crude reaction solution containing acetaldehydes obtained by the above reaction may be neutralized with an acid and used for the production of 1,3-butylene glycol. In addition to acetaldehyde, such reaction crude liquid may contain acetaldehyde, crotonaldehyde, other aldehyde components, low boiling point substances, high boiling point substances such as aldehyde dimers and trimmers, water, salts and the like. In the present specification, a compound having a boiling point lower than that of 1,3-butylene glycol may be referred to as a "low boiling point substance", and a compound having a boiling point higher than that of 1,3-butylene glycol may be referred to as a "high boiling point substance". ..

上記反応粗液は、必要に応じて、脱アルコール蒸留、脱水蒸留、脱塩、脱不純物等の前処理に付し、未反応アセトアルデヒドやクロトンアルデヒド等の副産物を除去したものを使用してもよい。前処理の方法としては、蒸留、吸着、イオン交換、加熱高沸点物化、分解等が挙げられる。蒸留は、減圧、常圧、加圧、共沸、抽出、反応等の種々の蒸留方法が使用できる。 If necessary, the crude reaction solution may be subjected to pretreatment such as dealcohol distillation, dehydration distillation, desalting, demineralization, etc. to remove by-products such as unreacted acetaldehyde and crotonaldehyde. .. Examples of the pretreatment method include distillation, adsorption, ion exchange, heating to a high boiling point, decomposition and the like. For distillation, various distillation methods such as reduced pressure, normal pressure, pressure, azeotrope, extraction, and reaction can be used.

水添原料におけるアセトアルドール類の含有量は特に限定されないが、例えば、50重量%以上(例えば50〜99重量%)であることが好ましく、より好ましくは60重量%以上(例えば60〜98重量%)、さらに好ましくは65〜98重量%、特に好ましくは80〜95重量%、最も好ましくは85〜95重量%である。アセトアルドール類の含有量が上記範囲内であることにより、粗1,3−ブチレングリコールに含まれる不純物が低減される傾向がある。 The content of acetaldehyde in the hydrogenated raw material is not particularly limited, but is preferably, for example, 50% by weight or more (for example, 50 to 99% by weight), and more preferably 60% by weight or more (for example, 60 to 98% by weight). ), More preferably 65 to 98% by weight, particularly preferably 80 to 95% by weight, and most preferably 85 to 95% by weight. When the content of acetaldehydes is within the above range, impurities contained in the crude 1,3-butylene glycol tend to be reduced.

水添原料は水を含んでいてもよいし、含まなくてもよいが、1,3−ブチレングリコールの純度の観点からは含んでいることが好ましい。水添原料における水の含有量は特に限定されないが、例えば、2重量%以上が好ましく、より好ましくは5重量%以上、さらに好ましくは10重量%以上、特に好ましくは15重量%以上である。なお、その上限値は、例えば、50重量%、40重量%、又は35重量%であってもよい。水の含有量が上記範囲内である場合、得られる粗1,3−ブチレングリコールに含まれる酢酸と1,3−ブチレングリコールとのエステル体が低減されるため、最終的に得られる1,3−ブチレングリコール製品の純度が高くなる傾向がある。これは、水添原料に水がある程度含まれていることにより、上記エステル体が加水分解されて1,3−ブチレングリコールとなることに起因する。 The hydrogenated raw material may or may not contain water, but it is preferably contained from the viewpoint of the purity of 1,3-butylene glycol. The content of water in the hydrogenated raw material is not particularly limited, but is, for example, 2% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, and particularly preferably 15% by weight or more. The upper limit may be, for example, 50% by weight, 40% by weight, or 35% by weight. When the water content is within the above range, the ester of acetic acid and 1,3-butylene glycol contained in the obtained crude 1,3-butylene glycol is reduced, so that the finally obtained 1,3 -The purity of butylene glycol products tends to be high. This is due to the fact that the hydrogenated raw material contains water to some extent, so that the ester is hydrolyzed to 1,3-butylene glycol.

以下、粗1,3−ブチレングリコールの製造方法について説明する。本製造方法では、アセトアルドール類を含む水添原料を水添触媒の存在下で還元することにより粗1,3−ブチレングリコールを得ることを特徴とする。 Hereinafter, a method for producing crude 1,3-butylene glycol will be described. The present production method is characterized in that crude 1,3-butylene glycol is obtained by reducing a hydrogenated raw material containing acetaldehydes in the presence of a hydrogenated catalyst.

水添触媒としては、例えば、ラネーニッケル等が挙げられる。水添触媒は、鹸濁又は充填して使用することができるが、鹸濁させて使用することが好ましい。使用する水添触媒の量は特に限定されないが、水添原料100重量部に対して、例えば、1〜30重量部が好ましく、より好ましくは4〜25重量部、さらに好ましくは8〜20重量部、特に好ましくは12〜18重量部である。還元反応に使用する水素量は特に限定されないが、水添原料100重量部に対して、例えば、0.5〜40重量部が好ましく、より好ましくは1〜30重量部、さらに好ましくは4〜20重量部、特に好ましくは8〜12重量部である。還元反応における反応系内の圧力(全圧)は特に限定されないが、例えば、150〜500atmが好ましく、より好ましくは180〜450atm、さらに好ましくは200〜400atm、特に好ましくは250〜350atmである。反応系内の全圧に対する水素圧(水素の分圧)の割合は特に限定されないが、例えば、全圧の80%以上(80〜100%)であることが好ましく、より好ましくは85〜99.9%、さらに好ましくは90〜99.5%、特に好ましくは95〜99%である。反応系内の水素圧(水素の分圧)は特に限定されないが、例えば、100〜500atmが好ましく、より好ましくは150〜450atm、さらに好ましくは150〜400atm、特に好ましくは200〜350atmである。還元反応における反応温度は特に限定されないが、例えば、110〜140℃が好ましく、より好ましくは120〜140℃である。還元反応における反応時間(滞留時間)は特に限定されないが、例えば、30〜300分間が好ましく、より好ましくは80〜280分間、さらに好ましくは120〜250分間である。 Examples of the hydrogenated catalyst include Raney nickel and the like. The hydrogenated catalyst can be used after being turbid or filled, but it is preferably used after being turbid. The amount of the hydrogenated catalyst used is not particularly limited, but is preferably 1 to 30 parts by weight, more preferably 4 to 25 parts by weight, still more preferably 8 to 20 parts by weight, based on 100 parts by weight of the hydrogenated raw material. , Particularly preferably 12 to 18 parts by weight. The amount of hydrogen used in the reduction reaction is not particularly limited, but is preferably 0.5 to 40 parts by weight, more preferably 1 to 30 parts by weight, still more preferably 4 to 20 parts by weight, based on 100 parts by weight of the hydrogenated raw material. It is by weight, particularly preferably 8 to 12 parts by weight. The pressure (total pressure) in the reaction system in the reduction reaction is not particularly limited, but is preferably 150 to 500 atm, more preferably 180 to 450 atm, still more preferably 200 to 400 atm, and particularly preferably 250 to 350 atm. The ratio of the hydrogen pressure (partial pressure of hydrogen) to the total pressure in the reaction system is not particularly limited, but is preferably 80% or more (80 to 100%) of the total pressure, and more preferably 85 to 99. It is 9%, more preferably 90 to 99.5%, and particularly preferably 95 to 99%. The hydrogen pressure (partial pressure of hydrogen) in the reaction system is not particularly limited, but is preferably 100 to 500 atm, more preferably 150 to 450 atm, still more preferably 150 to 400 atm, and particularly preferably 200 to 350 atm. The reaction temperature in the reduction reaction is not particularly limited, but is preferably 110 to 140 ° C, more preferably 120 to 140 ° C, for example. The reaction time (residence time) in the reduction reaction is not particularly limited, but is preferably, for example, 30 to 300 minutes, more preferably 80 to 280 minutes, and even more preferably 120 to 250 minutes.

還元反応に使用する水添触媒の量、水素量、還元反応における水素圧、反応温度、反応時間(滞留時間)が上記範囲内にあることにより、エステル体のカルボン酸部分の水素化が急速に進行してアルコールとなる。その結果、酢酸と1,3−ブチレングリコールのエステル体が低減され、高い純度である本発明の1,3−ブチレングリコール製品が得られることになる。本反応は、回分式、半回分式、又は連続式のいずれでも行うことができる。 When the amount of hydrogenation catalyst used for the reduction reaction, the amount of hydrogen, the hydrogen pressure in the reduction reaction, the reaction temperature, and the reaction time (residence time) are within the above ranges, the carboxylic acid portion of the ester is rapidly hydrogenated. It progresses to alcohol. As a result, the ester form of acetic acid and 1,3-butylene glycol is reduced, and the 1,3-butylene glycol product of the present invention having high purity can be obtained. This reaction can be carried out in a batch system, a semi-batch system, or a continuous system.

上記水添原料の水素還元により得られた粗1,3−ブチレングリコールは、例えば、脱水工程、脱塩工程、脱高沸点物蒸留工程、アルカリ反応工程、脱アルカリ工程、蒸留工程を経ることにより、1,3−ブチレングリコール製品として得ることができる。 The crude 1,3-butylene glycol obtained by hydrogenation of the hydrogenated raw material is subjected to, for example, a dehydration step, a desalting step, a dehigh boiling point distillation step, an alkali reaction step, a dealkali step, and a distillation step. , 1,3-butylene glycol product can be obtained.

上記粗1,3−ブチレングリコールの高沸点物の含有率は特に限定されないが、例えば、0.1〜20重量%であることが好ましく、より好ましくは1〜15重量%、さらに好ましくは2〜10重量%である。粗1,3−ブチレングリコール中の高沸点物の含有率が上記範囲内にあることにより、最終的に得られる1,3−ブチレングリコール製品に含まれる副産物の量が低減される傾向がある。 The content of the high boiling point of the crude 1,3-butylene glycol is not particularly limited, but is preferably 0.1 to 20% by weight, more preferably 1 to 15% by weight, still more preferably 2 to 2% by weight. It is 10% by weight. When the content of the high boiling point substance in the crude 1,3-butylene glycol is within the above range, the amount of by-products contained in the finally obtained 1,3-butylene glycol product tends to be reduced.

脱高沸点物蒸留工程後の粗1,3−ブチレングリコール中の高沸点物の含有率は、1.0重量%以下、好ましくは0.5重量%以下である。高沸点物の含有率が少ない粗1,3−ブチレングリコールを使用することにより、アルカリ反応工程において、塩基と共に加熱処理されても高沸点物の分解反応による低沸点物の生成が無いか、あるいは極めて少なくなる。その結果、臭気がなく、さらに水を含む状態において経時による酸濃度の上昇が生じにくい、高品質の1,3−ブチレングリコール製品が得られる傾向がある。 The content of the high boiling point in the crude 1,3-butylene glycol after the dehigh boiling point distillation step is 1.0% by weight or less, preferably 0.5% by weight or less. By using crude 1,3-butylene glycol having a low content of high boiling point, there is no formation of low boiling point due to decomposition reaction of high boiling point even if it is heat-treated with a base in the alkaline reaction step. Very few. As a result, there is a tendency to obtain a high-quality 1,3-butylene glycol product that has no odor and does not easily increase the acid concentration with time in a state of containing water.

図1は本発明の1,3−ブチレングリコール製品を得るための実施態様の一例を示した装置のフローシートである。Aは脱水塔であり、脱水工程に関連する。Bは脱塩塔であり脱塩工程に関連する。Cは脱高沸点物蒸留塔であり脱高沸点物蒸留工程に関連する。Dはアルカリ反応器でありアルカリ反応工程に関連する。Eは脱アルカリ塔であり脱アルカリ工程に関連する。Fは製品蒸留塔であり蒸留工程に関連する。A−1、B−1、C−1、E−1、F−1はコンデンサーである。A−2、C−2、F−2はリボイラーである。以下、本フローシートを用いて本発明の1,3−ブチレングリコール製品を得るための実施態様の一例を説明する。 FIG. 1 is a flow sheet of an apparatus showing an example of an embodiment for obtaining the 1,3-butylene glycol product of the present invention. A is a dehydration tower and is related to the dehydration process. B is a desalination tower and is related to the desalination process. C is a dehigh boiling point distillation column and is related to the dehigh boiling point distillation step. D is an alkaline reactor and is related to the alkaline reaction step. E is a dealkali tower and is related to the dealkali step. F is a product distillation column and is related to the distillation process. A-1, B-1, C-1, E-1, and F-1 are capacitors. A-2, C-2, and F-2 are reboilers. Hereinafter, an example of an embodiment for obtaining the 1,3-butylene glycol product of the present invention using the present flow sheet will be described.

水添原料の水素還元により得られた粗1,3−ブチレングリコール(「X−1」に相当)は、脱水塔Aに供給される。脱水塔Aでは蒸留により塔頂部から水が留出され、塔底部より1,3−ブチレングリコールを含む粗1,3−ブチレングリコール流が得られる。上記粗1,3−ブチレングリコール流は脱塩塔Bに供給される。脱塩塔Bでは蒸留により塔頂部から脱塩後の粗1,3−ブチレングリコール流が得られ、塔底部から塩や高沸点物等が排出される。 The crude 1,3-butylene glycol (corresponding to "X-1") obtained by hydrogenation of the hydrogenated raw material is supplied to the dehydration column A. In the dehydration column A, water is distilled from the top of the column by distillation, and a crude 1,3-butylene glycol stream containing 1,3-butylene glycol is obtained from the bottom of the column. The crude 1,3-butylene glycol flow is supplied to the desalting column B. In the desalting column B, a crude 1,3-butylene glycol flow after desalting is obtained from the top of the column by distillation, and salts, high boiling point substances and the like are discharged from the bottom of the column.

上記の脱塩後の粗1,3−ブチレングリコール流は脱高沸点物蒸留塔Cに供給される。脱高沸点物蒸留塔Cでは、塔底部から高沸点物が排出される。一方、塔頂部からは脱高沸点物後の粗1,3−ブチレングリコール流が得られる。脱高沸点物蒸留塔Cにより蒸留された粗1,3−ブチレングリコールは、アルカリ反応器(例えば流通式管型反応器)Dに供給され、塩基処理される。アルカリ反応器D又はその上流では、塩基が脱高沸点物後の粗1,3−ブチレングリコール流に対して0.05〜10重量%、好ましくは0.1〜1.0重量%添加される。塩基の添加量が10重量%を超えると、蒸留塔、配管等で塩基が析出し、閉塞の原因となる傾向がある。また、高沸点化合物の分解反応が起こることもあり、かえって副産物が発生する傾向がある。0.05重量%未満の場合は、副産物を分解する効果が小さいため、いずれも好ましくない。 The crude 1,3-butylene glycol flow after desalting is supplied to the dehigh boiling point distillation column C. In the dehigh boiling point distillation column C, the high boiling point is discharged from the bottom of the column. On the other hand, a crude 1,3-butylene glycol flow after the dehigh boiling point is obtained from the top of the column. The crude 1,3-butylene glycol distilled by the dehigh boiling point distillation column C is supplied to an alkaline reactor (for example, a flow tube type reactor) D and subjected to base treatment. In the alkaline reactor D or upstream thereof, 0.05 to 10% by weight, preferably 0.1 to 1.0% by weight, of the base is added to the crude 1,3-butylene glycol flow after the dehigh boiling point. .. If the amount of the base added exceeds 10% by weight, the base tends to precipitate in the distillation column, piping, etc., causing clogging. In addition, decomposition reactions of high boiling point compounds may occur, and by-products tend to be generated on the contrary. If it is less than 0.05% by weight, the effect of decomposing by-products is small, which is not preferable.

アルカリ反応器D又はその上流で添加される塩基は特に限定されないが、例えば、アルカリ金属化合物が好ましい。アルカリ金属化合物としては、例えば、苛性ソーダ、苛性カリ、(重)炭酸ソーダ、(重)炭酸カリが挙げられるが、最終的に得られる1,3−ブチレングリコール製品に含まれる副産物を低減する観点からは、苛性ソーダ、苛性カリが好ましい。塩基は固体状のものをそのまま加えてもよいが、操作上及び対象液との接触を促進するため水溶液で添加することが好ましい。なお、上記の塩基は1種を単独で用いてもよいし、2種以上を同時に使用してもよい。 The base added in the alkali reactor D or upstream thereof is not particularly limited, but for example, an alkali metal compound is preferable. Examples of the alkali metal compound include caustic soda, caustic potash, (heavy) sodium carbonate, and (heavy) potassium carbonate, but from the viewpoint of reducing by-products contained in the finally obtained 1,3-butylene glycol product. , Caustic soda, caustic potash are preferred. A solid base may be added as it is, but it is preferable to add the base as an aqueous solution in order to promote contact with the target liquid in terms of operation. The above-mentioned bases may be used alone or in combination of two or more.

アルカリ反応器Dでの反応温度は特に限定されないが、例えば、90〜140℃が好ましく、より好ましくは110〜130℃である。反応温度が90℃未満である場合は長い反応滞留時間が必要になるため、反応器容量が大きくなり不経済であること、反応温度が140℃を超えると最終的に得られる1,3−ブチレングリコール製品の着色が増加することにある。反応滞留時間は、例えば、5〜120分が好ましく、より好ましくは10〜30分である。反応滞留時間が5分未満である場合は反応が不十分となり、最終的に得られる1,3−ブチレングリコール製品の品質が悪化すること、反応滞留時間が120分を超えると大きな反応器が必要になり設備費が高くなるため、経済性の観点から不利であることにある。 The reaction temperature in the alkaline reactor D is not particularly limited, but is preferably 90 to 140 ° C, more preferably 110 to 130 ° C, for example. If the reaction temperature is less than 90 ° C, a long reaction residence time is required, which increases the reactor capacity and is uneconomical. If the reaction temperature exceeds 140 ° C, the final 1,3-butylene is obtained. The increase in coloration of glycol products. The reaction residence time is, for example, preferably 5 to 120 minutes, more preferably 10 to 30 minutes. If the reaction residence time is less than 5 minutes, the reaction will be insufficient and the quality of the finally obtained 1,3-butylene glycol product will deteriorate, and if the reaction residence time exceeds 120 minutes, a large reactor will be required. This is disadvantageous from the viewpoint of economic efficiency because the equipment cost is high.

アルカリ反応器Dを出た後、反応粗液流は脱アルカリ塔(薄膜蒸発器)Eに供給され、蒸発により塩基等が塔底部から除去される。一方、脱アルカリ塔Eの塔頂部からは脱塩基後の粗1,3−ブチレングリコール流が得られる。脱アルカリ塔Eに用いられる蒸発器は、プロセス流体への熱履歴を抑制する目的で、滞留時間の短い自然流下型薄膜蒸器、強制攪拌型薄膜蒸発器が適当である。 After leaving the alkaline reactor D, the reaction crude liquid flow is supplied to the de-alkali column (thin film evaporator) E, and bases and the like are removed from the bottom of the column by evaporation. On the other hand, a crude 1,3-butylene glycol flow after debasement can be obtained from the top of the de-alkali tower E. As the evaporator used in the dealkalizing column E, a natural flow type thin film evaporator and a forced stirring type thin film evaporator having a short residence time are suitable for the purpose of suppressing the heat history to the process fluid.

脱アルカリ塔Eに用いられる蒸発器において、例えば、塔頂部は100torr以下、好ましくは5〜20torrの減圧下で蒸発が行われる。蒸発器の温度は、例えば、90〜120℃が好ましい。塔頂部から留出した低沸点物を含む粗1,3−ブチレングリコール流が製品蒸留塔Fへ供給される。 In the evaporator used for the de-alkali column E, for example, the top of the column is evaporated under a reduced pressure of 100 torr or less, preferably 5 to 20 torr. The temperature of the evaporator is preferably 90 to 120 ° C., for example. A crude 1,3-butylene glycol stream containing a low boiling point distilled from the top of the column is supplied to the product distillation column F.

製品蒸留塔Fは、例えば、多孔板塔、泡鐘塔等が挙げられるが、スルーザー・パッキング、メラパック(共に住友重機械工業(株)の商品名)等を充填した圧損失の低い充填塔がより好ましい。これは、1,3−ブチレングリコールは高温(例えば150℃以上)で熱分解し、低沸点物が生成することから、蒸留温度を低くするためである。また、1,3−ブチレングリコールにかかる熱履歴(滞留時間)が長い場合も同様に影響が出るためである。従って、採用されるリボイラーはプロセス側流体の滞留時間が短いもの、例えば、自然流下型薄膜蒸発器、強制攪拌型薄膜蒸発器等の薄膜蒸発器が好ましい。 Examples of the product distillation column F include a perforated plate tower, a bubble bell tower, etc., but a filling tower with low pressure loss filled with sluzer packing, Melapack (both are trade names of Sumitomo Heavy Industries, Ltd.), etc. More preferred. This is because 1,3-butylene glycol is thermally decomposed at a high temperature (for example, 150 ° C. or higher) to produce a low boiling point product, so that the distillation temperature is lowered. This is also because the same effect occurs when the heat history (residence time) of 1,3-butylene glycol is long. Therefore, the reboiler to be adopted is preferably one having a short residence time of the fluid on the process side, for example, a thin film evaporator such as a natural flow type thin film evaporator or a forced stirring type thin film evaporator.

製品蒸留塔Fは、仕込み液中の低沸点物濃度が5重量%以下である場合、その理論段数は、例えば、10〜20段であることが好ましい。仕込み液は塔頂部から塔の高さの20〜70%の位置に供給されることが好ましい。製品蒸留塔Fでの蒸留は、塔頂部の圧力が、例えば、100torr以下であることが好ましく、より好ましくは5〜20torrである。還流比は、例えば、0.5〜2.0であることが好ましい。 When the concentration of the low boiling point substance in the charged liquid of the product distillation column F is 5% by weight or less, the theoretical plate number is preferably 10 to 20 stages, for example. The charging liquid is preferably supplied from the top of the column to a position of 20 to 70% of the height of the column. In the distillation in the product distillation column F, the pressure at the top of the column is preferably 100 torr or less, more preferably 5 to 20 torr. The reflux ratio is preferably, for example, 0.5 to 2.0.

図1では、製品蒸留塔Fへの仕込みは、脱アルカリ塔Eの塔頂ベーパーをコンデンサーE−1で凝縮した液をフィードしているが、脱アルカリ塔Eからの塔頂ベーパーを直接製品蒸留塔Fへフィードしてもよい。製品蒸留塔Fでは、塔頂部から低沸点物等の不純物が留出され、製品としての1,3−ブチレングリコールは製品蒸留塔Fの塔底部から得られる(「Y」に相当する)。 In FIG. 1, in the preparation of the product distillation column F, the liquid obtained by condensing the top vapor of the dealkalitan column E with the condenser E-1 is fed, but the top vapor from the dealkalising column E is directly distilled into the product. It may be fed to Tower F. In the product distillation column F, impurities such as low boiling point substances are distilled off from the top of the column, and 1,3-butylene glycol as a product is obtained from the bottom of the product distillation column F (corresponding to “Y”).

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものでない。なお、実施例で用いている「部」は、特別の説明が無い限り「重量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The "part" used in the examples means a "part by weight" unless otherwise specified.

[実施例1]
図1を用いて1,3−ブチレングリコールの製造方法を説明する。
原料として30重量%の水を含むアセトアルドール溶液100部(アセトアルドール70部と水30部の混合溶液)に対し、水素10部を液相水素還元用反応器に仕込み、触媒としてラネーニッケルを15部加え、該反応器を135℃、300atmに保持して液相水素還元を行った。反応後の液は触媒を分離した後、苛性ソーダで中和し、アルコール類を除去して粗1,3−ブチレングリコール(1)を得た。
[Example 1]
A method for producing 1,3-butylene glycol will be described with reference to FIG.
For 100 parts of an acetoaldole solution containing 30% by weight of water as a raw material (a mixed solution of 70 parts of acetoaldole and 30 parts of water), 10 parts of hydrogen was charged into a liquid phase hydrogen reduction reactor, and 15 parts of lane nickel was added as a catalyst. In addition, the reactor was maintained at 135 ° C. and 300 atm for liquid phase hydrogen reduction. The liquid after the reaction was neutralized with caustic soda after separating the catalyst, and alcohols were removed to obtain crude 1,3-butylene glycol (1).

粗1,3−ブチレングリコール(1)(図1中における「X−1」に相当)を脱水塔Aに仕込んだ。脱水塔Aでは仕込み液量100部に対して塔頂部より水を抜き出し、還流水として真水15部を加え、圧力を50torrとして、塔底部より水が0.5重量%以下の粗1,3−ブチレングリコール(2)が得られた。なお、塔頂部より抜き出された水は排出された(図1中における「X−2」に相当)。 Crude 1,3-butylene glycol (1) (corresponding to “X-1” in FIG. 1) was charged into the dehydration column A. In the dehydration tower A, water is extracted from the top of the column with respect to 100 parts of the charged liquid, 15 parts of fresh water is added as reflux water, the pressure is set to 50 torr, and the amount of water is 0.5% by weight or less from the bottom of the column. Butylene glycol (2) was obtained. The water extracted from the top of the tower was discharged (corresponding to "X-2" in FIG. 1).

次に、粗1,3−ブチレングリコール(2)を脱塩塔Bに仕込んだ。脱塩塔Bでは、塔底部より、塩、高沸点物、及び1,3−ブチレングリコールの一部が蒸発残分として排出された(図1中における「X−3」に相当)。蒸発残分の排出量は、仕込み液量100部に対して5部であった。一方、塔頂部からは、1,3−ブチレングリコール、低沸点物、及び高沸点物の一部を含む粗1,3−ブチレングリコール(3)が得られた。 Next, crude 1,3-butylene glycol (2) was charged into the desalting tower B. In the desalting column B, salt, a high boiling point substance, and a part of 1,3-butylene glycol were discharged as an evaporation residue from the bottom of the column (corresponding to "X-3" in FIG. 1). The amount of the evaporation residue discharged was 5 parts with respect to 100 parts of the charged liquid amount. On the other hand, crude 1,3-butylene glycol (3) containing 1,3-butylene glycol, a low boiling point substance, and a part of a high boiling point substance was obtained from the top of the column.

次に、粗1,3−ブチレングリコール(3)を脱高沸点物蒸留塔Cに仕込んだ。脱高沸点物蒸留塔Cでは、塔底部から、高沸点物及び1,3−ブチレングリコールの一部が排出された(図1中における「X−4」に相当)。排出量は、仕込み液量100部に対して20部であった。一方、塔頂部からは、低沸点物を含む粗1,3−ブチレングリコール(4)が80部得られた。次に、粗1,3−ブチレングリコール(4)をアルカリ反応器Dに仕込んだ。この際、仕込み液に対する苛性ソーダの濃度が0.2重量%となるように、10重量%苛性ソーダ水溶液を添加した。アルカリ反応器Dでの反応温度を120℃に維持し、滞留時間20分で反応を行った。 Next, crude 1,3-butylene glycol (3) was charged into the dehigh boiling point distillation column C. In the dehigh boiling point distillation column C, a high boiling point and a part of 1,3-butylene glycol were discharged from the bottom of the column (corresponding to "X-4" in FIG. 1). The discharge amount was 20 parts with respect to 100 parts of the charged liquid amount. On the other hand, 80 parts of crude 1,3-butylene glycol (4) containing a low boiling point was obtained from the top of the column. Next, crude 1,3-butylene glycol (4) was charged into the alkaline reactor D. At this time, a 10% by weight aqueous solution of caustic soda was added so that the concentration of caustic soda with respect to the charging liquid was 0.2% by weight. The reaction temperature in the alkaline reactor D was maintained at 120 ° C., and the reaction was carried out with a residence time of 20 minutes.

次に、アルカリ反応器Dから出た反応粗液を脱アルカリ塔Eに仕込んだ。脱アルカリ塔Eでは、塔底部から、苛性ソーダ、高沸点物、及び1,3−ブチレングリコールの一部が排出された(図1中における「X−5」に相当)。排出量は、仕込み液量100部に対して10部であった。一方、塔頂部からは、1,3−ブチレングリコール及び低沸点物を含む粗1,3−ブチレングリコール(5)が90部得られた。 Next, the reaction crude liquid discharged from the alkali reactor D was charged into the dealkali tower E. In the de-alkali column E, caustic soda, a high boiling point substance, and a part of 1,3-butylene glycol were discharged from the bottom of the column (corresponding to "X-5" in FIG. 1). The discharge amount was 10 parts with respect to 100 parts of the charged liquid amount. On the other hand, 90 parts of crude 1,3-butylene glycol (5) containing 1,3-butylene glycol and a low boiling point substance was obtained from the top of the column.

次に、粗1,3−ブチレングリコール(5)を製品蒸留塔Fへ仕込んだ。製品蒸留塔Fでは、仕込み液量100部に対して、塔頂部から低沸点物及び1,3−ブチレングリコールの一部が10部留出され(図1中における「X−6」に相当)、塔底部からは1,3−ブチレングリコール製品が90部得られた(図1中における「Y」に相当)。 Next, crude 1,3-butylene glycol (5) was charged into the product distillation column F. In the product distillation column F, 10 parts of a low boiling point substance and a part of 1,3-butylene glycol were distilled from the top of the column with respect to 100 parts of the charged liquid (corresponding to "X-6" in FIG. 1). , 90 parts of 1,3-butylene glycol product was obtained from the bottom of the column (corresponding to "Y" in FIG. 1).

上述の1,3−ブチレングリコール製品について、後述の条件にてガスクロマトグラフィー分析を行った結果、相対保持時間が1.35〜1.45の範囲のピークは検出限界以下(10ppm以下)であった。後述の水分添加加熱試験を行ったところ、酸濃度は0.0005重量%であり、加熱前の酸濃度の0.0005重量%から変化がないことがわかった。さらに、臭気試験の点数は1であった。 As a result of gas chromatography analysis of the above-mentioned 1,3-butylene glycol product under the conditions described below, the peak in the range of relative retention time of 1.35 to 1.45 was below the detection limit (10 ppm or less). It was. When the water addition heating test described later was carried out, it was found that the acid concentration was 0.0005% by weight, and there was no change from 0.0005% by weight of the acid concentration before heating. Furthermore, the score of the odor test was 1.

[比較例1]
株式会社ダイセル製13ブチレングリコール(品番:13BGO)について、後述の条件にてガスクロマトグラフィー分析を行った結果、相対保持時間が1.35〜1.45の範囲に現れるピークの面積率は135ppmであった。後述の水分添加加熱試験を行ったところ、酸濃度は0.0024重量%であり、加熱前の酸濃度の0.0005重量%から大幅に増加したことがわかった。さらに、臭気試験の点数は2であった。
[Comparative Example 1]
As a result of gas chromatography analysis of 13 butylene glycol (product number: 13BGO) manufactured by Daicel Corporation under the conditions described below, the area ratio of the peak appearing in the relative retention time range of 1.35 to 1.45 was 135 ppm. there were. When the water addition heating test described later was carried out, it was found that the acid concentration was 0.0024% by weight, which was significantly increased from 0.0005% by weight of the acid concentration before heating. Furthermore, the score of the odor test was 2.

[ガスクロマトグラフィー分析]
以下の条件で、対象となる1,3−ブチレングリコール製品のガスクロマトグラフィー分析を行った。実施例1における1,3−ブチレングリコールのガスクロマトグラフィー分析のチャートを図2に示す。また、比較例1における1,3−ブチレングリコールのガスクロマトグラフィー分析のチャートを図3に示す。
(ガスクロマトグラフィー分析の条件)
分析装置:島津 GC2010
分析カラム:Agilent J&W GC カラム − DB−1(固定相がジメチルポリシロキサンであるカラム、膜厚1.0μm×長さ30m×内径0.25mm、アジレント・テクノロジー株式会社製)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入及び温度:スプリット試料導入法、250℃
スプリットのガス流量及びキャリアガス:23mL/分、ヘリウム
カラムのガス流量及びキャリアガス:1mL/分、ヘリウム
検出器及び温度:水素炎イオン化検出器(FID)、280℃
注入試料:0.2μLの80重量%1,3−ブチレングリコール製品水溶液
[Gas chromatography analysis]
Gas chromatographic analysis of the target 1,3-butylene glycol product was performed under the following conditions. The chart of the gas chromatography analysis of 1,3-butylene glycol in Example 1 is shown in FIG. In addition, a chart of gas chromatography analysis of 1,3-butylene glycol in Comparative Example 1 is shown in FIG.
(Conditions for gas chromatography analysis)
Analyzer: Shimadzu GC2010
Analytical column: Agent J & W GC column-DB-1 (column whose stationary phase is dimethylpolysiloxane, film thickness 1.0 μm x length 30 m x inner diameter 0.25 mm, manufactured by Agilent Technologies, Inc.)
Temperature rise conditions: After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, the temperature is raised to 160 ° C. at 2 ° C./min and held for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
Sample introduction and temperature: Split sample introduction method, 250 ° C
Split gas flow rate and carrier gas: 23 mL / min, helium column gas flow rate and carrier gas: 1 mL / min, helium detector and temperature: flame ionization detector (FID), 280 ° C.
Injection sample: 0.2 μL 80 wt% 1,3-butylene glycol product aqueous solution

[水分添加加熱試験(酸濃度分析)]
対象となる1,3−ブチレングリコール製品を90重量%の水溶液に調整し、100℃で1週間保持した後のものをサンプルとして、以下の手法により酸濃度分析を行った。なお、保持前の酸濃度分析は、100℃で1週間保持する前の1,3−ブチレングリコール製品を対象としたこと以外は同様にして行った。
(酸濃度分析)
電位差自動滴定装置(京都電子工業製AT−510)を用いて電位差滴定法によって測定した。サンプル50gを蒸留水50gで希釈し、撹拌しながら0.01Nの水酸化ナトリウム水溶液を自動終点停止するまでビュレットから滴定した。次いで、下記式に基づいて酢酸換算の酸濃度を算出した。
酸濃度(重量%)=滴定量(ml)×F×A×(100/サンプル量(g))
F:1.0(0.01N水酸化ナトリウム水溶液のファクター)
A:0.0006(1mlの水酸化ナトリウム水溶液に相当する酢酸のグラム数)
[Moisture addition heating test (acid concentration analysis)]
The target 1,3-butylene glycol product was adjusted to a 90% by weight aqueous solution, and the sample was held at 100 ° C. for 1 week, and the acid concentration was analyzed by the following method. The acid concentration analysis before holding was carried out in the same manner except that the 1,3-butylene glycol product before holding at 100 ° C. for 1 week was targeted.
(Acid concentration analysis)
It was measured by the potentiometric titration method using an automatic potentiometric titrator (AT-510 manufactured by Kyoto Electronics Industry Co., Ltd.). 50 g of the sample was diluted with 50 g of distilled water, and a 0.01 N aqueous sodium hydroxide solution was titrated from the burette with stirring until the automatic end point was stopped. Then, the acid concentration in terms of acetic acid was calculated based on the following formula.
Acid concentration (% by weight) = titration (ml) x F x A x (100 / sample amount (g))
F: 1.0 (factor of 0.01N sodium hydroxide aqueous solution)
A: 0.0006 (the number of grams of acetic acid corresponding to 1 ml of sodium hydroxide aqueous solution)

[臭気試験]
対象となる1,3−ブチレングリコール製品を広口試薬瓶に入れ、密栓し室温に静置した後、大気中で速やかに臭いを嗅ぎ、以下の1,3−ブチレングリコール製品との相対評価にて点数を付けた。
1:臭いを感じない
2:僅かに臭気がある
[Odor test]
The target 1,3-butylene glycol product is placed in a wide-mouth reagent bottle, sealed tightly, and allowed to stand at room temperature. Then, the odor is quickly sniffed in the air, and the relative evaluation with the following 1,3-butylene glycol product is performed. I gave a score.
1: No odor 2: Slight odor

A:脱水塔
B:脱塩塔
C:脱高沸点物蒸留塔
D:アルカリ反応器
E:脱アルカリ塔
F:製品蒸留塔
A−1、B−1、C−1、E−1、F−1:コンデンサー
A−2、C−2、F−2:リボイラー
X−1:粗1,3−ブチレングリコール
X−2:水(排水)
X−3:塩、高沸点物、及び1,3−ブチレングリコールの一部
X−4:高沸点物及び1,3−ブチレングリコールの一部
X−5:苛性ソーダ、高沸点物、及び1,3−ブチレングリコールの一部
X−6:低沸点物及び1,3−ブチレングリコールの一部
Y:1,3−ブチレングリコール製品
A: Dehydration column B: Desalting column C: Dehigh boiling point distillation column D: Alkaline reactor E: Dealkali column F: Product distillation column A-1, B-1, C-1, E-1, F- 1: Condenser A-2, C-2, F-2: Reboiler X-1: Coarse 1,3-butylene glycol X-2: Water (drainage)
X-3: Salt, high boiling point, and part of 1,3-butylene glycol X-4: High boiling point and part of 1,3-butylene glycol X-5: Caustic soda, high boiling point, and 1, Part of 3-butylene glycol X-6: Low boiling point and part of 1,3-butylene glycol Y: 1,3-butylene glycol product

Claims (2)

下記条件のガスクロマトグラフィー分析において、
1,3−ブチレングリコールのピークの面積率が99.5%以上であり、
1,3−ブチレングリコールのピークの相対保持時間を1.0としたとき、相対保持時間が1.35〜1.45の範囲に現れるピークの面積率が0ppmを超え、10ppm以下であり、
90重量%水溶液を100℃で1週間保持した後の酸濃度(酢酸換算)が0.0015重量%以下であり、
前記の相対保持時間が1.35〜1.45の範囲に現れるピークに該当する成分として、酢酸と1,3−ブチレングリコールとのエステル体を含む、1,3−ブチレングリコール製品。
(ガスクロマトグラフィー分析の条件)
分析カラム:固定相がジメチルポリシロキサンであるカラム(膜厚1.0μm×長さ30m×内径0.25mm)
昇温条件:5℃/分で80℃から120℃まで昇温した後、2℃/分で160℃まで昇温し2分保持する。さらに、10℃/分で230℃まで昇温し、230℃で18分保持する。
試料導入温度:250℃
キャリアガス:ヘリウム
カラムのガス流量:1mL/分
検出器及び検出温度:水素炎イオン化検出器(FID)、280℃
In gas chromatography analysis under the following conditions
The peak area ratio of 1,3-butylene glycol is 99.5% or more, and
When the relative retention time of the peaks of 1,3-butylene glycol is 1.0, the area ratio of the peaks appearing in the relative retention time in the range of 1.35 to 1.45 exceeds 0 ppm and is 10 ppm or less.
The acid concentration (acetic acid equivalent) after holding the 90% by weight aqueous solution at 100 ° C. for 1 week is 0.0015% by weight or less.
A 1,3-butylene glycol product containing an ester of acetic acid and 1,3-butylene glycol as a component corresponding to a peak having a relative retention time in the range of 1.35 to 1.45.
(Conditions for gas chromatography analysis)
Analytical column: A column in which the stationary phase is dimethylpolysiloxane (thickness 1.0 μm × length 30 m × inner diameter 0.25 mm)
Temperature rise conditions: After raising the temperature from 80 ° C. to 120 ° C. at 5 ° C./min, the temperature is raised to 160 ° C. at 2 ° C./min and held for 2 minutes. Further, the temperature is raised to 230 ° C. at 10 ° C./min and held at 230 ° C. for 18 minutes.
Sample introduction temperature: 250 ° C
Carrier gas: Gas flow rate of helium column: 1 mL / min Detector and detection temperature: Hydrogen flame ionization detector (FID), 280 ° C
1,3−ブチレングリコール製品における1,3−ブチレングリコールが、アセトアルドール、パラアルドール、及びアルドキサンからなる群より選択される少なくとも1つの化合物の還元体である請求項1に記載の1,3−ブチレングリコール製品。 The 1,3-butylene glycol according to claim 1, wherein the 1,3-butylene glycol in the 1,3-butylene glycol product is a reduced product of at least one compound selected from the group consisting of acetaldehyde, paraaldol, and aldoxane. Butylene glycol products.
JP2020186343A 2019-09-05 2020-11-09 1,3-butylene glycol products Active JP6890709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020186343A JP6890709B2 (en) 2019-09-05 2020-11-09 1,3-butylene glycol products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019162352A JP6804602B1 (en) 2019-09-05 2019-09-05 1,3-butylene glycol products
JP2020186343A JP6890709B2 (en) 2019-09-05 2020-11-09 1,3-butylene glycol products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019162352A Division JP6804602B1 (en) 2019-09-05 2019-09-05 1,3-butylene glycol products

Publications (2)

Publication Number Publication Date
JP2021042215A true JP2021042215A (en) 2021-03-18
JP6890709B2 JP6890709B2 (en) 2021-06-18

Family

ID=74863813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186343A Active JP6890709B2 (en) 2019-09-05 2020-11-09 1,3-butylene glycol products

Country Status (1)

Country Link
JP (1) JP6890709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323531A (en) * 2021-06-04 2023-06-23 Kh新化株式会社 1, 3-butanediol products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165834A (en) * 1984-09-07 1986-04-04 Daicel Chem Ind Ltd Purification of 1,3-butylene glycol
JPS62246529A (en) * 1986-03-24 1987-10-27 Daicel Chem Ind Ltd Production of 1,3-butylene glycol
WO2000007969A1 (en) * 1998-08-07 2000-02-17 Daicel Chemical Industries, Ltd. 1,3-butylene glycol of high purity and method for producing the same
JP2001213825A (en) * 2000-02-04 2001-08-07 Daicel Chem Ind Ltd High-purity 1,3-butylene glycol
JP2003096006A (en) * 2001-09-26 2003-04-03 Kyowa Yuka Co Ltd 1,3-butylene glycol and its producing method
JP2007517882A (en) * 2004-01-08 2007-07-05 セラニーズ・インターナショナル・コーポレーション Process for producing 1,3-butylene glycol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165834A (en) * 1984-09-07 1986-04-04 Daicel Chem Ind Ltd Purification of 1,3-butylene glycol
JPS62246529A (en) * 1986-03-24 1987-10-27 Daicel Chem Ind Ltd Production of 1,3-butylene glycol
WO2000007969A1 (en) * 1998-08-07 2000-02-17 Daicel Chemical Industries, Ltd. 1,3-butylene glycol of high purity and method for producing the same
JP2001213825A (en) * 2000-02-04 2001-08-07 Daicel Chem Ind Ltd High-purity 1,3-butylene glycol
JP2003096006A (en) * 2001-09-26 2003-04-03 Kyowa Yuka Co Ltd 1,3-butylene glycol and its producing method
JP2007517882A (en) * 2004-01-08 2007-07-05 セラニーズ・インターナショナル・コーポレーション Process for producing 1,3-butylene glycol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323531A (en) * 2021-06-04 2023-06-23 Kh新化株式会社 1, 3-butanediol products

Also Published As

Publication number Publication date
JP6890709B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP4559625B2 (en) High purity 1,3-butylene glycol and process for producing the same
WO2021132370A1 (en) 1, 3-butylene glycol product
JP6804601B1 (en) 1,3-butylene glycol products
JP6804602B1 (en) 1,3-butylene glycol products
WO2021045149A1 (en) 1, 3-butylene glycol product
JP6890709B2 (en) 1,3-butylene glycol products
JP6890708B2 (en) 1,3-butylene glycol products
JP2001213825A (en) High-purity 1,3-butylene glycol
JP6979473B2 (en) 1,3-butylene glycol products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6890709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150