JP2021041342A - Apparatus and method for manufacturing gas-dissolved water - Google Patents

Apparatus and method for manufacturing gas-dissolved water Download PDF

Info

Publication number
JP2021041342A
JP2021041342A JP2019165393A JP2019165393A JP2021041342A JP 2021041342 A JP2021041342 A JP 2021041342A JP 2019165393 A JP2019165393 A JP 2019165393A JP 2019165393 A JP2019165393 A JP 2019165393A JP 2021041342 A JP2021041342 A JP 2021041342A
Authority
JP
Japan
Prior art keywords
gas
condensed water
phase chamber
pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019165393A
Other languages
Japanese (ja)
Other versions
JP7328840B2 (en
Inventor
山下 幸福
Kofuku Yamashita
幸福 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019165393A priority Critical patent/JP7328840B2/en
Publication of JP2021041342A publication Critical patent/JP2021041342A/en
Application granted granted Critical
Publication of JP7328840B2 publication Critical patent/JP7328840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

To provide a gas-dissolved water manufacturing apparatus capable of smoothly discharging condensed water by using a simple structure.SOLUTION: A gas-dissolved water manufacturing apparatus for manufacturing gas-dissolved water by dissolving gas in water to be treated, includes: a gas dissolving membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas dissolving membrane; and a condensed water discharging mechanism for discharging condensed water that has been condensed in the gas phase chamber. In the gas-dissolved water manufacturing apparatus, operation pressure in the gas phase chamber exceeds atmospheric pressure. The condensed water discharging mechanism communicates with a condensed water discharge port formed in the gas phase chamber, and includes: a condensed water reservoir unit capable of accumulating the condensed water discharged from the gas phase chamber; a valve connected to a secondary side of the condensed water reservoir unit; and controlling means which discharges the condensed water from the condensed water reservoir unit by opening the valve for a predetermined time, in a state that the gas phase chamber and the condensed water reservoir unit are still communicating with each other, and then, closes the valve.SELECTED DRAWING: Figure 1

Description

本発明は、ガス溶解膜モジュールを用いたガス溶解水の製造装置及び製造方法に関する。 The present invention relates to an apparatus and a method for producing gas-dissolved water using a gas-dissolved membrane module.

水素やオゾンなどのガスを水に溶解してガス溶解水を製造するために、ガス溶解膜によって気相室と液相室に区画されたガス溶解膜モジュール(以下、単に「膜モジュール」ということがある)を用いることが知られている。膜モジュールでは、水素やオゾンなどのガスが、気相室からガス溶解膜を経由して液相室に移動して、液相室内の水に溶解する。水はガス溶解膜を透過しない。しかし、水蒸気が液相室からガス溶解膜を経由して気相室に拡散し、気相室内で凝縮して凝縮水となり、気相室内に溜まることがある。特許文献1〜3には、気相室で凝縮した凝縮水を排出するための凝縮水排出装置を有する気体溶解膜装置が開示される。 A gas-dissolved membrane module (hereinafter, simply referred to as a "membrane module") divided into a gas phase chamber and a liquid phase chamber by a gas-dissolved membrane in order to dissolve a gas such as hydrogen or ozone in water to produce gas-dissolved water. Is known to be used. In the membrane module, a gas such as hydrogen or ozone moves from the gas phase chamber to the liquid phase chamber via the gas dissolution membrane and dissolves in water in the liquid phase chamber. Water does not permeate the gas solution membrane. However, water vapor may diffuse from the liquid phase chamber to the gas phase chamber via the gas dissolution membrane, condense in the gas phase chamber to form condensed water, and accumulate in the gas phase chamber. Patent Documents 1 to 3 disclose a gas dissolution membrane device including a condensed water discharge device for discharging condensed water condensed in a gas phase chamber.

特許文献1によれば、膜モジュールの気相室に、自動弁を有する配管を介して、凝縮水貯留槽が接続される。自動弁を開いた状態で、ガス溶解水を製造する。貯水槽に凝縮水が溜まった際には、自動弁を閉じて気相室を貯留槽から遮断した状態で、貯留槽から凝縮水を排出する。この遮断の目的は、気相室からのガスの不用意な排出や、気相室への気体もしくは液体の逆流を防止することである。また、貯留槽内が気密になって貯留槽から凝縮水が排出できなくなることを防止するために、貯留槽に大気開放自動弁が設けられる。 According to Patent Document 1, a condensed water storage tank is connected to the gas phase chamber of the membrane module via a pipe having an automatic valve. Gas-dissolved water is produced with the automatic valve open. When condensed water accumulates in the water storage tank, the condensed water is discharged from the storage tank with the automatic valve closed and the gas phase chamber shut off from the storage tank. The purpose of this shutoff is to prevent inadvertent discharge of gas from the gas phase chamber and backflow of gas or liquid into the gas phase chamber. Further, in order to prevent the inside of the storage tank from becoming airtight and the condensed water from being discharged from the storage tank, the storage tank is provided with an automatic valve for opening to the atmosphere.

特許文献2によれば、膜モジュールの気相室と、凝縮水の貯留部との間に、弁が設けられる。凝縮水が溜まった際には、この弁を閉じて気相室を貯留部から遮断した状態で、貯留部に加圧ガス(スイープガス)を供給しながら貯留部から凝縮水を排出する。これにより、凝縮水が貯留部からスムーズに排出される。 According to Patent Document 2, a valve is provided between the gas phase chamber of the membrane module and the storage portion of condensed water. When the condensed water is accumulated, the valve is closed to shut off the gas phase chamber from the storage unit, and the condensed water is discharged from the storage unit while supplying pressurized gas (sweep gas) to the storage unit. As a result, the condensed water is smoothly discharged from the storage portion.

特許文献3によれば、膜モジュールの気相室と、凝縮水の貯留部との間に、弁が設けられる。凝縮水が溜まった際には、この弁を閉じて気相室を貯留部から遮断した状態で、貯留部から凝縮水を気化装置に送り、気化装置で気化した水蒸気をポンプで吸引する。これにより、凝縮水が貯留部からスムーズに排出される。 According to Patent Document 3, a valve is provided between the gas phase chamber of the membrane module and the storage portion of condensed water. When the condensed water is accumulated, the valve is closed to shut off the gas phase chamber from the storage unit, the condensed water is sent from the storage unit to the vaporizer, and the water vapor vaporized by the vaporizer is sucked by the pump. As a result, the condensed water is smoothly discharged from the storage portion.

特開2000−189742号公報Japanese Unexamined Patent Publication No. 2000-189742 特開2009−254935号公報JP-A-2009-254935 特開2009−113013号公報JP-A-2009-113013

特許文献1〜3では、凝縮水の貯留部から凝縮水を排出する際には、気相室と貯留部との間を遮断する。この遮断のために、自動弁、さらにはその制御及び駆動装置などが必要となる。また、貯留部の大気開放や、加圧ガスの供給、あるいは凝縮水の気化と吸引などのための装置も必要である。このため、装置構成が複雑になる。 In Patent Documents 1 to 3, when the condensed water is discharged from the condensate storage portion, the space between the gas phase chamber and the storage portion is blocked. For this shutoff, an automatic valve, its control and drive device, etc. are required. In addition, a device for opening the storage part to the atmosphere, supplying pressurized gas, vaporizing and sucking condensed water, etc. is also required. Therefore, the device configuration becomes complicated.

本発明の目的は、シンプルな構造で凝縮水をスムーズに排出可能なガス溶解水製造方法および装置を提供することである。 An object of the present invention is to provide a gas-dissolved water production method and apparatus capable of smoothly discharging condensed water with a simple structure.

本発明の一態様によれば、
被処理水にガスを溶解させてガス溶解水を製造するガス溶解水製造装置であって、
ガス溶解膜によって区画された気相室と液相室とを備えるガス溶解膜モジュールと、
前記気相室で凝縮した凝縮水を排出する凝縮水排出機構と、を備え、
前記気相室の運転圧力が大気圧を超える圧力となるよう構成され、
前記凝縮水排出機構は、
前記気相室に形成された凝縮水排出口と連通し、前記気相室から排出された凝縮水を貯留可能な凝縮水貯留部と、
前記凝縮水貯留部の二次側に接続された弁と、
前記気相室と前記凝縮水貯留部とが連通した状態のまま、所定の時間前記弁を開いて前記凝縮水貯留部から凝縮水を排出し、その後に前記弁を閉じる制御手段と
を備える、ガス溶解水製造装置が提供される。
According to one aspect of the invention
A gas-dissolved water production device that produces gas-dissolved water by dissolving gas in the water to be treated.
A gas dissolution membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas dissolution membrane,
It is equipped with a condensed water discharge mechanism that discharges the condensed water condensed in the gas phase chamber.
The operating pressure of the gas phase chamber is configured to exceed the atmospheric pressure.
The condensed water discharge mechanism is
A condensed water storage unit that communicates with the condensed water discharge port formed in the gas phase chamber and can store the condensed water discharged from the gas phase chamber.
A valve connected to the secondary side of the condensed water storage unit,
The valve is provided with a control means for opening the valve for a predetermined time to discharge the condensed water from the condensed water storage unit and then closing the valve while the gas phase chamber and the condensed water storage unit are in communication with each other. A gas-dissolved water production apparatus is provided.

本発明の別の態様によれば、
被処理水にガスを溶解させてガス溶解水を製造するガス溶解水製造方法であって、
ガス溶解膜によって区画された気相室と液相室とを備えるガス溶解膜モジュールと、前記気相室で凝縮した凝縮水を排出する凝縮水排出機構を用い、
前記気相室の運転圧力を、大気圧を超える圧力とし、
前記凝縮水排出機構は、
前記気相室に形成された凝縮水排出口と連通し、前記気相室から排出された凝縮水を貯留可能な凝縮水貯留部と、
前記凝縮水貯留部の二次側に接続された弁と
を備え、
前記気相室と前記凝縮水貯留部とが連通した状態のまま、所定の時間前記弁を開いて前記凝縮水貯留部から凝縮水を排出し、その後に前記弁を閉じる制御工程
を含む、ガス溶解水製造方法が提供される。
According to another aspect of the invention
It is a gas-dissolved water production method in which gas is dissolved in water to be treated to produce gas-dissolved water.
Using a gas dissolution membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas dissolution membrane, and a condensed water discharge mechanism for discharging condensed water condensed in the gas phase chamber,
The operating pressure of the gas phase chamber is set to a pressure exceeding atmospheric pressure.
The condensed water discharge mechanism is
A condensed water storage unit that communicates with the condensed water discharge port formed in the gas phase chamber and can store the condensed water discharged from the gas phase chamber.
It is provided with a valve connected to the secondary side of the condensed water storage unit.
A gas including a control step of opening the valve for a predetermined time to discharge condensed water from the condensed water storage unit and then closing the valve while the gas phase chamber and the condensed water storage unit are in communication with each other. A method for producing dissolved water is provided.

本発明によれば、シンプルな構造で凝縮水をスムーズに排出可能なガス溶解水製造方法および装置を提供することができる。 According to the present invention, it is possible to provide a gas-dissolved water production method and an apparatus capable of smoothly discharging condensed water with a simple structure.

本発明の第1の形態に係るガス溶解水製造装置の概略構成例と送水先装置の例を示すプロセスフローダイアグラムである。It is a process flow diagram which shows the schematic structure example of the gas dissolution water production apparatus which concerns on 1st Embodiment of this invention, and the example of a water supply destination apparatus. 本発明の第2の形態に係るガス溶解水製造装置の概略構成例を示すプロセスフローダイアグラムである。It is a process flow diagram which shows the schematic structure example of the gas dissolution water production apparatus which concerns on 2nd Embodiment of this invention. 本発明の第1の形態に係る膜モジュールと凝縮水排出機構の概略構成例を示す模式図である。It is a schematic diagram which shows the schematic structural example of the membrane module and the condensed water discharge mechanism which concerns on 1st Embodiment of this invention. 本発明の第2の形態に係る膜モジュールと凝縮水排出機構の概略構成例を示す模式図である。It is a schematic diagram which shows the schematic structural example of the membrane module and the condensed water discharge mechanism which concerns on 2nd Embodiment of this invention. 本発明の別の形態に係るガス溶解水製造装置の概略構成例と送水先装置の例を示すプロセスフローダイアグラムである。It is a process flow diagram which shows the schematic configuration example of the gas dissolution water production apparatus which concerns on another embodiment of this invention, and the example of a water supply destination apparatus.

本発明では、ガス溶解膜モジュールを用いて被処理水にガスを溶解させてガス溶解水を製造する。膜モジュールは、ガス溶解膜によって区画された気相室と液相室を備える。ガス溶解膜は、気体透過性を有する(液体の水は実質的に通さない)膜であって、気液分離膜あるいはガス分離膜とも称される。 In the present invention, the gas-dissolved water is produced by dissolving the gas in the water to be treated using the gas-dissolved membrane module. The membrane module comprises a gas phase chamber and a liquid phase chamber partitioned by a gas dissolution membrane. The gas dissolution membrane is a membrane having gas permeability (substantially impermeable to liquid water), and is also called a gas-liquid separation membrane or a gas separation membrane.

被処理水は、典型的には純水であるが、例えば炭酸水であってもよい。純水に予め炭酸ガスを溶解させたものを被処理水として使用し、その被処理水にオゾンを溶解させることができる。以下においては、被処理水として純水を例にして説明する。純水の抵抗率(25℃)は例えば0.1MΩ・cm以上である。本発明に関して、「純水」は、超純水と呼ばれる15MΩ・cm超もしくは18MΩ・cm超の水であってもよい。 The water to be treated is typically pure water, but may be carbonated water, for example. A water in which carbon dioxide gas is previously dissolved in pure water can be used as the water to be treated, and ozone can be dissolved in the water to be treated. In the following, pure water will be described as an example of the water to be treated. The resistivity of pure water (25 ° C.) is, for example, 0.1 MΩ · cm or more. With respect to the present invention, the "pure water" may be water of more than 15 MΩ · cm or more than 18 MΩ · cm, which is called ultrapure water.

ガス溶解水は、例えば半導体部品の洗浄装置において、シリコンウエハやガラス基板などの洗浄、すすぎ、酸化促進や酸化抑制などに用いることができる。以下、図面を参照して本発明の実施形態を説明するが、本発明はこれによって限定されるものではない。 The gas-dissolved water can be used, for example, in a cleaning device for semiconductor parts for cleaning, rinsing, promoting oxidation, suppressing oxidation, and the like of silicon wafers and glass substrates. Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

〔第1の形態〕
図1には、オゾンを溶解させるガス溶解水製造装置1(オゾン溶解水製造装置)と、送水先装置としての半導体部品の洗浄装置100とを、ラインL100によって接続した例を示す。
[First form]
FIG. 1 shows an example in which a gas-dissolved water production device 1 (ozone-dissolved water production device) that dissolves ozone and a semiconductor component cleaning device 100 as a water supply destination device are connected by a line L100.

ガス溶解水製造装置1内に配置された膜モジュール2には、ラインL1を経て純水が供給され、ラインL14を経てオゾン含有ガスが供給される。膜モジュール2はガス溶解膜3を備え、ガス溶解膜3によって気相室4と液相室5が区画される。例えば、膜モジュール2に、多数のフッ素樹脂製中空糸膜が充填され、中空糸膜の内側に純水、外側にオゾン含有ガスが供給される。すなわち、この場合、中空糸膜の内側に液相室5が、外側に気相室4が形成される。なお、図1に示すように、膜モジュール2の下側からガスを供給し、上側から純水を供給して、これらを向流で流すことができるが、その限りではない。例えば膜モジュール2の上側からガスを供給し、下側から純水を供給して、これらを向流で流してもよい。 Pure water is supplied to the membrane module 2 arranged in the gas-dissolved water production apparatus 1 via the line L1, and ozone-containing gas is supplied via the line L14. The membrane module 2 includes a gas dissolving membrane 3, and the gas phase chamber 4 and the liquid phase chamber 5 are partitioned by the gas dissolving membrane 3. For example, the membrane module 2 is filled with a large number of fluororesin hollow fiber membranes, and pure water is supplied to the inside of the hollow fiber membrane and ozone-containing gas is supplied to the outside. That is, in this case, the liquid phase chamber 5 is formed inside the hollow fiber membrane, and the gas phase chamber 4 is formed outside. As shown in FIG. 1, gas can be supplied from the lower side of the membrane module 2, pure water can be supplied from the upper side, and these can be flowed in a countercurrent manner, but this is not the case. For example, gas may be supplied from the upper side of the membrane module 2, pure water may be supplied from the lower side, and these may flow in a countercurrent direction.

例えば、微量の窒素ガス(ラインL11を経て供給される)を、酸素ガス(ラインL12を経て供給される)に添加したガスを原料とし、その酸素をオゾンガス発生器14にてオゾン化させることによって、オゾン含有ガスをラインL14に得ることができる。この場合、例えばオゾン含有ガスのオゾンガス分は10〜30vol%程度であり、残りのほとんどは酸素である。オゾンは自己分解する特性があり、これはオゾン含有ガスの状態よりもオゾン溶解水の状態の場合に顕著である。オゾンの自己分解を抑制するために、膜モジュール2に供給する前のオゾン含有ガスに炭酸ガス(ラインL13から供給される)を添加することができる。あるいは、炭酸ガスの添加をオゾンガス発生器14の一次側で行ってもよい。あるいは、純水に予め炭酸を溶解して炭酸水とし、これを液相室5に供給することによってもオゾンの自己分解を抑制することができる。窒素ガス、酸素ガスおよび炭酸ガスの流量を調節するために、ラインL11〜L13にそれぞれ、マスフローコントローラ11〜13を設けることができる。 For example, by using a gas obtained by adding a small amount of nitrogen gas (supplied via line L11) to oxygen gas (supplied via line L12) as a raw material and ozoneizing the oxygen with an ozone gas generator 14. , Ozone-containing gas can be obtained on line L14. In this case, for example, the ozone gas content of the ozone-containing gas is about 10 to 30 vol%, and most of the rest is oxygen. Ozone has the property of autolyzing, which is more pronounced in the ozone-dissolved water state than in the ozone-containing gas state. In order to suppress the autolysis of ozone, carbon dioxide gas (supplied from line L13) can be added to the ozone-containing gas before being supplied to the membrane module 2. Alternatively, carbon dioxide gas may be added on the primary side of the ozone gas generator 14. Alternatively, the autolysis of ozone can be suppressed by previously dissolving carbonic acid in pure water to obtain carbonated water and supplying this to the liquid phase chamber 5. Mass flow controllers 11 to 13 can be provided on the lines L11 to L13, respectively, in order to adjust the flow rates of nitrogen gas, oxygen gas and carbon dioxide gas.

ガス溶解膜3のガス側から液側へとオゾンガスが移動し、また液側からガス側へ水蒸気が移動する。気相室4に移動した水蒸気が結露して液体の凝縮水となり、気相室4内に溜まることがある。この凝縮水を排出するために、後に詳述する凝縮水排出機構を用いる。 Ozone gas moves from the gas side to the liquid side of the gas dissolution membrane 3, and water vapor moves from the liquid side to the gas side. The water vapor that has moved to the gas phase chamber 4 may condense and become liquid condensed water, which may accumulate in the gas phase chamber 4. In order to discharge this condensed water, a condensed water discharge mechanism described in detail later is used.

気相室4に供給したオゾン含有ガスの一部は、気相室4からラインL15に排出される。ラインL15には、必要に応じて、気相室4の運転圧力を大気圧を超える圧力に調整する工程(以下、「気相室圧力調整工程」ということがある。)を行うために、気体用の圧力調整弁V3が配される。気相室運転圧力を大気圧超とすることにより、気相室4内に凝縮水が溜まった場合に、ポンプによる吸引を行わずに、気相室4から凝縮水を排出することが容易となる。特段の圧力調整を行わなくても、気相室4の運転圧力が大気圧を超える場合は、圧力調整弁V3は不要である。 A part of the ozone-containing gas supplied to the gas phase chamber 4 is discharged from the gas phase chamber 4 to the line L15. The line L15 is a gas for performing a step of adjusting the operating pressure of the gas phase chamber 4 to a pressure exceeding the atmospheric pressure (hereinafter, may be referred to as a “gas phase chamber pressure adjusting step”) as necessary. Pressure regulating valve V3 for use is arranged. By setting the operating pressure in the gas phase chamber to over atmospheric pressure, when condensed water accumulates in the gas phase chamber 4, it is easy to discharge the condensed water from the gas phase chamber 4 without sucking by a pump. Become. If the operating pressure of the gas phase chamber 4 exceeds the atmospheric pressure without any special pressure adjustment, the pressure adjusting valve V3 is unnecessary.

気相室4の運転圧力は、厳密には、気相室4内で凝縮水に接する箇所のガスの圧力(気相室4内に凝縮水が溜まっていない場合は凝縮水排出口におけるガスの圧力)を意味する。しかし、簡易的には、通常気相室4内で最も圧力が低い排気圧力(気相室4のガスの出口における圧力)を、気相室運転圧力として採用してもよい。給気圧力(気相室のガスの入口における圧力)と排気圧力が同じであるとみなせる場合や、気相室からガスを排出しない場合がある。このような場合などにおいて、気相室運転圧力として、給気圧力を採用してもよい。気相室内の圧力損失を勘案して、排気圧力及び/または給気圧力から、気相室4内で凝縮水に接する箇所のガスの圧力を算出してもよい。この算出のために、適宜の演算装置を用いることができる。 Strictly speaking, the operating pressure of the gas phase chamber 4 is the pressure of the gas in the gas phase chamber 4 in contact with the condensed water (if the condensed water is not accumulated in the gas phase chamber 4, the pressure of the gas at the condensed water discharge port). Pressure) means. However, simply, the exhaust pressure having the lowest pressure in the gas phase chamber 4 (the pressure at the gas outlet of the gas phase chamber 4) may be adopted as the gas phase chamber operating pressure. In some cases, the supply air pressure (pressure at the gas inlet of the gas phase chamber) and the exhaust pressure can be regarded as the same, or in some cases, the gas is not discharged from the gas phase chamber. In such a case, the supply air pressure may be adopted as the gas phase chamber operating pressure. In consideration of the pressure loss in the gas phase chamber, the pressure of the gas at the portion in contact with the condensed water in the gas phase chamber 4 may be calculated from the exhaust pressure and / or the supply air pressure. An appropriate arithmetic unit can be used for this calculation.

ラインL15の、圧力調整弁V3の二次側に、余剰のオゾンガスを無害化するための余剰オゾンガス分解触媒筒15を配することができる。ラインL15から余剰ガスが排出される。 A surplus ozone gas decomposition catalyst cylinder 15 for detoxifying the surplus ozone gas can be arranged on the secondary side of the pressure regulating valve V3 of the line L15. Excess gas is discharged from the line L15.

液相室5から、オゾン溶解水がラインL2に得られる。ラインL2に設けた溶存オゾン濃度計6で、オゾン溶解水のオゾン濃度を測定することができる。オゾンガス発生器14の出力制御によって、或いは圧力調整弁V3を操作して給気圧力を増減させることによって、所定のオゾン濃度を有するオゾン溶解水を得ることができる。 Ozone-dissolved water is obtained on line L2 from the liquid phase chamber 5. The ozone concentration of the ozone-dissolved water can be measured with the dissolved ozone concentration meter 6 provided on the line L2. Ozone-dissolved water having a predetermined ozone concentration can be obtained by controlling the output of the ozone gas generator 14 or by operating the pressure regulating valve V3 to increase or decrease the supply air pressure.

好ましくは、昇圧ポンプ7が、液相室5の二次側に設けられる。すなわち液相室5の出口ラインL2に昇圧ポンプ7が接続される。これにより、ガス溶解膜の耐水圧に制限されることなく、ガス溶解水の圧力を高めることができ、その結果、送水先装置、例えば半導体部品洗浄装置100内の主配管における気泡の混入を抑制することができる。 Preferably, the booster pump 7 is provided on the secondary side of the liquid phase chamber 5. That is, the booster pump 7 is connected to the outlet line L2 of the liquid phase chamber 5. As a result, the pressure of the gas-dissolved water can be increased without being limited by the water pressure resistance of the gas-dissolved membrane, and as a result, the mixing of air bubbles in the main pipe in the water supply destination device, for example, the semiconductor component cleaning device 100 is suppressed. can do.

昇圧ポンプ7の出口ラインL3から、ガス溶解水製造装置1で製造されたガス溶解水が得られる。昇圧ポンプ7を用いて、ガス溶解水製造装置1から得られるオゾン溶解水の送水圧力(ラインL3の出口圧力)を高めることができ、さらにはオゾン溶解水送水圧力を所定の圧力に調整することができる。オゾン溶解水送水圧力を所定の圧力に調整するために、圧力センサーP3を昇圧ポンプ7の二次側に、すなわち昇圧ポンプの出口ラインL3に設置することができる。圧力センサーP3は、ガス溶解水製造装置1の出口水圧保証用としても利用できるので、設置することが好ましい。なお、ラインL1の入口近傍およびラインL3の出口近傍に、ガス溶解水製造装置1を他の設備から縁切りするための開閉弁V1およびV2を設けることができる。その他のラインにおいて、図示されていなくても、縁切りのための開閉弁等を適宜設けることができる。 The gas-dissolved water produced by the gas-dissolved water production apparatus 1 can be obtained from the outlet line L3 of the booster pump 7. The booster pump 7 can be used to increase the ozone-dissolved water supply pressure (outlet pressure of line L3) obtained from the gas-dissolved water production apparatus 1, and further adjust the ozone-dissolved water supply pressure to a predetermined pressure. Can be done. In order to adjust the ozone-dissolved water feed pressure to a predetermined pressure, the pressure sensor P3 can be installed on the secondary side of the booster pump 7, that is, on the outlet line L3 of the booster pump. Since the pressure sensor P3 can also be used for guaranteeing the outlet water pressure of the gas-dissolved water production apparatus 1, it is preferable to install the pressure sensor P3. It should be noted that on-off valves V1 and V2 for cutting off the gas-dissolved water production apparatus 1 from other equipment can be provided in the vicinity of the inlet of the line L1 and the vicinity of the outlet of the line L3. In other lines, an on-off valve or the like for edge cutting can be appropriately provided even if it is not shown.

オゾン耐性の観点から、昇圧ポンプ7の接液部は、三フッ化以上のフッ素樹脂製であることが好ましく、具体的には、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、ETFE(エチレン・テトラフルオロエチレン共重合体)を用いることができる。 From the viewpoint of ozone resistance, the wetted portion of the booster pump 7 is preferably made of a fluororesin of trifluoride or more, and specifically, PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene / perfluoro). Alkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PCTFE (polychlorotrifluoroethylene), ETFE (ethylene / tetrafluoroethylene copolymer) can be used.

溶存オゾン濃度計6の設置位置は、昇圧ポンプ7の一次側(ラインL2)でもよいし、二次側(ラインL3)でもよい。 The dissolved ozone concentration meter 6 may be installed on the primary side (line L2) of the booster pump 7 or on the secondary side (line L3).

図1に示した例では、溶存オゾン濃度計6を通過したオゾン溶解水が洗浄装置100に供給される。溶存オゾン濃度計6として、紫外線吸光式の溶存オゾン濃度計を用いることが好ましい。接液部を、オゾン耐性を有する清浄な材料で製作することができ、したがって、オゾン溶解水を汚染することがないからである。ポーラログラフ式の溶存オゾン濃度計は、センサー部が内部液を有しており、内部液を保持するために配されている隔膜が破損した場合に内部液が被測定液中に混入することがある。そのため、ポーラログラフ式の濃度計を採用する場合には、ガス溶解水の配管(ラインL2)から引き出した枝管に濃度計を設置し、濃度計を通過した試料水は排水することが好ましい。 In the example shown in FIG. 1, the ozone-dissolved water that has passed through the dissolved ozone concentration meter 6 is supplied to the cleaning device 100. As the dissolved ozone concentration meter 6, it is preferable to use an ultraviolet absorption type dissolved ozone concentration meter. This is because the wetted part can be made of a clean material having ozone resistance and therefore does not contaminate the ozone-dissolved water. In the polarograph type dissolved ozone concentration meter, the sensor part has an internal liquid, and if the diaphragm arranged to hold the internal liquid is damaged, the internal liquid may be mixed in the liquid to be measured. .. Therefore, when a polarograph type densitometer is adopted, it is preferable to install the densitometer in a branch pipe drawn from the gas-dissolved water pipe (line L2) and drain the sample water that has passed through the densitometer.

気相室運転圧力、さらには給気圧力を監視するために、第1の圧力センサーを、気相室4に接続された配管(ラインL14またはL15)に設けることができる。図2を用いて後述する形態のように、気相室4の入口に接続された配管(ラインL22)に第1の圧力センサーP1を設ける場合、その測定値を、給気圧力として用いることができる。あるいは、図1に示すように、気相室4の出口に接続された配管(ラインL15)に第1の圧力センサーP1を設ける場合、その測定値を、排気圧力として用いることができる。給気圧力もしくは排気圧力から、必要に応じて気相室4における圧力損失を勘案して、気相室運転圧力を知ることができる。また、排気圧力から、必要に応じて気相室4における圧力損失を勘案して、給気圧力を知ることができる。気相室4における圧力損失は、気相室を流れるガス流量と圧力損失との相関(予め求めておくことができる)から求めることができる。このために、必要に応じて、気相室に供給されるもしくは気相室から排出されるガスの流量を測定することができる。 A first pressure sensor can be provided in the pipe (line L14 or L15) connected to the gas phase chamber 4 in order to monitor the gas phase chamber operating pressure as well as the supply air pressure. When the first pressure sensor P1 is provided in the pipe (line L22) connected to the inlet of the gas phase chamber 4 as described later with reference to FIG. 2, the measured value can be used as the supply air pressure. it can. Alternatively, as shown in FIG. 1, when the first pressure sensor P1 is provided in the pipe (line L15) connected to the outlet of the gas phase chamber 4, the measured value can be used as the exhaust pressure. From the supply air pressure or the exhaust pressure, the gas phase chamber operating pressure can be known by considering the pressure loss in the gas phase chamber 4 as necessary. Further, the supply air pressure can be known from the exhaust pressure in consideration of the pressure loss in the gas phase chamber 4 as needed. The pressure loss in the gas phase chamber 4 can be obtained from the correlation (which can be obtained in advance) between the gas flow rate flowing through the gas phase chamber and the pressure loss. Therefore, if necessary, the flow rate of the gas supplied to or discharged from the gas phase chamber can be measured.

第1の圧力センサーP1の設置位置は、上述のように、気相室入口であっても出口であってもよい。しかし、第1の圧力センサーP1がオゾンガスによって劣化する可能性がある場合、高湿度のオゾンガスは乾燥したオゾンガスよりも高い腐食性を示すことがあるので、より低湿度である気相室一次側(ラインL14)に第1の圧力センサーP1を設置することが好ましい。一方、給気ガスとして水素ガスを用いる場合など、上述のような腐食の心配が無い場合もある。このような場合は、第1の圧力センサーの設置位置は気相室の一次側であっても二次側であっても上記のような差は無い。なお、気相室4のいずれの側に第1の圧力センサーP1を設置する場合でも、気相室4から第1の圧力センサーP1の設置個所までの距離は短いほうが好ましい。 As described above, the installation position of the first pressure sensor P1 may be the inlet or the outlet of the gas phase chamber. However, if the first pressure sensor P1 can be degraded by ozone gas, the higher humidity ozone gas may be more corrosive than the dry ozone gas, so the lower humidity gas phase chamber primary side ( It is preferable to install the first pressure sensor P1 on the line L14). On the other hand, there are cases where there is no concern about corrosion as described above, such as when hydrogen gas is used as the air supply gas. In such a case, there is no difference as described above regardless of whether the first pressure sensor is installed on the primary side or the secondary side of the gas phase chamber. When the first pressure sensor P1 is installed on any side of the gas phase chamber 4, it is preferable that the distance from the gas phase chamber 4 to the installation location of the first pressure sensor P1 is short.

液相室5の一次側または二次側の水圧を監視するために、第2の圧力センサーを、液相室5に接続された配管(ラインL1またはL2)に設けることができる。第2の圧力センサーを利用して、直接もしくは間接的に、液相室5の二次側の水圧を知ることができる。 In order to monitor the water pressure on the primary side or the secondary side of the liquid phase chamber 5, a second pressure sensor can be provided in the pipe (line L1 or L2) connected to the liquid phase chamber 5. The water pressure on the secondary side of the liquid phase chamber 5 can be known directly or indirectly by using the second pressure sensor.

図1に示す例では、第2の圧力センサーとして、液相室5の出口ラインL2に設けた圧力センサーP2を用いて、液相室5の二次側の水圧を監視する。この場合、圧力センサーP2の測定値を、液相室5の二次側の水圧として用いることができる。ラインL1に設けた圧力センサーP4は、ガス溶解水製造装置1に受け入れる純水の圧力を監視するために使用される。 In the example shown in FIG. 1, the pressure sensor P2 provided in the outlet line L2 of the liquid phase chamber 5 is used as the second pressure sensor to monitor the water pressure on the secondary side of the liquid phase chamber 5. In this case, the measured value of the pressure sensor P2 can be used as the water pressure on the secondary side of the liquid phase chamber 5. The pressure sensor P4 provided on the line L1 is used to monitor the pressure of pure water received in the gas-dissolved water production apparatus 1.

あるいは、第2の圧力センサーとして圧力センサーP4を用い、圧力センサーP2を省略することもできる。この場合、圧力センサーP4によって液相室5の一次側の水圧を監視し、圧力センサーP4の測定値から、液相室5における圧力損失を差し引くことによって、液相室5の二次側の水圧を算出する。ガス溶解水製造装置1は、このための演算装置(不図示)をさらに含むことができる。液相室5における圧力損失は、液相室5における通水流量と圧力損失の相関を予め把握しておき、その相関に基づいて推定することができる。当該通水流量は、例えばラインL1に設けた流量センサーF1によって測定することができる。 Alternatively, the pressure sensor P4 can be used as the second pressure sensor, and the pressure sensor P2 can be omitted. In this case, the water pressure on the primary side of the liquid phase chamber 5 is monitored by the pressure sensor P4, and the water pressure on the secondary side of the liquid phase chamber 5 is subtracted from the measured value of the pressure sensor P4 by subtracting the pressure loss in the liquid phase chamber 5. Is calculated. The gas-dissolved water production apparatus 1 can further include an arithmetic unit (not shown) for this purpose. The pressure loss in the liquid phase chamber 5 can be estimated based on the correlation between the water flow rate and the pressure loss in the liquid phase chamber 5 in advance. The water flow rate can be measured by, for example, the flow rate sensor F1 provided on the line L1.

さらに、気相室圧力調整工程によって、気相室運転圧力を大気圧超とすると同時に、気相室4への給気圧力が液相室5の二次側の水圧よりも低い圧力とすること、すなわち、膜モジュールの液相室5出口において次式の関係を成立させることが好ましい。
膜モジュール気相室への給気圧力 < ガス溶解水の水圧・・・(1)
式(1)の関係が成立すると、昇圧ポンプ7の吸込み動作によって液相室5内の水圧が低下したとしても、気相室4から液相室5にガスが噴出してガス溶解水に気泡が混入することを容易に抑制することができる。その結果、気相室4への給気圧力を高めて、ガス溶解水の溶解ガス濃度を高くすることが容易となる。なお、気相室から液相室にガスが噴出すると、給気圧力が所定の値に到達しないこともある。また、溶存ガス濃度計として光学式のものを採用している場合には、ガス溶解水に気泡が混入していると正しい測定が行われないことがある。また流量センサーに気泡が付着して測定不良を引き起こすこともある。
Further, by the gas phase chamber pressure adjusting step, the gas phase chamber operating pressure is set to exceed atmospheric pressure, and at the same time, the air supply pressure to the gas phase chamber 4 is set to be lower than the water pressure on the secondary side of the liquid phase chamber 5. That is, it is preferable to establish the relationship of the following equation at the outlet of the liquid phase chamber 5 of the membrane module.
Membrane module Air supply pressure to gas phase chamber <Water pressure of gas-dissolved water ... (1)
When the relationship of the formula (1) is established, even if the water pressure in the liquid phase chamber 5 is lowered by the suction operation of the booster pump 7, gas is ejected from the gas phase chamber 4 to the liquid phase chamber 5 and bubbles are blown into the gas-dissolved water. Can be easily suppressed from being mixed. As a result, it becomes easy to increase the supply pressure to the gas phase chamber 4 and increase the concentration of the dissolved gas in the gas-dissolved water. If gas is ejected from the gas phase chamber to the liquid phase chamber, the supply air pressure may not reach a predetermined value. Further, when an optical type dissolved gas concentration meter is used, correct measurement may not be performed if air bubbles are mixed in the dissolved gas water. In addition, air bubbles may adhere to the flow sensor and cause measurement failure.

気相室圧力調整工程は、必要に応じて気相室運転圧力、給気圧力、及び液相室5の二次側の水圧を監視しつつ、圧力調整弁V3を用いて行うことができる。したがって、気相室圧力調整工程を行う気相室圧力調整手段には、圧力調整弁V3が備わる。また、気相室圧力調整手段は、圧力調整弁V3の開度を制御する制御装置を含むことができる。水圧監視用の第2の圧力センサーが液相室5の一次側だけに設置されている場合、気相室圧力調整手段は、さらに液相室の二次側水圧を算出する前記演算装置を含むことができる。 The gas phase chamber pressure adjusting step can be performed using the pressure adjusting valve V3 while monitoring the gas phase chamber operating pressure, the air supply pressure, and the water pressure on the secondary side of the liquid phase chamber 5 as necessary. Therefore, the gas phase chamber pressure adjusting means for performing the gas phase chamber pressure adjusting step is provided with the pressure adjusting valve V3. Further, the gas phase chamber pressure adjusting means can include a control device for controlling the opening degree of the pressure adjusting valve V3. When the second pressure sensor for monitoring the water pressure is installed only on the primary side of the liquid phase chamber 5, the gas phase chamber pressure adjusting means further includes the arithmetic unit for calculating the secondary side water pressure of the liquid phase chamber. be able to.

図1に示したガス溶解水製造装置において、気相室圧力調整手段が、圧力調整弁V3として自動弁を有し、かつ圧力調整弁の開度を制御する制御装置を有する場合について、図5を用いて説明する。この制御装置40には、第1の圧力センサーP1及びP2でそれぞれ検知した圧力に相当する信号が送られる。制御装置40は、これらの信号に基づいて、気相室運転圧力が大気圧を超えるように、かつ、液相室5の二次側の水圧と給気圧力とが前記式(1)を満たすように、圧力調整弁(自動弁)V3の開度を制御する。この開度に相当する信号が、制御装置40から圧力調整弁V3に送られる。 In the gas-dissolved water production apparatus shown in FIG. 1, the case where the gas phase chamber pressure adjusting means has an automatic valve as the pressure adjusting valve V3 and a control device for controlling the opening degree of the pressure adjusting valve is shown in FIG. Will be described using. A signal corresponding to the pressure detected by the first pressure sensors P1 and P2 is sent to the control device 40, respectively. Based on these signals, the control device 40 satisfies the above equation (1) so that the gas phase chamber operating pressure exceeds the atmospheric pressure and the water pressure and the supply air pressure on the secondary side of the liquid phase chamber 5 satisfy the above equation (1). As described above, the opening degree of the pressure adjusting valve (automatic valve) V3 is controlled. A signal corresponding to this opening degree is sent from the control device 40 to the pressure adjusting valve V3.

なお、溶解膜モジュールの気相室4に供給するガス圧力(給気圧力)を上げる、または下げることにより、ガス溶解水の溶存ガス濃度は高く、または低くなる。溶存ガス濃度は、給気圧力が一定であればおよそ一定となるので、通常、所定の給気圧力が維持されるようにすることができる。ただし、このとき気相室運転圧力が大気圧を超えるように、及び好ましくは液相室5の二次側の水圧と給気圧力との関係が前記式(1)を満たすように、当該所定の給気圧力を設定する。また、設定した当該所定の給気圧力が前記式(1)を満たさないようになった際には、給気圧力を別の値に変更し、その値を維持することができる。 By increasing or decreasing the gas pressure (supply air pressure) supplied to the gas phase chamber 4 of the dissolution film module, the dissolved gas concentration of the gas dissolution water becomes high or low. Since the dissolved gas concentration becomes approximately constant if the supply air pressure is constant, it is usually possible to maintain a predetermined supply air pressure. However, at this time, the predetermined value is such that the operating pressure in the gas phase chamber exceeds the atmospheric pressure, and preferably the relationship between the water pressure on the secondary side of the liquid phase chamber 5 and the supply air pressure satisfies the above formula (1). Set the air supply pressure. Further, when the set predetermined air supply pressure does not satisfy the above equation (1), the air supply pressure can be changed to another value and the value can be maintained.

液相室5に供給する水の圧力が気相室4内の圧力に対して十分高い場合など、気相室4への給気圧力を調整せずとも式(1)の関係が満たされる場合には、気相室運転圧力が大気圧を超える限り、凝縮水排出を目的とする気相室圧力調整工程を行う必要はない。 When the relationship of equation (1) is satisfied without adjusting the air supply pressure to the gas phase chamber 4, such as when the pressure of the water supplied to the liquid phase chamber 5 is sufficiently higher than the pressure in the gas phase chamber 4. As long as the operating pressure in the gas phase chamber exceeds the atmospheric pressure, it is not necessary to perform the gas phase chamber pressure adjusting step for the purpose of discharging condensed water.

半導体部品の洗浄装置100で使用するガス溶解水を製造する際には、洗浄装置100内の主配管内における圧力(ガス溶解水の水圧)が気相室4への給気圧力よりも高くなるように、すなわち前記式(1)を満たすように、昇圧ポンプ7の吐出圧を調整する吐出圧調整工程を行うことが好ましい。これにより、当該主配管におけるガス溶解水への気泡混入をより確実に抑制することが容易である。 When manufacturing the gas-dissolved water used in the cleaning device 100 for semiconductor parts, the pressure (water pressure of the gas-dissolved water) in the main pipe in the cleaning device 100 becomes higher than the air supply pressure to the gas phase chamber 4. As described above, that is, it is preferable to perform the discharge pressure adjusting step of adjusting the discharge pressure of the booster pump 7 so as to satisfy the above formula (1). As a result, it is easy to more reliably suppress the mixing of air bubbles into the gas-dissolved water in the main pipe.

この吐出圧調整は、洗浄装置100内の主配管内における圧力および気相室4の給気圧力(あるいはこれら圧力の差)に基づいて、昇圧ポンプ7の回転数を変化させることによって行うことができる。吐出圧調整工程を行う吐出圧調整手段は、当該主配管内における圧力に相当する信号を洗浄装置100から受け取ることができる。また、吐出圧調整手段には、気相室4の給気圧力に相当する信号を入力することができる。また吐出圧調整手段は、昇圧ポンプ7の回転数を制御する制御装置(不図示)を含むことができる。昇圧ポンプ7として、インバーターによる回転数制御が可能な回転式の昇圧ポンプを用いることが好ましい。 This discharge pressure adjustment can be performed by changing the rotation speed of the booster pump 7 based on the pressure in the main pipe in the cleaning device 100 and the supply air pressure (or the difference between these pressures) in the gas phase chamber 4. it can. The discharge pressure adjusting means that performs the discharge pressure adjusting step can receive a signal corresponding to the pressure in the main pipe from the cleaning device 100. Further, a signal corresponding to the supply air pressure of the gas phase chamber 4 can be input to the discharge pressure adjusting means. Further, the discharge pressure adjusting means can include a control device (not shown) for controlling the rotation speed of the booster pump 7. As the booster pump 7, it is preferable to use a rotary booster pump whose rotation speed can be controlled by an inverter.

ただし、昇圧ポンプ7の吐出圧が十分高く、昇圧ポンプの吐出圧を調整せずとも、洗浄装置100内の主配管内において式(1)の関係が満たされる場合には、吐出圧調整工程を行う必要はなく、昇圧ポンプ7の吐出圧もしくは昇圧幅を実質的に一定にすることができる。 However, if the discharge pressure of the booster pump 7 is sufficiently high and the relationship of the formula (1) is satisfied in the main pipe in the cleaning device 100 without adjusting the discharge pressure of the booster pump, the discharge pressure adjustment step is performed. It is not necessary to do this, and the discharge pressure or boost width of the booster pump 7 can be made substantially constant.

・凝縮水排出機構の詳細
ガス溶解水製造装置1は、気相室4で凝縮された凝縮水を排出する凝縮水排出機構30を含む。図3に示すように、凝縮水排出機構30は、次のものを含むことができる:気相室4に備わる凝縮水排出口10と連通し、気相室4から排出された凝縮水を貯留可能な凝縮水貯留部31;凝縮水貯留部31に貯留された凝縮水液位を検知する液位センサーLS;及び、凝縮水貯留部31の二次側に設けられた弁V31。なお、図3に示す例においては、ガス溶解膜3として多数の中空糸膜(入口及び出口がそれぞれヘッダーで分岐および集合される)が設けられ、中空糸膜の外側をガス(オゾン含有ガス)が流れ、中空糸膜の内側を水(純水)が流れる。弁V31には、電磁式、電動式、空気式など適宜の自動弁を用いることができる。弁V31は、開閉弁であってよい。
-Details of Condensed Water Discharge Mechanism The gas-dissolved water production apparatus 1 includes a condensed water discharge mechanism 30 that discharges condensed water condensed in the gas phase chamber 4. As shown in FIG. 3, the condensed water discharge mechanism 30 can include: communicate with the condensed water discharge port 10 provided in the gas phase chamber 4 and store the condensed water discharged from the gas phase chamber 4. A possible condensed water storage unit 31; a liquid level sensor LS that detects the condensed water liquid level stored in the condensed water storage unit 31; and a valve V31 provided on the secondary side of the condensed water storage unit 31. In the example shown in FIG. 3, a large number of hollow fiber membranes (inlets and outlets are branched and aggregated at headers, respectively) are provided as the gas dissolution membrane 3, and the outside of the hollow fiber membrane is gas (ozone-containing gas). Flows, and water (pure water) flows inside the hollow fiber membrane. As the valve V31, an appropriate automatic valve such as an electromagnetic type, an electric type, or a pneumatic type can be used. The valve V31 may be an on-off valve.

凝縮水排出に際しては、気相室4と凝縮水貯留部31とが連通した状態のまま、所定の時間弁V31を開いて凝縮水貯留部31から凝縮水を排出し、その後に弁V31を閉じる(制御工程)。このための制御手段として、弁V31を開き、所定の時間(T)経過した後に、弁V31を閉じる制御装置(不図示)を用いることができる。凝縮水貯留部31と気相室4とはもともと連通しているので、凝縮水を排出する際に、気相室4と凝縮水貯留部31とを連通させるための操作や装置は不要である。気相室4と凝縮水貯留部31とが連通した状態のまま凝縮水貯留部31から凝縮水を排出するので、凝縮水排出口10と凝縮水貯留部31との間に、弁を設ける必要がない。したがって、シンプルな構造で凝縮水をスムーズに排出することが可能である。特には、液位センサーLSによって凝縮水液位が所定値L以上(もしくは所定値L超)であることが検知された場合に弁V31を開く。このために、制御手段は、液位センサーLSからの信号を受信し、受信した信号に基づいて弁V31を開くことができる。 When discharging the condensed water, the valve V31 is opened for a predetermined time to discharge the condensed water from the condensed water storage unit 31 while the gas phase chamber 4 and the condensed water storage unit 31 are in communication with each other, and then the valve V31 is closed. (Control process). As a control means for this purpose, a control device (not shown) that opens the valve V31 and closes the valve V31 after a predetermined time (T) has elapsed can be used. Since the condensed water storage unit 31 and the gas phase chamber 4 are originally communicated with each other, no operation or device for communicating the gas phase chamber 4 and the condensed water storage unit 31 is required when discharging the condensed water. .. Since the condensed water is discharged from the condensed water storage unit 31 while the gas phase chamber 4 and the condensed water storage unit 31 are in communication with each other, it is necessary to provide a valve between the condensed water discharge port 10 and the condensed water storage unit 31. There is no. Therefore, it is possible to smoothly discharge the condensed water with a simple structure. In particular, the valve V31 is opened when the liquid level sensor LS detects that the condensed water liquid level is equal to or higher than the predetermined value L H (or exceeds the predetermined value L H). For this purpose, the control means can receive a signal from the liquid level sensor LS and open the valve V31 based on the received signal.

所定の時間Tの間弁V31を開いた後も、凝縮水貯留部31内の凝縮水液位が所定値L以上(もしくはL超)である場合、所定時間Tの開動作を繰り返すことができる。液位センサーLSによって凝縮水液位が所定値L未満(もしくは所定値L以下)であることが検知された場合には、気相室4と凝縮水貯留部31とが連通した状態のままで、弁V31を閉じたままにすればよい。このとき、凝縮水貯留部31から凝縮水が排出されない。 Even after the valve V31 is opened for a predetermined time T, if the condensed water level in the condensed water storage unit 31 is equal to or higher than the predetermined value L H (or exceeds L H ), the opening operation of the predetermined time T is repeated. Can be done. When the liquid level sensor LS detects that the condensed water liquid level is less than the predetermined value L H (or the predetermined value L H or less), the gas phase chamber 4 and the condensed water storage unit 31 are in communication with each other. Until then, the valve V31 may be kept closed. At this time, the condensed water is not discharged from the condensed water storage unit 31.

所定の時間Tは、弁V31の開動作によって凝縮水貯留部31内の凝縮水が空にならないように、設定することが好ましい。ガスが弁V31を通過して系外に排出されることを容易に防止できるからである。また、所定の時間Tは、弁V31の開動作による気相室4の運転圧力の低下が5kPa以下となるように、設定することが好ましい。ガス溶解水中の溶存ガス濃度をほぼ一定に保つことが容易だからである。所定の時間Tは、例えば1秒以下であり、0.5秒程度であってよい。 The predetermined time T is preferably set so that the condensed water in the condensed water storage portion 31 is not emptied by the opening operation of the valve V31. This is because it is possible to easily prevent the gas from passing through the valve V31 and being discharged to the outside of the system. Further, the predetermined time T is preferably set so that the decrease in the operating pressure of the gas phase chamber 4 due to the opening operation of the valve V31 is 5 kPa or less. This is because it is easy to keep the dissolved gas concentration in the gas-dissolved water almost constant. The predetermined time T is, for example, 1 second or less, and may be about 0.5 second.

凝縮水排出口10は、気相室4から凝縮水を排出できるように適宜の位置に設けることができる。具体的には、凝縮水排出口10は、気相室4の下部、好ましくはガス溶解膜3より低い位置に設けることができる。例えば、気相室4の底部に、あるいは気相室4の側部の、底部に近い位置に設けることができる。 The condensed water discharge port 10 can be provided at an appropriate position so that the condensed water can be discharged from the gas phase chamber 4. Specifically, the condensed water discharge port 10 can be provided at a position lower than the gas phase chamber 4, preferably lower than the gas dissolution film 3. For example, it can be provided at the bottom of the gas phase chamber 4 or at a position near the bottom of the side portion of the gas phase chamber 4.

詳しくは図3に示すように、凝縮水排出口10に、凝縮水排出流路としてラインL31が接続される。ラインL31の末端は大気開放され、ラインL31から凝縮水がガス溶解水製造装置外に排出される。凝縮水貯留部31は、ラインL31の、凝縮水排出口10から弁V31までの部分である。この部分に、気相室4から排出された凝縮水を貯留することができる。ただし前述のように弁V31を制御するので、実質的には、凝縮水液位が所定値Lであるときの液面の位置から弁V31までの間に、凝縮水が貯留する。 Specifically, as shown in FIG. 3, a line L31 is connected to the condensed water discharge port 10 as a condensed water discharge flow path. The end of the line L31 is opened to the atmosphere, and condensed water is discharged from the line L31 to the outside of the gas-dissolved water production apparatus. The condensed water storage unit 31 is a portion of the line L31 from the condensed water discharge port 10 to the valve V31. Condensed water discharged from the gas phase chamber 4 can be stored in this portion. However, since the valve V31 is controlled as described above, the condensed water is substantially stored between the position of the liquid level when the condensed water level is the predetermined value L H and the valve V31.

図3に示した例では、ラインL31に、液位センサーLSを備える凝縮水貯留槽32と、弁V31が設けられる。凝縮水液位が所定値Lであるときの液面が、凝縮水貯留槽32の中に位置するように液位センサーLSが配置される。凝縮水排出口10と凝縮水貯留槽32とは配管33によって接続される。凝縮水貯留槽32と弁V31とは配管34によって接続される。弁V31の二次側には、配管35が接続される。配管35の末端は大気開放される。凝縮水貯留槽32の内径は、配管33〜35の内径よりも大きい。配管33の内径は、配管34及び35の内径より大きい。配管34及び35の内径は同じである。凝縮水貯留槽32は、適宜の配管材で形成することができる。 In the example shown in FIG. 3, the line L31 is provided with a condensed water storage tank 32 provided with a liquid level sensor LS and a valve V31. The liquid level sensor LS is arranged so that the liquid level when the condensed water liquid level is a predetermined value L H is located in the condensed water storage tank 32. The condensed water discharge port 10 and the condensed water storage tank 32 are connected by a pipe 33. The condensed water storage tank 32 and the valve V31 are connected by a pipe 34. A pipe 35 is connected to the secondary side of the valve V31. The end of the pipe 35 is open to the atmosphere. The inner diameter of the condensed water storage tank 32 is larger than the inner diameter of the pipes 33 to 35. The inner diameter of the pipe 33 is larger than the inner diameter of the pipes 34 and 35. The inner diameters of the pipes 34 and 35 are the same. The condensed water storage tank 32 can be formed of an appropriate piping material.

凝縮水排出口10と弁V31との間には、したがって凝縮水貯留部31と気相室4との間には、弁、特には自動弁が設けられていない。凝縮水貯留部31が気相室4の凝縮水排出口10と連通している。凝縮水を液体貯留部31から排出する際も排出しない際も、気相室4から排出された凝縮水を凝縮水貯留部31に受け入れながらガス溶解水を製造することができる。弁V31は、貯留水排出機構30が有する唯一の弁、特には唯一の自動弁であってよい。 A valve, particularly an automatic valve, is not provided between the condensed water discharge port 10 and the valve V31, and therefore between the condensed water storage unit 31 and the gas phase chamber 4. The condensed water storage unit 31 communicates with the condensed water discharge port 10 of the gas phase chamber 4. Regardless of whether the condensed water is discharged from the liquid storage unit 31 or not, the gas-dissolved water can be produced while receiving the condensed water discharged from the gas phase chamber 4 into the condensed water storage unit 31. The valve V31 may be the only valve of the stored water discharge mechanism 30, particularly the only automatic valve.

液位センサーLSとしては、光、超音波、静電容量などを利用する液面計を適宜使用することができる。 As the liquid level sensor LS, a liquid level gauge using light, ultrasonic waves, capacitance or the like can be appropriately used.

気相室4内の圧力だけでなく、重力すなわち凝縮水の自重も利用して凝縮水を排出するために、ラインL31は凝縮水排出口10から下方に向かって設けられる(水平な部分があってもよい)ことが好ましい。したがって、凝縮水排出機構30は、凝縮水排出口10よりも低い位置に存在することが好ましい。また、凝縮水排出口10は、凝縮水液位が所定値Lであるときの液面よりも高い位置にあることが好ましい。 In order to discharge the condensed water by utilizing not only the pressure in the gas phase chamber 4 but also the gravity, that is, the weight of the condensed water, the line L31 is provided downward from the condensed water discharge port 10 (there is a horizontal portion). May be). Therefore, it is preferable that the condensed water discharge mechanism 30 exists at a position lower than the condensed water discharge port 10. Further, the condensed water discharge port 10 is preferably located at a position higher than the liquid level when the condensed water liquid level is a predetermined value L H.

凝縮水排出口10から凝縮水貯留部31への凝縮水の流れをスムーズにする観点から、凝縮水排出口10から、凝縮水液位が所定値Lであるときの液面の位置までの、凝縮水流路の内径が、6mm以上であることが好ましい。例えば、凝縮水排出口10の直径、配管33の内径、凝縮水貯留槽32の内径が、いずれも6mm以上であることが好ましい。詳しくは凝縮水貯留槽32の、凝縮水液位が所定値Lであるときの液面より上側の部分の内径が6mm以上であることが好ましいが、凝縮水貯留槽32の全体の内径が6mm以上であることがより好ましい。さらに、配管34の内径も6mm以上であってよい。配管35の内径は、6mm未満であってよい。 From the viewpoint of smoothing the flow of condensed water from the condensed water discharge port 10 to the condensed water storage unit 31, from the condensed water discharge port 10 to the position of the liquid level when the condensed water liquid level is a predetermined value L H. The inner diameter of the condensed water flow path is preferably 6 mm or more. For example, the diameter of the condensed water discharge port 10, the inner diameter of the pipe 33, and the inner diameter of the condensed water storage tank 32 are all preferably 6 mm or more. Specifically, it is preferable that the inner diameter of the portion of the condensed water storage tank 32 above the liquid level when the condensed water liquid level is a predetermined value L H is 6 mm or more, but the overall inner diameter of the condensed water storage tank 32 is It is more preferably 6 mm or more. Further, the inner diameter of the pipe 34 may be 6 mm or more. The inner diameter of the pipe 35 may be less than 6 mm.

配管33と凝縮水貯留槽32の内径が同じであってもよい。この場合、配管33と凝縮水貯留槽32とを、一本の配管材で形成してもよい。またこの場合、配管34の内径は、配管33及び凝縮水貯留槽32の内径よりも小さくすることができる。あるいは、配管34の内径が、配管33及び凝縮水貯留槽32の内径と同じでもよい。この場合、配管33と凝縮水貯留槽32と配管34とを、一本の配管材で形成してもよい。いずれの場合も、凝縮水排出口10と弁V31との間に凝縮水液位が所定値Lであるときの液面が位置するように、また凝縮水排出操作を行った後の凝縮水液面が凝縮水貯留部31の内部に位置するように、液位センサーLSを配置し、ラインL31の長さや径を決め、また弁V31の制御を行うことが好ましい。 The inner diameters of the pipe 33 and the condensed water storage tank 32 may be the same. In this case, the pipe 33 and the condensed water storage tank 32 may be formed of a single pipe material. Further, in this case, the inner diameter of the pipe 34 can be made smaller than the inner diameter of the pipe 33 and the condensed water storage tank 32. Alternatively, the inner diameter of the pipe 34 may be the same as the inner diameter of the pipe 33 and the condensed water storage tank 32. In this case, the pipe 33, the condensed water storage tank 32, and the pipe 34 may be formed of a single pipe material. In either case, the condensed water is located between the condensed water discharge port 10 and the valve V31 so that the liquid level when the condensed water level is a predetermined value L H is located, and after the condensed water discharge operation is performed. It is preferable to arrange the liquid level sensor LS so that the liquid level is located inside the condensed water storage portion 31, determine the length and diameter of the line L31, and control the valve V31.

以下のような構成も可能である。すなわち、ラインL31を、内径が相異なる第1の部分及び第2の部分で構成する。第1の部分の内径が第2の部分の内径よりも大きい。第1の部分を凝縮水排出口10に接続する。第1の部分の内径は6mm以上、第2の部分の内径は6mm未満とする。第1の部分の途中に、凝縮水液位が所定値Lであるときの液面が位置するように液位センサーLSを設ける。凝縮水排出操作を行った後の凝縮水液面も、第1の部分に位置するようにする。第2の部分に弁V31を設ける。この構成は非常にシンプルである。 The following configurations are also possible. That is, the line L31 is composed of a first portion and a second portion having different inner diameters. The inner diameter of the first portion is larger than the inner diameter of the second portion. The first portion is connected to the condensed water discharge port 10. The inner diameter of the first portion is 6 mm or more, and the inner diameter of the second portion is less than 6 mm. A liquid level sensor LS is provided in the middle of the first portion so that the liquid level when the condensed water liquid level is a predetermined value L H is positioned. The surface of the condensed water liquid after performing the condensed water discharge operation is also located at the first portion. A valve V31 is provided in the second portion. This configuration is very simple.

気相室4と凝縮水貯留部31とが連通しているので、凝縮水排出時に凝縮水貯留部31内の凝縮水液面が下降すると、それに伴って微量(ガス溶解水の濃度に影響を及ぼさない程度)のガスが気相室4から凝縮水貯留部31に引き込まれるように流れる。このガスの流れによって、気相室4から凝縮水貯留部31に凝縮水が落ちやすくなる。この点も、スムーズに凝縮水を排出するために有利である。前述のように弁V31の開動作によって凝縮水貯留部31内の凝縮水が空にならないように時間Tを設定することにより、凝縮水排出操作を行った後でも凝縮水液面は凝縮水貯留部31の内部に位置するので、ガスが系外に排出されることは無い。 Since the gas phase chamber 4 and the condensed water storage unit 31 are in communication with each other, if the level of the condensed water liquid in the condensed water storage unit 31 drops when the condensed water is discharged, a small amount (affects the concentration of gas-dissolved water). A gas (not enough to reach) flows from the gas phase chamber 4 to the condensed water storage unit 31. Due to this gas flow, condensed water easily falls from the gas phase chamber 4 to the condensed water storage unit 31. This point is also advantageous for smoothly discharging the condensed water. As described above, by setting the time T so that the condensed water in the condensed water storage portion 31 is not emptied by the opening operation of the valve V31, the condensed water liquid level is stored in the condensed water even after the condensed water discharge operation is performed. Since it is located inside the portion 31, gas is not discharged to the outside of the system.

〔第2の形態〕
図2及び4を用いて、水素を溶解させる場合のガス溶解水製造装置の例について説明する。この形態は、酸素、窒素または炭酸ガスを溶解する場合にも好ましく用いられる。図1及び3に示した機器やラインと同じ機能を有するものについては同じ参照符号を付す。第1の形態と共通する事項については、適宜説明を省略する。図2には示さないが、この形態においても、ガス溶解水製造装置1から得られる水素溶解水を、送水先装置である半導体部品洗浄装置に送ることができる。気相室圧力調整工程および吐出圧調整工程は、前述の形態と同様に行うことができるが、以下の説明では、気相室圧力調整工程で気相室4の運転圧力を調整する方法として、別の方法を説明する。凝縮水排出機構30に関しては、本形態は第1の形態と同様であってよい。
[Second form]
An example of a gas-dissolved water production apparatus for dissolving hydrogen will be described with reference to FIGS. 2 and 4. This form is also preferably used when dissolving oxygen, nitrogen or carbon dioxide. The same reference numerals are given to those having the same functions as the devices and lines shown in FIGS. 1 and 3. The matters common to the first embodiment will be omitted as appropriate. Although not shown in FIG. 2, in this form as well, the hydrogen-dissolved water obtained from the gas-dissolved water production device 1 can be sent to the semiconductor component cleaning device which is the water supply destination device. The gas phase chamber pressure adjusting step and the discharge pressure adjusting step can be performed in the same manner as in the above-described embodiment, but in the following description, as a method of adjusting the operating pressure of the gas phase chamber 4 in the gas phase chamber pressure adjusting step, Another method will be described. Regarding the condensed water discharge mechanism 30, this embodiment may be the same as the first embodiment.

水素ガスの供給源としては特に限定されるものではないが、例えば水の電気分解による水素ガス発生器を用いてもよいし、水素ガスボンベを用いてもよい。図2には、水の電気分解によって製造した水素ガスを膜モジュールに給気する例を示す。膜モジュール2へ純水を供給する純水用配管(ラインL1)から分岐させたラインL21から、電気分解用の原料水としての純水が、水素ガス発生器21に供給される。水素ガス発生器21の電解セルの陰極室に接続されたラインL22から水素ガスが得られ、その水素ガスが膜モジュール2の気相室4に供給される。水素ガス発生器21の電解セルの陰極室から、水素ガスと液体の水とが流れ出てくるので、これらを分離するために、電解セルと膜モジュール2との間に気液分離器(不図示)を設けることが好ましい。電解セルの陽極室に接続されたラインL23を経て、電気分解で発生した酸素ガスと電気分解用の原料水のうちの余剰分が排出される。 The source of hydrogen gas is not particularly limited, but for example, a hydrogen gas generator by electrolysis of water may be used, or a hydrogen gas cylinder may be used. FIG. 2 shows an example of supplying hydrogen gas produced by electrolysis of water to the membrane module. Pure water as raw material water for electrolysis is supplied to the hydrogen gas generator 21 from the line L21 branched from the pure water pipe (line L1) for supplying pure water to the membrane module 2. Hydrogen gas is obtained from the line L22 connected to the cathode chamber of the electrolytic cell of the hydrogen gas generator 21, and the hydrogen gas is supplied to the gas phase chamber 4 of the membrane module 2. Since hydrogen gas and liquid water flow out from the cathode chamber of the electrolytic cell of the hydrogen gas generator 21, a gas-liquid separator (not shown) is used between the electrolytic cell and the membrane module 2 to separate them. ) Is provided. The excess of the oxygen gas generated by electrolysis and the raw water for electrolysis is discharged via the line L23 connected to the anode chamber of the electrolytic cell.

なお、通常運転時には、ラインL22に設けた開閉弁V22は開とし、ラインL15に設けた開閉弁V21は閉とする。水素ガスは、矢印Aに沿ってラインL22から気相室4に供給される。運転停止時には、開閉弁21を開き、気相室4の残圧を開放することができる(矢印Bに沿って気相室内の残ガスが流れる)。 During normal operation, the on-off valve V22 provided on the line L22 is open, and the on-off valve V21 provided on the line L15 is closed. Hydrogen gas is supplied to the gas phase chamber 4 from the line L22 along the arrow A. When the operation is stopped, the on-off valve 21 can be opened to release the residual pressure in the gas phase chamber 4 (residual gas in the gas phase chamber flows along the arrow B).

図4に示すように、中空糸膜の外側に純水、内側に水素ガスが供給される。すなわち、この場合、中空糸膜の外側に液相室5が、内側に気相室4が形成される。 As shown in FIG. 4, pure water is supplied to the outside of the hollow fiber membrane and hydrogen gas is supplied to the inside. That is, in this case, the liquid phase chamber 5 is formed on the outside of the hollow fiber membrane, and the gas phase chamber 4 is formed on the inside.

水素ガス溶解の場合は、供給源の如何によらずほぼ100%濃度の水素を用いることができ、膜モジュール2に供給したガスの全量を水に溶かしこむことができる。したがって、本形態では、ラインL15に圧力調整弁は設けなくてよい。気相室4の出口ラインL15に設けた開閉弁V21を閉じたまま、水素ガス発生器21の稼働と停止を制御することによって、または電解電流値を制御することによって、気相室運転圧力を調整することができる。開閉弁V21を閉じたまま水素ガス発生器21を稼働させれば、発生した水素ガスによって気相室運転圧力が上昇する。気相室運転圧力が所定の上限値に達したとき、水素ガス発生器21を停止すれば、その後は水素ガスの溶解に伴って気相室運転圧力が下降する。気相室運転圧力が所定の下限値に達したとき、水素ガス発生器21を稼働させる。このような操作を繰り返すことによって、気相室運転圧力を調整することができる。 In the case of hydrogen gas dissolution, hydrogen having a concentration of almost 100% can be used regardless of the supply source, and the entire amount of the gas supplied to the membrane module 2 can be dissolved in water. Therefore, in this embodiment, the pressure adjusting valve does not have to be provided on the line L15. By controlling the operation and stop of the hydrogen gas generator 21 or by controlling the electrolytic current value while the on-off valve V21 provided in the outlet line L15 of the gas phase chamber 4 is closed, the gas phase chamber operating pressure is increased. Can be adjusted. If the hydrogen gas generator 21 is operated with the on-off valve V21 closed, the gas phase chamber operating pressure rises due to the generated hydrogen gas. If the hydrogen gas generator 21 is stopped when the gas-phase chamber operating pressure reaches a predetermined upper limit value, the gas-phase chamber operating pressure is subsequently lowered as the hydrogen gas is dissolved. When the gas phase chamber operating pressure reaches a predetermined lower limit value, the hydrogen gas generator 21 is operated. By repeating such an operation, the gas phase chamber operating pressure can be adjusted.

あるいは、圧力調整弁(不図示)をラインL22に設け、電解セルの陰極室の圧力を一定にし、すなわち水素ガス発生器21で発生する水素ガスの圧力を所定圧力に保ち、この圧力調整弁の下流に位置する気相室4の圧力を当該所定圧力とは別の圧力にして、水素ガスを溶解せしめてもよい。また、マスフローコントローラ(不図示)によって気相室4への給気量を制御することもできる。 Alternatively, a pressure regulating valve (not shown) is provided on the line L22 to keep the pressure in the cathode chamber of the electrolytic cell constant, that is, to keep the pressure of the hydrogen gas generated in the hydrogen gas generator 21 at a predetermined pressure, and to keep the pressure of the pressure regulating valve. The pressure of the gas phase chamber 4 located downstream may be set to a pressure different from the predetermined pressure to dissolve the hydrogen gas. Further, the amount of air supplied to the gas phase chamber 4 can be controlled by a mass flow controller (not shown).

第1の圧力センサーP1を、図2に示すように、気相室4の入口に接続された配管(ラインL22)に設けることができる。 As shown in FIG. 2, the first pressure sensor P1 can be provided in the pipe (line L22) connected to the inlet of the gas phase chamber 4.

溶存水素濃度の測定ではポーラログラフ式や熱伝導度検知式の濃度計などが用いられる。これらの濃度計は前記の通り内部液を保有していたり、接液部材質からの金属溶出の可能性があったりする。そのため、ガス溶解水すなわち水素溶解水の配管(ラインL2)から分岐した枝管(ラインL4)に溶存水素濃度計8を設け、測定後の液は排水することが好ましい。なお、ラインL4には、適宜、流量センサーF2や、縁切りのための開閉弁V5およびV6が設けられる。 A polarograph type or thermal conductivity detection type densitometer is used to measure the dissolved hydrogen concentration. As described above, these densitometers may retain the internal liquid or may elute metal from the wetted material. Therefore, it is preferable to provide the dissolved hydrogen concentration meter 8 in the branch pipe (line L4) branched from the gas-dissolved water, that is, the hydrogen-dissolved water pipe (line L2), and drain the liquid after the measurement. The line L4 is appropriately provided with a flow rate sensor F2 and on-off valves V5 and V6 for edge cutting.

図2に示した形態においても、気相室運転圧力は大気圧を超える圧力とし、さらに気相室4への給気圧力を液相室5の二次側の水圧よりも低い圧力に調整する気相室圧力調整工程を行うことが好ましい。この圧力調整は、前述のようにして知った気相室4の運転圧力及び給気圧力並びに液相室5の二次側の水圧を監視しつつ、水素ガス発生器21の稼働停止または電解電流値を制御することによって行うことができる。つまり、溶解させるガスの発生とその停止、または発生量を制御することができる。気相室圧力調整手段は、水素ガス発生器21の稼働停止または電解電流値を制御する制御装置(不図示)を含むことができる。水圧監視用の第2の圧力センサーが液相室5の一次側だけに設置されている場合、気相室圧力調整手段は、さらに液相室の二次側水圧を算出する前記演算装置を含むことができる。 Also in the form shown in FIG. 2, the gas phase chamber operating pressure is set to a pressure exceeding the atmospheric pressure, and the air supply pressure to the gas phase chamber 4 is adjusted to a pressure lower than the water pressure on the secondary side of the liquid phase chamber 5. It is preferable to carry out the gas phase chamber pressure adjustment step. In this pressure adjustment, the operation of the hydrogen gas generator 21 is stopped or the electrolytic current is monitored while monitoring the operating pressure and supply pressure of the gas phase chamber 4 and the water pressure on the secondary side of the liquid phase chamber 5 known as described above. This can be done by controlling the value. That is, it is possible to control the generation and stop of the gas to be dissolved, or the amount of the gas generated. The gas phase chamber pressure adjusting means can include a control device (not shown) for controlling the operation stoppage of the hydrogen gas generator 21 or the electrolytic current value. When the second pressure sensor for monitoring the water pressure is installed only on the primary side of the liquid phase chamber 5, the gas phase chamber pressure adjusting means further includes the arithmetic unit for calculating the secondary side water pressure of the liquid phase chamber. be able to.

水素ガス発生器21に替えて水素ボンベを使用する場合、気相室4への水素ガス供給ラインに適宜圧力調整弁を設けて、気相室運転圧力及び給気圧力を調整することができる。 When a hydrogen cylinder is used instead of the hydrogen gas generator 21, a pressure adjusting valve can be appropriately provided in the hydrogen gas supply line to the gas phase chamber 4 to adjust the gas phase chamber operating pressure and the supply air pressure.

図2に示すように気相室4に供給するガスの全量を水に溶かしこむ形態において、気相室4の給気圧力を所定の値に保つ場合、液相室5への給水流量の変動によらず、およそ安定した溶存ガス濃度のガス溶解水を得ることができる。ただし、経時的に膜モジュール2におけるガス溶解効率が緩やかに低下することがある。ガス溶解効率が低下して溶存ガス濃度が低下した場合には、所望の溶存ガス濃度が得られるように給気圧力の設定値を高めることができる。 As shown in FIG. 2, in a form in which the entire amount of gas supplied to the gas phase chamber 4 is dissolved in water, when the supply pressure of the gas phase chamber 4 is maintained at a predetermined value, the flow rate of water supplied to the liquid phase chamber 5 fluctuates. Regardless of this, gas-dissolved water having a substantially stable dissolved gas concentration can be obtained. However, the gas dissolution efficiency in the membrane module 2 may gradually decrease over time. When the gas dissolution efficiency decreases and the dissolved gas concentration decreases, the set value of the supply air pressure can be increased so that a desired dissolved gas concentration can be obtained.

また、図2に示す形態のように気相室4に供給するガスの全量を水に溶かしこむ方法として、液相室5への給水流量の増減に合わせて給気流量を増減させる給気流量制御もしばしば行われる。この制御方式を行う場合、液相室5への給水流量を測定するための流量計と、給気流量の制御および測定をするための機器(マスフローコントローラを用いることが多い)と、を設置することができる。所望の溶存ガス濃度を得るために必要な流量のガスを気相室4に供給するこの方法では、溶解膜モジュールの溶解効率の低下によって溶存ガス濃度が下がることがない。 Further, as a method of dissolving the entire amount of gas supplied to the gas phase chamber 4 in water as shown in FIG. 2, the supply air flow rate increases or decreases according to the increase or decrease of the water supply flow rate to the liquid phase chamber 5. Control is also often done. When this control method is performed, a flow meter for measuring the water supply flow rate to the liquid phase chamber 5 and a device for controlling and measuring the supply air flow rate (often using a mass flow controller) are installed. be able to. In this method of supplying the gas phase chamber 4 with the gas at the flow rate required to obtain the desired dissolved gas concentration, the dissolved gas concentration does not decrease due to the decrease in the dissolution efficiency of the dissolution film module.

なお、図1に示すような、給気するガスの一部だけを水に溶解せしめる形態においては、ガスがオゾン含有ガスであれば、例えば給気圧力を所定の値に調整しておき(このとき、気相室運転圧力が大気圧超となるようにする)、溶存オゾン濃度計6の測定結果に対してオゾンガス発生器14からのオゾン供給量を増減させて所望の濃度のオゾン水を得ることができる。例えば、無声放電式のオゾンガス発生器の場合、給気流量が一定の時、放電出力の増減によってオゾン含有ガス中のオゾン濃度が増減するので、給気圧力と給気流量とをそれぞれ所定の値にしておき、放電出力を増減させることによって溶存オゾン濃度の制御を行うことが多い。オゾンガス発生が水電解式である場合でも、溶存オゾン濃度計6の測定値に対して電解電流値を増減させて発生オゾンガス濃度の制御を行うことができる。 In the form shown in FIG. 1 in which only a part of the gas to be supplied is dissolved in water, if the gas is an ozone-containing gas, for example, the supply pressure is adjusted to a predetermined value (this). When, the operating pressure in the gas phase chamber is set to exceed atmospheric pressure), and the ozone supply amount from the ozone gas generator 14 is increased or decreased with respect to the measurement result of the dissolved ozone concentration meter 6 to obtain ozone water having a desired concentration. be able to. For example, in the case of a silent discharge type ozone gas generator, when the supply air flow rate is constant, the ozone concentration in the ozone-containing gas increases or decreases as the discharge output increases or decreases, so the supply air pressure and the supply air flow rate are set to predetermined values. In many cases, the dissolved ozone concentration is controlled by increasing or decreasing the discharge output. Even when the ozone gas generation is a water electrolysis type, the generated ozone gas concentration can be controlled by increasing or decreasing the electrolytic current value with respect to the measured value of the dissolved ozone concentration meter 6.

〔溶解させるガスの種類〕
溶解させるガスの種類としては特に限定するものではなく、水素ガス、酸素ガス、窒素ガス、オゾンガス(通常、オゾンガスと酸素ガスの混合ガス)、炭酸ガスなどを用いることができる。溶解させるガスの物性により、純水は異なる酸化還元電位やpHを示すガス溶解水となる。酸化還元電位に寄与しない不活性ガスを溶解させた場合には、酸化防止効果や超音波洗浄時のキャビテーション効果を高める効果などを得ることができる。
[Type of gas to be dissolved]
The type of gas to be dissolved is not particularly limited, and hydrogen gas, oxygen gas, nitrogen gas, ozone gas (usually a mixed gas of ozone gas and oxygen gas), carbon dioxide gas and the like can be used. Depending on the physical properties of the gas to be dissolved, pure water becomes gas-dissolved water showing different redox potentials and pH. When an inert gas that does not contribute to the redox potential is dissolved, an antioxidant effect and an effect of enhancing the cavitation effect during ultrasonic cleaning can be obtained.

〔ガス溶解水への添加物〕
また、ガスを溶解させる前か又は後の水に、pH調整などを目的としてアルカリや酸を添加することもできる。例えば、水素溶解水へのアルカリ添加(アンモニア水やTMAH(水酸化テトラメチルアンモニウム)など)により、水質をアルカリ性還元性に変化させることができる。これにより半導体部品洗浄装置における基板表面の微粒子除去効果が向上するとともに帯電を抑えることもできる。
[Additives to gas-dissolved water]
Further, an alkali or an acid can be added to the water before or after the gas is dissolved for the purpose of adjusting the pH. For example, the water quality can be changed to alkaline reducing by adding alkali to hydrogen-dissolved water (ammonia water, TMAH (tetramethylammonium hydroxide, etc.), etc.). As a result, the effect of removing fine particles on the substrate surface in the semiconductor component cleaning apparatus can be improved and charging can be suppressed.

〔ガス溶解水の溶存ガス濃度〕
ガス溶解膜モジュールを用いて純水中にガスを溶解させる場合、「温度が一定のとき、一定量の液体に溶ける気体の物質量や質量は圧力に比例する。」というヘンリーの法則に従い、純水に溶ける気体の物質量はガス溶解膜モジュールの気相室への給気圧力に比例する。
[Dissolved gas concentration of gas-dissolved water]
When a gas is dissolved in pure water using a gas dissolution film module, it is pure according to Henry's law that "when the temperature is constant, the amount of substance and mass of the gas that dissolves in a certain amount of liquid are proportional to the pressure." The amount of substance of the gas that dissolves in water is proportional to the air supply pressure to the gas phase chamber of the gas dissolution film module.

ガス溶解水中の溶存ガス濃度は、水素ガスおよび窒素ガスについては20℃、1気圧での飽和溶解度(水素ガス:1.61mg/L,窒素ガス:18.7mg/L)の50〜100%程度、酸素ガスについては20℃、1気圧での飽和溶解度(44.3mg/L)の0.1〜1%程度で使用されることが多い。これに対してオゾンガス溶解水中の溶存オゾンガス濃度は、27℃、1気圧での飽和溶解度(13.9mg/L)の50〜200%程度まで高めて使用することも多い。特にオゾン溶解水の場合には、高濃度にすることでレジスト残渣の除去効果が顕著になることが知られており、しばしば100mg O/L以上もの高濃度オゾン溶解水が利用されている。 The concentration of dissolved gas in the dissolved gas water is about 50 to 100% of the saturated solubility (hydrogen gas: 1.61 mg / L, nitrogen gas: 18.7 mg / L) at 20 ° C. and 1 atm for hydrogen gas and nitrogen gas. As for oxygen gas, it is often used at about 0.1 to 1% of the saturated solubility (44.3 mg / L) at 20 ° C. and 1 atm. On the other hand, the dissolved ozone gas concentration in the ozone gas-dissolved water is often increased to about 50 to 200% of the saturated solubility (13.9 mg / L) at 27 ° C. and 1 atm. Particularly in the case of ozone-dissolved water it is known to remove the effect of the resist residue by the high density becomes conspicuous, and is often utilized a high concentration ozone dissolved water of 100 mg O 3 / L more than.

〔膜モジュール二次側の昇圧ポンプ〕
膜モジュールの液相室の二次側に設ける昇圧ポンプとしては、水を昇圧できるポンプを適宜用いることができる。昇圧ポンプは揚程と吐出量、昇圧するガス溶解水に対する耐食性などに基づいて選定すればよい。例えば、非容積式の遠心ポンプやプロペラポンプ、容積式の往復動ポンプや回転ポンプなどを用いることができる。ただし、半導体部品の製造工程のように特に清浄性を求められる場合には、回転軸の摺動による発塵の無い、磁気浮上型インペラ搭載の遠心ポンプ(非容積式遠心ポンプに該当)や脈動除去機構を備えたダイアフラムポンプ(容積式往復動ポンプに該当)などが適している。
[Boost pump on the secondary side of the membrane module]
As the booster pump provided on the secondary side of the liquid phase chamber of the membrane module, a pump capable of boosting water can be appropriately used. The booster pump may be selected based on the lift and discharge rate, the corrosion resistance to the gas-dissolved water to be boosted, and the like. For example, a non-volumetric centrifugal pump, a propeller pump, a positive displacement reciprocating pump, a rotary pump, or the like can be used. However, when cleanliness is particularly required, such as in the manufacturing process of semiconductor parts, a centrifugal pump equipped with a magnetically levitated impeller (corresponding to a non-volumetric centrifugal pump) or pulsation that does not generate dust due to sliding of the rotating shaft. A diaphragm pump equipped with a removal mechanism (corresponding to a positive displacement reciprocating pump) is suitable.

〔気相室運転圧力〕
気相室運転圧力は、大気圧を超え、好ましくは気相室給気圧力と液相室5の二次側の水圧との関係を考慮して決められる。その具体例は、20〜100kPa程度である。
[Air phase chamber operating pressure]
The gas phase chamber operating pressure exceeds atmospheric pressure, and is preferably determined in consideration of the relationship between the gas phase chamber air supply pressure and the water pressure on the secondary side of the liquid phase chamber 5. A specific example thereof is about 20 to 100 kPa.

〔受入純水圧力(圧力センサーP4)〕
受入純水圧力は、ガス溶解水製造装置からのガス溶解水の吐出量を確保する観点等から適宜設定できる。その具体例は、100〜500kPa程度である。
[Receiving pure water pressure (pressure sensor P4)]
The receiving pure water pressure can be appropriately set from the viewpoint of ensuring the discharge amount of the gas-dissolved water from the gas-dissolved water production apparatus. A specific example thereof is about 100 to 500 kPa.

〔液相室5の二次側の水圧(昇圧ポンプ7の吸込圧)(圧力センサーP2)〕
昇圧ポンプ7の動作に伴いガス溶解水製造装置からの送水量が増加すると、昇圧ポンプ一次側では水圧の低下が生じることがある。液相室5の二次側(昇圧ポンプ7の一次側)の水圧は、液相室5内の圧力よりも低く、場合によっては送水先装置、特には洗浄装置の主配管内の圧力よりも低くなる。液相室5の二次側の水圧は、気相室4への給気圧力よりも高くなるように運転する。昇圧ポンプ7の一次側での配管および機器における通水圧損(圧力センサーP4の設置個所と圧力センサーP2の設置個所との間における通水圧損)が好ましくは100kPa以下、より好ましくは50kPa以下となるように設計および運転することが好ましい。
[Water pressure on the secondary side of the liquid phase chamber 5 (suction pressure of the booster pump 7) (pressure sensor P2)]
If the amount of water supplied from the gas-dissolved water production apparatus increases with the operation of the booster pump 7, the water pressure may decrease on the primary side of the booster pump 7. The water pressure on the secondary side of the liquid phase chamber 5 (primary side of the booster pump 7) is lower than the pressure in the liquid phase chamber 5, and in some cases, higher than the pressure in the main pipe of the water supply destination device, particularly the cleaning device. It gets lower. The operation is performed so that the water pressure on the secondary side of the liquid phase chamber 5 is higher than the air supply pressure to the gas phase chamber 4. The water flow pressure loss (water flow pressure loss between the installation location of the pressure sensor P4 and the installation location of the pressure sensor P2) in the piping and equipment on the primary side of the booster pump 7 is preferably 100 kPa or less, more preferably 50 kPa or less. It is preferable to design and operate as such.

〔昇圧ポンプ7の吐出圧(圧力センサーP3)〕
昇圧ポンプ7での昇圧の程度は受入純水圧力(圧力センサーP4の測定値)、液相室5の二次側の水圧(圧力センサーP2の測定値)や送水量、送水先装置での要求水圧(特には、洗浄装置内の主配管内の圧力)にも依存するが、50〜300kPa程度であることが多い。
[Discharge pressure of booster pump 7 (pressure sensor P3)]
The degree of boosting by the booster pump 7 is the received pure water pressure (measured value of the pressure sensor P4), the water pressure on the secondary side of the liquid phase chamber 5 (measured value of the pressure sensor P2), the amount of water sent, and the requirements of the water supply destination device. Although it depends on the water pressure (particularly, the pressure in the main pipe in the cleaning device), it is often about 50 to 300 kPa.

〔膜モジュール気相室への給気圧力とガス溶解水の水圧との差〕
膜モジュール気相室への給気圧力とガス溶解水の水圧との差は、30kPa以上が好ましい。例えば、気相室4への給気圧力と、液相室5の二次側の水圧との差が30kPa以上であることが好ましい。また、気相室4への給気圧力と、半導体部品の洗浄装置100の主配管内における圧力との差が30kPa以上であることが好ましい。
[Difference between the air supply pressure to the membrane module gas phase chamber and the water pressure of the gas-dissolved water]
The difference between the air supply pressure to the membrane module gas phase chamber and the water pressure of the gas-dissolved water is preferably 30 kPa or more. For example, it is preferable that the difference between the air supply pressure to the gas phase chamber 4 and the water pressure on the secondary side of the liquid phase chamber 5 is 30 kPa or more. Further, it is preferable that the difference between the air supply pressure to the gas phase chamber 4 and the pressure in the main pipe of the semiconductor component cleaning device 100 is 30 kPa or more.

〔膜モジュール一次側の昇圧ポンプ〕
液相室の二次側の昇圧ポンプに加えて、膜モジュールの液相室の一次側(図1および2におけるラインL1)に、受入純水を昇圧する昇圧ポンプを設けることができる。これによって、液相室出口において式(1)の関係を保ち、ガス溶解膜の気相側から液相側へのガスの噴出を避けつつ、ガス溶解膜モジュールへの給気圧力を高めて溶存ガス濃度を高めることがより容易となる。液相室一次側のポンプは、ガス溶解水製造装置への受入純水圧力が低い場合や、受入純水の流量変動が大きい場合などにも有効に利用できる。
[Boost pump on the primary side of the membrane module]
In addition to the booster pump on the secondary side of the liquid phase chamber, a booster pump for boosting the received pure water can be provided on the primary side (line L1 in FIGS. 1 and 2) of the liquid phase chamber of the membrane module. As a result, the relationship of equation (1) is maintained at the outlet of the liquid phase chamber, and the gas is dissolved by increasing the supply pressure to the gas dissolution film module while avoiding the ejection of gas from the gas phase side to the liquid phase side of the gas dissolution film. It becomes easier to increase the gas concentration. The pump on the primary side of the liquid phase chamber can be effectively used even when the pressure of the received pure water to the gas-dissolved water production apparatus is low or when the flow rate fluctuation of the received pure water is large.

〔ガス溶解膜〕
膜モジュールとしては、広い膜面積を確保しやすい中空糸膜を充填した中空糸膜モジュールが広く使用されている。それらの中には耐水圧が低い製品もあるので、膜モジュールの気相室一次側に昇圧ポンプを設置する場合には、膜の耐水圧を超えないようにその昇圧ポンプを運転する。
[Gas dissolution membrane]
As the membrane module, a hollow fiber membrane module filled with a hollow fiber membrane that can easily secure a wide membrane area is widely used. Some of them have low water pressure resistance, so when installing a booster pump on the primary side of the gas phase chamber of the membrane module, operate the booster pump so that the water pressure resistance of the membrane is not exceeded.

製造するガス溶解水の流量が大きい場合、複数個の膜モジュールを並列に配置することにより、通水圧損を低く抑えることができる。ガス溶解膜モジュールの中でもオゾン(O)用のものは耐水圧が低いもののひとつであり、内圧式(中空糸膜の内側に給水、外側に給気)のために通水圧損も大きい。表1に、半導体部品の洗浄用途向けのガス溶解水製造に用いる市販の膜モジュールの例を示す。 When the flow rate of the gas-dissolved water to be produced is large, the water flow pressure loss can be suppressed low by arranging a plurality of membrane modules in parallel. One for ozone (O 3) Among gas dissolving membrane module is one although lower water pressure, through water pressure loss because of inner pressure (water inside the hollow fiber membrane, the air supply to the outside) is also large. Table 1 shows an example of a commercially available membrane module used for producing gas-dissolved water for cleaning semiconductor parts.

Figure 2021041342
Figure 2021041342

なお、ガス溶解水製造装置に受け入れる純水の水圧(ラインL1)が、ガス溶解水製造装置を構成する弁、膜モジュール、水質測定器などの構成部品の耐水圧を上回る場合には、適宜減圧弁を設置して純水の水圧を下げ、構成部品を保護することができる。 If the water pressure of pure water (line L1) received in the gas-dissolved water production device exceeds the water pressure resistance of components such as valves, membrane modules, and water quality measuring instruments that make up the gas-dissolved water production device, the pressure is appropriately reduced. A valve can be installed to reduce the water pressure of pure water and protect the components.

1 ガス溶解水製造装置
2 ガス溶解膜モジュール
3 ガス溶解膜
4 気相室
5 液相室
6 溶存オゾン濃度計
7 昇圧ポンプ
8 溶存水素濃度計
10 凝縮水排出口
11、12、13 マスフローコントローラ
14 オゾンガス発生器
15 余剰オゾンガス分解触媒筒
21 水素ガス発生器
30 凝縮水排出機構
31 凝縮水貯留部
32 凝縮水貯留槽
33、34、35 配管
40 制御装置(圧力調整弁用)
100 送水先装置(洗浄装置)
LS 液位センサー
V1、V2、V5、V6、V21、V22、V31 開閉弁
V3 圧力調整弁
P1〜P4 圧力センサー
F1、F2 流量センサー
1 Gas-dissolved water production equipment 2 Gas-dissolved membrane module 3 Gas-dissolved membrane 4 Gas-phase chamber 5 Liquid-phase chamber 6 Dissolved ozone concentration meter 7 Booster pump 8 Dissolved hydrogen concentration meter 10 Condensed water outlets 11, 12, 13 Mass flow controller 14 Ozone gas Generator 15 Surplus ozone gas decomposition catalyst cylinder 21 Hydrogen gas generator 30 Condensed water discharge mechanism 31 Condensed water storage 32 Condensed water storage tanks 33, 34, 35 Piping 40 Control device (for pressure control valve)
100 Water supply destination device (cleaning device)
LS Liquid level sensor V1, V2, V5, V6, V21, V22, V31 On-off valve V3 Pressure control valve P1 to P4 Pressure sensor F1, F2 Flow sensor

Claims (9)

被処理水にガスを溶解させてガス溶解水を製造するガス溶解水製造装置であって、
ガス溶解膜によって区画された気相室と液相室とを備えるガス溶解膜モジュールと、
前記気相室で凝縮した凝縮水を排出する凝縮水排出機構と、を備え、
前記気相室の運転圧力が大気圧を超える圧力となるよう構成され、
前記凝縮水排出機構は、
前記気相室に形成された凝縮水排出口と連通し、前記気相室から排出された凝縮水を貯留可能な凝縮水貯留部と、
前記凝縮水貯留部の二次側に接続された弁と、
前記気相室と前記凝縮水貯留部とが連通した状態のまま、所定の時間前記弁を開いて前記凝縮水貯留部から凝縮水を排出し、その後に前記弁を閉じる制御手段と
を備える、ガス溶解水製造装置。
A gas-dissolved water production device that produces gas-dissolved water by dissolving gas in the water to be treated.
A gas dissolution membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas dissolution membrane,
It is equipped with a condensed water discharge mechanism that discharges the condensed water condensed in the gas phase chamber.
The operating pressure of the gas phase chamber is configured to exceed the atmospheric pressure.
The condensed water discharge mechanism is
A condensed water storage unit that communicates with the condensed water discharge port formed in the gas phase chamber and can store the condensed water discharged from the gas phase chamber.
A valve connected to the secondary side of the condensed water storage unit,
The valve is provided with a control means for opening the valve for a predetermined time to discharge the condensed water from the condensed water storage unit and then closing the valve while the gas phase chamber and the condensed water storage unit are in communication with each other. Gas dissolved water production equipment.
前記凝縮水貯留部に貯留された凝縮水液位を検知する液位センサーを備え、
前記制御手段は、前記液位センサーで検知された前記凝縮水液位が所定値以上もしくは所定値超である場合に前記弁を開く、請求項1に記載のガス溶解水製造装置。
A liquid level sensor for detecting the level of the condensed water stored in the condensed water storage unit is provided.
The gas-dissolved water production apparatus according to claim 1, wherein the control means opens the valve when the condensed water level detected by the liquid level sensor is equal to or higher than a predetermined value or exceeds a predetermined value.
前記凝縮水排出口から、凝縮水液位が前記所定値であるときの液面の位置までの、凝縮水流路の内径が、6mm以上である、請求項2に記載のガス溶解水製造装置。 The gas-dissolved water production apparatus according to claim 2, wherein the inner diameter of the condensed water flow path from the condensed water discharge port to the position of the liquid level when the condensed water level is the predetermined value is 6 mm or more. 前記気相室の運転圧力を、大気圧を超える圧力に調整する圧力調整手段を含む、請求項1〜3のいずれか一項に記載のガス溶解水製造装置。 The gas-dissolved water production apparatus according to any one of claims 1 to 3, further comprising a pressure adjusting means for adjusting the operating pressure of the gas phase chamber to a pressure exceeding atmospheric pressure. 前記所定の時間は、前記弁の開動作によって前記凝縮水貯留部内の凝縮水が空にならないように、かつ前記弁の開動作による前記気相室の運転圧力の低下が5kPa以下となるように、設定されている、請求項1〜4のいずれか一項に記載のガス溶解水製造装置。 For the predetermined time, the condensed water in the condensed water storage unit is not emptied by the opening operation of the valve, and the decrease in the operating pressure of the gas phase chamber due to the opening operation of the valve is 5 kPa or less. , The gas-dissolved water production apparatus according to any one of claims 1 to 4. 前記ガスがオゾンガスである、請求項1〜5のいずれか一項に記載のガス溶解水製造装置。 The gas-dissolved water production apparatus according to any one of claims 1 to 5, wherein the gas is ozone gas. 前記凝縮水排出口と前記凝縮水貯留部との間に、弁が設けられていない、請求項1〜6のいずれか一項に記載のガス溶解水製造装置。 The gas-dissolved water production apparatus according to any one of claims 1 to 6, wherein a valve is not provided between the condensed water discharge port and the condensed water storage unit. 被処理水にガスを溶解させてガス溶解水を製造するガス溶解水製造方法であって、
ガス溶解膜によって区画された気相室と液相室とを備えるガス溶解膜モジュールと、前記気相室で凝縮した凝縮水を排出する凝縮水排出機構を用い、
前記気相室の運転圧力を、大気圧を超える圧力とし、
前記凝縮水排出機構は、
前記気相室に形成された凝縮水排出口と連通し、前記気相室から排出された凝縮水を貯留可能な凝縮水貯留部と、
前記凝縮水貯留部の二次側に接続された弁と
を備え、
前記気相室と前記凝縮水貯留部とが連通した状態のまま、所定の時間前記弁を開いて前記凝縮水貯留部から凝縮水を排出し、その後に前記弁を閉じる制御工程
を含む、ガス溶解水製造方法。
It is a gas-dissolved water production method in which gas is dissolved in water to be treated to produce gas-dissolved water.
Using a gas dissolution membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas dissolution membrane, and a condensed water discharge mechanism for discharging condensed water condensed in the gas phase chamber,
The operating pressure of the gas phase chamber is set to a pressure exceeding atmospheric pressure.
The condensed water discharge mechanism is
A condensed water storage unit that communicates with the condensed water discharge port formed in the gas phase chamber and can store the condensed water discharged from the gas phase chamber.
It is provided with a valve connected to the secondary side of the condensed water storage unit.
A gas including a control step of opening the valve for a predetermined time to discharge condensed water from the condensed water storage unit and then closing the valve while the gas phase chamber and the condensed water storage unit are in communication with each other. Dissolved water production method.
前記凝縮水貯留部に貯留された凝縮水液位を検知する液位センサーを用い、
前記制御工程において、前記液位センサーで検知された前記凝縮水液位が所定値以上もしくは所定値超である場合に前記弁を開く、請求項8に記載のガス溶解水製造方法。
Using a liquid level sensor that detects the liquid level of the condensed water stored in the condensed water storage unit,
The method for producing gas-dissolved water according to claim 8, wherein in the control step, the valve is opened when the condensed water level detected by the liquid level sensor is equal to or higher than a predetermined value or exceeds a predetermined value.
JP2019165393A 2019-09-11 2019-09-11 Gas-dissolved water production device and method Active JP7328840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165393A JP7328840B2 (en) 2019-09-11 2019-09-11 Gas-dissolved water production device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165393A JP7328840B2 (en) 2019-09-11 2019-09-11 Gas-dissolved water production device and method

Publications (2)

Publication Number Publication Date
JP2021041342A true JP2021041342A (en) 2021-03-18
JP7328840B2 JP7328840B2 (en) 2023-08-17

Family

ID=74863482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165393A Active JP7328840B2 (en) 2019-09-11 2019-09-11 Gas-dissolved water production device and method

Country Status (1)

Country Link
JP (1) JP7328840B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297392A (en) * 1999-04-12 2000-10-24 Japan Organo Co Ltd Apparatus for producing gas dissolved water
JP2001293343A (en) * 2000-04-18 2001-10-23 Mitsubishi Rayon Eng Co Ltd Device and process for preparing carbonated water
JP2001293332A (en) * 2000-04-11 2001-10-23 Nippon Sanso Corp Method and device for treatment and recovery of cvd waste gas
JP2002052328A (en) * 2000-08-10 2002-02-19 Mitsubishi Rayon Eng Co Ltd Carbonated water manufacturing and supply system
JP2002065805A (en) * 2000-08-30 2002-03-05 Mitsubishi Rayon Eng Co Ltd Portable foot bath
JP2006071340A (en) * 2004-08-31 2006-03-16 Kurita Water Ind Ltd Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
JP2009219997A (en) * 2008-03-14 2009-10-01 Kurita Water Ind Ltd Method and apparatus for manufacturing gas-dissolved water
JP2009254935A (en) * 2008-04-14 2009-11-05 Kurita Water Ind Ltd Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP2012139656A (en) * 2011-01-05 2012-07-26 Kurita Water Ind Ltd Method and system for making nitrogen gas-dissolved water
US20130319230A1 (en) * 2012-06-04 2013-12-05 Southern Company Systems And Methods For Sequestering CO2
JP2017202474A (en) * 2016-05-13 2017-11-16 栗田工業株式会社 Ozone dissolved water production apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297392A (en) * 1999-04-12 2000-10-24 Japan Organo Co Ltd Apparatus for producing gas dissolved water
JP2001293332A (en) * 2000-04-11 2001-10-23 Nippon Sanso Corp Method and device for treatment and recovery of cvd waste gas
JP2001293343A (en) * 2000-04-18 2001-10-23 Mitsubishi Rayon Eng Co Ltd Device and process for preparing carbonated water
JP2002052328A (en) * 2000-08-10 2002-02-19 Mitsubishi Rayon Eng Co Ltd Carbonated water manufacturing and supply system
JP2002065805A (en) * 2000-08-30 2002-03-05 Mitsubishi Rayon Eng Co Ltd Portable foot bath
JP2006071340A (en) * 2004-08-31 2006-03-16 Kurita Water Ind Ltd Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
JP2009219997A (en) * 2008-03-14 2009-10-01 Kurita Water Ind Ltd Method and apparatus for manufacturing gas-dissolved water
JP2009254935A (en) * 2008-04-14 2009-11-05 Kurita Water Ind Ltd Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP2012139656A (en) * 2011-01-05 2012-07-26 Kurita Water Ind Ltd Method and system for making nitrogen gas-dissolved water
US20130319230A1 (en) * 2012-06-04 2013-12-05 Southern Company Systems And Methods For Sequestering CO2
JP2017202474A (en) * 2016-05-13 2017-11-16 栗田工業株式会社 Ozone dissolved water production apparatus

Also Published As

Publication number Publication date
JP7328840B2 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
TWI777076B (en) Gas production apparatus, and gas production method
US8999069B2 (en) Method for producing cleaning water for an electronic material
CN110168713B (en) System and method for producing a conductive liquid comprising deionized water having ammonia dissolved therein
US20120048383A1 (en) Device for supplying water containing dissolved gas and process for producing water containing dissolved gas
US20140093797A1 (en) Recirculation Unit For a Fuel Cell System
JP2009166007A (en) Coating solution supply apparatus
JPWO2011152221A1 (en) Electrolyte supply device
JP2013515858A (en) Methods and devices for wet chemical processing of processed materials
JP2000189742A (en) Gas dissolving module
JP2000271549A (en) Gas-dissolved water supply device
JP7328840B2 (en) Gas-dissolved water production device and method
JP2007319843A (en) Gas dissolving module
TWI759381B (en) Diluted solution producing device and diluted solution producing method
EP1887196B1 (en) Method for the degassing of fluid in heating and cooling systems, and an arrangement
JP6777533B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP6738726B2 (en) Diluting liquid manufacturing apparatus and diluting liquid manufacturing method
JP2020179372A (en) Gas dissolution water manufacturing apparatus and method
JP6777534B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP4470101B2 (en) Nitrogen-dissolved ultrapure water production method
WO2018025592A1 (en) Production apparatus and production method of alkaline water for electronic device cleaning
JP2007026961A (en) Gas separating system and pump used in gas separating system
JP5552792B2 (en) Gas dissolved water production apparatus and production method
CN115667094A (en) Gas seal tank, seal gas supply method, ultrapure water production apparatus, and ultrapure water production method
JP6105879B2 (en) Decarboxylation device
KR101303966B1 (en) Total Residual Oxidant Measuring Device for Ship ballast

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230804

R150 Certificate of patent or registration of utility model

Ref document number: 7328840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150