JP2021039106A - Light emission detection device - Google Patents

Light emission detection device Download PDF

Info

Publication number
JP2021039106A
JP2021039106A JP2020169511A JP2020169511A JP2021039106A JP 2021039106 A JP2021039106 A JP 2021039106A JP 2020169511 A JP2020169511 A JP 2020169511A JP 2020169511 A JP2020169511 A JP 2020169511A JP 2021039106 A JP2021039106 A JP 2021039106A
Authority
JP
Japan
Prior art keywords
light emitting
light
array
emitting point
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020169511A
Other languages
Japanese (ja)
Other versions
JP7075974B2 (en
Inventor
穴沢 隆
Takashi Anazawa
隆 穴沢
基博 山崎
Motohiro Yamazaki
基博 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2020169511A priority Critical patent/JP7075974B2/en
Publication of JP2021039106A publication Critical patent/JP2021039106A/en
Priority to JP2022080312A priority patent/JP7329658B2/en
Application granted granted Critical
Publication of JP7075974B2 publication Critical patent/JP7075974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)

Abstract

To achieve high sensitivity and low crosstalk while downsizing a light emission detection device.SOLUTION: A light emission detection device that collects light emitted from each light emitting point of a light emitting point array individually via each condensing lens of a condensing lens array to obtain luminous flux, and deflects each light flux via an optical element to obtain deflected luminous flux, and causes the deflected luminous flux to enter a sensor in parallel to detect the deflected luminous flux. The light emission detection device satisfies a predetermined relation among a diameter of each light emitting point, a focal length and a distance of each condensing lens, and an optical path length of each condensing lens and an optical element, and thereby realizes high sensitivity and low crosstalk while downsizing the light emission detection device.SELECTED DRAWING: Figure 9

Description

本発明は,複数のキャピラリ又はマイクロチップ内部に設けられた複数のチャンネルにレーザビーム,ランプ等の光を照射し,キャピラリ又はチャンネルの内部に存在する物質が出射する蛍光,燐光,散乱光,あるいは透過光等を高感度に検出する検出装置に関する。 In the present invention, a plurality of channels provided inside a plurality of capillaries or microchips are irradiated with light such as a laser beam or a lamp, and fluorescence, phosphorescence, scattered light, or scattered light emitted by a substance existing inside the capillary or the channels is emitted. The present invention relates to a detection device that detects transmitted light and the like with high sensitivity.

分離媒体を充填した複数のキャピラリ(外径100〜400μm,内径25〜100μmのガラス毛細管)による電気泳動分析を並列処理することによって個々のキャピラリで異なるDNAサンプルの塩基配列解読を一括して行うキャピラリアレイDNAシーケンサが広く利用されている。この機構について次に説明する。市販のキャピラリは,柔軟性を持たせるため,外表面にポリイミドの被覆膜を形成している。各キャピラリの電気泳動路長が一定の部分,例えばキャピラリの試料注入端から30cmの距離の位置近傍を,被覆膜を除去した状態で同一平面上に揃えて並べ,レーザビームを上記のキャピラリ配列平面に沿って側面方向から照射することで,複数のキャピラリを同時に照射する。以降,本明細書では,上記のキャピラリ配列平面を,単に,配列平面と呼ぶことがある。上記の各キャピラリ内部を電気泳動する蛍光標識DNAは,レーザビームを通過する際,レーザ照射による励起を受けて蛍光を発光する。ここで,DNAは,A,C,G,Tの末端の塩基種に応じて4色の蛍光体に染め分けられている。その結果,各キャピラリのレーザ照射位置は発光点となり,複数の発光点が間隔pで直線上に並ぶ。以降,これを発光点アレイと呼ぶ。発光点の数(キャピラリの本数)をMとすると,発光点アレイの全幅AWは,AW=p*(M−1)である。例えば,p=0.36mm,M=24のとき,AW=8.28mmである。発光検出装置は,発光点アレイからの各発光を分光しながら一括検出する。この装置構成は,特許文献1に示されている。 Capillaries that collectively perform nucleotide sequence decoding of different DNA samples in individual capillaries by parallel processing electrophoretic analysis using multiple capillaries (glass capillaries with an outer diameter of 100 to 400 μm and an inner diameter of 25 to 100 μm) filled with separation media. Array DNA sequencers are widely used. This mechanism will be described below. Commercially available capillaries have a polyimide coating film formed on the outer surface in order to provide flexibility. The part where the electrophoresis path length of each capillary is constant, for example, the vicinity of the position at a distance of 30 cm from the sample injection end of the capillary is aligned on the same plane with the coating film removed, and the laser beams are arranged in the above capillary arrangement. By irradiating from the side along the plane, multiple capillaries are irradiated at the same time. Hereinafter, in the present specification, the above capillary array plane may be simply referred to as an array plane. When the fluorescently labeled DNA that is electrophoresed inside each of the above capillaries passes through the laser beam, it receives excitation by laser irradiation and emits fluorescence. Here, the DNA is dyed into four-color phosphors according to the base species at the ends of A, C, G, and T. As a result, the laser irradiation position of each capillary becomes a light emitting point, and a plurality of light emitting points are arranged on a straight line at an interval p. Hereinafter, this is referred to as a light emitting point array. Assuming that the number of light emitting points (the number of capillaries) is M, the total width AW of the light emitting point array is AW = p * (M-1). For example, when p = 0.36 mm and M = 24, AW = 8.28 mm. The light emission detection device collectively detects each light emission from the light emission point array while spectroscopically. This device configuration is shown in Patent Document 1.

まず,共通集光レンズによって各発光を平行光束化する。以降,「共通」という表現は,複数(M個)の発光点について1個の光学素子を用いる(M:1の対応)という意味で用いる。反対に,「個別」という表現は,1つの発光点について1個の光学素子を用いる(1:1の対応)という意味で用いる。ここで,共通の集光レンズの焦点距離をf1,有効径をD1とすると,AW<f,AW<D1とする必要がある。例えば,集光レンズは,f1=50mm,D1=36mmのカメラレンズである。次に,平行光束をロングパスフィルタに通してレーザビームの波長をカットし,さらに共通の透過型回折格子を透過させて各キャピラリの長軸方向,すなわち発光点アレイの配列方向及び共通の集光レンズの光軸の両者に直交する方向に波長分散させる。ここで,共通の透過型回折格子の有効径をDGとすると,検出効率を低下させないためには,D1≦DGである必要がある。例えば,DG=50mmである。続いて,共通の結像レンズで各平行光束を2次元センサ上に結像させる。ここで,共通の結像レンズの焦点距離をf2,有効径をD2とすると,検出効率を低下させないためには,D1≦D2である必要がある。例えば,結像レンズは,f2=50mm,D2=36mmのカメラレンズである。以上により,発光点アレイからの各発光の波長分散スペクトル像を一括して取得できる。最後に,各波長分散スペクトルの時間変化を分析することによって4色の蛍光強度の時間変化を求め,塩基種の順番,すなわち塩基配列を決定する。 First, each light emission is converted into a parallel luminous flux by a common condenser lens. Hereinafter, the expression "common" is used to mean that one optical element is used for a plurality of (M) light emitting points (correspondence of M: 1). On the contrary, the expression "individual" is used to mean that one optical element is used for one light emitting point (1: 1 correspondence). Here, assuming that the focal length of the common condenser lens is f1 and the effective diameter is D1, it is necessary to set AW <f and AW <D1. For example, the condenser lens is a camera lens having f1 = 50 mm and D1 = 36 mm. Next, the parallel light flux is passed through a long-pass filter to cut the wavelength of the laser beam, and a common transmission diffraction grating is passed through to pass the parallel light beam in the long axis direction of each capillary, that is, the arrangement direction of the emission point array and the common condensing lens. The wavelength is dispersed in the direction orthogonal to both of the optical axes of. Here, assuming that the effective diameter of the common transmission type diffraction grating is DG, it is necessary that D1 ≦ DG in order not to reduce the detection efficiency. For example, DG = 50 mm. Subsequently, each parallel luminous flux is imaged on the two-dimensional sensor with a common imaging lens. Here, assuming that the focal length of the common imaging lens is f2 and the effective diameter is D2, it is necessary that D1 ≦ D2 in order not to reduce the detection efficiency. For example, the imaging lens is a camera lens with f2 = 50 mm and D2 = 36 mm. As described above, the wavelength dispersion spectrum image of each emission from the emission point array can be collectively acquired. Finally, the time change of the fluorescence intensity of the four colors is obtained by analyzing the time change of each wavelength dispersion spectrum, and the order of the base species, that is, the base sequence is determined.

4色の蛍光を同時に検出する他の手段が,非特許文献1に示されている。まず,1個の発光領域からの発光を1個の集光レンズ(ここでは,対物レンズ)によって平行光束化する。ここで,発光領域の全幅をAW,対物レンズの焦点距離をf,有効径をDとすると,AW<f,AW<Dである。用いられている対物レンズは,オリンパスのUPLSAPO 60× Wであり,AW=0.44mm,f1=3mm,D1=20mmである。次に,平行光束を1組の3種類のダイクロイックミラーによって4色の4つの平行光束に分割させる。続いて,各平行光束を1組の4個の結像レンズで4つの2次元センサ上にそれぞれ結像させる。ここで,各結像レンズの有効径をD2とすると,検出効率を低下させないためには,D1≦D2である必要がある。以上により,発光領域の4色の4分割像を一括して取得できる。 Another means for simultaneously detecting fluorescence of four colors is shown in Non-Patent Document 1. First, the light emitted from one light emitting region is converted into a parallel luminous flux by one condensing lens (here, an objective lens). Here, assuming that the entire width of the light emitting region is AW, the focal length of the objective lens is f, and the effective diameter is D, then AW <f and AW <D. The objective lens used is Olympus UPLSAPO 60 × W, AW = 0.44 mm, f1 = 3 mm, D1 = 20 mm. Next, the parallel light flux is divided into four parallel light fluxes of four colors by a set of three types of dichroic mirrors. Subsequently, each parallel luminous flux is imaged on four two-dimensional sensors by a set of four imaging lenses. Here, assuming that the effective diameter of each imaging lens is D2, it is necessary that D1 ≦ D2 in order not to reduce the detection efficiency. From the above, it is possible to collectively acquire a 4-split image of 4 colors in the light emitting region.

一方,発光点アレイからの発光を同時に検出する他の手段が,特許文献2に示されている。まず,集光レンズアレイによって発光点アレイからの各発光を個別に平行光束化する。ここで,発光点の間隔をp,発光点の数をMとすると,発光点アレイの全幅はAW=p*(M−1)であり,各集光レンズの有効径をDとすると,D<AWであり,上記の特許文献1及び非特許文献1と異なる構成である。また,D<pとすることによって,各集光レンズが直線上に並んだ個別の集光レンズアレイとすることができる。次に,各平行光束を個別センサアレイのそれぞれの個別センサに入射させる。以上により,発光点アレイからの発光強度を一括して取得できる。 On the other hand, another means for simultaneously detecting light emission from the light emitting point array is shown in Patent Document 2. First, each emission from the emission point array is individually converted into a parallel luminous flux by the condenser lens array. Here, assuming that the distance between the light emitting points is p and the number of light emitting points is M, the total width of the light emitting point array is AW = p * (M-1), and if the effective diameter of each condensing lens is D, then D. <AW, which is different from Patent Document 1 and Non-Patent Document 1 described above. Further, by setting D <p, it is possible to form an individual condenser lens array in which each condenser lens is arranged in a straight line. Next, each parallel luminous flux is incident on each individual sensor in the individual sensor array. From the above, the emission intensity from the emission point array can be collectively acquired.

特開2007-171214号公報Japanese Unexamined Patent Publication No. 2007-171214 特開2011-59095号公報Japanese Unexamined Patent Publication No. 2011-59095

Rev Sci Instrum., 2011 Feb;82(2):023701.Rev Sci Instrum., 2011 Feb; 82 (2): 023701.

特許文献1の発光検出装置は,各発光点からの発光の集光効率(共通の集光レンズによる集光効率),検出効率(前記集光効率,ロングパスフィルタの透過率,回折格子の回折効率等を踏まえた,センサによる蛍光検出に寄与する発光のトータルの利用効率)が高く,また,回折格子による分光精度も高い。集光効率は,共通の集光レンズのF値で表すことができ,1/F2に比例する。例えば,f1=50mm,D1=36mmのカメラレンズを用いた場合,F=f1/D1=1.4であり,高感度な発光検出が可能である。また,各発光点からの発光を共通の結像レンズで結像して2次元センサで検出するため,各発光が互いに混じり合うことなく,つまり低クロストークに,各発光を独立に検出することが可能である。以上の高感度と低クロストークの性能は,本技術分野において,微量の測定対象を精度良く検出したり,異なる複数の測定対象を同時かつ独立に検出する上で,特に重要である。しかしながら,本発光検出装置は,2つの共通レンズを含み,AW<f,AW<D1≦D2の関係があることから,AW一定とすると,装置の全体サイズが非常に大きく,装置の製造コストが高いことが課題である。例えば,f1=f2=50mm,D1=D2=36mmのカメラレンズを用いた場合,発光検出装置の全体サイズは,直径100mm,高さ200mmの円柱の体積(1.6×106mm3)よりも大きくなる。本明細書では,発光検出装置の全体サイズを,発光点からセンサまでの光学系の占有体積で表現し,センサ自体の占有体積は含めないことにする。また,AW≪f1,AW≪D1とすることはできないため(実現するためには巨大なカメラレンズが必要である),光軸付近の発光点(発光点アレイの中央付近に位置する発光点)の検出効率と比較して,光軸から離れた発光点(発光点アレイの端付近に位置する発光点)の検出効率が低下し,発光点毎に感度にばらつきが生じる課題がある。 The light emission detection device of Patent Document 1 collects light emitted from each light emitting point (condensing efficiency by a common condensing lens), detection efficiency (condensing efficiency, transmittance of long-pass filter, diffraction efficiency of diffraction grating). The total utilization efficiency of light emission that contributes to fluorescence detection by the sensor) is high, and the spectral accuracy of the diffraction grating is also high. The light collection efficiency can be expressed by the F value of a common light collection lens and is proportional to 1 / F 2. For example, when a camera lens having f1 = 50 mm and D1 = 36 mm is used, F = f1 / D1 = 1.4, and highly sensitive light emission detection is possible. In addition, since the light emitted from each light emitting point is imaged by a common imaging lens and detected by a two-dimensional sensor, each light emission is detected independently without mixing with each other, that is, with low crosstalk. Is possible. The above-mentioned high-sensitivity and low-crosstalk performances are particularly important in the present technical field for accurately detecting a small amount of measurement targets and simultaneously and independently detecting a plurality of different measurement targets. However, since this light emission detection device includes two common lenses and has a relationship of AW <f and AW <D1 ≦ D2, if the AW is constant, the overall size of the device is very large and the manufacturing cost of the device is high. High is a challenge. For example, when a f1 = f2 = 50mm, D1 = D2 = 36mm camera lenses, the overall size of the luminescence detection apparatus, a diameter 100 mm, from the cylinder volume of height 200mm (1.6 × 10 6 mm 3 ) Will also grow. In the present specification, the overall size of the light emission detection device is expressed by the occupied volume of the optical system from the light emitting point to the sensor, and the occupied volume of the sensor itself is not included. In addition, since AW << f1 and AW << D1 cannot be set (a huge camera lens is required to realize this), a light emitting point near the optical axis (a light emitting point located near the center of the light emitting point array). Compared with the detection efficiency of, the detection efficiency of the light emitting point (the light emitting point located near the end of the light emitting point array) far from the optical axis is lowered, and there is a problem that the sensitivity varies depending on the light emitting point.

しかし,これらの課題を解決すること,すなわち,発光点アレイからの4色の発光を同時に識別しながら検出する装置を小型化及び低コスト化し,各発光の感度ばらつきを低減することはこれまで行われてこなかった。発光検出装置を小型化できれば,キャピラリアレイDNAシーケンサを小さな領域に設置できたり,持ち運びできるようになったり,あるいは使い勝手が向上したりできる。また,検出装置の部品点数が減ったり,各部品のサイズが小さくなったりすることによって製造コストが低減される。さらに,各発光点の感度ばらつきを低減することにより,各キャピラリで分析されるサンプルの定量的な比較が可能になり,発光点アレイの発光検出において,トータルの感度及びダイナミックレンジを向上させることができる。これらの結果,キャピラリアレイDNAシーケンサはさらに普及し,より一層,世の中に貢献することができる。 However, it has been possible to solve these problems, that is, to reduce the size and cost of a device that simultaneously identifies and detects the four colors of light emitted from the light emitting point array, and to reduce the variation in sensitivity of each light emission. I didn't get it. If the luminescence detection device can be miniaturized, the capillary array DNA sequencer can be installed in a small area, can be carried around, or can be improved in usability. In addition, the manufacturing cost is reduced by reducing the number of parts of the detection device and reducing the size of each part. Furthermore, by reducing the sensitivity variation of each emission point, it is possible to quantitatively compare the samples analyzed in each capillary, and it is possible to improve the total sensitivity and dynamic range in the emission detection of the emission point array. it can. As a result, the capillary array DNA sequencer has become more widespread and can contribute to the world even more.

非特許文献1に示される発光検出装置を用いて,同様の発光点アレイからの4色発光の同時蛍光検出を行うことができる。ただし,非特許文献1で用いられている対物レンズでは,AW=0.44mmであるため,例えば,発光点アレイの全幅8.28mmのごく一部分しか検出できない。そこで,対物レンズ及び4つの結像レンズの代わりに,キャピラリアレイDNAシーケンサと同様の共通の集光レンズ及び4つの共通の結像レンズを用いる。このとき,3種類のダイクロイックミラーの有効径をDMとすると,平行光束に対して45°傾けて配置するため,検出効率を低下させないためには,√2×D1≦DMである必要がある。例えばDM=71mmである。したがって,4つの2次元センサを含めなくても,発光検出装置の全体サイズは特許文献1の場合よりもさらに大きくなり,それだけ製造コストも高くなる。これに加えて,4つの2次元センサが占める空間は大きく,そのコストも非常に高い。発光点毎の感度ばらつきの課題もそのまま残る。 Simultaneous fluorescence detection of four-color emission from a similar emission point array can be performed using the emission detection device shown in Non-Patent Document 1. However, since the objective lens used in Non-Patent Document 1 has AW = 0.44 mm, for example, only a small part of the total width of 8.28 mm of the light emitting point array can be detected. Therefore, instead of the objective lens and the four imaging lenses, a common condensing lens similar to the capillary array DNA sequencer and four common imaging lenses are used. At this time, assuming that the effective diameters of the three types of dichroic mirrors are DM, they are arranged at an angle of 45 ° with respect to the parallel luminous flux. Therefore, in order not to reduce the detection efficiency, it is necessary that √2 × D1 ≦ DM. For example, DM = 71 mm. Therefore, even if the four two-dimensional sensors are not included, the overall size of the light emission detection device is further larger than that in the case of Patent Document 1, and the manufacturing cost is also increased accordingly. In addition to this, the space occupied by the four 2D sensors is large and the cost is very high. The problem of sensitivity variation for each light emitting point remains as it is.

一方,特許文献2に示される発光検出装置を用いることは,D<AWのため,装置サイズを小さくできる可能性がある。しかしながら,本文献のように,発光点アレイからの各発光を個別の集光レンズアレイによって集光して検出する場合,トレードオフの関係にある高感度と低クロストークの性能を両方得ることが困難である。本文献においては,そのような課題,及びそれを解決する手段についての議論,配慮が一切なされていない。次に,上記の課題について詳しく説明する。 On the other hand, using the light emission detection device shown in Patent Document 2 may reduce the device size because D <AW. However, as in this document, when each emission from the emission point array is condensed and detected by an individual focusing lens array, both high sensitivity and low crosstalk performance, which are in a trade-off relationship, can be obtained. Have difficulty. In this document, no discussion or consideration is given to such problems and the means for solving them. Next, the above problems will be described in detail.

上述の通り,集光効率は,各集光レンズの焦点距離をf,及び有効径をDとすると,F=f/Dで表すことができる(集光効率は1/F2に比例する)。ここでD一定とすると,fが小さいほど,つまり発光点と集光レンズが接近するほど集光効率は上昇するように見える。これは,発光点のサイズが無限小である場合は正しいが,有限である場合は必ずしも正しくない。ここで,発光点の径をdとすると,無限小とはd≪f,あるいはd≒0の場合であり,有限とはd>0の場合である。実質的には,d≧0.01mmとしても良い。以降,本発明では,発光点のサイズが有限の場合を考える。発光点の中心をレンズの焦点位置に置くと,発光点の中心から出射する発光はレンズによって平行光束化され,この光束は,レンズの光軸に沿って,光軸と平行方向に進行する。一方,発光点の端から出射する発光はレンズによって平行光束化され,この光束は,レンズの光軸と角度θ=tan-1(d/2/f)をなす方向に進行する。すなわち,これらの光束は,レンズから離れるにしたがって分離される。したがって,レンズの光軸上の,レンズから一定距離だけ離れた位置に,発光点の中心から出射する発光の平行光束の大きさのセンサを配置して(又は,エリアセンサの一部の領域を割り当てて)発光を検出する場合,発光点の中心から出射する発光はすべて検出できる一方で,発光点の端から出射する発光は一部しか検出できない。上記角度θはfが大きいほど小さくなるため,検出できる発光の割合が増大する。 As described above, the focusing efficiency can be expressed by F = f / D, where f is the focal length of each focusing lens and D is the effective diameter (the focusing efficiency is proportional to 1 / F 2). .. Assuming that D is constant here, it seems that the smaller the f, that is, the closer the light emitting point and the condensing lens are, the higher the condensing efficiency is. This is correct when the size of the emission point is infinitesimal, but not necessarily when it is finite. Here, assuming that the diameter of the light emitting point is d, infinitesimal is the case of d << f or d≈0, and finite is the case of d> 0. Substantially, d ≧ 0.01 mm may be set. Hereinafter, in the present invention, the case where the size of the light emitting point is finite will be considered. When the center of the light emitting point is placed at the focal position of the lens, the light emitted from the center of the light emitting point is converted into a parallel luminous flux by the lens, and this luminous flux travels along the optical axis of the lens in a direction parallel to the optical axis. On the other hand, the light emitted from the end of the light emitting point is converted into a parallel light flux by the lens, and this light flux travels in a direction forming an angle θ = tan -1 (d / 2 / f) with the optical axis of the lens. That is, these luminous fluxes are separated as they move away from the lens. Therefore, a sensor with the magnitude of the parallel luminous flux of the light emitted from the center of the light emitting point is placed (or a part of the area of the area sensor) on the optical axis of the lens at a position separated from the lens by a certain distance. When detecting light emission (by assigning), all light emission emitted from the center of the light emission point can be detected, but only a part of light emission emitted from the edge of the light emission point can be detected. Since the angle θ becomes smaller as f becomes larger, the ratio of light emission that can be detected increases.

以上のように,集光効率を向上して高感度を得るためには,fを小さくした方が良い面と,fを大きくした方が良い面のトレードオフの関係があることが分かる。しかしながら,高感度を得るために,どのようなfが最も良いかの検討は,特許文献2を含めて,これまでに一切なされていない。本発明では,後に詳しく述べる通り,実際的な条件下で本検討を行った結果,fは小さいほど,全体の集光効率が向上することを見出した。これは,fを小さくすることによって発光点の中心からの発光の検出光量が増大する効果が,fを大きくすることによって発光点の端からの発光の検出光量が増大する効果よりも大きいことを示している。 As described above, in order to improve the light collection efficiency and obtain high sensitivity, it can be seen that there is a trade-off relationship between the aspect where it is better to reduce f and the aspect where it is better to increase f. However, in order to obtain high sensitivity, what kind of f is the best has not been examined so far, including Patent Document 2. In the present invention, as will be described in detail later, as a result of conducting this study under practical conditions, it has been found that the smaller f is, the higher the overall light collection efficiency is. This is because the effect of increasing the detected light amount of light emission from the center of the light emitting point by decreasing f is larger than the effect of increasing the detected light amount of light emission from the edge of the light emitting point by increasing f. Shown.

一方,クロストークについては,上記の集光効率とは別な議論が必要である。fが小さくなると上記角度θが大きくなるため,発光点の端から出射する発光が,隣の発光点からの発光を検出するために設置された隣のセンサ(又は,エリアセンサの一部が割り当てられた領域)に重なる割合が増大し,隣の発光点からの発光を検出する上でのクロストークが増大する。すなわち,集光効率を向上させて高感度を得るためにfを小さくすることと,クロストークを低減するためにfを大きくすることは,トレードオフの関係にあることが分かった。しかしながら,高感度と低クロストークを両立するために,どのようなfが最も良いかの検討は,特許文献2を含めて,これまでに一切なされていない。 On the other hand, crosstalk needs to be discussed separately from the above-mentioned light collection efficiency. As f becomes smaller, the angle θ becomes larger, so that the light emitted from the end of the light emitting point is assigned to the adjacent sensor (or a part of the area sensor) installed to detect the light emitted from the adjacent light emitting point. The ratio of overlapping with the area) increases, and the crosstalk in detecting the light emission from the adjacent light emission point increases. That is, it was found that there is a trade-off relationship between reducing f in order to improve the light collection efficiency and obtaining high sensitivity and increasing f in order to reduce crosstalk. However, in order to achieve both high sensitivity and low crosstalk, what kind of f is the best has not been examined so far, including Patent Document 2.

本発明による発光検出装置は,M≧2として,M個の発光点が配列した発光点アレイからの発光をそれぞれ個別に集光して光束とするM個の集光レンズが配列した集光レンズアレイと,M個の光束が再集光されずに並列に入射される少なくとも1個のセンサとを有し,M個の発光点の有効径の平均をd,M個の集光レンズの焦点距離の平均をf,M個の集光レンズの間隔の平均をp,M個の集光レンズとセンサの最大光路長の平均をg,とするとき,d,f,p,gがM個の発光を低クロストーク又は高感度に検出できるように予め定められた所定の関係を満足する。 The light emission detection device according to the present invention is a condensing lens in which M condensing lenses are arranged to individually condense light emitted from a light emitting point array in which M light emitting points are arranged to obtain a light beam, assuming that M ≧ 2. It has an array and at least one sensor in which M light beams are incident in parallel without being refocused, and the average of the effective diameters of the M light emitting points is d, and the focal lengths of the M condenser lenses. When the average of the distances is f, the average of the intervals between the M condenser lenses is p, and the average of the maximum optical path lengths of the M condenser lenses and the sensor is g, then d, f, p, g are M. Satisfies a predetermined relationship so that the light emission of the light can be detected with low crosstalk or high sensitivity.

本発明によると,発光点アレイからの発光の,高感度,低クロストークな検出を行う装置を小型化することができ,これを用いた様々な装置の全体サイズを小型化することができる。したがって,装置を置くスペースを削減でき,装置の持ち運びも可能となり,装置の使い勝手が向上する。また,装置を構成する部品点数が削減され,部品そのものを小型化することによって,製造コストを低減することが可能である。 According to the present invention, it is possible to miniaturize a device that detects light emitted from a light emitting point array with high sensitivity and low crosstalk, and it is possible to miniaturize the overall size of various devices using the device. Therefore, the space for placing the device can be reduced, the device can be carried around, and the usability of the device is improved. In addition, the number of parts that make up the device is reduced, and the manufacturing cost can be reduced by downsizing the parts themselves.

上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

発光点からの発光を集光レンズで集光して光束とする構成の模式図。A schematic diagram of a configuration in which light emitted from a light emitting point is focused by a condenser lens to form a luminous flux. 集光レンズの焦点距離fをパラメータとして,集光レンズとセンサの光路長gと,相対検出光量の関係を示す図。The figure which shows the relationship between the optical path length g of a condenser lens and a sensor, and the relative detection light amount with the focal length f of a condenser lens as a parameter. 隣り合う2つの発光点からの発光をそれぞれ個別に集光レンズで集光し,分離した光束とする構成の模式図。Schematic diagram of a configuration in which light emitted from two adjacent light emitting points is individually focused by a condenser lens to form a separated luminous flux. 隣り合う2つの発光点からの発光をそれぞれ個別に集光レンズで集光し,混じり合う光束とする構成の模式図。A schematic diagram of a configuration in which light emitted from two adjacent light emitting points is individually focused by a condenser lens to form a mixed luminous flux. 高感度,低クロストークの条件を満たす,集光レンズとセンサの光路長gと,集光レンズの焦点距離fの関係を示す図。The figure which shows the relationship between the optical path length g of a condenser lens and a sensor, and the focal length f of a condenser lens, which satisfy the condition of high sensitivity and low cross talk. 発光点アレイからの発光を個別に集光レンズアレイで集光してカラーセンサに並列に入射させて検出する発光検出装置の模式図。The schematic diagram of the light emission detection apparatus which collects light from a light emitting point array individually by a condensing lens array, and makes it incident on a color sensor in parallel, and detects it. 発光点アレイからの発光を個別に集光レンズアレイで集光し,それらの光束をダイクロアレイで並列に異なる波長帯に分割し,センサに並列に入射させて検出する発光検出装置の模式図。Schematic diagram of a light emission detection device that collects light emitted from a light emitting point array individually by a condensing lens array, divides the luminous flux into different wavelength bands in parallel by a dichroic array, and incidents them in parallel on a sensor to detect them. 発光点アレイからの発光を個別に集光レンズアレイで集光し,それらの光束を波長分散素子で並列に波長分散させ,個別に結像レンズアレイで結像して検出する発光検出装置の模式図。A model of a light emission detection device that collects light emitted from a light emitting point array individually by a condensing lens array, disperses the light fluxes in parallel by a wavelength dispersion element, and individually forms an image with an imaging lens array to detect it. Figure. 発光点アレイからの発光を個別に集光レンズアレイで集光し,それらの光束を光学素子で並列に偏向させ,センサに並列に入射させて検出する発光検出装置の模式図。Schematic diagram of a light emission detection device that collects light emitted from a light emitting point array individually by a condensing lens array, deflects the light fluxes in parallel by an optical element, and incidents them in parallel on a sensor to detect them. 発光点アレイからの発光を個別に集光レンズアレイで集光し,それらの光束を光ファイバアレイで並列に偏向させ,光ファイバアレイから出射される光束をセンサに並列に入射させて検出する発光検出装置の模式図。Light emitted from the light emitting point array is individually focused by the condensing lens array, the luminous fluxes are deflected in parallel by the optical fiber array, and the luminous flux emitted from the optical fiber array is incident on the sensor in parallel to detect the light emission. Schematic diagram of the detection device. キャピラリアレイDNAシーケンサの装置構成例を示す模式図。The schematic diagram which shows the apparatus configuration example of the capillary array DNA sequencer. ダイクロアレイに平行に入射する光束を垂直方向に分割するダイクロアレイの例で,分割可能な最大幅の平行光束を計算した結果を示す図。The figure which shows the result of having calculated the parallel light flux of the maximum divisible width in the example of the dichroic array which divides the luminous flux parallel to the dichroic array in the vertical direction. ダイクロアレイに垂直に入射する光束を同方向に分割するダイクロアレイの例で,分割可能な最大幅の平行光束を計算した結果を示す図。The figure which shows the result of having calculated the parallel light flux of the maximum divisible width in the example of the dichroic array which divides the light flux vertically incident on a dichroic array in the same direction. ダイクロアレイに垂直に入射する光束を同方向に分割する小型化したダイクロアレイの例で,分割可能な最大幅の平行光束を計算した結果を示す図。The figure which shows the result of calculating the parallel light flux of the maximum divisible width in the example of the miniaturized dichroic array which divides the light flux vertically incident on a dichroic array in the same direction. ダイクロアレイに垂直に入射する光束を同方向に分割する小型化かつ段差配置したダイクロアレイの例で,分割可能な最大幅の平行光束を計算した結果を示す図。The figure which shows the result of having calculated the parallel light flux of the maximum width that can be divided in the example of the miniaturized and stepped dichroic array which divides the light flux vertically incident on a dichroic array in the same direction. 光路長を縮小し,開口幅を拡大するベストモードのダイクロアレイの構成を示す図。The figure which shows the structure of the dichroic array of the best mode which reduces the optical path length and expands the aperture width. ダイクロアレイの光路長がLmax以下,開口径がWmin以上となる,ダイクロの厚さβとダイクロアレイの間隔xの関係を示す図。The figure which shows the relationship between the dichroic thickness β and the distance x of the dichroic array that the optical path length of the dichroic array is L max or less and the aperture diameter is W min or more. ダイクロアレイの間隔xと,開口幅W及び光路長変化ΔLの関係を示す図。The figure which shows the relationship between the interval x of the dichroic array, the aperture width W, and the optical path length change ΔL. ダイクロアレイの段差y及びzと,開口幅Wの関係を示す図。The figure which shows the relationship between the step y and z of a dichroic array, and the opening width W. ダイクロアレイに垂直に入射する光束を同方向に分割し,ダイクロを同方向に対して45°超に傾けるダイクロアレイの例で,分割可能な最大幅の平行光束を計算した結果を示す図。The figure which shows the result of having calculated the parallel light flux of the maximum divisible width in the example of the dichroic array which divides the light flux vertically incident on a dichroic array in the same direction, and tilts the dichroic glass more than 45 ° with respect to the same direction. ダイクロの傾きθ0と,ダイクロアレイの開口幅Wの関係を示す図。The figure which shows the relationship between the inclination θ 0 of a dichroic glass and the opening width W of a dichroic array. 発光点アレイからの発光の一部を,個別にピンホールアレイを透過させ,その透過光を個別に集光レンズアレイで集光してセンサに並列に入射させて検出する発光検出装置の模式図。Schematic diagram of a light emission detection device that detects a part of the light emitted from the light emitting point array by individually transmitting it through a pinhole array, condensing the transmitted light individually with a condensing lens array, and incidenting it in parallel with a sensor. .. 集光レンズアレイよりも小さい間隔で配列する発光点アレイからの発光の一部を,個別にピンホールアレイを透過させ,その透過光を個別に集光レンズアレイで集光してセンサに並列に入射させて検出する発光検出装置の模式図。Part of the light emitted from the emission point array, which is arranged at smaller intervals than the condenser lens array, is individually transmitted through the pinhole array, and the transmitted light is individually collected by the condenser lens array and parallel to the sensor. The schematic diagram of the light emission detection device which detects by making it incident. 発光点アレイからの発光の一部を,個別にピンホールを透過させ,その透過光を個別に集光レンズアレイで集光した光束を,ダイクロアレイで並列に異なる波長帯に分割し,光路長調整素子を介してセンサに並列に入射させて検出する発光検出装置の模式図。A part of the light emitted from the emission point array is individually transmitted through the pinhole, and the transmitted light is individually collected by the condensing lens array. The luminous flux is divided into different wavelength bands in parallel by the dichro array, and the optical path length is obtained. The schematic diagram of the light emission detection device which detects by making it incident on a sensor in parallel through an adjustment element. ピンホールアレイ,集光レンズアレイ,及びスキャン機構を備えた発光検出装置による発光領域のイメージングの模式図。Schematic diagram of imaging of the light emitting region by a light emission detection device equipped with a pinhole array, a condenser lens array, and a scanning mechanism. 複数のキャピラリを配列するV溝アレイと,個別の集光レンズアレイを一体化したデバイスの構成例を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing a configuration example of a device in which a V-groove array in which a plurality of capillaries are arranged and an individual condenser lens array are integrated. 複数のキャピラリを配列するV溝アレイと,ピンホールアレイと,個別の集光レンズアレイを一体化したデバイスの構成例を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing a configuration example of a device in which a V-groove array in which a plurality of capillaries are arranged, a pinhole array, and an individual condensing lens array are integrated. 複数のキャピラリを配列するV溝アレイとピンホールアレイを一体化した不透明なデバイスと,個別の集光レンズアレイを接合させた一体化したデバイスの構成例を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing a configuration example of an opaque device in which a V-groove array in which a plurality of capillaries are arranged and a pinhole array are integrated, and an integrated device in which individual condenser lens arrays are joined.

図1は,発光点1から出射する発光を集光レンズ2によって集光し,集光レンズから一定距離だけ離れた位置に配置したセンサで検出する光学系の光軸を含む断面模式図である。本発明では,発光点及び発光という言葉を多用するが,これは検出対象とする物質自身が蛍光や燐光等を発光している場合を示すとは限らず,検出対象に対して光を照射し,その結果生じる検出対象から生じる散乱光や,検出対象を透過した透過光を示す場合もあり,これらを一括して発光点からの発光と表現する。 FIG. 1 is a schematic cross-sectional view including an optical axis of an optical system in which light emitted from a light emitting point 1 is focused by a condenser lens 2 and detected by a sensor arranged at a position separated from the condenser lens by a certain distance. .. In the present invention, the terms light emitting point and light emission are often used, but this does not necessarily indicate the case where the substance to be detected emits fluorescence, phosphorescence, or the like, and the detection target is irradiated with light. , The resulting scattered light generated from the detection target or the transmitted light transmitted through the detection target may be indicated, and these are collectively referred to as light emission from the light emitting point.

発光点1の径をd,集光レンズ2の焦点距離をf,集光レンズ2の有効径をD,センサの検出領域の径をD,集光レンズ2とセンサの光学的な距離(光路長)をgとする。発光点1と集光レンズ2の距離をfとする,すなわち集光レンズ2の焦点の位置に発光点1の中心を配置すると,発光点1の中心からの発光は集光レンズ2によって,径がDの平行光束3となり,光軸方向に進行する。集光レンズ2より光路長gだけ離れた位置のセンサにおいて,平行光束3は径がDのスポット4を形成する。図1の光学系の下側に光軸方向から見た発光点1,上側に光軸方向から見たスポット4,及び後述のスポット5を示す。一方,発光点1の左端からの発光は集光レンズ2によって,径がDの平行光束3’となり,光軸と角度θをなす方向に進行する。センサにおいて,平行光束3’は径がDのスポット5を形成する。 The diameter of the light emitting point 1 is d, the focal distance of the condenser lens 2 is f, the effective diameter of the condenser lens 2 is D, the diameter of the detection area of the sensor is D, and the optical distance between the condenser lens 2 and the sensor (optical path). Long) is g. When the distance between the light emitting point 1 and the condensing lens 2 is f, that is, when the center of the light emitting point 1 is arranged at the focal position of the condensing lens 2, the light emission from the center of the light emitting point 1 is radiated by the condensing lens 2. Becomes the parallel luminous flux 3 of D and travels in the optical axis direction. In the sensor at a position separated by the optical path length g from the condenser lens 2, the parallel luminous flux 3 forms a spot 4 having a diameter D. The lower side of the optical system of FIG. 1 shows a light emitting point seen from the optical axis direction, the upper side shows a spot 4 seen from the optical axis direction, and a spot 5 described later. On the other hand, the light emitted from the left end of the light emitting point 1 becomes a parallel luminous flux 3'with a diameter of D by the condenser lens 2, and travels in a direction forming an angle θ with the optical axis. In the sensor, the parallel luminous flux 3'forms a spot 5 having a diameter D.

発光点1の中心からの発光の集光効率は,集光レンズ2のF値を用いて1/F2に比例する。F=f/Dであるから,D一定とすると,fが小さいほど集光光率が大きくなる。一方,発光点1の左端からの発光のスポット5はセンサの検出領域から右側にずれる。つまり,スポット4はセンサによってすべて検出されるが,スポット5は,スポット4と重なった比率でのみ検出される。この重なりが大きいほど発光点の全域について検出される光量が大きくなる。そのためには,平行光束3’の光軸となす角θが小さければ良く,θ=tan-1(d/2/f)であるため,d一定とすると,fが大きいほど良い。以上のように,発光点1の検出光量を大きくするためには,fを小さくした方が良い面と,fを大きくした方が良い面のトレードオフの関係があるが,どのようなfが最も良いかの検討はこれまでになされていない。そこで,次に,発光点1の検出光量を大きくするためのf及びgの条件を解明する。 The luminous efficiency of light emitted from the center of the emission point 1 is proportional to 1 / F 2 using the F value of the condenser lens 2. Since F = f / D, if D is constant, the smaller the f, the larger the focused light coefficient. On the other hand, the spot 5 of light emission from the left end of the light emission point 1 shifts to the right side from the detection area of the sensor. That is, all the spots 4 are detected by the sensor, but the spot 5 is detected only at a ratio overlapping with the spot 4. The larger the overlap, the larger the amount of light detected over the entire light emitting point. For that purpose, it is sufficient that the angle θ formed with the optical axis of the parallel luminous flux 3'is small, and θ = tan -1 (d / 2 / f). Therefore, if d is constant, the larger f is, the better. As described above, in order to increase the amount of detected light at the light emitting point 1, there is a trade-off relationship between the aspect where it is better to reduce f and the aspect where it is better to increase f. No consideration has been given to whether it is the best. Therefore, next, the conditions of f and g for increasing the amount of detected light at the light emitting point 1 will be elucidated.

検出光量を評価するため,特許文献1の図3に示された蛍光検出装置を基準とする。この蛍光検出装置の典型例では,共通の集光レンズの焦点距離はf1=50mm,有効径はD1≧25mmである。このレンズの明るさはF=f1/D1≦2.0である。そこで,F0=2.0の集光レンズを用いた場合に,焦点に位置する無限小サイズの発光点からの発光が,このレンズによって平行光束化され,その光量がすべてロスなくセンサで検出されるとき,その検出光量を基準(100%)とする。以降では,任意の無限小サイズの発光点についての検出光量を上記基準に対する相対検出光量で評価する。また,平均の有効径dの有限サイズの発光点は,多数の無限小サイズの発光点で構成されていると考える。本明細書では,「有限サイズの発光点」は単に「発光点」と呼び,「無限小サイズの発光点」はその都度「無限小サイズの発光点」と呼ぶ。発光点の相対検出光量は,それを構成する多数の無限小サイズの発光点の相対検出光量の平均とする。例えば,上記の例で,集光レンズをF=2.0からF=1.4に置き換えると,集光効率が(F0/F)2=2.0倍になるので,上記無限小サイズの発光点の相対検出光量は200%となる。ただし,発光点から全方位に発光される全光量は一定とし,発光点の内部の発光密度は空間的に均一であると仮定する。また,本蛍光検出装置の典型例では,発光点アレイの発光点の間隔がp=0.36mm,発光点の数がM=24,発光点アレイの全幅がAW=p*(M−1)=8.28mmであり,発光点アレイの中央に位置する発光点はレンズの焦点近傍に位置するため相対検出光量がほぼ100%になるが,発光点アレイの端に位置する発光点はレンズの焦点から離れるため相対検出光量が減少し,約50%となる。そこで,本発明では,各発光点の相対検出光量が50%以上になるようにして,各発光点の検出感度が従来と同等以上になるようにすることを目標とする。 In order to evaluate the amount of detected light, the fluorescence detection device shown in FIG. 3 of Patent Document 1 is used as a reference. In a typical example of this fluorescence detection device, the focal length of a common condenser lens is f1 = 50 mm, and the effective diameter is D1 ≧ 25 mm. The brightness of this lens is F = f1 / D1 ≦ 2.0. Therefore, when a condensing lens with F 0 = 2.0 is used, the light emitted from the infinitesimal light emitting point located at the focal point is converted into a parallel luminous flux by this lens, and all the light amount is detected by the sensor without loss. When this is done, the amount of detected light is used as a reference (100%). In the following, the amount of detected light for any infinitesimal size emission point will be evaluated by the amount of detected light relative to the above criteria. Further, it is considered that a finite size light emitting point having an average effective diameter d is composed of a large number of infinitesimal size light emitting points. In the present specification, the "finite size light emitting point" is simply referred to as the "light emitting point", and the "infinitesimal size light emitting point" is referred to as the "infinitesimal size light emitting point" each time. The relative detection light amount of the light emitting point is the average of the relative detection light amount of many infinitesimal size light emitting points constituting the light emitting point. For example, in the above example, if the condensing lens is replaced from F = 2.0 to F = 1.4, the condensing efficiency becomes (F 0 / F) 2 = 2.0 times, so the above infinitesimal size The relative detection light amount of the light emitting point of is 200%. However, it is assumed that the total amount of light emitted from the light emitting point in all directions is constant, and the light emission density inside the light emitting point is spatially uniform. Further, in a typical example of this fluorescence detection device, the distance between the light emitting points of the light emitting point array is p = 0.36 mm, the number of light emitting points is M = 24, and the total width of the light emitting point array is AW = p * (M-1). = 8.28 mm, and the emission point located in the center of the emission point array is located near the focal point of the lens, so the relative detection light amount is almost 100%, but the emission point located at the end of the emission point array is the lens. Since the distance from the focal point is reduced, the relative detection light amount is reduced to about 50%. Therefore, it is an object of the present invention to make the relative detection light amount of each light emitting point 50% or more so that the detection sensitivity of each light emitting point becomes equal to or higher than the conventional one.

図2は,図1に示した構成において,fをパラメータとして,gと相対検出光量の関係を計算した結果の図である。ここで,発光点1の平均の有効径はd=0.05mmとした。また,個別の集光レンズ2の有効径をD=0.5mmとした。レンズの明るさF=f/0.5を考慮して相対検出光量を計算した。有効径d=0.05mmの発光点1を,0.1μm間隔の約500個の無限小サイズの発光点で構成し,各無限小サイズの発光点について,図1のスポット4とスポット5の重なり面積比と同じ考え方によって相対検出光量を計算し,それらの平均により発光点1の相対検出光量を求めた。その結果,図2に示す通り,fは小さいほど,またgは小さいほど相対検出光量が大きくなることを初めて見出した。これは,fを小さくすることによって発光点1の中心に位置する無限小サイズの発光点の相対検出光量が増大する効果が,fを大きくすることによって上記の重なり面積比を増大する効果よりも大きいことを示している。また,任意のfに対して,gを小さくすることによって上記の重なり面積比を増大する効果が大きいことを示している。 FIG. 2 is a diagram of the results of calculating the relationship between g and the relative detection light amount with f as a parameter in the configuration shown in FIG. Here, the average effective diameter of the light emitting point 1 was set to d = 0.05 mm. Further, the effective diameter of each condenser lens 2 was set to D = 0.5 mm. The relative detection light amount was calculated in consideration of the brightness F = f / 0.5 of the lens. A light emitting point 1 having an effective diameter d = 0.05 mm is composed of about 500 light emitting points of infinitesimal size at intervals of 0.1 μm, and for each infinitesimal size light emitting point, spots 4 and 5 of FIG. The relative detection light amount was calculated by the same concept as the overlapping area ratio, and the relative detection light amount at the light emitting point 1 was obtained by averaging them. As a result, as shown in FIG. 2, it was found for the first time that the smaller f and the smaller g, the larger the relative detection light amount. This is because the effect of increasing the relative detection light amount of the infinitesimal size light emitting point located at the center of the light emitting point 1 by making f small is larger than the effect of increasing the overlapping area ratio by increasing f. It shows that it is big. In addition, it is shown that the effect of increasing the overlapping area ratio is large by reducing g with respect to any f.

図1及び図2では,発光点1の中心を集光レンズ2の焦点に配置し,発光を平行光束にした。本発明は本条件においても良好に機能するが,後に詳しく説明する通り,発光点1の中心を集光レンズ2の焦点よりも若干離し,発光を若干絞った光束6にすると,高感度と低クロストークを両立する上で,より好適な条件となることが判明した。より具体的には,センサ位置において,すなわち集光レンズ2から光路長gの位置において発光点1の像を結ぶとき,発光点1の径を最小にできるため,最も良い条件であることが判明した。 In FIGS. 1 and 2, the center of the light emitting point 1 is arranged at the focal point of the condenser lens 2, and the light emission is a parallel luminous flux. The present invention works well under the present conditions, but as will be described in detail later, when the center of the light emitting point 1 is slightly separated from the focal point of the condenser lens 2 and the luminous flux 6 is slightly narrowed down, the sensitivity is high and low. It was found that the conditions are more suitable for achieving both crosstalk. More specifically, when the image of the light emitting point 1 is formed at the sensor position, that is, at the position of the optical path length g from the condenser lens 2, the diameter of the light emitting point 1 can be minimized, which is found to be the best condition. did.

図3は,隣り合う2つの発光点1からの発光をそれぞれ,個別の集光レンズ2で集光し,センサ位置において発光点1の像である発光点像7をそれぞれ得る光学系の光軸を含む断面図である。本発明では,発光点像という表現は,発光点からの発光が結像された像を必ずしも意味するものではなく,発光点からの発光が集光された光束の,所定の位置における断面を一般に意味する。発光点1の径をd,集光レンズ2の焦点距離をf,集光レンズ2の有効径をD,発光点1の間隔及び集光レンズ2の間隔をp,センサの検出領域の径をD,集光レンズ2とセンサの光学的な距離(光路長)をg,センサ位置における発光点像7の径をd’とする。発光点1と集光レンズ2の距離を調節し,発光点1からの発光を集光レンズ2によってセンサ位置において結像させるとき,発光点像7の径d’は最小となる。
このとき,像倍率は,
[式1]
m=(g−f)/f
で表されるため,発光点像7の径d’は,
[式2]
d’≧m*d=(g−f)/f*d
である。ここで,式(2)は,発光点1からの発光が集光レンズ2によってセンサ位置において結像される場合に等号が成立し,それ以外の場合に不等号が成立する。図3の光学系の下側に光軸方向から見た発光点1,上側に光軸方向から見た発光点像7を示す。本発明は,g≧2*fの場合に,つまりm≧1の場合に良好に機能する。より望ましくは,m≧5,さらにはm≧10が良い条件となる。これは,図2から明らかなように,相対検出光量を向上するためにはfをmmレベルに縮小する必要がある一方で,gをそれほど縮小することは物理的に困難なためである。
FIG. 3 shows the optical axis of the optical system in which light emitted from two adjacent light emitting points 1 is collected by individual condensing lenses 2 to obtain a light emitting point image 7 which is an image of the light emitting point 1 at the sensor position. It is a cross-sectional view including. In the present invention, the expression of a light emitting point image does not necessarily mean an image in which light emitted from a light emitting point is imaged, and generally, a cross section of a light beam in which light emitted from a light emitting point is focused is a cross section at a predetermined position. means. The diameter of the light emitting point 1 is d, the focal length of the condensing lens 2 is f, the effective diameter of the condensing lens 2 is D, the distance between the light emitting points 1 and the distance between the condensing lenses 2 is p, and the diameter of the detection area of the sensor is set. D. Let g be the optical distance (optical path length) between the condenser lens 2 and the sensor, and d'be the diameter of the light emitting point image 7 at the sensor position. When the distance between the light emitting point 1 and the condensing lens 2 is adjusted and the light emitted from the light emitting point 1 is imaged at the sensor position by the condensing lens 2, the diameter d'of the light emitting point image 7 becomes the minimum.
At this time, the image magnification is
[Equation 1]
m = (g−f) / f
Therefore, the diameter d'of the light emitting point image 7 is
[Equation 2]
d'≧ m * d = (g−f) / f * d
Is. Here, the equation (2) holds an equal sign when the light emitted from the light emitting point 1 is imaged at the sensor position by the condenser lens 2, and holds an inequality sign in other cases. The light emitting point 1 seen from the optical axis direction is shown on the lower side of the optical system of FIG. 3, and the light emitting point image 7 seen from the optical axis direction is shown on the upper side. The present invention works well when g ≧ 2 * f, that is, when m ≧ 1. More preferably, m ≧ 5, and even m ≧ 10 are good conditions. This is because, as is clear from FIG. 2, it is necessary to reduce f to the mm level in order to improve the relative detection light amount, but it is physically difficult to reduce g so much.

本明細書の各図では,発光点1及び発光点像7をそれぞれ円形で描くが,現実には円形とは限らず,その他の形状の場合がある。一般に,発光点1の径d,及び発光点像7の径d’はそれぞれ,発光点1,及び発光点像7の配列方向の幅とする。また,後述する通り,同じ発光検出装置の中で,集光レンズ2とセンサの光学的な距離(光路長)が複数存在する場合がある。その場合,集光レンズ2とセンサの光学的な距離を一般に光路長sとし,sの最大値を光路長gとして,上記の式(1),(2),及び下記の式(3)〜(18)を成立させれば良い。その理由を次に述べる。集光レンズ2とセンサの光学的な距離を変数sで表現すると,gを最大値として,0≦s≦gである。このとき,任意のsにおける発光点像7の径d’(s)は,d’(s=0)=Dと,d’(s=g)=d’のいずれか大きい方よりも小となる。すなわち,D≧d’のときはd’(s)≦D,D≦d’のときはd’(s)≦d’となる。前者の場合はクロストークが発生せず,後者の場合はs=gでクロストークの基準がクリアされていれば,0≦s≦gでも同基準をクリアできることを意味している。一方で,相対検出光量はsによらずに一定である。 In each figure of the present specification, the light emitting point 1 and the light emitting point image 7 are drawn in a circle, but in reality, the light emitting point 1 and the light emitting point image 7 are not necessarily circular and may have other shapes. In general, the diameter d of the light emitting point 1 and the diameter d'of the light emitting point image 7 are the widths of the light emitting points 1 and the light emitting point image 7 in the arrangement direction, respectively. Further, as will be described later, there may be a plurality of optical distances (optical path lengths) between the condenser lens 2 and the sensor in the same light emission detection device. In that case, the optical distance between the condenser lens 2 and the sensor is generally defined as the optical path length s, and the maximum value of s is defined as the optical path length g. (18) may be established. The reason will be described below. When the optical distance between the condenser lens 2 and the sensor is expressed by the variable s, 0 ≦ s ≦ g with g as the maximum value. At this time, the diameter d'(s) of the light emitting point image 7 at an arbitrary s is smaller than either d'(s = 0) = D or d'(s = g) = d', whichever is larger. Become. That is, when D ≧ d', d'(s) ≦ D, and when D ≦ d', d'(s) ≦ d'. In the former case, crosstalk does not occur, and in the latter case, if the crosstalk standard is cleared with s = g, it means that the same standard can be cleared even with 0 ≦ s ≦ g. On the other hand, the relative detection light amount is constant regardless of s.

また,本明細書では,集光レンズ2が,その直径が有効径Dの円形であることを基本としているが,必ずしもその必要はない。一般に,集光レンズ2の有効径Dは,発光点1の配列方向,及び集光レンズ1の配列方向の幅を示し,これらの配列方向と直交する方向の幅はその限りではない。集光レンズ2は,円形でも,楕円形でも,正方形でも,長方形でも,その他の形状でも構わない。上述の議論において,発光点像7の径d’(s=0)=Dは,発光点1の配列方向,及び集光レンズ1の配列方向の径と考えれば良い。これらの配列方向と直交する方向の発光点像7の径は,どれだけ大きくても,クロストークに寄与することはない。また,gが十分に大きければ,d’(s=g)=d’はDと無関係である。したがって,クロストークに関する以降の式(13)〜(18)の条件は,集光レンズ2の配列方向と直交する方向の幅に関わらずそのまま成立する。一方で,仮に集光レンズ2の配列方向と直交する方向の幅を有効径Dよりも大とすれば,F値をF=f/Dよりも小さく,つまり集光効率をより高くすることが可能である。この場合,感度に関する以降の式(3)〜(12)の条件は,より一層高い相対検出光量及び感度をもたらすことができる。 Further, in the present specification, the condenser lens 2 is basically a circular lens having an effective diameter D, but it is not always necessary. In general, the effective diameter D of the condenser lens 2 indicates the width in the arrangement direction of the light emitting points 1 and the arrangement direction of the condenser lens 1, and the width in the direction orthogonal to these arrangement directions is not limited to this. The condenser lens 2 may have a circular shape, an elliptical shape, a square shape, a rectangular shape, or any other shape. In the above discussion, the diameter d'(s = 0) = D of the light emitting point image 7 may be considered as the diameter in the arrangement direction of the light emitting point 1 and the arrangement direction of the condenser lens 1. No matter how large the diameter of the emission point image 7 in the direction orthogonal to these arrangement directions, it does not contribute to crosstalk. Also, if g is large enough, d'(s = g) = d'is irrelevant to D. Therefore, the conditions of the following equations (13) to (18) regarding crosstalk are satisfied as they are regardless of the width in the direction orthogonal to the arrangement direction of the condenser lens 2. On the other hand, if the width in the direction orthogonal to the arrangement direction of the condensing lens 2 is made larger than the effective diameter D, the F value can be smaller than F = f / D, that is, the condensing efficiency can be made higher. It is possible. In this case, the conditions of the following equations (3) to (12) regarding the sensitivity can bring about a higher relative detection light amount and sensitivity.

まず,高感度を得るための条件を検討する。発光点1からの発光の集光レンズ2による集光効率は,集光レンズ2のF値,F=f/Dにより表現できる。相対検出光量を50%以上とするためには,F≦2.8,すなわちf≦2.8*Dとすれば良い。一方で,集光レンズアレイを構成するためには,p≧Dとする必要があるため,
[式3]
f≦2.8*p
が相対検出光量が50%以上の条件である。同様に,相対検出光量が100%以上,200%以上,400%以上,及び800%以上にするには,それぞれ,F≦2.0,1.4,1.0,及び0.7,すなわち,次の式(4),(5),(6),及び(7)が条件である。
[式4]
f≦2.0*p
[式5]
f≦1.4*p
[式6]
f≦1.0*p
[式7]
f≦0.7*p
First, consider the conditions for obtaining high sensitivity. The luminous efficiency of the light emitted from the light emitting point 1 by the condensing lens 2 can be expressed by the F value of the condensing lens 2 and F = f / D. In order to set the relative detection light amount to 50% or more, F ≦ 2.8, that is, f ≦ 2.8 * D may be set. On the other hand, in order to construct a condenser lens array, it is necessary to set p ≧ D.
[Equation 3]
f ≦ 2.8 * p
Is a condition that the relative detection light amount is 50% or more. Similarly, to set the relative detection light intensity to 100% or more, 200% or more, 400% or more, and 800% or more, F ≦ 2.0, 1.4, 1.0, and 0.7, respectively. , The following equations (4), (5), (6), and (7) are the conditions.
[Equation 4]
f ≦ 2.0 * p
[Equation 5]
f ≦ 1.4 * p
[Equation 6]
f ≦ 1.0 * p
[Equation 7]
f ≦ 0.7 * p

以上の式(3)〜(7)は,発光点1と集光レンズ2の距離がfで近似できるとき正しいが,より厳密には次のように表現できる。発光点1と集光レンズ2の距離は,発光点1からの発光が集光レンズ2によって光学的な距離gにおいて結像されるとき,f2/(g−f)+fであるため,集光レンズ2の実効的なF値は,F’=(f2/(g−f)+f)/Dと表現できる。したがって,相対検出光量が50%,100%以上,200%以上,400%以上,及び800%以上にするには,次の式(8),(9),(10),(11)及び(12)が厳密な条件である。
[式8]
f≦(1/(2.8*p)+1/g)-1
[式9]
f≦(1/(2.0*p)+1/g)-1
[式10]
f≦(1/(1.4*p)+1/g)-1
[式11]
f≦(1/(1.0*p)+1/g)-1
[式12]
f≦(1/(0.7*p)+1/g)-1
The above equations (3) to (7) are correct when the distance between the light emitting point 1 and the condenser lens 2 can be approximated by f, but more strictly, they can be expressed as follows. The distance between the light emitting point 1 and the condensing lens 2 is f 2 / (g−f) + f when the light emitted from the light emitting point 1 is imaged by the condensing lens 2 at an optical distance g. The effective F value of the optical lens 2 can be expressed as F'= (f 2 / (g−f) + f) / D. Therefore, in order to make the relative detection light intensity 50%, 100% or more, 200% or more, 400% or more, and 800% or more, the following equations (8), (9), (10), (11) and ( 12) is a strict condition.
[Equation 8]
f ≦ (1 / (2.8 * p) + 1 / g) -1
[Equation 9]
f ≦ (1 / (2.0 * p) + 1 / g) -1
[Equation 10]
f ≦ (1 / (1.4 * p) + 1 / g) -1
[Equation 11]
f ≦ (1 / (1.0 * p) + 1 / g) -1
[Equation 12]
f ≦ (1 / (0.7 * p) + 1 / g) -1

次に,低クロストークを得るための条件を検討する。図3に示すように,隣り合う発光点1の発光点像7が互いに重ならない場合はクロストークが存在しないが,図4に示すように,隣り合う発光点1の発光点像7が互いに重なるとクロストークが発生する。以降,クロストークを,図4において,発光点像7の面積に対する,隣り合う発光点像7の重なり面積の比率Xで表現する。クロストークをX以下とするためには,
[式13]
X=1/π*(cos-1(V2/2−1)−sin(cos-1(V2/2−1)))
として,
[式14]
V≦2*p/d’
が条件となる。式(2)を用いて式(14)を変形すると,
[式15]
f≧1/((2*p)/(V*d)+1)*g
と表すことができる。
Next, the conditions for obtaining low crosstalk will be examined. As shown in FIG. 3, there is no crosstalk when the emission point images 7 of the adjacent emission points 1 do not overlap each other, but as shown in FIG. 4, the emission point images 7 of the adjacent emission points 1 overlap each other. And crosstalk occurs. Hereinafter, the crosstalk is expressed by the ratio X of the overlapping area of the adjacent light emitting point images 7 to the area of the light emitting point image 7 in FIG. To reduce crosstalk to X or less,
[Equation 13]
X = 1 / π * (cos -1 (V 2 / 2-1) -sin (cos -1 (V 2 / 2-1)))
As
[Equation 14]
V ≦ 2 * p / d'
Is a condition. When Eq. (14) is transformed using Eq. (2),
[Equation 15]
f ≧ 1 / ((2 * p) / (V * d) +1) * g
It can be expressed as.

検出対象となる発光点1からの発光の検出を,両隣の発光点1からの発光の影響を受けずに実行するためには,図4において,2つの発光点像7の距離が,少なくとも発光点像の半径(又は径の半分)よりも大である必要がある。これを式(13),式(14)で表すと,X=0.39(39%),V=1となり,式(15)は,
[式16]
f≧1/(2*p/d+1)*g
で表すことができる。
In order to detect the light emission from the light emission point 1 to be detected without being affected by the light emission from the light emission points 1 on both sides, the distance between the two light emission point images 7 is at least the light emission in FIG. It must be larger than the radius (or half the diameter) of the point image. When this is expressed by equations (13) and (14), X = 0.39 (39%) and V = 1, and equation (15) is
[Equation 16]
f ≧ 1 / (2 * p / d + 1) * g
Can be represented by.

複数の発光点1からの発光を,より実効的に,独立に検出するためには,両隣からのクロストークの合計の割合を50%以下にすることが望ましく,そのためには,式(13),式(14)で表すと,X=0.25(25%),V=1.27となり,式(15)は,
[式17]
f≧1/((2*p)/(1.27*d)+1)*g
が条件である。
In order to detect light emission from a plurality of light emission points 1 more effectively and independently, it is desirable that the total ratio of crosstalk from both sides is 50% or less, and for that purpose, equation (13) , When expressed by equation (14), X = 0.25 (25%) and V = 1.27, and equation (15) is
[Equation 17]
f ≧ 1 / ((2 * p) / (1.27 * d) +1) * g
Is a condition.

さらに望ましくは,クロストークを0%にすることが良く,そのためには,式(13),式(14)で表すと,X=0(0%),V=2となり,式(15)は,
[式18]
f≧1/(p/d+1)*g
が条件である。
More preferably, the crosstalk should be set to 0%, and for that purpose, when expressed by Eqs. (13) and (14), X = 0 (0%) and V = 2, and Eq. (15) is ,
[Equation 18]
f ≧ 1 / (p / d + 1) * g
Is a condition.

以上の通り,与えられたp及びdに対して,式(3)〜(12)のいずれかを満たすg及びfを選定することによって所望の相対検出光量及び感度を得ることが可能である。一方,与えられたp及びdに対して,式(16)〜(18)のいずれかを満たすg及びfを選定することによって所望のクロストークを得ることが可能である。つまり,式(3)〜(12)のいずれかと,式(16)〜(18)のいずれかの両者を満たすg及びfを選定することによって,トレードオフの関係にある相対検出光量とクロストークを所望のレベルで両立させることができる。 As described above, it is possible to obtain a desired relative detection light amount and sensitivity by selecting g and f that satisfy any of the equations (3) to (12) with respect to the given p and d. On the other hand, it is possible to obtain a desired crosstalk by selecting g and f that satisfy any of the equations (16) to (18) for the given p and d. That is, by selecting g and f that satisfy either of the equations (3) to (12) and any of the equations (16) to (18), the relative detection light amount and the crosstalk that are in a trade-off relationship are crosstalked. Can be compatible at a desired level.

図5は,典型例として,p=1mm,d=0.05mmとした場合について式(3)〜(12)及び式(16)〜(18)を,横軸g,縦軸fで図示したものである。曲線又は直線に示す番号は,対応する番号の式の境界線を示し,↓は境界線から下側の領域,↑は境界線から上側の領域を示す。例えば,相対検出光量を50%以上の条件である式(3)とするには,図5の直線↓(3)よりも下側の領域のg及びfであれば良い。一方,クロストークを25%以下の条件である式(17)とするには,図5の直線↑(17)より上側の領域のg及びfであれば良い。つまり,相対検出光量を50%以上かつクロストークを25%以下とするには,図5の直線↓(3)よりも下側かつ直線↑(17)より上側の領域のg及びfであれば良い。 As a typical example, FIG. 5 shows equations (3) to (12) and equations (16) to (18) on the horizontal axis g and the vertical axis f when p = 1 mm and d = 0.05 mm. It is a thing. The numbers shown on the curve or straight line indicate the boundary line of the corresponding number expression, ↓ indicates the area below the boundary line, and ↑ indicates the area above the boundary line. For example, in order to obtain the equation (3) under the condition that the relative detection light amount is 50% or more, g and f in the region below the straight line ↓ (3) in FIG. 5 may be used. On the other hand, in order to obtain the equation (17) in which the crosstalk is 25% or less, g and f in the region above the straight line ↑ (17) in FIG. 5 may be used. That is, in order to set the relative detection light amount to 50% or more and the crosstalk to 25% or less, if g and f are in the region below the straight line ↓ (3) and above the straight line ↑ (17) in FIG. good.

図5に示されるg及びfを用いた発光検出装置は,gとfの大きさから明らかなように,高感度かつ低クロストークの性能だけでなく,特許文献1及び非特許文献1の検出装置と比較して,装置サイズを1桁〜3桁も小型化することができる特長がある。以上から明らかなように,pが小さいほど,dが大きいほど,高感度,低クロストークの条件を満たすgとfの範囲が狭くなる一方,発光検出装置の小型化が必然の構成となる。逆に言えば,pが小さいほど,dが大きいほど,本発明の特徴が活かされ,従来法に対する効果が顕著になる。具体的にはp≦20mm,より望ましくはp≦10mmの場合に本発明の特徴が特に活かされる。また,d≧0.005mm,より望ましくはd≧0.01mmの場合に本発明の特徴が特に活かされる。 As is clear from the magnitudes of g and f, the light emission detection device using g and f shown in FIG. 5 not only has high sensitivity and low crosstalk performance, but also detects Patent Document 1 and Non-Patent Document 1. Compared to the device, the device size can be reduced by one to three orders of magnitude. As is clear from the above, the smaller p and the larger d, the narrower the range of g and f that satisfy the conditions of high sensitivity and low crosstalk, while the miniaturization of the light emission detection device is inevitable. Conversely, the smaller p and the larger d, the more the characteristics of the present invention are utilized and the more remarkable the effect on the conventional method becomes. Specifically, the features of the present invention are particularly utilized when p ≦ 20 mm, more preferably p ≦ 10 mm. Further, the features of the present invention are particularly utilized when d ≧ 0.005 mm, more preferably d ≧ 0.01 mm.

続いて,以上の条件に基づき,さらに多色検出を行う方法について説明する。図3又は図4における発光点像7の位置にカラーセンサを,センサ表面が集光レンズ2の光軸と垂直になるように,すなわち,発光点1の配列平面及び集光レンズ2の配列平面に対してセンサ表面が平行になるように配置する。ここで,カラーセンサとは,少なくとも2種類以上の異なる波長の光をそれぞれ識別して検出できる2種類以上の画素が配列したものである。最も一般的なカラーセンサは,一般消費者向けのデジタルカメラに用いられているカラーセンサであり,R,G,B,すなわち赤,緑,青の3種類の色を識別する3種類の画素が2次元状に多数配列している。本発明においても,そのような一般的なカラーセンサを用いることが可能である。近年の一般的なカラーセンサは感度が高く,本技術分野でも利用できる。上記のカラーセンサは,3色の識別に最も適しているが,デジタルカメラが行っているように,3種類の画素の強度比から4色以上の識別を行うことも可能である。したがって,上記のカラーカメラを用いた検出装置を,4色検出を行うDNAシーケンサに応用することができる。 Next, a method for further performing multicolor detection based on the above conditions will be described. A color sensor is placed at the position of the light emitting point image 7 in FIG. 3 or 4, so that the sensor surface is perpendicular to the optical axis of the condenser lens 2, that is, the array plane of the light emitting point 1 and the array plane of the condenser lens 2. The sensor surface is arranged so as to be parallel to the lens. Here, the color sensor is an array of two or more types of pixels that can identify and detect at least two types of light having different wavelengths. The most common color sensor is a color sensor used in digital cameras for general consumers, in which three types of pixels that identify three types of colors, R, G, B, that is, red, green, and blue, are used. Many are arranged in a two-dimensional manner. Also in the present invention, it is possible to use such a general color sensor. Recent general color sensors have high sensitivity and can be used in this technical field as well. The above color sensor is most suitable for discriminating three colors, but it is also possible to discriminate four or more colors from the intensity ratio of three types of pixels, as is done by a digital camera. Therefore, the detection device using the above color camera can be applied to a DNA sequencer that detects four colors.

ただし,発光点1からの発光の色識別を精度良く行うためには,発光点像7の径d’を各種類の画素のサイズよりも大きくすることが有効である。これは,ひとつの発光点1について,及び各種類の画素について,複数の画素を用いて発光を検出することによって,発光点像7と画素の相対位置のばらつきの影響を回避できるためである。式(3)〜(12)及び式(16)〜(18)に示す本発明の適正条件では,式(1)でm>1,すなわち,式(2)でd’>dとなる場合が多く,上記の条件を満足させることが容易である。また,発光点1の配列平面及び集光レンズ2の配列平面がセンサ表面と平行であるため,センサ表面を集光レンズ2の配列平面に接近させることが可能であり,式(3)〜(12)及び式(16)〜(18)の条件に従うことが容易である。 However, in order to accurately identify the color of the light emitted from the light emitting point 1, it is effective to make the diameter d'of the light emitting point image 7 larger than the size of each type of pixel. This is because it is possible to avoid the influence of variation in the relative positions of the light emitting point image 7 and the pixels by detecting light emission using a plurality of pixels for one light emitting point 1 and for each type of pixel. Under the proper conditions of the present invention shown in the formulas (3) to (12) and the formulas (16) to (18), m> 1 in the formula (1), that is, d'> d in the formula (2). In many cases, it is easy to satisfy the above conditions. Further, since the array plane of the light emitting point 1 and the array plane of the condenser lens 2 are parallel to the sensor surface, the sensor surface can be brought close to the array plane of the condenser lens 2, and the equations (3) to (3) to ( It is easy to follow the conditions of 12) and equations (16) to (18).

最近は,R,G,Bに加えてIR(赤外)を加えた4種類の画素を有するカラーセンサが市販されており,そのようなカラーセンサをDNAシーケンサにおける4色検出に用いることは有用である。複数種類の画素は同一平面上に配列されているものでも,センサ表面と垂直方向に配列されているものでも良い。以上のように,既に実用化されているカラーセンサを本発明に適用することは,開発コストを抑える点で有効である。もちろん,カラーセンサの画素の種類数,各種類の画素が識別する色の特性を目的に応じてカスタマイズさせることは有効である。 Recently, a color sensor having four types of pixels in which IR (infrared) is added in addition to R, G, and B is commercially available, and it is useful to use such a color sensor for four-color detection in a DNA sequencer. Is. The plurality of types of pixels may be arranged on the same plane or arranged in the direction perpendicular to the sensor surface. As described above, applying the color sensor that has already been put into practical use to the present invention is effective in suppressing the development cost. Of course, it is effective to customize the number of types of pixels of the color sensor and the characteristics of the color identified by each type of pixel according to the purpose.

図6は,カラーセンサを用いた多色検出装置の例を示す。図6(a)は,集光レンズ2の各光軸を含む平面に垂直方向から見た多色検出装置,図6(b)は2次元カラーセンサ11で検出されるイメージ12を示す。ここでは4色検出を行う例を示す。 FIG. 6 shows an example of a multicolor detection device using a color sensor. FIG. 6A shows a multicolor detection device viewed from a direction perpendicular to a plane including each optical axis of the condenser lens 2, and FIG. 6B shows an image 12 detected by the two-dimensional color sensor 11. Here, an example of performing four-color detection is shown.

図6(a)に示すように,各発光点1からの発光を,それぞれ個別に集光レンズ2により集光して光束9とし,共通のロングパスフィルタ10を並列に透過させ,共通の2次元カラーセンサ11に並列に入射させる。ロングパスフィルタ10は,励起光など,多色検出の邪魔となる波長の光を遮断するために設ける。図6(b)に示すように,2次元カラーセンサ11のイメージ12上には,各発光点1からの発光の発光点像7がそれぞれ形成される。2次元カラーセンサ11は,例えば,主にA発光を検出するA画素13,主にB発光を検出するB画素14,主にC発光を検出するC画素15,主にD発光を検出するD画素16の4種類の画素がそれぞれ多数個,規則正しく配列して構成されている。各画素13,14,15,16のサイズはいずれもS=0.05mmである。一方で,d=0.05mm,f=1mm,g=10mmとし,発光点1を2次元カラーセンサ上で結像させると,式(1)よりm=9,式(2)よりd’=0.45mmである。つまり,S<d’が満たされ,発光点像7は約64個の画素で検出され,1種類の画素あたり約16画素で検出される。 As shown in FIG. 6A, the light emitted from each light emitting point 1 is individually focused by the condenser lens 2 to form a luminous flux 9, and a common long-pass filter 10 is transmitted in parallel to form a common two-dimensional structure. It is incident on the color sensor 11 in parallel. The long pass filter 10 is provided to block light having a wavelength that interferes with multicolor detection, such as excitation light. As shown in FIG. 6B, a light emitting point image 7 of light emitted from each light emitting point 1 is formed on the image 12 of the two-dimensional color sensor 11. The two-dimensional color sensor 11 is, for example, an A pixel 13 that mainly detects A light emission, a B pixel 14 that mainly detects B light emission, a C pixel 15 that mainly detects C light emission, and a D that mainly detects D light emission. A large number of four types of pixels 16 are arranged in a regular manner. The size of each pixel 13, 14, 15, 16 is S = 0.05 mm. On the other hand, when d = 0.05 mm, f = 1 mm, g = 10 mm and the light emitting point 1 is imaged on a two-dimensional color sensor, m = 9 from equation (1) and d'= from equation (2). It is 0.45 mm. That is, S <d'is satisfied, and the light emitting point image 7 is detected by about 64 pixels, and is detected by about 16 pixels per one type of pixel.

このように,各種類の画素について,多数個の画素が各発光点像7を検出することによって,発光点1からの発光の4色検出を精度良く行うことができる。例えば,各種類の画素と,発光点像7の相対位置が変動したとしても問題にならない。あるいは,発光点像7内の光強度分布が不均一であったとしても,各色を均等かつ安定に検出できる。図6に示す多色検出装置では,各発光点1の径d,各発光点1及び各集光レンズ2の間隔p,各集光レンズ2の焦点距離f,有効径D,各集光レンズ2とセンサ11の光学的な距離gが,式(3)〜(7),式(8)〜(12),及び式(16)〜(18)のそれぞれの,いずれかが満足され,所定の高感度と低クロストークを実現するとともに,検出装置の小型化と低コスト化を実現している。 In this way, for each type of pixel, a large number of pixels detect each emission point image 7, so that four colors of emission from the emission point 1 can be detected with high accuracy. For example, even if the relative positions of the pixels of each type and the emission point image 7 fluctuate, it does not matter. Alternatively, even if the light intensity distribution in the emission point image 7 is non-uniform, each color can be detected evenly and stably. In the multicolor detection device shown in FIG. 6, the diameter d of each light emitting point 1, the distance p between each light emitting point 1 and each condensing lens 2, the focal length f of each condensing lens 2, the effective diameter D, and each condensing lens. The optical distance g between 2 and the sensor 11 is determined by satisfying any one of the equations (3) to (7), equations (8) to (12), and equations (16) to (18). In addition to achieving high sensitivity and low crosstalk, the detection device has been made smaller and less costly.

一方,図6のように複数種類の画素が同一平面上に配列されているカラーセンサを用いる場合,入射光の利用効率が低いことが課題である。例えば,図6のように,4種類の画素が配列されたカラーセンサで4色を識別する場合,入射光の利用効率は1/4以下になってしまう。これは,より高感度な発光検出を行う場合の障害となる場合がある。入射光の利用効率は,複数種類の画素がセンサ表面と垂直方向に配列されているカラーセンサを用いることで改善される可能性があるが,そのようなカラーセンサはまだ一般的に用いられていない状況である。そこで,次に,入射光の利用効率の高い他の多色検出の方法を提案する。 On the other hand, when a color sensor in which a plurality of types of pixels are arranged on the same plane as shown in FIG. 6 is used, there is a problem that the utilization efficiency of incident light is low. For example, as shown in FIG. 6, when four colors are identified by a color sensor in which four types of pixels are arranged, the utilization efficiency of incident light is reduced to 1/4 or less. This may be an obstacle to more sensitive light emission detection. The efficiency of incident light utilization may be improved by using a color sensor in which multiple types of pixels are arranged perpendicular to the sensor surface, but such color sensors are still commonly used. There is no situation. Therefore, next, we propose another multicolor detection method with high utilization efficiency of incident light.

入射光の利用効率を高める手段のひとつに,1種類以上のダイクロイックミラー(以降,略してダイクロと呼ぶ)を用いる方法がある。ダイクロは,ガラス等の透明基板の少なくとも片側の正面に多層膜を形成し,一般に45°で入射した光の反射光と透過光が異なる波長帯の光となるようにするものであり,反射光と透過光の両方を活用することによって,入射光の利用効率を高めることができる。一般に,1種類のダイクロを用いれば最大2色検出,2種類のダイクロを組み合わせれば最大3色検出,同様にN種類のダイクロを組み合わせれば最大N+1色検出が可能である。上記のダイクロに加えて,バンドパスフィルタ,色ガラスフィルタ,又は全反射ミラーを併用する場合も多い。一般消費者向けのデジタルビデオカメラでは,3種類のダイクロを組み合わせ,3個のCCDを用いて3色検出を行っているものがある。また,非特許文献1は,3種類のダイクロを組み合わせ,4個のCCDを用いて4色検出を行っている例である。これらのように,ダイクロを用いる方法では,反射光と透過光の進行方向が異なることから複数のセンサを用いる場合が多い。このことは,本発明の目的である検出装置の小型化,及び低コスト化と相反する。 One of the means for improving the utilization efficiency of incident light is to use one or more types of dichroic mirrors (hereinafter, abbreviated as dichroic). Dycro forms a multilayer film on the front surface of at least one side of a transparent substrate such as glass so that the reflected light and the transmitted light of the light incident at 45 ° become light in different wavelength bands. By utilizing both the transmitted light and the transmitted light, the utilization efficiency of the incident light can be improved. In general, a maximum of 2 colors can be detected by using one type of dichroic glass, a maximum of 3 colors can be detected by combining two types of dichroic glass, and a maximum of N + 1 color can be detected by combining N types of dichroic glass. In addition to the above dichroic glass, a bandpass filter, a colored glass filter, or a total reflection mirror is often used together. Some digital video cameras for general consumers combine three types of dichroic glass and perform three-color detection using three CCDs. In addition, Non-Patent Document 1 is an example in which three types of dichroic glass are combined and four CCDs are used to perform four-color detection. As described above, in the method using dichroic glass, a plurality of sensors are often used because the traveling directions of the reflected light and the transmitted light are different. This contradicts the miniaturization and cost reduction of the detection device, which is the object of the present invention.

図7は,これらの課題を解決した多色検出装置の例を示す。図7(a)は集光レンズ2の各光軸を含む平面に垂直方向から見た多色検出装置,図7(b)はひとつの集光レンズ2の光軸を含み,集光レンズアレイの配列方向に垂直な多色検出装置の断面,図7(c)は2次元センサ30で検出されるイメージ29を示す。ここでは4色検出を行う例を示す。 FIG. 7 shows an example of a multicolor detection device that solves these problems. FIG. 7 (a) is a multicolor detection device viewed from a direction perpendicular to a plane including each optical axis of the condenser lens 2, and FIG. 7 (b) includes an optical axis of one condenser lens 2 and is a condenser lens array. A cross section of the multicolor detection device perpendicular to the arrangement direction of the lens, FIG. 7C, shows an image 29 detected by the two-dimensional sensor 30. Here, an example of performing four-color detection is shown.

例として4個の発光点アレイの各発光点1からの発光を,それぞれ個別の集光レンズ2により集光して光束9として,共通のロングパスフィルタ10を並列に透過させるまでは図6と同様である。ここでは,共通の4種類のダイクロ17,18,19,及び20を図7(b)のように並べて配置したダイクロアレイを用いる。各光束9を,各ダイクロ17〜20にそれぞれ並列に入射させ,発光点アレイ方向と垂直方向に,光束21,22,23,及び24に4分割し,かつ,それぞれを光束9と同一方向,すなわち,集光レンズ2の光軸方向に進行させ,共通の2次元センサ30に並列に入射させ,発光点像25,26,27,及び28を形成させる。ここで,ダイクロ20は全反射ミラーで置き換えても良いが,以降では簡単のため,ダイクロ28と呼ぶ。 As an example, the light emitted from each light emitting point 1 of the four light emitting point arrays is collected by an individual condensing lens 2 to form a luminous flux 9, and is the same as in FIG. 6 until a common long-pass filter 10 is transmitted in parallel. Is. Here, a dichroic array in which four types of common dichroic glasses 17, 18, 19, and 20 are arranged side by side as shown in FIG. 7B is used. Each light flux 9 is incident on each dichro 17 to 20 in parallel, and is divided into four light fluxes 21, 22, 23, and 24 in the direction perpendicular to the emission point array direction, and each is in the same direction as the light flux 9. That is, it is advanced in the optical axis direction of the condenser lens 2 and incident on the common two-dimensional sensor 30 in parallel to form emission point images 25, 26, 27, and 28. Here, the dichroic 20 may be replaced with a total reflection mirror, but for the sake of simplicity, it will be referred to as a dichroic 28.

図7(c)に示す通り,2次元センサ30のイメージ29上に,4個の発光点1からの発光が4分割された16個の発光点像25〜28が一括して観察される。ここで,光束9の内,ダイクロ17を透過する光束が光束21,ダイクロ17及び18で反射する光束が光束26,ダイクロ17で反射してダイクロ18を透過してダイクロ19で反射する光束が光束23,ダイクロ17で反射してダイクロ18及び19を透過してダイクロ20で反射する光束が光束24である。ロングパスフィルタ10及びダイクロ17〜20の透過特性及び反射特性を設計,制御することにより,光束21は主にA蛍光,光束22は主にB蛍光,光束23は主にC蛍光,光束24は主にD蛍光の成分を有するようにし,発光点像25,26,27,及び28の強度を検出することによって,A,B,C,及びD蛍光を検出できるようにする。 As shown in FIG. 7C, 16 emission point images 25 to 28 in which the emission from the four emission points 1 is divided into four are collectively observed on the image 29 of the two-dimensional sensor 30. Here, among the luminous fluxes 9, the luminous flux transmitted through the dichro 17 is the luminous flux 21, the luminous flux reflected by the dichro 17 and 18 is the luminous flux 26, and the luminous flux reflected by the dichro 17 is transmitted through the dichro 18 and reflected by the dichro 19. 23, The luminous flux 24 is the light beam reflected by the dichro 17 and transmitted through the dichro 18 and 19 and reflected by the dichro 20. By designing and controlling the transmission characteristics and reflection characteristics of the long-pass filter 10 and the dichro 17 to 20, the luminous flux 21 is mainly A fluorescence, the luminous flux 22 is mainly B fluorescence, the luminous flux 23 is mainly C fluorescence, and the luminous flux 24 is mainly. A, B, C, and D fluorescence can be detected by having a component of D fluorescence in the light flux and detecting the intensity of the emission point images 25, 26, 27, and 28.

光束21,22,23,及び24の波長帯は任意に設計して良いが,これらが波長順に並んでいる方がダイクロ17〜20の設計が容易である。つまり,A蛍光の中心波長>B蛍光の中心波長>C蛍光の中心波長>D蛍光の中心波長とするか,あるいは,A蛍光の中心波長<B蛍光の中心波長<C蛍光の中心波長<D蛍光の中心波長とするのが良い。また,図7には図示しないが,光束21,22,23,及び24の少なくとも1箇所以上の位置に,それぞれ異なる分光特性を有するバンドパスフィルタ,あるいは色ガラスフィルタを配置し,ダイクロ17〜20の分光特性を補ったり,高めたりすることは有効である。さらに,図7には図示しないが,発光点1に発光をもたらすための励起光等の照射光を備えることは有効である。そのような照射光は,集光レンズ2を用いずに,集光レンズ2の光軸と垂直方向から照射すると,照射光が集光レンズ2を介してセンサに入射する比率を下げられるため,感度的に有利である。また,ロングパスフィルタ10の代わりに,ダイクロ17〜20とは別のダイクロを配置し,照射光を上記ダイクロで反射させてから集光レンズ2で絞って発光点1に照射し,発光点1からの発光は集光レンズ2で集光してから上記ダイクロを透過させ,図7と同様の多色検出装置で検出する,いわゆる落射発光検出の構成とすることも有効である。 The wavelength bands of the luminous fluxes 21, 22, 23, and 24 may be arbitrarily designed, but it is easier to design the dichroic 17 to 20 if these are arranged in the order of wavelength. That is, the center wavelength of A fluorescence> the center wavelength of B fluorescence> the center wavelength of C fluorescence> the center wavelength of D fluorescence, or the center wavelength of A fluorescence <the center wavelength of B fluorescence <the center wavelength of C fluorescence <D. It is better to use the central wavelength of fluorescence. Further, although not shown in FIG. 7, bandpass filters or colored glass filters having different spectral characteristics are arranged at at least one or more positions of the luminous fluxes 21, 22, 23, and 24, and dichroic 17 to 20 are arranged. It is effective to supplement or enhance the spectral characteristics of. Further, although not shown in FIG. 7, it is effective to provide irradiation light such as excitation light for causing light emission at the light emitting point 1. When such irradiation light is irradiated from a direction perpendicular to the optical axis of the condenser lens 2 without using the condenser lens 2, the ratio of the irradiation light incident on the sensor via the condenser lens 2 can be reduced. It is advantageous in terms of sensitivity. Further, instead of the long pass filter 10, a dichro different from the dichro 17 to 20 is arranged, the irradiation light is reflected by the dichro, then the light is focused by the condenser lens 2 and irradiated to the light emitting point 1, and the light emitting point 1 is irradiated. It is also effective to have a so-called epi-illumination detection configuration in which the light emitted from the light is condensed by the condenser lens 2, then transmitted through the dichro, and detected by the same multicolor detection device as in FIG.

図7に示す多色検出装置では,各発光点1の径d,各発光点1及び各集光レンズ2の間隔p,各集光レンズ2の焦点距離f,有効径D,各集光レンズ2とセンサ30の光学的な距離gが,式(3)〜(7),式(8)〜(12),及び式(16)〜(18)のそれぞれの,いずれかを満足することにより,所定の高感度と低クロストークを実現するとともに,検出装置の小型化と低コスト化を実現している。ここで,図7に示すダイクロアレイを用いた多色検出装置を小型化,低コスト化する上での特徴を次の(1)〜(10)に纏める。これらの特徴は,必ずしも全てを満たす必要はなく,いずれかひとつでも満たすことは効果的である。
(1)発光点アレイのM個の発光点について,集光レンズアレイによって各発光点からの発光を集光したM個の光束を,それぞれ異なる波長成分を有するN個の光束に分割し,それぞれを同一方向に進行させる。
(2)発光点アレイのM個の発光点について,集光レンズアレイによって各発光点からの発光を集光したM個の光束を,それぞれ異なる波長成分を有するN個の光束に分割し,それぞれを各集光レンズの光軸方向に進行させる。
(3)発光点アレイのM個の発光点について,集光レンズアレイによって各発光点からの発光を集光したM個の光束を,それぞれ異なる波長成分に分割する方向を,発光点アレイ及び集光レンズアレイの配列方向と垂直方向とする。
(4)発光点アレイのM個の発光点について,集光レンズアレイによって各発光点からの発光を集光したM個の光束を,それぞれ異なる波長成分に分割する方向を,各集光レンズの光軸と垂直方向とする。
(5)発光点アレイのM個の発光点について,集光レンズアレイによって各発光点からの発光を集光したM個の光束を,それぞれ異なる波長成分に分割するN個のダイクロを,発光点アレイ及び集光レンズアレイの配列方向と垂直方向に配列する。
(6)発光点アレイのM個の発光点について,集光レンズアレイによって各発光点からの発光を集光したM個の光束を,それぞれ異なる波長成分に分割するN個のダイクロを,各集光レンズの光軸と垂直方向に配列する。
(7)発光点アレイのM個の発光点について,集光レンズアレイによって各発光点からの発光を集光したM個の光束を,それぞれ異なる波長成分にN個に分割したM×N個の光束をセンサに,再集光せずに,直接入射する。
(8)発光点アレイのM個の発光点について,各発光点からの発光を集光する集光レンズアレイの各集光レンズの光軸とセンサ面を垂直とする。
(9)N個の異なる種類のダイクロで構成し,各ダイクロをそれぞれ単一の部材で構成し,発光点アレイのM個の発光点からの発光を個別に集光したM個の光束を各ダイクロに並列に入射する。
(10)発光点アレイのM個の発光点からの発光を個別に集光したM個の光束をそれぞれ異なる波長成分にN個に分割したM×N個の光束を単一のセンサに並列に入射する。
In the multicolor detection device shown in FIG. 7, the diameter d of each light emitting point 1, the distance p between each light emitting point 1 and each condensing lens 2, the focal length f of each condensing lens 2, the effective diameter D, and each condensing lens. When the optical distance g between 2 and the sensor 30 satisfies any of the equations (3) to (7), equations (8) to (12), and equations (16) to (18). , Achieves the specified high sensitivity and low crosstalk, and also realizes miniaturization and cost reduction of the detection device. Here, the features for miniaturization and cost reduction of the multicolor detection device using the dichroic array shown in FIG. 7 are summarized in the following (1) to (10). It is not always necessary to satisfy all of these characteristics, and it is effective to satisfy any one of them.
(1) Regarding the M light emitting points of the light emitting point array, the M light fluxes obtained by condensing the light emitted from each light emitting point by the condensing lens array are divided into N light fluxes having different wavelength components, and each of them is divided into N light fluxes. In the same direction.
(2) Regarding the M light emitting points of the light emitting point array, the M light fluxes obtained by condensing the light emitted from each light emitting point by the condensing lens array are divided into N light fluxes having different wavelength components, and each of them is divided into N light fluxes. Is advanced in the direction of the optical axis of each condenser lens.
(3) With respect to the M light emitting points of the light emitting point array, the directions of dividing the M light fluxes obtained by condensing the light emitted from each light emitting point by the condensing lens array into different wavelength components are defined by the light emitting point array and the collection. The direction is perpendicular to the arrangement direction of the optical lens array.
(4) With respect to the M light emitting points of the light emitting point array, the direction in which the M light fluxes obtained by condensing the light emitted from each light emitting point by the condensing lens array is divided into different wavelength components is set for each condensing lens. The direction is perpendicular to the optical axis.
(5) Regarding the M light emitting points of the light emitting point array, N dicros that divide the M light fluxes that have focused the light emitted from each light emitting point by the condensing lens array into different wavelength components are used as the light emitting points. Arrange in the direction perpendicular to the arrangement direction of the array and the condenser lens array.
(6) For the M light emitting points of the light emitting point array, each collection of N dicros that divides the M light fluxes that have focused the light emitted from each light emitting point by the condensing lens array into different wavelength components. Arrange in the direction perpendicular to the optical axis of the optical lens.
(7) Regarding the M light emitting points of the light emitting point array, M × N light fluxes obtained by condensing the light emitted from each light emitting point by the condensing lens array are divided into N different wavelength components. The luminous flux is directly incident on the sensor without refocusing.
(8) For the M light emitting points of the light emitting point array, the optical axis of each condensing lens of the condensing lens array that collects the light emitted from each light emitting point is perpendicular to the sensor surface.
(9) Each dichroic is composed of N different types of dichroic glass, each dichroic glass is composed of a single member, and each of the M light fluxes is obtained by individually condensing the light emitted from the M light emitting points of the light emitting point array. It is incident on the dichroic glass in parallel.
(10) M × N luminous fluxes obtained by dividing the M luminous fluxes, which are individually focused light emitted from the M emission points of the emission point array, into N different wavelength components, are arranged in parallel on a single sensor. Incident.

以上では,発光点アレイからの各発光を集光レンズアレイの各集光レンズで集光した各光束を,上記集光レンズ以外の他のレンズによって再集光せずに,センサに直接入射させる場合について説明した。以下では,発光点アレイからの各発光を集光レンズアレイの各集光レンズで集光した各光束を,上記集光レンズ以外の他のレンズによって再集光してからセンサに入射させる場合について説明する。以降,各光束について,再集光するためのレンズを再集光レンズと呼ぶことにする。 In the above, each luminous flux collected by each condensing lens of the condensing lens array is directly incident on the sensor without being re-condensed by a lens other than the condensing lens. The case was explained. The following is a case where each light emitted from the light emitting point array is condensed by each condensing lens of the condensing lens array, and each luminous flux is recondensed by a lens other than the condensing lens and then incident on the sensor. explain. Hereinafter, the lens for refocusing each luminous flux will be referred to as a refocusing lens.

式(1)〜(18)の導出にあたっては,集光レンズとセンサの光学的な距離をgとしたが,再集光レンズを用いる場合は,集光レンズと再集光レンズの光学的な距離をgとすれば,式(1)〜(18)がそのまま高感度及び低クロストークの条件とすることができる。つまり,図3あるいは図4において,発光点像7の位置が,センサの位置ではなく,再集光レンズの位置と考えれば良い。仮に,再集光レンズの位置で,高感度及び低クロストークの条件になっていなければ,例えば,隣り合う光束の重なりが大き過ぎれば,再集光レンズ以降の構成がいかなるものであっても,高感度及び低クロストークの性能が改善することはないためである。集光レンズから光路長gの位置に,集光レンズと同数の再集光レンズを,対となる集光レンズと再集光レンズの光軸を一致させて,間隔pで配列する。再集光レンズの有効径を,集光レンズの有効径と等しく,Dとすることによって,再集光レンズによる検出光量のロスを抑え,かつ再集光レンズアレイを構築することができる。センサは,再集光レンズよりも後段の,集光レンズからの光路長がgよりも大の位置に配置する。このように考えれば,図3あるいは図4での高感度,低クロストークを実現するための条件が,再集光レンズを用いる場合にも,そのまま成立することが分かる。 In deriving the equations (1) to (18), the optical distance between the condenser lens and the sensor was set to g, but when a recondensing lens is used, the optical distance between the condenser lens and the recondensing lens is taken. If the distance is g, the equations (1) to (18) can be used as they are as the conditions for high sensitivity and low crosstalk. That is, in FIG. 3 or 4, the position of the light emitting point image 7 may be considered as the position of the refocusing lens, not the position of the sensor. If the position of the recondensing lens does not meet the conditions of high sensitivity and low crosstalk, for example, if the overlap of adjacent luminous fluxes is too large, whatever the configuration after the recondensing lens is used. This is because the performance of high sensitivity and low crosstalk is not improved. At the position of the optical path length g from the condensing lens, the same number of recondensing lenses as the condensing lens are arranged at intervals p so that the optical axes of the paired condensing lens and the recondensing lens are aligned. By setting the effective diameter of the recondensing lens to be equal to the effective diameter of the condensing lens and setting it to D, it is possible to suppress the loss of the amount of light detected by the recondensing lens and to construct a recondensing lens array. The sensor is placed at a position where the optical path length from the condensing lens is larger than g, which is after the recondensing lens. From this point of view, it can be seen that the conditions for achieving high sensitivity and low crosstalk in FIG. 3 or 4 are satisfied as they are even when a recondensing lens is used.

図8は,波長分散素子及び再集光レンズアレイを用いた多色検出装置の例を示す模式図である。図8(a)は集光レンズ2の各光軸を含む平面に垂直な方向から見た多色検出装置の模式図,図8(b)はひとつの集光レンズ2及び対となる再集光レンズ33の光軸を含み,集光レンズアレイ及び再集光レンズアレイの配列方向に垂直な多色検出装置の断面模式図,図8(c)は2次元センサ37で検出されるイメージ42を示す図である。ここでは3色検出を行う例を示す。 FIG. 8 is a schematic diagram showing an example of a multicolor detection device using a wavelength dispersion element and a refocusing lens array. FIG. 8 (a) is a schematic view of a multicolor detection device viewed from a direction perpendicular to the plane including each optical axis of the condenser lens 2, and FIG. 8 (b) is a single condenser lens 2 and a pair of recollections. A schematic cross-sectional view of a multicolor detection device including the optical axis of the optical lens 33 and perpendicular to the arrangement direction of the condensing lens array and the recondensing lens array, FIG. 8C is an image 42 detected by the two-dimensional sensor 37. It is a figure which shows. Here, an example of performing three-color detection is shown.

図8(a)に示すように,発光点1からの発光を集光レンズ2により集光して光束9としてロングパスフィルタ10を透過させるまでは図6と同様である。その後,図8(b)に示すように,各光束9を,波長分散素子である,共通の透過型回折格子31に並列に入射させて発光点アレイ方向と垂直方向に波長分散させ,再集光レンズ33で再集光し,2次元センサ37に入射させる。ここで,光束34,35,及び36はそれぞれ,A,B,及びC蛍光の中心波長の光束を示す。図8(c)に示すように,2次元センサ37のイメージ42上で,各発光点1からの発光の波長分散像41が得られる。ここで,波長分散像41の内,像38,39,及び40はそれぞれ,A,B,及びC蛍光の中心波長の光束の像を示す。 As shown in FIG. 8 (a), it is the same as in FIG. 6 until the light emitted from the light emitting point 1 is condensed by the condenser lens 2 and transmitted through the long pass filter 10 as the luminous flux 9. After that, as shown in FIG. 8B, each light flux 9 is incident in parallel on a common transmission type diffraction grating 31 which is a wavelength dispersion element, wavelength-dispersed in the direction perpendicular to the emission point array direction, and reassembled. It is re-condensed by the optical lens 33 and incident on the two-dimensional sensor 37. Here, the luminous fluxes 34, 35, and 36 indicate the luminous fluxes having the central wavelengths of A, B, and C fluorescence, respectively. As shown in FIG. 8C, a wavelength dispersion image 41 of light emission from each light emission point 1 is obtained on the image 42 of the two-dimensional sensor 37. Here, among the wavelength dispersion images 41, images 38, 39, and 40 show images of luminous fluxes having central wavelengths of A, B, and C fluorescence, respectively.

図8に示す多色検出装置では,各発光点1の径d,各発光点1及び各集光レンズ2の間隔p,各集光レンズ2の焦点距離f,有効径D,各集光レンズ2と各再集光レンズ33の光学的な距離gが,式(3)〜(7),式(8)〜(12),及び式(16)〜(18)のそれぞれの,いずれかを満足することにより,所定の高感度と低クロストークを実現するとともに,検出装置の小型化と低コスト化を実現している。 In the multicolor detection device shown in FIG. 8, the diameter d of each light emitting point 1, the distance p between each light emitting point 1 and each condensing lens 2, the focal length f of each condensing lens 2, the effective diameter D, and each condensing lens. The optical distance g between 2 and each recondensing lens 33 is one of the equations (3) to (7), equations (8) to (12), and equations (16) to (18). By being satisfied, the predetermined high sensitivity and low crosstalk are realized, and the size and cost of the detection device are reduced.

図8では,再集光レンズを用いる場合は,集光レンズと再集光レンズの光学的な距離をgとして,式(3)〜(7),式(8)〜(12),及び式(16)〜(18)のそれぞれの,いずれかを満足させることが良いことを示した。同様に,発光点アレイの各発光点からの発光をそれぞれ個別に集光して光束とする集光レンズからの光学的な距離がgの位置に,各光束を互いに異なる方向に進行させる光学素子,あるいは,各光束の間隔を拡大させる光学素子を配置し,式(3)〜(7),式(8)〜(12),及び式(16)〜(18)のそれぞれの,いずれかを満足させることは有効である。 In FIG. 8, when a recondensing lens is used, the optical distance between the condensing lens and the recondensing lens is g, and equations (3) to (7), equations (8) to (12), and equations are shown. It was shown that it is good to satisfy any one of (16) to (18). Similarly, an optical element that advances each light flux in different directions at a position where the optical distance from the condenser lens is g, which individually focuses the light emitted from each light emitting point of the light emitting point array to form a luminous flux. Alternatively, an optical element that expands the interval between the light fluxes is arranged, and any one of the equations (3) to (7), the equations (8) to (12), and the equations (16) to (18) is performed. Satisfaction is effective.

例えば,図9は,光学素子として,図6のロングパスフィルタ10の後段にプリズム43を配置することにより,各光束9を,互いに異なる方向に進行させてから,共通の2次元カラーセンサ11に並列に入射して検出している。図9(a)は集光レンズ2の各光軸を含む平面に垂直方向から見た多色検出装置,図9(b)は2次元カラーセンサ11で検出されるイメージ12を示す。プリズム43は,各光束9の入射位置によって,屈折の方向と角度が変化し,屈折後の各光束44の間隔が拡大するようにしている。集光レンズ2とプリズム43の光学的な距離をgとすれば,式(1)〜(18)がそのまま高感度及び低クロストークの条件となる。加えて,2次元カラーセンサ11のイメージ12上の発光点像45の間隔が,図6の場合と比較して拡大するため,プリズム43以降でのクロストークの増大を回避し,各発光点1からの発光の独立検出が容易となる。また,発光点像45の間隔が大きいため,図9のようにセンサが共通の2次元カラーセンサである必要は必ずしもなく,各光束44を個別のカラーセンサで検出することも可能である。プリズム43を図7の構成に適用する場合は,プリズム43をロングパスフィルタ10とダイクロアレイの中間に配置するのが良い。集光レンズ2とプリズム43の光路長は,集光レンズ2と2次元センサ30の光路長よりも小さくすることができるため,低クロストークの条件を満たすことがより容易になる。また,図7(c)における発光点像25〜28の,光束分割方向の間隔は変化しないが,発光点アレイ方向の間隔が広がるため,クロストークを低減することが容易となる。 For example, FIG. 9 shows that by arranging a prism 43 after the long-pass filter 10 of FIG. 6 as an optical element, each luminous flux 9 travels in different directions and then parallel to a common two-dimensional color sensor 11. It is detected by being incident on. FIG. 9A shows a multicolor detection device viewed from a direction perpendicular to a plane including each optical axis of the condenser lens 2, and FIG. 9B shows an image 12 detected by the two-dimensional color sensor 11. The prism 43 changes the direction and angle of refraction depending on the incident position of each luminous flux 9, so that the interval between each luminous flux 44 after refraction increases. Assuming that the optical distance between the condenser lens 2 and the prism 43 is g, the equations (1) to (18) are the conditions for high sensitivity and low crosstalk. In addition, since the interval of the light emitting point images 45 on the image 12 of the two-dimensional color sensor 11 is enlarged as compared with the case of FIG. 6, the increase of crosstalk after the prism 43 is avoided, and each light emitting point 1 is avoided. Independent detection of light emission from is facilitated. Further, since the interval between the light emitting point images 45 is large, the sensors do not necessarily have to be a common two-dimensional color sensor as shown in FIG. 9, and each luminous flux 44 can be detected by an individual color sensor. When applying the prism 43 to the configuration of FIG. 7, it is preferable to arrange the prism 43 between the long pass filter 10 and the dichroic array. Since the optical path lengths of the condenser lens 2 and the prism 43 can be made smaller than the optical path lengths of the condenser lens 2 and the two-dimensional sensor 30, it becomes easier to satisfy the condition of low crosstalk. Further, although the intervals in the luminous flux division directions of the emission point images 25 to 28 in FIG. 7 (c) do not change, the intervals in the emission point array direction are widened, so that crosstalk can be easily reduced.

以上のように,ダイクロ,フィルタ,全反射ミラー,回折格子,及びセンサ等を複数の発光点について共通化することによって装置構成が簡略化され,実装が容易化される。また,検出装置の全体サイズが小型化される。さらに,以上の構成によれば,各発光点について検出効率及び分光精度は等価であり,感度及び色識別のばらつきを低減することが可能である。 As described above, by sharing the dichroic glass, the filter, the total reflection mirror, the diffraction grating, the sensor, etc. for a plurality of light emitting points, the device configuration is simplified and the mounting is facilitated. In addition, the overall size of the detector is reduced. Further, according to the above configuration, the detection efficiency and the spectral accuracy are equivalent for each light emitting point, and it is possible to reduce the variation in sensitivity and color discrimination.

図10は,光学素子として,図6のロングパスフィルタ10の後段に光ファイバ46を配置した例である。各光束9を,個別の光ファイバ46の入射端より入射させ,相互の間隔を拡大した出射端より出射させ,出射した光束47を共通の2次元カラーセンサ11に並列に入射して検出している。図10(a)は集光レンズ2の各光軸を含む平面に垂直方向から見た多色検出装置,図10(b)は2次元カラーセンサ11で検出されるイメージ12を示す。 FIG. 10 shows an example in which the optical fiber 46 is arranged after the long pass filter 10 of FIG. 6 as an optical element. Each luminous flux 9 is incident from the incident end of the individual optical fiber 46, emitted from the emitted end with an increased distance between them, and the emitted luminous flux 47 is incident and detected in parallel with the common two-dimensional color sensor 11. There is. FIG. 10A shows a multicolor detection device viewed from a direction perpendicular to a plane including each optical axis of the condenser lens 2, and FIG. 10B shows an image 12 detected by the two-dimensional color sensor 11.

集光レンズ2と光ファイバ46の入射端の光学的な距離をgとすれば,式(1)〜(18)がそのまま高感度及び低クロストークの条件となる。加えて,2次元カラーセンサ11のイメージ12上の発光点像48の間隔が,図6の場合と比較して拡大するため,光ファイバ46以降でのクロストークの増大を回避し,各発光点1からの発光の独立検出が容易となる。また,発光点像48の間隔が大きいため,図10のようにセンサが共通の2次元カラーセンサである必要は必ずしもなく,各光束47を個別のカラーセンサで検出することも可能である。光ファイバ46を図7の構成に適用する場合は,光ファイバ46の入射端を図7の2次元センサ30の位置,つまりダイクロアレイの後段に配置するのが良い。また,光ファイバ46は,図7(c)の発光点像25〜28のすべてに対応させることができる。これにより,発光点像25〜28の相互の間隔や配置を任意に設定できるため,個々を個別のセンサで検出したり,所望の1次元センサや2次元センサで検出することが容易となる。 Assuming that the optical distance between the condenser lens 2 and the incident end of the optical fiber 46 is g, the equations (1) to (18) are the conditions of high sensitivity and low crosstalk as they are. In addition, since the distance between the light emitting point images 48 on the image 12 of the two-dimensional color sensor 11 is larger than that in the case of FIG. 6, it is possible to avoid an increase in crosstalk in the optical fiber 46 and later, and to avoid an increase in crosstalk at each light emitting point. Independent detection of light emission from 1 becomes easy. Further, since the intervals between the light emitting point images 48 are large, the sensors do not necessarily have to be a common two-dimensional color sensor as shown in FIG. 10, and each luminous flux 47 can be detected by an individual color sensor. When the optical fiber 46 is applied to the configuration of FIG. 7, it is preferable to arrange the incident end of the optical fiber 46 at the position of the two-dimensional sensor 30 of FIG. 7, that is, after the dichroic array. Further, the optical fiber 46 can correspond to all of the light emitting point images 25 to 28 of FIG. 7 (c). As a result, since the mutual spacing and arrangement of the light emitting point images 25 to 28 can be arbitrarily set, it becomes easy to detect each of them with an individual sensor or with a desired one-dimensional sensor or two-dimensional sensor.

以下,本発明の実施例を説明する。
[実施例1]
図11は,キャピラリアレイDNAシーケンサの装置構成例を示す模式図である。図11を用いて分析手順を説明する。まず,複数のキャピラリ49(図11では4本のキャピラリ49を示す)の試料注入端50を陰極側緩衝液60に浸し,試料溶出端51をポリマブロック55を介して陽極側緩衝液61に浸した。ポンプブロック55のバルブ57を閉じ,ポンプブロック55に接続されたシリンジ56により内部のポリマ溶液に加圧し,ポリマ溶液を各キャピラリ49の内部に,試料溶出端51から試料注入端50に向かって充填した。次に,バルブ57を開け,各キャピラリに試料注入端50から異なる試料を注入した後,陰極58と陽極59の間に電源62により高電圧を印加することにより,キャピラリ電気泳動を開始した。4色の蛍光体で標識されたDNAは試料注入端50から試料溶出端51に向かって電気泳動した。
Hereinafter, examples of the present invention will be described.
[Example 1]
FIG. 11 is a schematic diagram showing an example of a device configuration of a capillary array DNA sequencer. The analysis procedure will be described with reference to FIG. First, the sample injection ends 50 of the plurality of capillaries 49 (four capillaries 49 are shown in FIG. 11) are immersed in the cathode side buffer solution 60, and the sample elution ends 51 are immersed in the anode side buffer solution 61 via the polymer block 55. did. The valve 57 of the pump block 55 is closed, the internal polymer solution is pressurized by the syringe 56 connected to the pump block 55, and the polymer solution is filled inside each capillary 49 from the sample elution end 51 toward the sample injection end 50. did. Next, the valve 57 was opened, different samples were injected into each capillary from the sample injection end 50, and then a high voltage was applied between the cathode 58 and the anode 59 by the power supply 62 to start capillary electrophoresis. The DNA labeled with the four-color phosphor was electrophoresed from the sample injection end 50 toward the sample elution end 51.

各キャピラリ49の,試料注入端50より一定距離電気泳動された位置(レーザ照射位置52)を被覆除去して同一平面上に配列し,レーザ光源53より発振されたレーザビーム54を,集光してから,配列平面の側方より,配列平面に沿って導入し,各キャピラリ49のレーザ照射位置52を一括照射した。4色の蛍光体で標識されたDNAを各キャピラリ49の内部で電気泳動し,レーザ照射位置52を通過する際に励起し,蛍光を発光させた。各キャピラリ49の内部からの発光は発光点アレイを形成し,各発光は,配列平面に対して垂直方向(図11の紙面に垂直方向)から図6〜10に代表される多色検出装置によって検出した。 The position (laser irradiation position 52) of each capillary 49 electrophoresed a certain distance from the sample injection end 50 is removed from the coating and arranged on the same plane, and the laser beam 54 oscillated from the laser light source 53 is focused. Then, it was introduced from the side of the array plane along the array plane, and the laser irradiation position 52 of each capillary 49 was collectively irradiated. DNA labeled with four-color phosphors was electrophoresed inside each capillary 49 and excited as it passed through the laser irradiation position 52 to emit fluorescence. Light emission from the inside of each capillary 49 forms an emission point array, and each light emission is performed by a multicolor detection device represented by FIGS. 6 to 10 from a direction perpendicular to the array plane (direction perpendicular to the paper surface of FIG. 11). Detected.

本実施例では,図11のキャピラリDNAシーケンサにダイクロアレイによる多色検出装置を用いる場合について具体的に説明する。外径0.36mm,内径0.05mmの4本のキャピラリ49のレーザ照射位置52を間隔p=1mmで同一平面上に配列し,径0.05mmに絞ったレーザビーム54を配列平面側方より照射することで,数がM=4個,有効径d=0.05mmの発光点1が間隔p=1mmで配列する発光点アレイを得た。ここで,発光点の有効径は,キャピラリの内径と一致するとした。レーザビーム54の波長は505nm,4色の蛍光(発光極大波長)は,A蛍光(540nm),B蛍光(570nm),C蛍光(600nm),及びD蛍光(630nm)とした。発光点アレイの全幅はAW=p*(M−1)=3mmとした。焦点距離f=1.5mm,有効径D=1mmの4個の集光レンズ2を間隔p=1mmで配列した集光レンズアレイ8の各集光レンズ2により,各発光点1からの発光をそれぞれ集光した。以上のd,p,f,及びDは,発光点毎に,及び集光レンズ毎に等しくすることを基本とするが,必ずしも等しい必要はない。そのような場合は,d,p,f,及びDは,複数の発光点,及び集光レンズについての平均値とする。 In this embodiment, a case where a multicolor detection device using a dichroic array is used for the capillary DNA sequencer shown in FIG. 11 will be specifically described. The laser irradiation positions 52 of the four capillarys 49 having an outer diameter of 0.36 mm and an inner diameter of 0.05 mm are arranged on the same plane with an interval of p = 1 mm, and the laser beams 54 narrowed to a diameter of 0.05 mm are arranged from the side of the arrangement plane. By irradiating, a light emitting point array having M = 4 numbers and light emitting points 1 having an effective diameter d = 0.05 mm arranged at an interval p = 1 mm was obtained. Here, the effective diameter of the light emitting point is assumed to match the inner diameter of the capillary. The wavelength of the laser beam 54 was 505 nm, and the four-color fluorescence (maximum emission wavelength) was A fluorescence (540 nm), B fluorescence (570 nm), C fluorescence (600 nm), and D fluorescence (630 nm). The total width of the emission point array was AW = p * (M-1) = 3 mm. Light is emitted from each light emitting point 1 by each condensing lens 2 of the condensing lens array 8 in which four condensing lenses 2 having a focal length f = 1.5 mm and an effective diameter D = 1 mm are arranged at an interval p = 1 mm. Each was focused. The above d, p, f, and D are basically equal for each light emitting point and for each condensing lens, but they do not necessarily have to be equal. In such a case, d, p, f, and D are average values for a plurality of light emitting points and a condenser lens.

図12は,ひとつの集光レンズ2の光軸を含み,集光レンズアレイ8の配列方向に垂直な多色検出装置の断面であるが,図7と異なり,各集光レンズ2の光軸と,ダイクロアレイによる光束の分割後の進行方向が垂直,すなわち各集光レンズ2の光軸と2次元センサ30のセンサ面を平行とした。その他の点は図7に従った。ただし,図12では発光点1を図示省略している。 FIG. 12 is a cross section of a multicolor detection device including the optical axis of one condenser lens 2 and perpendicular to the arrangement direction of the condenser lens array 8. However, unlike FIG. 7, the optical axis of each condenser lens 2 is shown. The direction of travel after the light beam is divided by the dichro array is vertical, that is, the optical axis of each condensing lens 2 and the sensor surface of the two-dimensional sensor 30 are parallel. Other points were as shown in FIG. However, in FIG. 12, the light emitting point 1 is not shown.

集光レンズ2から距離3mmの位置に,集光レンズ2の光軸と法線が平行になるように,幅がα=5mm,厚さがβ=1mm,奥行きがγ=5mmのロングパスフィルタ10を配置した。また,幅がα=5mm,厚さがβ=1mm,奥行きがγ=5mmの石英基板(屈折率n0=1.46)の右下正面に多層膜又は単層膜を形成したダイクロ17,18,19,20を,集光レンズ2の光軸に対して法線を45°に傾け,5mm間隔で配置した。図7と同様に,ダイクロ20は,全反射ミラーで置き換えても構わない。図12は,ロングパスフィルタ10,ダイクロ17〜20はいずれも,α×βの側面を示しており,γは紙面に垂直方向である。また,ダイクロ17,18,19の左上正面に,反射ロスを低減するための反射防止膜を形成した。さらに,ダイクロ17,18,19,及び20の全側面には,意図しない迷光を防ぐため,光の透過を防ぐ遮光膜を形成した。集光レンズ2から距離5mmの位置に(つまり,ロングパスフィルタ10から距離2mmの位置に),ダイクロ17の右端を配置した。ダイクロ17,18,19,及び20の上端,下端をそれぞれ同一平面上に配置した。ダイクロ17,18,19,及び20の下端から距離5mmの位置に2次元センサ30を配置した。以上の光学系要素はいずれも空中に配置した。空中配置とするのは,ダイクロの分光性能が高くなるためである。 A long pass filter 10 having a width of α = 5 mm, a thickness of β = 1 mm, and a depth of γ = 5 mm so that the optical axis of the condenser lens 2 and the normal line are parallel to each other at a distance of 3 mm from the condenser lens 2. Was placed. A dichroic glass 17 having a multilayer film or a single layer film formed on the lower right front surface of a quartz substrate (refractive index n 0 = 1.46) having a width of α = 5 mm, a thickness of β = 1 mm, and a depth of γ = 5 mm. 18, 19 and 20 were arranged at intervals of 5 mm with the normal line tilted at 45 ° with respect to the optical axis of the condenser lens 2. Similar to FIG. 7, the dichroic 20 may be replaced with a total reflection mirror. In FIG. 12, both the long pass filter 10 and the dichroic 17 to 20 show the side surface of α × β, and γ is in the direction perpendicular to the paper surface. In addition, antireflection films for reducing reflection loss were formed on the upper left front of dichroic 17, 18 and 19. Furthermore, in order to prevent unintended stray light, light-shielding films that prevent light transmission were formed on all sides of dichroic 17, 18, 19, and 20. The right end of the dichroic 17 was placed at a distance of 5 mm from the condenser lens 2 (that is, at a distance of 2 mm from the long pass filter 10). The upper ends and lower ends of dichroic 17, 18, 19, and 20 were arranged on the same plane. The two-dimensional sensor 30 was placed at a distance of 5 mm from the lower ends of the dichroic glass 17, 18, 19, and 20. All of the above optical system elements were placed in the air. The aerial arrangement is used because the spectral performance of the dichroic glass is high.

図12に示す11本の光束要素65は,上記のダイクロアレイによって入射する平行な光束を設計通りに4分割することができ,かつ光束の幅が最大となる場合の光束を示し,反射の法則,屈折の法則を用いて,それらの光路を計算した結果を示している。以降,上記の最大光束幅を,ダイクロアレイの開口幅63と呼び,その大きさをWで表す。開口幅は,ダイクロアレイが入射する光束を設計通りに良好に分割することができる,光束の最大幅を意味する。開口幅Wと,発光点1からの発光を集光レンズ2で集光して得られる光束の,集光レンズ2からの光路長sにおける幅d’(s)は一般には異なる。d’(s)は実際の光束の幅であるのに対して,Wは与えられた条件下の多色検出装置が受け入れることができる光束の幅の最大値を示している。つまり,集光レンズ2で集光した光束の光量をロスせずに分割するためには,W≧d’(s)とするのが良い。また,Wは大きいほど,集光レンズ2で集光した光束の中心軸と,開口幅63の中心軸のずれに対する許容度が増すので良い。集光レンズ2から左に進行する11本の光束要素65は,光束の開口幅63内で等間隔とし,互いに平行とした。 The 11 luminous flux elements 65 shown in FIG. 12 indicate the luminous flux when the parallel luminous flux incident by the above dichro array can be divided into four as designed and the width of the luminous flux is maximized, and the law of reflection is shown. , The result of calculating those optical paths using the law of refraction is shown. Hereinafter, the above-mentioned maximum luminous flux width is referred to as an aperture width 63 of the dichroic array, and the size thereof is represented by W. The aperture width means the maximum width of the luminous flux that can satisfactorily divide the luminous flux incident on the dichroic array as designed. The aperture width W and the width d'(s) of the light beam obtained by condensing the light emitted from the light emitting point 1 with the condensing lens 2 at the optical path length s from the condensing lens 2 are generally different. While d'(s) is the actual width of the luminous flux, W indicates the maximum value of the width of the luminous flux that can be accepted by the multicolor detector under given conditions. That is, in order to divide the light amount of the luminous flux collected by the condenser lens 2 without loss, it is preferable to set W ≧ d'(s). Further, the larger the W, the greater the tolerance for the deviation between the central axis of the light flux collected by the condenser lens 2 and the central axis of the aperture width 63. The eleven light flux elements 65 traveling to the left from the condenser lens 2 were equidistant within the aperture width 63 of the light flux and were parallel to each other.

図12に示した通り,各光束要素65は,各ダイクロ17〜19を通過する際に,内部屈折により上側に順次平行移動した。この影響を低減するため,集光レンズ2の光軸,及び集光レンズから出射する光束要素の中心は,ダイクロ17の右下正面の中央よりも下側に配置した。一方,集光レンズ2と2次元センサ30の光学的な距離である光路長sは,図12から明らかなように,4つに分割された光束によって異なり,ダイクロ17〜19を透過し,ダイクロ20で反射する光束が最大の光路長64を与える。以降では,集光レンズとセンサの間に複数の光路が存在する場合,その内の最も長い光路の光路長64を,その光検出装置の光路長とし,その大きさをgで表す。図12の多色検出装置については,開口幅63はW=2.1mm,光路長64はg=29mmと計算された。以上のW及びgは,発光点毎に,及び集光レンズ毎に等しくすることを基本とするが,必ずしも等しい必要はない。そのような場合は,W及びgは,複数の発光点,及び集光レンズについての平均値とする。 As shown in FIG. 12, each light flux element 65 sequentially translated upward due to internal refraction as it passed through each dichroic 17-19. In order to reduce this effect, the optical axis of the condenser lens 2 and the center of the light flux element emitted from the condenser lens are arranged below the center of the lower right front of the dichroic glass 17. On the other hand, the optical path length s, which is the optical distance between the condenser lens 2 and the two-dimensional sensor 30, differs depending on the luminous flux divided into four, and is transmitted through the dichro 17 to 19 and is dichroic. The luminous flux reflected at 20 gives the maximum optical path length 64. Hereinafter, when a plurality of optical paths exist between the condenser lens and the sensor, the optical path length 64 of the longest optical path among them is defined as the optical path length of the optical detection device, and the size thereof is represented by g. For the multicolor detection device of FIG. 12, the opening width 63 was calculated to be W = 2.1 mm, and the optical path length 64 was calculated to be g = 29 mm. The above W and g are basically equal for each light emitting point and for each condensing lens, but they do not necessarily have to be equal. In such a case, W and g are average values for a plurality of light emitting points and a condenser lens.

発光点1と,焦点距離がf=1.5mmの集光レンズ2の光学的な距離を約1.58mmとすることによって,発光点1からの発光を,集光レンズ2から光学的な距離がg=29mmにおいて,式(1)より像倍率がm=18.3,式(2)より径がd=0.05mmの発光点1の発光点像7の径がd’=0.92mmで結像した。上記d’と比較して集光レンズの有効径D=1mmの方が大であるため,集光レンズ2からの光路長sが0mm≦s≦29mmに対して,d’(s)≦1mmであり,d’(s)≦W=2.1mmが成立した。したがって,ダイクロ17〜20で4個に分割した光束は,いずれもロスなく,2次元センサ30に到達させることができた。 By setting the optical distance between the light emitting point 1 and the condensing lens 2 having a focal length of f = 1.5 mm to be about 1.58 mm, the light emitted from the light emitting point 1 is optically distanced from the condensing lens 2. Is g = 29 mm, the image magnification is m = 18.3 from the equation (1), and the diameter of the emission point image 7 of the emission point 1 having a diameter of d = 0.05 mm from the equation (2) is d'= 0.92 mm. The image was formed with. Since the effective diameter D = 1 mm of the condenser lens is larger than that of the above d', the optical path length s from the condenser lens 2 is 0 mm ≦ s ≦ 29 mm, whereas d'(s) ≦ 1 mm. Therefore, d'(s) ≤ W = 2.1 mm was established. Therefore, the luminous flux divided into four by the dichroic 17 to 20 could reach the two-dimensional sensor 30 without any loss.

以上の多色検出装置では,式(4),式(9),及び式(18)が満足され,相対検出光量が100%以上,厳密な相対検出光量が100%以上,クロストークが0%の高感度,低クロストーク条件が得られることが分かった。多色検出装置のサイズは,発光点アレイの全幅AW=3mm,図12に示す通り,集光レンズ2の光軸方向の幅24.2mm,集光レンズ2の光軸及び発光点アレイに垂直方向の幅9.2mmで規定される直方体の体積(668mm2)よりも小さくすることができる。すなわち,特許文献1の場合と比較して,蛍光検出装置の全体サイズを1/2,400倍に小型化できる。また,用いる光学素子はいずれも微細であるため,大幅な低コスト化が可能である。以上のm及びd’は,発光点毎に,及び集光レンズ毎に等しくすることを基本とするが,必ずしも等しい必要はない。そのような場合は,m及びd’は,複数の発光点,及び集光レンズについての平均値とする。 In the above multicolor detection device, equations (4), (9), and (18) are satisfied, the relative detection light amount is 100% or more, the strict relative detection light amount is 100% or more, and the crosstalk is 0%. It was found that high sensitivity and low crosstalk conditions can be obtained. The size of the multicolor detector is the total width AW of the light emitting point array AW = 3 mm, the width of the condenser lens 2 in the optical axis direction of 24.2 mm, and perpendicular to the optical axis of the condenser lens 2 and the light emitting point array as shown in FIG. It can be smaller than the volume of the rectangular parallelepiped (668 mm 2 ) defined by the width of 9.2 mm in the direction. That is, the overall size of the fluorescence detection device can be reduced by 1/2 or 400 times as compared with the case of Patent Document 1. In addition, since all the optical elements used are minute, it is possible to significantly reduce the cost. The above m and d'are basically equal for each light emitting point and for each condensing lens, but they do not necessarily have to be equal. In such a case, m and d'are average values for a plurality of light emitting points and a condenser lens.

[実施例2]
実施例1の図12の多色検出装置では,ダイクロアレイ,集光レンズアレイ,発光点アレイの配列方向は,いずれも2次元センサ30のセンサ面と平行に配列するため,これらの間で立体障害は発生しない。しかしながら,キャピラリアレイの各キャピラリ49の配列平面は2次元センサ30のセンサ面と垂直となるため,これらの立体障害が発生する場合があり,装置構成上の課題となる。そこで,本実施例では本課題を解決する多色検出装置を提案する。
[Example 2]
In the multicolor detection device of FIG. 12 of the first embodiment, the arrangement directions of the dichro array, the condensing lens array, and the light emitting point array are all arranged parallel to the sensor surface of the two-dimensional sensor 30, so that they are sterically hindered among them. No failure occurs. However, since the arrangement plane of each capillary 49 of the capillary array is perpendicular to the sensor surface of the two-dimensional sensor 30, these steric hindrances may occur, which poses a problem in the device configuration. Therefore, in this embodiment, we propose a multicolor detection device that solves this problem.

キャピラリDNAシーケンサにおける,キャピラリアレイから集光レンズアレイまでの構成は実施例1と同様とし,図12の構成を図13の構成に置き換えた。図13は,ひとつの集光レンズ2の光軸を含み,集光レンズアレイ8の配列方向に垂直な多色検出装置の断面模式図であり,図7と同様に,各集光レンズ2の光軸と分割後の光束の進行方向が平行,すなわち各集光レンズ2の光軸と2次元センサ30のセンサ面を垂直とした。集光レンズ2から距離3mmの位置に,集光レンズ2の光軸と法線が平行になるように,幅がα=5mm,厚さがβ=1mm,奥行きがγ=5mmのロングパスフィルタ10を配置した。また,幅がα=5mm,厚さがβ=1mm,奥行きがγ=5mmの石英基板(屈折率n0=1.46)の,左上正面に多層膜を形成したダイクロ17,右下正面に多層膜又は単層膜を形成したダイクロ18,19,及び20を,集光レンズ2の光軸に対して法線を45°に傾け,5mm間隔で配置した。ダイクロ17の右下正面,ダイクロ18,19の左上正面に,反射ロスを低減するための反射防止膜を形成した。さらに,ダイクロ17,18,19,及び20の全側面には,意図しない迷光を防ぐため,光の透過を防ぐ遮光膜を形成した。 The configuration from the capillary array to the condenser lens array in the capillary DNA sequencer was the same as that in the first embodiment, and the configuration of FIG. 12 was replaced with the configuration of FIG. FIG. 13 is a schematic cross-sectional view of a multicolor detection device including the optical axis of one condensing lens 2 and perpendicular to the arrangement direction of the condensing lens array 8. The optical axis and the traveling direction of the light beam after division are parallel, that is, the optical axis of each condensing lens 2 and the sensor surface of the two-dimensional sensor 30 are perpendicular to each other. A long pass filter 10 having a width of α = 5 mm, a thickness of β = 1 mm, and a depth of γ = 5 mm so that the optical axis of the condenser lens 2 and the normal line are parallel to each other at a distance of 3 mm from the condenser lens 2. Was placed. In addition, a quartz substrate (refractive index n 0 = 1.46) having a width of α = 5 mm, a thickness of β = 1 mm, and a depth of γ = 5 mm, with a multilayer film formed on the upper left front surface, and on the lower right front surface. The dicros 18, 19, and 20 on which the multilayer film or the monolayer film was formed were arranged at intervals of 5 mm with the normal line tilted at 45 ° with respect to the optical axis of the condenser lens 2. Antireflection films for reducing reflection loss were formed on the lower right front of the dichroic 17 and the upper left front of the dichroic 18 and 19. Furthermore, in order to prevent unintended stray light, light-shielding films that prevent light transmission were formed on all sides of dichroic 17, 18, 19, and 20.

集光レンズ2から距離5mmの位置にダイクロ17の上端を配置した。ダイクロ17,18,19,20の上端,下端をそれぞれ同一平面上に配置した。ダイクロ17,18,19,及び20の下端から距離5mmの位置に2次元センサ30を配置した。以上の光学系要素はいずれも空中に配置した。図12と同様に,11本の光束要素65を示す。この結果,図13の多色検出装置については,開口幅63はW=1.7mm,光路長64はg=28mmと計算され,図12と同等の性能が得られた。 The upper end of the dichroic 17 was placed at a distance of 5 mm from the condenser lens 2. The upper ends and lower ends of the dichroic glass 17, 18, 19 and 20 were arranged on the same plane. The two-dimensional sensor 30 was placed at a distance of 5 mm from the lower ends of the dichroic glass 17, 18, 19, and 20. All of the above optical system elements were placed in the air. Similar to FIG. 12, 11 light flux elements 65 are shown. As a result, for the multicolor detection device of FIG. 13, the opening width 63 was calculated to be W = 1.7 mm, and the optical path length 64 was calculated to be g = 28 mm, and the same performance as that of FIG. 12 was obtained.

発光点1と集光レンズ2の光学的な距離を約1.58mmとすることによって,発光点1からの発光を,集光レンズ2から光学的な距離がg=28mmにおいて,像倍率がm=17.7,発光点像7の径がd’=0.88mmで結像した。上記d’と比較して集光レンズの有効径D=1mmの方が大であるため,集光レンズからの光学的距離sが0mm≦s≦28mmに対して,d’(s)≦1mmであり,d’(s)≦W=1.7mmが成立した。したがって,ダイクロ17〜20で4個に分割した光束は,いずれもロスなく,2次元センサ30に到達させることができた。 By setting the optical distance between the light emitting point 1 and the condensing lens 2 to about 1.58 mm, the light emitted from the light emitting point 1 can be emitted from the condensing lens 2 at an optical distance of g = 28 mm and an image magnification of m. = 17.7, and the diameter of the light emitting point image 7 was d'= 0.88 mm. Since the effective diameter D = 1 mm of the condenser lens is larger than that of the above d', the optical distance s from the condenser lens is 0 mm ≦ s ≦ 28 mm, whereas d'(s) ≦ 1 mm. Therefore, d'(s) ≤ W = 1.7 mm was established. Therefore, the luminous flux divided into four by the dichroic 17 to 20 could reach the two-dimensional sensor 30 without any loss.

以上の多色検出装置では,式(4),式(9),及び式(18)が満足され,相対検出光量が100%以上,厳密な相対検出光量が100%以上,クロストークが0%の高感度,低クロストーク条件が得られることが分かった。多色検出装置のサイズは,発光点アレイの全幅AW=3mm,図13に示す通り,集光レンズ2の光軸方向の幅14.2mm,集光レンズ2の光軸及び発光点アレイの配列方向に垂直方向の幅19.2mmで規定される直方体の体積(818mm2)よりも小さくすることができる。すなわち,特許文献1の場合と比較して,蛍光検出装置の全体サイズを1/2,000倍に小型化できる。また,用いる光学素子はいずれも微細であるため,大幅な低コスト化が可能である。 In the above multicolor detection device, equations (4), (9), and (18) are satisfied, the relative detection light amount is 100% or more, the strict relative detection light amount is 100% or more, and the crosstalk is 0%. It was found that high sensitivity and low crosstalk conditions can be obtained. The size of the multicolor detection device is as follows: the total width of the light emitting point array AW = 3 mm, as shown in FIG. 13, the width of the condenser lens 2 in the optical axis direction is 14.2 mm, the optical axis of the condenser lens 2 and the arrangement of the light emitting point array. It can be smaller than the volume of the rectangular parallelepiped (818 mm 2 ) defined by the width of 19.2 mm in the direction perpendicular to the direction. That is, the overall size of the fluorescence detection device can be reduced by 1 / 2,000 times as compared with the case of Patent Document 1. In addition, since all the optical elements used are minute, it is possible to significantly reduce the cost.

図13の多色検出装置では,ダイクロアレイ,集光レンズアレイ,発光点アレイの配列方向,さらにキャピラリアレイの配列平面のいずれも2次元センサ30のセンサ面と平行に配列するため,これらの立体障害は発生しないため,これらの実装が容易となった。 In the multicolor detection device of FIG. 13, all of the arrangement directions of the dichro array, the condenser lens array, the light emitting point array, and the arrangement plane of the capillary array are arranged in parallel with the sensor surface of the two-dimensional sensor 30, so that these three dimensions are used. Since no failures occur, these implementations have become easier.

[実施例3]
実施例1及び実施例2の条件における,各キャピラリ49の内径,すなわち発光点1の径d=0.05mmを,d=0.075mmに拡大した条件について検討する。図13の多色検出装置を用い,発光点1からの発光を,光路長g=28mmにおいて,像倍率がm=17.7,発光点像7の径がd’=1.33mmで結像させた。上記d’は,集光レンズの有効径D=1mmよりも大であるため,集光レンズからの光学的距離sが0mm≦s≦28mmに対して,d’(s)≦1.33mmであり,d’(s)≦W=1.7mmが成立した。したがって,図13と同様に,ダイクロ17〜20で4個に分割した光束は,いずれもロスなく,2次元センサ30に到達させることができた。
[Example 3]
The conditions under which the inner diameter of each capillary 49, that is, the diameter d = 0.05 mm of the light emitting point 1, is expanded to d = 0.075 mm under the conditions of Example 1 and Example 2 will be examined. Using the multicolor detection device of FIG. 13, the light emitted from the light emitting point 1 is imaged at an optical path length g = 28 mm, an image magnification of m = 17.7, and a diameter of the light emitting point image 7 of d'= 1.33 mm. I let you. Since the above d'is larger than the effective diameter D of the condenser lens D = 1 mm, the optical distance s from the condenser lens is 0 mm ≦ s ≦ 28 mm, whereas d'(s) ≦ 1.33 mm. Yes, d'(s) ≤ W = 1.7 mm was established. Therefore, as in FIG. 13, the luminous flux divided into four by the dichroic 17 to 20 could reach the two-dimensional sensor 30 without any loss.

しかし,以上の多色検出装置では,式(4),式(9)は図13と同様に満足されるものの,式(18)が満足されず,式(17)が満足された。したがって,相対検出光量が100%以上,厳密な相対検出光量が100%以上,クロストークは25%以下の高感度,低クロストーク条件となり,クロストークについては図13よりも劣化することが分かった。そこで,本実施例では,光路長gを縮小することによって,像倍率m及び発光点像7の径d’を縮小し,クロストークを低減することを狙う。光路長gを縮小するためには,各ダイクロ17〜20の,サイズ及び配列間隔を縮小することが有効と考えられる。 However, in the above multicolor detection device, although the equations (4) and (9) are satisfied as in FIG. 13, the equation (18) is not satisfied and the equation (17) is satisfied. Therefore, it was found that the relative detection light amount was 100% or more, the strict relative detection light amount was 100% or more, the crosstalk was 25% or less with high sensitivity and low crosstalk conditions, and the crosstalk was deteriorated as compared with FIG. .. Therefore, in this embodiment, it is aimed to reduce the image magnification m and the diameter d'of the light emitting point image 7 by reducing the optical path length g, and to reduce the crosstalk. In order to reduce the optical path length g, it is considered effective to reduce the size and arrangement spacing of each dichroic 17 to 20.

図14は,図13の条件における,ロングパスフィルタ10及びダイクロ17〜20を,幅がα=5mm,厚さがβ=1mm,奥行きがγ=5mmから,幅がα=2.5mm,厚さがβ=1mm,奥行きがγ=5mmに縮小し,ダイクロ17〜20の配列間隔をx=5mmからx=2.5mmに縮小した場合の結果を示している。 FIG. 14 shows the long pass filter 10 and the dichroic glass 17 to 20 under the conditions of FIG. 13 having a width of α = 5 mm, a thickness of β = 1 mm, a depth of γ = 5 mm, a width of α = 2.5 mm, and a thickness. Shows the results when β = 1 mm, the depth is reduced to γ = 5 mm, and the arrangement spacing of dichroic 17 to 20 is reduced from x = 5 mm to x = 2.5 mm.

このとき,図14において,ダイクロ17の左端とダイクロ18の右端の横方向(集光レンズ2の光軸と垂直方向)の位置が一致する。同様に,ダイクロ18の左端とダイクロ19の右端,及びダイクロ19の左端とダイクロ20の右端の横方向の位置がそれぞれ一致する。その他の条件は図13と同等とした。図14は,図13と同じスケールで示す。 At this time, in FIG. 14, the positions of the left end of the dichroic 17 and the right end of the dichroic 18 in the lateral direction (perpendicular to the optical axis of the condenser lens 2) coincide with each other. Similarly, the left end of the dichroic 18 and the right end of the dichroic 19 and the left end of the dichroic 19 and the right end of the dichroic 20 coincide with each other in the lateral direction. Other conditions were the same as in FIG. FIG. 14 is shown on the same scale as FIG.

その結果,光路長64は,g=28mmからg=19mmに縮小することができた。したがって,式(1)より像倍率がm=11.7,式(2)より発光点像の径がd’=0.88mmとなり,式(4),(9)に加えて,式(18)が満足されるようになった。つまり,相対検出光量が100%以上,厳密な相対検出光量が100%以上,クロストークは0%以下の高感度,低クロストーク条件となった。しかしながら,開口幅63がW=1.7mmからW=0.03mmに大幅に縮小されること,つまり集光レンズ2で集光された光束をロスなく2次元センサ30に到達させることが不可能であることが明らかとなった。これは,各ダイクロのサイズと間隔の縮小に伴って,それぞれの厚さβ=1mmの相対的な比率が増大したため,光束が各ダイクロを通過する際に,内部屈折により上側に順次平行移動する影響を無視できなくなったためである。 As a result, the optical path length 64 could be reduced from g = 28 mm to g = 19 mm. Therefore, the image magnification is m = 11.7 from the equation (1), and the diameter of the emission point image is d'= 0.88 mm from the equation (2). Therefore, in addition to the equations (4) and (9), the equation (18) ) Has come to be satisfied. That is, the relative detection light amount was 100% or more, the strict relative detection light amount was 100% or more, and the crosstalk was 0% or less with high sensitivity and low crosstalk conditions. However, the aperture width 63 is significantly reduced from W = 1.7 mm to W = 0.03 mm, that is, it is impossible for the luminous flux collected by the condenser lens 2 to reach the two-dimensional sensor 30 without loss. It became clear that. This is because the relative ratio of each thickness β = 1 mm increases as the size and spacing of each dichroic glass decreases, so when the luminous flux passes through each dichroic glass, it translates upward in sequence due to internal refraction. This is because the impact can no longer be ignored.

そこで,上記影響を解消するため,図15に示す通り,ダイクロ17〜20を同一平面配置から段ずれ配置に変更した。すなわち,上記平行移動に応じて,ダイクロ17〜20の集光レンズ2の光軸方向の相対位置を同一平面から変化させた。以下で,図14との相違点を説明する。まず,集光レンズ2から距離6.3mmの位置にダイクロ17の上端を配置した。次に,ダイクロ18の下端を,ダイクロ17の下端と比較して,ダイクロ17を透過した光束の進行方向と反対側に,つまり図15で上側に,y=0.7mmだけずらした。続いて,ダイクロ19の下端を,ダイクロ18の下端と比較して,ダイクロ18で反射した光束の進行方向と反対側に,つまり図15で上側に,z=0.3mmだけずらした。最後に,ダイクロ20の下端を,ダイクロ19の下端と比較して,ダイクロ19で反射した光束の進行方向と反対側に,つまり図15で上側に,z=0.3mmだけずらした。 Therefore, in order to eliminate the above influence, as shown in FIG. 15, the dichroic 17 to 20 were changed from the same plane arrangement to the stepped arrangement. That is, the relative positions of the condensing lenses 2 of the dichroic 17 to 20 in the optical axis direction were changed from the same plane in accordance with the translation. The differences from FIG. 14 will be described below. First, the upper end of the dichroic 17 was placed at a distance of 6.3 mm from the condenser lens 2. Next, the lower end of the dichroic 18 was shifted to the side opposite to the traveling direction of the light flux transmitted through the dichroic 17, that is, to the upper side in FIG. 15 by y = 0.7 mm as compared with the lower end of the dichroic 17. Subsequently, the lower end of the dichroic 19 was shifted to the side opposite to the traveling direction of the light flux reflected by the dichroic 18 as compared with the lower end of the dichroic 18, that is, to the upper side in FIG. 15 by z = 0.3 mm. Finally, the lower end of the dichroic 20 was shifted to the side opposite to the traveling direction of the light flux reflected by the dichroic 19 with respect to the lower end of the dichroic 19, that is, to the upper side in FIG. 15 by z = 0.3 mm.

以上の結果,開口幅63が,図14のW=0.03mmから,W=1.3mmに大幅に拡大できることが判明した。一方,光路長64がg=21mmと,図14よりわずかに増大したため,式(1)より像倍率がm=13,式(2)より発光点像の径がd’=0.98mmとなった。上記d’と比較して集光レンズの有効径D=1mmの方が大であるため,集光レンズからの光路長sが0mm≦s≦21mmに対して,d’(s)≦1mmであり,d’(s)≦W=1.3mmが成立した。したがって,ダイクロ17〜20で4個に分割した光束は,いずれもロスなく,2次元センサ30に到達させることができた。 As a result of the above, it was found that the opening width 63 can be significantly expanded from W = 0.03 mm in FIG. 14 to W = 1.3 mm. On the other hand, since the optical path length 64 was g = 21 mm, which was slightly increased from FIG. 14, the image magnification was m = 13 from the equation (1), and the diameter of the emission point image was d'= 0.98 mm from the equation (2). It was. Since the effective diameter D = 1 mm of the condenser lens is larger than that of the above d', the optical path length s from the condenser lens is 0 mm ≦ s ≦ 21 mm, whereas d'(s) ≦ 1 mm. Yes, d'(s) ≤ W = 1.3 mm was established. Therefore, the luminous flux divided into four by the dichroic 17 to 20 could reach the two-dimensional sensor 30 without any loss.

以上の多色検出装置では,図14と同様に,式(4),式(9),及び式(18)が満足され,相対検出光量が100%以上,厳密な相対検出光量が100%以上,クロストークが0%の高感度,低クロストーク条件が得られることが分かった。多色検出装置のサイズは,発光点アレイの全幅AW=3mm,図15に示す通り,集光レンズ2の光軸方向の幅13.8mm,集光レンズ2の光軸及び発光点アレイの配列方向に垂直方向の幅10mmで規定される直方体の体積(414mm2)よりも小さくすることができる。すなわち,特許文献1の場合と比較して,蛍光検出装置の全体サイズを1/3,900倍に小型化できる。また,用いる光学素子はいずれも微細であるため,大幅な低コスト化が可能である。 In the above multicolor detection device, the equations (4), (9), and (18) are satisfied, the relative detection light amount is 100% or more, and the strict relative detection light amount is 100% or more, as in FIG. , It was found that high sensitivity with 0% crosstalk and low crosstalk conditions can be obtained. The size of the multicolor detector is the total width AW of the light emitting point array AW = 3 mm, the width of the condensing lens 2 in the optical axis direction of 13.8 mm, the optical axis of the condensing lens 2, and the arrangement of the light emitting point array as shown in FIG. It can be smaller than the volume of a rectangular parallelepiped (414 mm 2 ) defined by a width of 10 mm in the direction perpendicular to the direction. That is, the overall size of the fluorescence detection device can be reduced by 1/3,900 times as compared with the case of Patent Document 1. In addition, since all the optical elements used are minute, it is possible to significantly reduce the cost.

[実施例4]
以上の実施例で明らかにしたように,ダイクロアレイを用いた多色検出装置では,開口幅Wの拡大と,光路長gの縮小というトレードオフの関係にあるふたつを両立させることが重要であり,この両立は装置の小型化に伴って困難となった。実施例3で示したダイクロアレイの配列間隔x,及び段ずれy及びzの調整は,この課題を解決する効果的な手段であった。本実施例では,上記の配列間隔と段ずれ配置を一般化し,開口幅Wの拡大と光路長gの縮小を両立する一般解を導出する。本発明におけるダイクロの配置の端的な特徴は,ダイクロの厚さβを考慮している点である。従来は,ダイクロのサイズ(α及びγ)が十分大きいために,βを考慮しなくても支障がなかったが,これらを小型化する場合,βを考慮した配置が重要なのである。特に,各ダイクロを,空中ではなく,ガラス材の内部に設置する場合は,β=0と考えて支障がなかった。
[Example 4]
As clarified in the above examples, in a multicolor detection device using a dichroic array, it is important to achieve both an expansion of the aperture width W and a reduction of the optical path length g, which are in a trade-off relationship. , This compatibility has become difficult due to the miniaturization of the equipment. The adjustment of the arrangement spacing x and the step shifts y and z of the dichroic array shown in Example 3 was an effective means for solving this problem. In this embodiment, the above-mentioned arrangement spacing and staggered arrangement are generalized, and a general solution that achieves both an increase in the aperture width W and a reduction in the optical path length g is derived. A simple feature of the arrangement of the dichroic glass in the present invention is that the thickness β of the dichroic glass is taken into consideration. In the past, since the dichroic size (α and γ) was large enough, there was no problem even if β was not taken into consideration, but when miniaturizing these, it is important to consider β. In particular, when each dichroic glass was installed inside the glass material instead of in the air, it was considered that β = 0 and there was no problem.

図16は,ひとつの集光レンズ2の光軸を含み,集光レンズアレイ8の配列方向に垂直な多色検出装置の断面模式図であり,ダイクロの幅α,厚さβが与えられたとき,開口幅Wを最大とし,光路長gを最小とする多色検出装置の構成を示している。図15における,集光レンズ2,ロングパスフィルタ10,2次元センサ30は図示を省略した。 FIG. 16 is a schematic cross-sectional view of a multicolor detection device including an optical axis of one condenser lens 2 and perpendicular to the arrangement direction of the condenser lens array 8, and is given a width α and a thickness β of a dichro. The configuration of the multicolor detection device is shown in which the aperture width W is maximized and the optical path length g is minimized. The condenser lens 2, the long pass filter 10, and the two-dimensional sensor 30 in FIG. 15 are not shown.

図16において,上から下に向かって入射する開口幅Wの光束70は,ダイクロM(1),M(2),M(3),・・・,及びM(N)で反射及び透過を順次繰り返し,上から下に向かって出射する光束F(1),F(2),F(3),・・・,及び光束F(N)を得ている。ダイクロの数,すなわち光束70の分割数は,図16で例として4個としているが,本実施例では一般化してN個(N≧2)とする。もちろん,N番目のダイクロM(N)は全反射ミラーで置き換えても良い。以上では,図12〜15に示すように,発光検出装置の光路長gを,集光レンズ2からセンサ30までの最大長の光路の光路長で定義した。以降では,光路長gの一部として,ダイクロアレイの光路長Lを,図16に示すように,最大長の光路(光束70から光束F(N)に至る光路)における,光束70の光軸上のダイクロアレイの最上端(ダイクロM(N)の上端)と同じ高さの位置から,光束F(N)の光軸上のダイクロアレイの最下端(ダイクロM(1)の下端)と同じ高さの位置までの光路長で定義する。 In FIG. 16, the luminous flux 70 having an opening width W incident from the top to the bottom is reflected and transmitted by the dichro M (1), M (2), M (3), ..., And M (N). The luminous fluxes F (1), F (2), F (3), ..., And the luminous flux F (N) that are emitted from the top to the bottom are obtained by repeating in order. The number of dichroic glass, that is, the number of divisions of the luminous flux 70 is set to 4 as an example in FIG. 16, but in this embodiment, it is generally set to N (N ≧ 2). Of course, the Nth dichroic M (N) may be replaced with a total reflection mirror. In the above, as shown in FIGS. 12 to 15, the optical path length g of the light emission detection device is defined by the optical path length of the maximum length of the optical path from the condenser lens 2 to the sensor 30. Hereinafter, as a part of the optical path length g, the optical path length L of the dichro array is set as the optical path of the light flux 70 in the maximum length optical path (the optical path from the luminous flux 70 to the luminous flux F (N)) as shown in FIG. From a position at the same height as the uppermost end of the upper dichro array (upper end of the dichro M (N)), it is the same as the lowermost end of the dichro array on the optical axis of the luminous flux F (N) (lower end of the dichro M (1)). It is defined by the optical path length to the height position.

各ダイクロは,屈折率n0の透明基板の少なくとも一方の正面に光学的な膜が形成されたものであり,空気中に,間隔xで配置した。各ダイクロについて,図16において左上正面から左上方向に向かう法線ベクトルを定義する。各ダイクロを,各法線ベクトルが,光束70の進行方向と反対方向(図16で下から上に向かう方向)に対して角度θ0(0≦θ0≦90°)だけ傾くように傾けた。図16では,θ0=45°で描いているが,本実施例では,0°≦θ0≦90°の任意のθ0とする。以上より,各ダイクロM(1)〜M(N)を,互いに略平行,かつ略等間隔に配列した。また,ダイクロM(2)の下端を,ダイクロM(1)の下端に対して,yだけ上側に,すなわちyだけ光束F(1)の進行方向と反対方向に,ずらして配置した。さらに,ダイクロM(3)の下端を,ダイクロM(2)の下端に対して,zだけ上側に,すなわちzだけ光束F(2)の進行方向と反対方向に,ずらして配置した。同様に,3≦n≦Nとして,ダイクロM(n)の下端を,ダイクロM(n−1)の下端に対して,zだけ上側に,すなわちzだけ光束F(n−1)の進行方向と反対方向に,ずらして配置した。 Each dichroic glass had an optical film formed on the front surface of at least one of transparent substrates having a refractive index of n 0, and was arranged in the air at intervals x. For each dichroic, a normal vector from the upper left front to the upper left is defined in FIG. Each dichro was tilted so that each normal vector was tilted by an angle θ 0 (0 ≤ θ 0 ≤ 90 °) with respect to the direction opposite to the traveling direction of the luminous flux 70 (direction from bottom to top in FIG. 16). .. In Figure 16, although drawn with θ 0 = 45 °, in the present embodiment, an arbitrary theta 0 of 0 ° ≦ θ 0 ≦ 90 ° . From the above, each dichroic M (1) to M (N) was arranged substantially parallel to each other and at substantially equal intervals. Further, the lower end of the dichroic M (2) was arranged so as to be shifted upward by y with respect to the lower end of the dichroic M (1), that is, in the direction opposite to the traveling direction of the luminous flux F (1) by y. Further, the lower end of the dichroic M (3) is shifted upward by z with respect to the lower end of the dichroic M (2), that is, in the direction opposite to the traveling direction of the luminous flux F (2) by z. Similarly, assuming that 3 ≦ n ≦ N, the lower end of the dichroic M (n) is moved upward by z with respect to the lower end of the dichroic M (n-1), that is, the traveling direction of the luminous flux F (n-1) by z. It was placed in the opposite direction to the above.

このとき,ダイクロM(1)の入射面における光束の入射角はθ0であり,ダイクロM(1)の入射面(左上正面)における光束の屈折角θ1は,
[式19]
θ1=sin-1(1/n0*sinθ0)
である。また,ダイクロM(2)〜M(N)の入射面(右下正面)における光束の入射角は90°−θ0であり,ダイクロM(2)〜M(N)の入射面における光束の屈折角θ2は,
[式20]
θ2=sin-1(1/n0*sin(90°−θ0))
である。光束70の内,右端を光束右端66として点線で示し,左端を光束左端67として一点鎖線で示し,それぞれ光束F(1),F(2),F(3),・・・,及び光束F(N)の右端,左端まで追跡して描いた。
At this time, the incident angle of the light flux on the incident surface of the dichro M (1) is θ 0 , and the refraction angle θ 1 of the light flux on the incident surface (upper left front) of the dichro M (1) is.
[Equation 19]
θ 1 = sin -1 (1 / n 0 * sin θ 0 )
Is. Further, the incident angle of the luminous flux on the incident surface (lower right front) of the dichro M (2) to M (N) is 90 ° −θ 0 , and the incident angle of the luminous flux on the incident surface of the dichro M (2) to M (N) is 90 ° −θ 0. Refraction angle θ 2
[Equation 20]
θ 2 = sin -1 (1 / n 0 * sin (90 ° −θ 0 ))
Is. Of the luminous flux 70, the right end is indicated by a dotted line with the right end of the luminous flux 66 as the right end 66, and the left end is indicated by a dash-dotted line with the left end 67 of the luminous flux, respectively. The right end and the left end of (N) were traced and drawn.

図16に従い,開口幅Wを最大とし,光路長Lを最小とするベストモードの二つの条件を次に記す。第一に,光束右端66が,△で示す,ダイクロM(1),M(2),・・・,及びM(N−1)の左端の角69を通過,もしくはかすめることである。第二に,光束左端67が,○で示す,ダイクロM(1)の下端の角68と,ダイクロM(2),・・・,及びM(N−1)の左端の角69を通過,もしくはかすめることである。以上の条件によれば,図16の幾何学的な関係より,以下の関係式が導出される。まず,各ダイクロM(1)〜M(N)の間隔xは,ベストモードにおいて,
[式21]
x=x0=cosθ0*α+sinθ0*β
となる。また,開口幅Wは,ベストモードにおいて,
[式22]
W=W0=aW*α+bW*β
となる。ここで,
[式23]
W≡cosθ0
[式24]
W≡−cosθ0*tanθ1
とした。
According to FIG. 16, two conditions of the best mode in which the aperture width W is maximized and the optical path length L is minimized are described below. First, the right end 66 of the luminous flux passes through or glazes at the left end corner 69 of the dichroic M (1), M (2), ..., And M (N-1) indicated by Δ. Second, the left end 67 of the luminous flux passes through the lower end corner 68 of the dichroic M (1) and the leftmost corner 69 of the dichroic M (2), ..., And M (N-1), which are indicated by ○. Or it is to graze. According to the above conditions, the following relational expression is derived from the geometric relation of FIG. First, the interval x of each dichroic M (1) to M (N) is set in the best mode.
[Equation 21]
x = x 0 = cosθ 0 * α + sinθ 0 * β
Will be. Further, the opening width W is set in the best mode.
[Equation 22]
W = W 0 = a W * α + b W * β
Will be. here,
[Equation 23]
a W ≡ cos θ 0
[Equation 24]
b W ≡ −cosθ 0 * tanθ 1
And said.

さらに,光路長Lは,ベストモードにおいて,
[式25]
L=L0=aL*α+bL*β
である。ここで,
[式26]
L≡(N−1)*cosθ0+sinθ0
[式27]
L≡(N−2)/cosθ0*(2*sin(90°−θ0−θ2)+1−sin(θ0+θ2))+(N−2)*sinθ0+2*cosθ0
とした。
Further, the optical path length L is set in the best mode.
[Equation 25]
L = L 0 = a L * α + b L * β
Is. here,
[Equation 26]
a L ≡ (N-1) * cos θ 0 + sin θ 0
[Equation 27]
b L ≡ (N-2) / cosθ 0 * (2 * sin (90 ° −θ 0 −θ 2 ) + 1−sin (θ 0 + θ 2 )) + (N-2) * sinθ 0 +2 * cosθ 0
And said.

一方,各ダイクロM(1)〜M(N)の段差y,及びzは,ベストモードにおいて,
[式28]
y=y0=cosθ0*β
[式29]
z=z0=sin(90°−θ0−θ2)/cosθ2*β
となる。
On the other hand, the steps y and z of the dichroic M (1) to M (N) are set in the best mode.
[Equation 28]
y = y 0 = cosθ 0 * β
[Equation 29]
z = z 0 = sin (90 ° −θ 0 −θ 2 ) / cosθ 2 * β
Will be.

以上の通り,x0,W0,L0,y0,及びz0はいずれもα及びβと関連付けられた。 As described above, x 0 , W 0 , L 0 , y 0 , and z 0 are all associated with α and β.

以上のα,β,n0,θ0,x,及びzはダイクロイックミラー及び全反射ミラー毎に等しくすることを基本とするが,必ずしも等しい必要はない。そのような場合は,α,β,n0,θ0,x,及びzは,複数のダイクロについての平均値とする。 The above α, β, n 0 , θ 0 , x, and z are basically equal for each dichroic mirror and total reflection mirror, but they do not necessarily have to be equal. In such a case, α, β, n 0 , θ 0 , x, and z are average values for a plurality of dichroic glass.

以上を逆に解くことにより,目標とする開口幅の最小値Wminを得るためのα,β,及びxを導出できる。W0≧Wmin及び式(22)より,
[式30]
α≧−bW/aW*β+1/aW*Wmin
となり(等号のときベストモード),式(21)より,
[式31]
x≧(sinθ0−bW/aW*cosθ0)*β+1/aW*cosθ0*Wmin
となる(等号のときベストモード)。
By solving the above in reverse, α, β, and x for obtaining the minimum value W min of the target opening width can be derived. From W 0 ≧ W min and equation (22)
[Equation 30]
α ≧ −b W / a W * β + 1 / a W * W min
Next (best mode when equal sign), from equation (21),
[Equation 31]
x ≧ (sin θ 0 −b W / a W * cos θ 0 ) * β + 1 / a W * cos θ 0 * W min
(Best mode when equal sign).

同様に,目標とする光路長の最大値Lmaxを得るためのα,β,及びxを導出できる。L0≦Lmax及び式(25)より,
[式32]
α≦−bL/aL*β+1/aL*Lmax
となり(等号のときベストモード),式(21)より,
[式33]
x≦(sinθ0−bL/aL*cosθ0)*β+1/aL*cosθ0*Lmax
となる(等号のときベストモード)。
Similarly, α, β, and x for obtaining the maximum value L max of the target optical path length can be derived. From L 0 ≤ L max and equation (25)
[Equation 32]
α ≤ −b L / a L * β + 1 / a L * L max
Next (best mode when equal sign), from equation (21),
[Equation 33]
x ≦ (sin θ 0 −b L / a L * cos θ 0 ) * β + 1 / a L * cos θ 0 * L max
(Best mode when equal sign).

以上のWmin,及びLmaxは発光点毎に,及び集光レンズ毎に等しくすることを基本とするが,必ずしも等しい必要はない。そのような場合は,Wmin,及びLmaxは,複数の発光点,及び集光レンズについての平均値とする。 The above W min and L max are basically equal for each light emitting point and for each condensing lens, but they do not necessarily have to be equal. In such a case, W min and L max are average values for a plurality of light emitting points and a condenser lens.

図17は,例として,N=4,n0=1.46,θ0=45°の場合について,式(31)及び(33)を満たす範囲を,横軸β,縦軸xで示したものである。パラメータとして,Wmin=0.5,1,2,3,及び4mm,Lmax=5,10,20,30,及び40mmとし,↑は直線より上側の範囲,↓は直線より下側の範囲を示している。例えば,Wmin=0.5mm,かつLmax=20mmとするためには,図17において,↑Wmin=0.5の直線より上側,かつ↓Lmax=20の直線より下側の範囲のβ及びxを選定すれば良いことが分かる。 In FIG. 17, as an example, in the case of N = 4, n 0 = 1.46, θ 0 = 45 °, the range satisfying the equations (31) and (33) is shown by the horizontal axis β and the vertical axis x. It is a thing. As parameters, W min = 0.5, 1, 2, 3, and 4 mm, L max = 5, 10, 20, 30, and 40 mm, ↑ is the range above the straight line, and ↓ is the range below the straight line. Is shown. For example, in order to set W min = 0.5 mm and L max = 20 mm, in FIG. 17, the range above the straight line of ↑ W min = 0.5 and below the straight line of ↓ L max = 20. It can be seen that β and x should be selected.

一方で,与えられた発光点の径d,発光点アレイの間隔pに対して,式(3)〜(7)又は式(8)〜(12)のいずれかの高感度条件を満たす,集光レンズの焦点距離f,集光レンズとセンサの光路長gを選定し,Wmin=d’,Lmax=gとして,式(31)及び(33)を満たせば,高感度条件のダイクロアレイを用いた小型多色検出装置を構築できる。ここで,式(2)より,d’=(g−f)/f*dとする。同様に,与えられた発光点の径d,発光点アレイの間隔pに対して,式(16)〜(18)のいずれかの低クロストーク条件を満たす,集光レンズの焦点距離f,集光レンズとセンサの光路長gを選定し,Wmin=d’,Lmax=gとして,式(31)及び(33)を満たせば,低クロストーク条件のダイクロアレイを用いた小型多色検出装置を構築できる。もちろん,式(3)〜(7)又は式(8)〜(12)のいずれかの高感度条件,及び,式(16)〜(18)のいずれかの低クロストーク条件の両方を満たす,集光レンズの焦点距離f,集光レンズとセンサの光路長gを選定し,Wmin=d’,Lmax=gとして,式(31)及び(33)を満たせば,高感度かつ低クロストーク条件のダイクロアレイを用いた小型多色検出装置を構築できる。 On the other hand, a collection that satisfies any of the high sensitivity conditions of the equations (3) to (7) or the equations (8) to (12) with respect to the given emission point diameter d and the emission point array interval p. If the focal length f of the optical lens, the optical path length g of the condensing lens and the sensor are selected, W min = d', L max = g, and the equations (31) and (33) are satisfied, the dichro array under high sensitivity conditions. It is possible to construct a small multicolor detection device using. Here, from the equation (2), d'= (g−f) / f * d. Similarly, the focal length f of the condensing lens, which satisfies the low crosstalk condition of any one of the equations (16) to (18) with respect to the given emission point diameter d and the emission point array interval p. If the optical path length g of the optical lens and the sensor is selected, W min = d', L max = g, and equations (31) and (33) are satisfied, compact multicolor detection using a dichro array under low crosstalk conditions You can build a device. Of course, both the high sensitivity condition of any of the equations (3) to (7) or the equations (8) to (12) and the low crosstalk condition of any of the equations (16) to (18) are satisfied. If the focal length f of the condenser lens, the optical path length g of the condenser lens and the sensor are selected, W min = d', L max = g, and equations (31) and (33) are satisfied, high sensitivity and low cross are performed. It is possible to construct a compact multicolor detection device using a dichro array with talk conditions.

例えば,実施例1に従い,d=0.05mm,p=1mm,f=1.5mm,D=1mm,g=29mmに対して,N=4,n0=1.46,θ0=45°,β=1mm,x=5mmとするとき,式(4),式(9),式(18),式(31),及び式(33)のすべてが満足され,高感度かつ低クロストークなダイクロイックミラーを用いた小型多色検出装置となることが分かる。 For example, according to Example 1, N = 4, n 0 = 1.46, θ 0 = 45 ° with respect to d = 0.05 mm, p = 1 mm, f = 1.5 mm, D = 1 mm, g = 29 mm. , Β = 1 mm, x = 5 mm, all of the equations (4), (9), (18), (31), and (33) are satisfied, and high sensitivity and low crosstalk are achieved. It can be seen that it is a compact multicolor detection device using a dichroic mirror.

次に,各ダイクロM(1)〜M(N)の間隔xについて検討を深める。上述の通り,ベストモードにおいては式(21)のx0とするのが最も良いが,ベストモードからどの程度ずれても効果が得られるかを次に詳細に検討する。図18に示す実線は,間隔xと,図15のダイクロ17及び18で得られる開口幅Wの関係を計算した結果である。一般に,ダイクロの総数Nが増えるに従い,トータルの開口幅が上記結果よりも小さくなる可能性があるが,ここではN=2の場合を指標として評価する。図15は,θ0=45°,β=1mmのときの式(21)で計算されるx=x0=2.5mmの条件であるが,このとき,図18に示す通り,開口幅がW=1.3mmと最大になった。x<x0では,|x−x0|に比例してWが減少し,x=1.6mmでW=0mmとなった。これに対して,x>x0では,W=1.3mmで一定となった。一方,図18に示す破線は,間隔xと,図15における,光路長Lの変化量ΔLの関係を示す。ここで,x=x0=2.5mmのとき,ΔL=0mmとし,W=1.3mmと同じ高さになるように表示した。また,Wの縦軸(左側)とΔLの縦軸(右側)のスケールを揃え,ΔLの縦軸を上下反転させた。一般に,ダイクロの総数Nが増えるに従い,ΔLが上記結果よりも大きくなる可能性があるが,ここではN=2の場合を指標として評価する。ΔLは,当然ながら,xに比例して増大した。 Next, the examination will be deepened for the interval x of each dichroic M (1) to M (N). As described above, in the best mode, it is best to set x 0 in the equation (21), but the effect can be obtained no matter how much the mode deviates from the best mode. The solid line shown in FIG. 18 is the result of calculating the relationship between the interval x and the opening width W obtained in the dichroic 17 and 18 of FIG. Generally, as the total number N of dichroic glass increases, the total aperture width may become smaller than the above result, but here, the case of N = 2 is used as an index for evaluation. FIG. 15 shows the condition of x = x 0 = 2.5 mm calculated by the equation (21) when θ 0 = 45 ° and β = 1 mm. At this time, as shown in FIG. 18, the opening width is large. W = 1.3 mm, which was the maximum. When x <x 0 , W decreased in proportion to | x−x 0 |, and when x = 1.6 mm, W = 0 mm. On the other hand, when x> x 0 , it became constant at W = 1.3 mm. On the other hand, the broken line shown in FIG. 18 shows the relationship between the interval x and the amount of change ΔL of the optical path length L in FIG. Here, when x = x 0 = 2.5 mm, ΔL = 0 mm and the height is displayed so as to be the same as W = 1.3 mm. Further, the scales of the vertical axis of W (left side) and the vertical axis of ΔL (right side) were aligned, and the vertical axis of ΔL was turned upside down. Generally, as the total number N of dichroic glass increases, ΔL may become larger than the above result, but here, the case of N = 2 is used as an index for evaluation. ΔL, of course, increased in proportion to x.

図18より,1.6mm≦x≦2.5mmにおけるxに対するWの増加率と,2.5mm≦xにおけるxに対するΔLの増加率は,いずれも傾きが略1で等しかった。つまり,いずれも|x−x0|に比例して性能が低下することが分かった。これに対して従来は,βが考慮されておらず,β=0mmに相当する。このとき,仮に同等の配置とする場合の間隔x0は,式(21)よりx=1.8mmとなり,このとき図18により,W=0.4mmとなる。以上より,従来と同等以上の性能を得るためには,1.8mm≦x≦3.2mmとすれば良いことが分かった。一般には,図16において,2≦n≦Nとして,ダイクロM(n)とM(n−1)の配列間隔xを,
[式34]
cosθ0*α≦x≦cosθ0*α+2*sinθ0*β
とすることによって,開口幅Wを拡大し,光路長Lを縮小することができる。
From FIG. 18, the rate of increase of W with respect to x in 1.6 mm ≦ x ≦ 2.5 mm and the rate of increase of ΔL with respect to x in 2.5 mm ≦ x were both equal with a slope of about 1. In other words, it was found that the performance deteriorated in proportion to | x-x 0 |. On the other hand, conventionally, β is not considered and corresponds to β = 0 mm. At this time, the interval x 0 in the case of the same arrangement is x = 1.8 mm according to the equation (21), and at this time, W = 0.4 mm according to FIG. From the above, it was found that in order to obtain the same or higher performance as the conventional one, 1.8 mm ≦ x ≦ 3.2 mm should be set. Generally, in FIG. 16, the arrangement spacing x between the dichroic M (n) and M (n-1) is set to 2 ≦ n ≦ N.
[Equation 34]
cos θ 0 * α ≤ x ≤ cos θ 0 * α + 2 * sin θ 0 * β
By doing so, the opening width W can be increased and the optical path length L can be reduced.

続いて,各ダイクロM(1)〜M(N)の段差y,及びzについて検討を深める。上述の通り,ベストモードにおいては式(28)及び(29)のy0及びz0とするのが最も良いが,ベストモードからどの程度ずれても段差配置の効果が得られるかを次に詳細に検討する。 Subsequently, the steps y and z of the dichroic M (1) to M (N) will be deepened. As described above, in the best mode, it is best to set y 0 and z 0 in the equations (28) and (29), but the next detail is how much the difference from the best mode can obtain the effect of the step arrangement. To consider.

図19(a)は,段差yと,図15のダイクロ17及び18で得られる開口幅Wの関係を計算した結果である。一般に,ダイクロの総数Nが増えるに従い,トータルの開口幅Wが上記結果よりも小さくなる可能性があるが,ここではN=2の場合を指標として評価する。図15は,θ0=45°,β=1mmのときの式(28)で計算されるy=y0=0.7mmの条件であるが,このとき,図19(a)に示す通り,開口幅がW=1.3mmと最大になった。また,|y−y0|に比例してWが減少し,y=0mm及び1.4mmでW=0.6mm,y=−0.7mm及び2.1mmでW=0mmとなった。ここで,マイナスのyは図15と逆向きの段差を示す。したがって,0mm≦y≦1.4mmとすることで段差の効果が得られることが分かった。 FIG. 19A is a result of calculating the relationship between the step y and the opening width W obtained by the dichroic 17 and 18 of FIG. Generally, as the total number N of dichroic glass increases, the total opening width W may become smaller than the above result, but here, the case of N = 2 is used as an index for evaluation. FIG. 15 shows the condition of y = y 0 = 0.7 mm calculated by the equation (28) when θ 0 = 45 ° and β = 1 mm. At this time, as shown in FIG. 19 (a), The maximum opening width was W = 1.3 mm. Further, W decreased in proportion to | y-y 0 |, and W = 0.6 mm at y = 0 mm and 1.4 mm, and W = 0 mm at y = -0.7 mm and 2.1 mm. Here, a negative y indicates a step in the opposite direction to that of FIG. Therefore, it was found that the effect of the step can be obtained by setting 0 mm ≦ y ≦ 1.4 mm.

同様に,図19(b)は,段差zと,図15のダイクロ18及び19で得られる開口幅Wの関係を計算した結果である。図15は,θ0=45°,β=1mmのときの式(29)で計算されるz=z0=0.3mmの条件であるが,このとき,図19(b)に示す通り,開口幅がW=1.3mmと最大になった。また,|z−z0|に比例してWが減少し,z=0mm及び0.6mmでW=1mm,y=−1.1mm及び1.7mmでW=0mmとなった。ここで,マイナスのzは図15と逆向きの段差を示す。したがって,0mm≦z≦0.6mmとすることで段差の効果が得られることが分かった。以上を一般化すると次のようになる。図16において,ダイクロM(2)の分割光束進行側の端を,ダイクロM(1)の分割光束進行側の端に対して,分割光束進行方向と反対側にyだけずらし,
[式35]
0≦y≦2*cosθ0*β
とすることによって,開口幅Wを拡大し,光路長Lを縮小することができる。
Similarly, FIG. 19B is the result of calculating the relationship between the step z and the opening width W obtained by the dichroic 18 and 19 of FIG. FIG. 15 shows the condition of z = z 0 = 0.3 mm calculated by the equation (29) when θ 0 = 45 ° and β = 1 mm. At this time, as shown in FIG. 19 (b), The maximum opening width was W = 1.3 mm. In addition, W decreased in proportion to | z-z 0 |, and W = 1 mm at z = 0 mm and 0.6 mm, and W = 0 mm at y = -1.1 mm and 1.7 mm. Here, minus z indicates a step in the opposite direction to that of FIG. Therefore, it was found that the effect of the step can be obtained by setting 0 mm ≦ z ≦ 0.6 mm. The above can be generalized as follows. In FIG. 16, the end of the dichroic glass M (2) on the divided light flux traveling side is shifted by y with respect to the end of the dichroic glass M (1) on the divided light flux traveling direction.
[Equation 35]
0 ≤ y ≤ 2 * cos θ 0 * β
By doing so, the opening width W can be increased and the optical path length L can be reduced.

また,3≦n≦Nとして,ダイクロM(n)の分割光束進行側の端を,ダイクロM(n−1)の分割光束進行側の端に対して,分割光束進行方向と反対側にzだけずらし,
[式36]
0≦z≦2*sin(90°−θ0−θ2)/cosθ2*β
とすることによって,開口幅Wを拡大し,光路長Lを縮小することができる。
Further, with 3 ≦ n ≦ N, the end of the dichroic M (n) on the divided light flux traveling side is z on the side opposite to the divided light flux traveling direction with respect to the end of the dichroic M (n-1) on the divided light flux traveling direction. Just shift,
[Equation 36]
0 ≦ z ≦ 2 * sin (90 ° −θ 0 −θ 2 ) / cosθ 2 * β
By doing so, the opening width W can be increased and the optical path length L can be reduced.

以上は,図15及び図16のように,集光レンズの光軸と分割光束進行方向が平行の場合の構成について検討したが,図12のようにこれらが垂直の場合は,2≦n≦Nとして,ダイクロM(n)の分割光束進行側の端を,ダイクロM(n−1)の分割光束進行側の端に対して,分割光束進行方向と反対側にzだけずらし,式(36)の通りにすることによって,開口幅Wを拡大し,光路長Lを縮小することができる。 In the above, the configuration when the optical axis of the condensing lens and the traveling direction of the divided luminous flux are parallel as shown in FIGS. 15 and 16, but when they are vertical as shown in FIG. 12, 2 ≦ n ≦ As N, the end of the dichromatic M (n) on the divided light flux traveling side is shifted by z to the side opposite to the divided light flux traveling direction with respect to the end of the dichromatic M (n-1) on the divided light flux traveling direction, and the equation (36) is used. ), The opening width W can be increased and the optical path length L can be reduced.

[実施例5]
実施例3,実施例4では,複数のダイクロの段差配置によって,ダイクロアレイの開口幅Wの拡大と,光路長Lの縮小を実現した。本実施例では,段差配置をしない場合,すなわち,複数のダイクロを同一平面配置する場合,より具体的には,各ダイクロの分割光束進行方向側の端を同一平面上に並べる場合について,開口幅Wの拡大と,光路長Lの縮小を実現する手段を提案する。
[Example 5]
In Examples 3 and 4, the aperture width W of the dichroic array was increased and the optical path length L was reduced by arranging the steps of a plurality of dichroic glasses. In this embodiment, the opening width is not arranged, that is, when a plurality of dichroic glass is arranged on the same plane, and more specifically, when the ends of the dichroic glass on the traveling direction side of the divided light flux are arranged on the same plane. We propose a means to expand W and reduce the optical path length L.

実施例3の図14はθ0=45°の場合の結果であるが,θ0=50°とした場合の結果を図20に示す。その他の条件は,図14と図20で等しく,いずれの場合もダイクロ17〜20を同一平面配置とした。それにも関わらず,開口幅が,図14では僅かにW=0.03mmに過ぎなかったのに対して,図20ではW=0.9mmと大幅に拡大できることが明らかとなった。最大光路長は両者で変化せず,L=19mmであった。したがって,図14と同様に,像倍率がm=11.7,発光点像の径がd’=0.88mmとなり,式(4),(9)に加えて,式(18)が満足されるようになった。したがって,相対検出光量が100%以上,厳密な相対検出光量が100%以上,クロストークは0%以下の高感度,低クロストーク条件となった。 FIG. 14 of Example 3 shows the result when θ 0 = 45 °, but FIG. 20 shows the result when θ 0 = 50 °. Other conditions were the same in FIGS. 14 and 20, and in each case, the dichroic 17 to 20 were arranged in the same plane. Nevertheless, it was clarified that the opening width can be greatly expanded to W = 0.9 mm in FIG. 20, while the opening width is only W = 0.03 mm in FIG. The maximum optical path length did not change between the two, and L = 19 mm. Therefore, similarly to FIG. 14, the image magnification is m = 11.7, the diameter of the emission point image is d'= 0.88 mm, and the equation (18) is satisfied in addition to the equations (4) and (9). It became so. Therefore, the relative detection light amount was 100% or more, the strict relative detection light amount was 100% or more, and the crosstalk was 0% or less with high sensitivity and low crosstalk conditions.

このような効果が得られた理由を次に検討する。図14に示す通り,θ0=45°の場合は,光束が,異なるダイクロ間の空間では水平に左方向に進行する一方で,各ダイクロの内部では左上方向に進行するため,光束はダイクロを通過する毎に段々に上方向に移動してしまい,そのことが開口幅Wを制限した。これに対して,図20に示す通り,θ0=50°≧45°とすることによって,光束が,異なるダイクロ間の空間では左下方向に進行する一方で,各ダイクロの内部では左上方向に進行するため,両者が相殺され,光束がダイクロを通過する毎の上下方向の移動が抑えられ,そのことが開口幅Wの拡大につながったのである。したがって,θ0は45°以上とするのが良いが,さらに開口幅Wを最大にする最適値が存在するはずである。 The reason why such an effect was obtained will be examined next. As shown in FIG. 14, when θ 0 = 45 °, the luminous flux travels horizontally to the left in the space between the different dichroic glass, while it travels to the upper left inside each dichroic glass. Each time it passed, it gradually moved upward, which limited the opening width W. On the other hand, as shown in FIG. 20, by setting θ 0 = 50 ° ≧ 45 °, the luminous flux travels in the lower left direction in the space between the different dichroic glass, while traveling in the upper left direction inside each dichroic glass. Therefore, both are canceled out, and the vertical movement of the luminous flux each time it passes through the dichroic glass is suppressed, which leads to the expansion of the opening width W. Therefore, θ 0 should be 45 ° or more, but there must be an optimum value that maximizes the opening width W.

図21は,図14及び図20の条件下で,θ0を変化させたときのWを計算した結果である。θ0=45°からWが上昇し,θ0=52°でWが最大値0.92mmとなり,θ0=57°でWが略ゼロまで減衰することが分かった。つまり,45°≦θ0≦57°とすることによって,Wを拡大できることが分かった。 FIG. 21 shows the result of calculating W when θ 0 is changed under the conditions of FIGS. 14 and 20. It was found that W increased from θ 0 = 45 °, W reached a maximum value of 0.92 mm at θ 0 = 52 °, and W attenuated to almost zero at θ 0 = 57 °. That is, it was found that W can be expanded by setting 45 ° ≤ θ 0 ≤ 57 °.

次に,以上を一般化する。図16の議論と同様に,図20の幾何学的な関係から以下を導出する。ダイクロM(1)の入射面における光束の屈折角θ1は式(19)の通りであり,ダイクロM(2)〜M(N−1)の入射面における光束の屈折角θ2は式(20)の通りである。異なるダイクロ間の空間で左下方向に進行する光束の下方向の移動距離S↓は,
[式37]
S↓=tan(2*θ0−90°)*tanθ0/(tanθ0−tan(2*θ0−90°))*(x−β/cos(90°−θ0)
で求められる。一方,各ダイクロの内部で左上方向に進行する光束の上方向の移動距離S↑は,
[式38]
S↑=1/cosθ2*β*sin(90°−θ0−θ2)
で求められる。ここで,βは各ダイクロの厚さ,xは各ダイクロの間隔を示す。図20のように,S↓とS↑を相殺させるためには,S↓=S↑とするのが最も良い。そこで,このベストモードにおけるθ0をθ0(BM)とする。
Next, the above is generalized. Similar to the discussion in FIG. 16, the following is derived from the geometric relationship in FIG. 20. The refraction angle θ 1 of the luminous flux on the incident surface of the dichro M (1) is as shown in equation (19), and the refraction angle θ 2 of the luminous flux on the incident surface of the dicro M (2) to M (N-1) is given by the equation (19). 20). The downward movement distance S ↓ of the luminous flux traveling in the lower left direction in the space between different dichroic glasses is
[Equation 37]
S ↓ = tan (2 * θ 0 −90 °) * tan θ 0 / (tan θ 0 −tan (2 * θ 0 −90 °)) * (x−β / cos (90 ° −θ 0 ))
Is required by. On the other hand, the upward movement distance S ↑ of the luminous flux traveling in the upper left direction inside each dichroic glass is
[Equation 38]
S ↑ = 1 / cos θ 2 * β * sin (90 ° −θ 0 −θ 2 )
Is required by. Here, β indicates the thickness of each dichroic glass, and x indicates the interval of each dichroic glass. As shown in FIG. 20, in order to cancel S ↓ and S ↑, it is best to set S ↓ = S ↑. Therefore, let θ 0 be θ 0 (BM) in this best mode.

式(37),(38)を図20の条件であるβ=1mm,x=2.5mmに適用したところ,θ0(BM)=50°と求められた。すなわち,図20の構成はベストモードの構成である。しかしながら,図21によれば,Wが最大になるのはθ0=52°であり,上記のθ0(BM)より2°だけ大きくなっている。これは,θ0をθ0(BM)より若干大きく,すなわちS↓をS↑より若干大きくして光束を段々左下に進行させた方が,Wを若干大きくできることを示している。 When equations (37) and (38) were applied to the conditions of FIG. 20, β = 1 mm and x = 2.5 mm, θ 0 (BM) = 50 ° was obtained. That is, the configuration of FIG. 20 is the configuration of the best mode. However, according to FIG. 21, W is maximized at θ 0 = 52 °, which is 2 ° larger than the above θ 0 (BM). This is, θ slightly larger than 0 θ 0 (BM), ie who was allowed to proceed for the light beam gradually in the lower left corner to increase the S ↓ S ↑ more slightly, which indicates that you can slightly increase the W.

以上より,従来の基準であるθ0=45°の場合に対して,Wを有意に拡大するための条件は,
[式39]
45°≦θ0≦2*θ0(BM)−45°
である。また,上記の2°のずれを考慮すると,より正確な条件は,
[式40]
45°≦θ0≦2*θ0(BM)−43°
となる。
From the above, the conditions for significantly expanding W with respect to the conventional standard of θ 0 = 45 ° are as follows.
[Equation 39]
45 ° ≤ θ 0 ≤ 2 * θ 0 (BM) -45 °
Is. Also, considering the above 2 ° deviation, the more accurate conditions are
[Equation 40]
45 ° ≤ θ 0 ≤ 2 * θ 0 (BM) -43 °
Will be.

[実施例6]
図22は,図6の構成において,発光点のサイズが比較的大きい場合の発光検出装置を示す模式図である。発光点71の径はd=0.5mm,間隔はp=1mmと,実施例1と比較して発光点のサイズが一桁大きい。発光点71はそれぞれ,0.5mm×0.5mm×0.5mmの立方体の反応セルで構成し,内部の化学反応によって化学発光を生じさせた。この化学発光の波長,強度の時間変化を発光点71毎に調べることによって,各反応セルに導入された試料を分析した。集光レンズ2の焦点距離はf=1mm,有効径はD=1mm,間隔はp=1mm,集光レンズ2と2次元カラーセンサ11の光学的距離はg=10mmとした。発光点71及び集光レンズ2の配列方向は,図22(a)の横方向だけでなく,図22(a)の紙面に垂直方向にも等間隔で配列しても良い。本実施例では,励起光源を必要としないため,図6のロングパスフィルタ10は省略した。
[Example 6]
FIG. 22 is a schematic view showing a light emission detecting device when the size of the light emitting point is relatively large in the configuration of FIG. The diameter of the light emitting point 71 is d = 0.5 mm, the interval is p = 1 mm, and the size of the light emitting point is an order of magnitude larger than that of the first embodiment. Each of the light emitting points 71 was composed of a cubic reaction cell of 0.5 mm × 0.5 mm × 0.5 mm, and chemiluminescence was generated by an internal chemical reaction. The sample introduced into each reaction cell was analyzed by examining the time change of the wavelength and intensity of this chemiluminescence at each emission point 71. The focal length of the condenser lens 2 was f = 1 mm, the effective diameter was D = 1 mm, the distance was p = 1 mm, and the optical distance between the condenser lens 2 and the two-dimensional color sensor 11 was g = 10 mm. The light emitting points 71 and the condenser lens 2 may be arranged not only in the horizontal direction of FIG. 22 (a) but also in the direction perpendicular to the paper surface of FIG. 22 (a) at equal intervals. In this embodiment, since the excitation light source is not required, the long-pass filter 10 in FIG. 6 is omitted.

図22(a)に示すように,2次元カラーセンサ11のセンサ面で発光点71を結像させると,式(1)によりm=9,式(2)によりd’=4.5mmとなった。このとき,式(6)及び式(10)が満足され,相対検出光量400%以上,厳密な相対検出光量200%以上となった。一方で,図22(a)の光束9に示す通り,異なる発光点71間のクロストークが非常に大きく,式(16)〜(18)がいずれも満たされなかった。 As shown in FIG. 22A, when the light emitting point 71 is formed on the sensor surface of the two-dimensional color sensor 11, m = 9 according to the equation (1) and d'= 4.5 mm according to the equation (2). It was. At this time, the equations (6) and (10) were satisfied, and the relative detection light amount was 400% or more and the strict relative detection light amount was 200% or more. On the other hand, as shown in the luminous flux 9 in FIG. 22 (a), the crosstalk between the different light emitting points 71 was very large, and none of the equations (16) to (18) was satisfied.

そこで,図22(b)に示すように,各発光点71と対応する各集光レンズ2の中間にそれぞれピンホール72を有するピンホールアレイ73を配置した。各ピンホール72の径d0は,d0≦dであり,ここでは,d0=0.1mmとした。各ピンホールの間隔はp=1mmとした。ピンホールの配列方向は,図22(b)の横方向だけでなく,図22(a)の紙面に垂直方向にも等間隔で配列しても良い。ここで,発光点71ではなく,ピンホール72を発光点と見なし,図22(b)のように,2次元カラーセンサ11のセンサ面でピンホール72を結像させ,ピンホール像74を形成すると,ピンホール像74の径は式(2)によりd’=0.9mmとなった。このとき,式(18)が満足され,クロストークを0%とすることができた。図22(a)と同様に,式(6)及び式(10)が満足され,相対検出光量400%以上,厳密な相対検出光量200%以上となった。ただし,これはピンホール72を通過した全光量を基準にしたものであり,図22(a)の発光点71から発光した全光量を基準にしたものよりも小さい。 Therefore, as shown in FIG. 22B, a pinhole array 73 having a pinhole 72 is arranged between each light emitting point 71 and each condensing lens 2 corresponding to the light emitting point 71. The diameter d 0 of each pinhole 72 is d 0 ≦ d, and here, d 0 = 0.1 mm. The distance between the pinholes was p = 1 mm. The pinholes may be arranged not only in the horizontal direction of FIG. 22 (b) but also in the direction perpendicular to the paper surface of FIG. 22 (a) at equal intervals. Here, the pinhole 72 is regarded as the light emitting point instead of the light emitting point 71, and as shown in FIG. 22B, the pinhole 72 is imaged on the sensor surface of the two-dimensional color sensor 11 to form the pinhole image 74. Then, the diameter of the pinhole image 74 was d'= 0.9 mm according to the equation (2). At this time, the equation (18) was satisfied, and the crosstalk could be set to 0%. Similar to FIG. 22A, the equations (6) and (10) were satisfied, and the relative detection light amount was 400% or more and the strict relative detection light amount was 200% or more. However, this is based on the total amount of light that has passed through the pinhole 72, and is smaller than that based on the total amount of light emitted from the light emitting point 71 in FIG. 22 (a).

図23は,図22(b)と同様の検出装置を応用する他の例を示す模式図である。図23(a)に示すように,発光点75の径はd=0.01mm,間隔はp’=0.1mmである一方で,集光レンズ2の焦点距離はf=1mm,有効径はD=1mm,間隔はp=1mm,集光レンズ2と2次元カラーセンサ11の光路長はg=10mmである。つまり,以上の実施例と異なり,発光点の間隔と集光レンズの間隔が異なり,p’<pの場合の例である。発光点75,集光レンズ2は,図23(a)の紙面に垂直方向にも等間隔で配列しても良い。2次元カラーセンサ11のセンサ面で発光点75を結像させると,図22(a)の場合よりもさらに広範囲の多数の発光点75からの発光が個々の集光レンズ2で集光されるため,クロストークが一層増大してしまう。 FIG. 23 is a schematic diagram showing another example in which the same detection device as in FIG. 22B is applied. As shown in FIG. 23A, the diameter of the light emitting point 75 is d = 0.01 mm and the interval is p'= 0.1 mm, while the focal length of the condenser lens 2 is f = 1 mm and the effective diameter is D = 1 mm, the interval is p = 1 mm, and the optical path length of the condenser lens 2 and the two-dimensional color sensor 11 is g = 10 mm. That is, unlike the above embodiment, the distance between the light emitting points and the distance between the condenser lenses are different, and this is an example in the case of p'<p. The light emitting points 75 and the condenser lens 2 may be arranged at equal intervals in the direction perpendicular to the paper surface of FIG. 23 (a). When the light emitting points 75 are formed on the sensor surface of the two-dimensional color sensor 11, the light emitted from a large number of light emitting points 75 in a wider range than in the case of FIG. 22A is collected by the individual condensing lenses 2. Therefore, crosstalk will increase further.

そこで,図23(b)のように,各発光点75と対応する各集光レンズ2の中間にそれぞれピンホール72を有するピンホールアレイ73を配置した。各ピンホール72は,それぞれ対応する集光レンズ2に位置合わせされて配置されている。各ピンホール72の径はd0=0.1mm,間隔p=1mmとし,d0≧dとした。ピンホールは,図23(b)の紙面に垂直方向にも等間隔で配列しても良い。ここで,発光点アレイとピンホールアレイ73を十分近接させることにより,各発光点75及び各ピンホール72を2次元カラーセンサ11のセンサ面に一括して結像させ,それぞれ発光点像76とピンホール像74を形成した。式(2)よりピンホール像74の径は0.9mmとなり,異なるピンホール像74間のクロストークが0%となることは図22(b)と同様である。一方,各集光レンズ2が各ピンホール72を通して平均2個の発光点75からの発光を集光し,2次元カラーセンサ11のセンサ面の各ピンホール像74の内部にそれぞれの発光点像76を形成した。各発光点像76の径は0.09mm,間隔は0.9mmであるため,異なる発光点像76間のクロストークもなかった。 Therefore, as shown in FIG. 23B, a pinhole array 73 having a pinhole 72 is arranged in the middle of each condensing lens 2 corresponding to each light emitting point 75. Each pinhole 72 is aligned and arranged with the corresponding condenser lens 2. The diameter of each pinhole 72 was d 0 = 0.1 mm, the interval p = 1 mm, and d 0 ≧ d. The pinholes may be arranged at equal intervals in the direction perpendicular to the paper surface of FIG. 23 (b). Here, by bringing the light emitting point array and the pinhole array 73 sufficiently close to each other, each light emitting point 75 and each pinhole 72 are collectively imaged on the sensor surface of the two-dimensional color sensor 11, and the light emitting point image 76 and the respective pinhole images 76 are formed. A pinhole image 74 was formed. From the formula (2), the diameter of the pinhole image 74 is 0.9 mm, and the crosstalk between different pinhole images 74 is 0%, which is the same as in FIG. 22 (b). On the other hand, each condensing lens 2 collects light emitted from two light emitting points 75 on average through each pinhole 72, and each light emitting point image is inside each pinhole image 74 on the sensor surface of the two-dimensional color sensor 11. 76 was formed. Since the diameter of each emission point image 76 was 0.09 mm and the interval was 0.9 mm, there was no crosstalk between different emission point images 76.

図23(b)は,集光レンズの間隔よりも細かい間隔で配列する発光点からの発光を高感度,低クロストークに多色検出することを可能とする構成であるが,多数の発光点の内の一部の発光点のみしか検出できない。図23(b)の場合,10個の発光点の内,平均して2個の発光点のみが検出されている。そこで,図23(b)において,発光点アレイと,ピンホールアレイ73以降の検出装置の相対位置を例えば矢印方向に順次ずらすことにより,すなわち多数の発光点の内,検出対象となる発光点をスキャンすることにより,すべての発光点を検出することができるようになる。 FIG. 23 (b) shows a configuration that enables multicolor detection of light emitted from light emitting points arranged at intervals finer than the distance of the condenser lenses with high sensitivity and low crosstalk, but a large number of light emitting points. Only some of the light emitting points can be detected. In the case of FIG. 23 (b), out of the 10 light emitting points, only 2 light emitting points are detected on average. Therefore, in FIG. 23B, the relative positions of the light emitting point array and the detection device after the pinhole array 73 are sequentially shifted in the direction of an arrow, for example, that is, among a large number of light emitting points, the light emitting point to be detected is determined. By scanning, all light emitting points can be detected.

以上では,2次元カラーセンサを用いた多色検出装置を用いたが,もちろん2次元カラーセンサの代わりに2次元モノクロセンサを用いた検出装置としても構わない。また,図7に示すような,ダイクロアレイを用いた多色検出装置を用いても良い。 In the above, the multicolor detection device using the two-dimensional color sensor is used, but of course, the detection device using the two-dimensional monochrome sensor may be used instead of the two-dimensional color sensor. Further, a multicolor detection device using a dichroic array as shown in FIG. 7 may be used.

図24(a)は,本実施例で用いる,ダイクロアレイを用いた多色検出装置の例を示す模式図であり,図7(b)と図23(b)を融合した構成である。図24(a)では,光束21,22,23,及び24はそれぞれ光路長が異なるため,対応する発光点像25,26,27,及び28のいずれかを2次元センサ30のセンサ面で結像させると,その他の発光点像は上記センサ面で結像されないため,若干ボケた状態となる。図7では,1個の発光点75を1個の集光レンズ2で集光し,4個の発光点像25,26,27,及び28を得ていたため,上記のボケがクロストークの原因となることはなかった。これに対して図24(a)では,複数個の発光点75を1個の集光レンズ2で集光し,各発光点について4個に分割された発光点像25,26,27,及び28を得ていたため,上記のボケによって,ピンホール像74の内部の複数の発光点像76が互いに重なり合い,クロストークの原因となった。 FIG. 24 (a) is a schematic diagram showing an example of a multicolor detection device using a dichroic array used in this embodiment, and is a configuration in which FIGS. 7 (b) and 23 (b) are fused. In FIG. 24A, since the luminous fluxes 21, 22, 23, and 24 have different optical path lengths, any of the corresponding emission point images 25, 26, 27, and 28 is connected by the sensor surface of the two-dimensional sensor 30. When the image is formed, other light emitting point images are not formed on the sensor surface, so that the image is slightly blurred. In FIG. 7, one light emitting point 75 was focused by one condensing lens 2, and four light emitting point images 25, 26, 27, and 28 were obtained. Therefore, the above blur is the cause of crosstalk. It never became. On the other hand, in FIG. 24A, a plurality of light emitting points 75 are focused by one condensing lens 2, and the light emitting point images 25, 26, 27, and the light emitting point images 25, 26, 27, which are divided into four for each light emitting point, and Since 28 was obtained, a plurality of light emitting point images 76 inside the pinhole image 74 overlapped with each other due to the above blurring, which caused crosstalk.

そこで,図24(b)に示す通り,本実施例では,光束21,22,及び23の光路上にそれぞれ異なる長さの光路長調整素子77,78,及び79を挿入し,集光レンズ2と2次元センサ30の光学的距離で定義される光束21,22,23,及び24の光路長が略等しくなるように調整した。光路長調整素子は,屈折率が1よりも大の透明材質で構成されている。例えば,屈折率が2の材質の内部では,空間的に同じ距離であっても,空中と比較して2倍の光学的距離を有する。このような構成とすることにより,発光点像25,26,27,及び28を2次元センサ30のセンサ面に同時に結像させることが可能となり,上記のボケ及びそれによるクロストークの発生を回避することができた。 Therefore, as shown in FIG. 24B, in this embodiment, optical path length adjusting elements 77, 78, and 79 having different lengths are inserted on the optical paths of the luminous fluxes 21, 22, and 23, respectively, and the condenser lens 2 is inserted. And the optical path lengths of the luminous fluxes 21, 22, 23, and 24 defined by the optical distance of the two-dimensional sensor 30 are adjusted to be substantially equal to each other. The optical path length adjusting element is made of a transparent material having a refractive index of more than 1. For example, inside a material having a refractive index of 2, even if the distance is spatially the same, it has twice the optical distance as compared with the air. With such a configuration, the light emitting point images 25, 26, 27, and 28 can be simultaneously imaged on the sensor surface of the two-dimensional sensor 30, and the above-mentioned blurring and the occurrence of crosstalk due to the above-mentioned blurring can be avoided. We were able to.

以上では,検出対象が略等間隔に配列する発光点アレイであったが,検出対象を1次元,2次元,あるいは3次元状の任意の発光分布とすることができ,図23(b)と同様の発光検出装置によって,検出結果から元の発光分布を再構築してイメージングすることも可能である。図25は,そのようなイメージングの例を模式的に示したものである。 In the above, the detection targets are the emission point arrays arranged at substantially equal intervals, but the detection targets can be any one-dimensional, two-dimensional, or three-dimensional emission distribution, as shown in FIG. 23 (b). It is also possible to reconstruct and image the original emission distribution from the detection results using a similar emission detection device. FIG. 25 schematically shows an example of such imaging.

図25(a)に示すように,発光分布80を2次元状に分布させた。ここでは,発光分布80が「α」という文字を描いている場合を例として示す。これに対して,発光点分布80に平行かつ近接してピンホールアレイ73を配置した。図25(a)は,発光点分布80とピンホールアレイ73に含まれる複数のピンホール72の位置関係及び大小関係を模式的に示したものである。ここでは,3×3=9個のピンホール72を2次元状に等間隔で配列した。発光点分布80と各ピンホール72は十分に近接しているため,図25(a)で,発光点分布80の内,各ピンホール72と重なっている部分からの発光が,各ピンホール72を通じて,図23(b)と同様の発光検出装置によって検出される。 As shown in FIG. 25 (a), the emission distribution 80 was distributed in a two-dimensional manner. Here, a case where the emission distribution 80 draws the character “α” is shown as an example. On the other hand, the pinhole array 73 was arranged parallel to and close to the emission point distribution 80. FIG. 25A schematically shows the positional relationship and the magnitude relationship of the light emitting point distribution 80 and the plurality of pinholes 72 included in the pinhole array 73. Here, 3 × 3 = 9 pinholes 72 are arranged two-dimensionally at equal intervals. Since the light emitting point distribution 80 and each pinhole 72 are sufficiently close to each other, in FIG. 25 (a), the light emitted from the portion of the light emitting point distribution 80 that overlaps with each pinhole 72 is emitted from each pinhole 72. Through, it is detected by a light emission detection device similar to that in FIG. 23 (b).

図25(b)は,このとき2次元カラーセンサ11によって撮像される,9個のピンホール72の像である9個のピンホール像74,及び9個のピンホール72を通して検出される発光点分布80の部分の像である9個の発光点分布部分像81を示している。これまでの実施例と同様に,各ピンホール72は拡大結像される一方で,ピンホール72の間隔とピンホール像74の間隔が等しいため,図25(b)に示す通り,隣り合うピンホール像74の隙間が狭くなったが,相互のクロストークは0%であった。また,各発光点分布部分像81は,対応する各ピンホール像74の内部に収められるため,やはり相互のクロストークは0%であった。 FIG. 25B shows the nine pinhole images 74, which are images of the nine pinholes 72, and the light emitting points detected through the nine pinholes 72, which are imaged by the two-dimensional color sensor 11 at this time. Nine emission point distribution partial images 81, which are images of the portion of the distribution 80, are shown. As in the previous examples, while each pinhole 72 is magnified and imaged, the distance between the pinhole 72 and the distance between the pinhole image 74 are equal. Therefore, as shown in FIG. 25 (b), adjacent pins are adjacent to each other. The gap between the hall images 74 became narrower, but the crosstalk between them was 0%. Further, since each emission point distribution partial image 81 is housed inside each corresponding pinhole image 74, the mutual crosstalk is also 0%.

図25(c)は,図25(a)において,発光点分布80とピンホールアレイ73の相対位置を横方向にずらしたものである。各ピンホール72は,図25(a)と比較して,発光点分布80の異なる部分と重なった。その重なった部分からの発光を,図25(d)に示すように,それぞれ結像させ,検出した。以上のように,発光点分布80とピンホールアレイ73の相対位置を,横方向及び縦方向に順次スライドさせ,撮像を繰り返すことによって,発光点分布80の全体像をイメージングすることができた。この際,発光点分布80と2次元カラーセンサ11の相対位置を固定すれば,画像処理を行わなくても,発光点分布80の全体像をイメージングすることができる。 FIG. 25 (c) shows the relative positions of the light emitting point distribution 80 and the pinhole array 73 shifted in the lateral direction in FIG. 25 (a). Each pinhole 72 overlapped with a different portion of the emission point distribution 80 as compared with FIG. 25 (a). As shown in FIG. 25 (d), the light emission from the overlapping portion was imaged and detected. As described above, the overall image of the light emitting point distribution 80 could be imaged by sequentially sliding the relative positions of the light emitting point distribution 80 and the pinhole array 73 in the horizontal direction and the vertical direction and repeating the imaging. At this time, if the relative positions of the light emitting point distribution 80 and the two-dimensional color sensor 11 are fixed, the entire image of the light emitting point distribution 80 can be imaged without performing image processing.

[実施例7]
本発明の実装上の課題のひとつは,各発光点と各集光レンズの位置合わせを如何に精度良く,簡便に行うかである。本実施例は,複数のキャピラリについて,これを実現する手段を示すものである。
[Example 7]
One of the problems in implementing the present invention is how to accurately and easily align each light emitting point with each condensing lens. This embodiment shows the means to realize this for a plurality of capillaries.

図26は,複数のキャピラリ49と,複数のキャピラリ49を配列するV溝アレイと,集光レンズアレイ8を一体化したデバイス86の構成例を示す断面模式図である。図26(a)は,レーザビーム54の照射位置における各キャピラリ49の長軸に垂直な断面を示し,図26(b)はレーザビーム54の照射位置ではない個所における各キャピラリ49の長軸に垂直な断面を示し,図26(c)は任意の一つのキャピラリの長軸を含む断面を示す。図26(a)は図26(c)のA−A断面に相当し,図26(b)は図26(c)のB−B断面に相当する。 FIG. 26 is a schematic cross-sectional view showing a configuration example of a device 86 in which a plurality of capillaries 49, a V-groove array in which a plurality of capillaries 49 are arranged, and a condenser lens array 8 are integrated. FIG. 26 (a) shows a cross section perpendicular to the long axis of each capillary 49 at the irradiation position of the laser beam 54, and FIG. 26 (b) shows a cross section perpendicular to the long axis of each capillary 49 at a position other than the irradiation position of the laser beam 54. A vertical cross section is shown, with FIG. 26 (c) showing a cross section including the long axis of any one capillary. 26 (a) corresponds to the AA cross section of FIG. 26 (c), and FIG. 26 (b) corresponds to the BB cross section of FIG. 26 (c).

図26に示すデバイス86は,複数のキャピラリ49からなるキャピラリアレイと,サブデバイス85を含む。サブデバイス85は,複数のV溝82が間隔pで配列したV溝アレイを含む部分であるV溝アレイデバイス84と,複数の集光レンズ2が間隔pで配列した集光レンズアレイ8を含む部分である集光レンズアレイデバイス83が一体化したものである。図26(a)において,各発光点1と,各V溝82,及び各集光レンズ2の中心軸をそれぞれ一致させてある。複数のキャピラリ49をそれぞれV溝82に押し当てることによって,簡便に,複数のキャピラリ49を所定の間隔pで同一平面上に配列させることができる。また,各キャピラリ49のレーザビーム54の照射位置である各発光点1と,各集光レンズ2が所望の距離となるように,サブデバイス85の構造を調整しておく。これにより,発光点1からの発光が集光レンズ2によって所望の通りに集光される。 The device 86 shown in FIG. 26 includes a capillary array composed of a plurality of capillaries 49 and a sub-device 85. The sub-device 85 includes a V-groove array device 84, which is a portion including a V-groove array in which a plurality of V-grooves 82 are arranged at intervals p, and a condenser lens array 8 in which a plurality of condenser lenses 2 are arranged at intervals p. The condensing lens array device 83, which is a part, is integrated. In FIG. 26A, the central axes of each light emitting point 1, each V groove 82, and each condensing lens 2 are aligned with each other. By pressing the plurality of capillaries 49 against the V-groove 82, the plurality of capillaries 49 can be easily arranged on the same plane at predetermined intervals p. Further, the structure of the sub-device 85 is adjusted so that each light emitting point 1 which is an irradiation position of the laser beam 54 of each capillary 49 and each condensing lens 2 are at a desired distance. As a result, the light emitted from the light emitting point 1 is focused by the condenser lens 2 as desired.

図26(a)に示すように,発光点1におけるキャピラリ49の断面には,サブデバイス85の集光レンズ2が存在し,V溝82が存在しない。一方,図26(b)に示すように,発光点1の両脇におけるキャピラリ49の断面には,サブデバイス83の集光レンズ2が存在せず,V溝82が存在する。図26(c)はキャピラリ49の長軸方向の断面を示し,サブデバイス85の中央に集光レンズ2が存在し,その両脇にV溝82が存在している。これは,V溝82によるキャピラリ49の高精度な位置合わせを実現しつつ,発光点1からの発光の検出をV溝82が邪魔をしないようにする工夫である。以上のようなサブデバイス85を予め作成しておけば,複数のキャピラリ49をそれぞれ各V溝82に押し付けるだけで,各発光点1と各集光レンズ2の高精度な位置合わせを簡便に行うことが可能となる。 As shown in FIG. 26A, the condenser lens 2 of the sub-device 85 is present in the cross section of the capillary 49 at the light emitting point 1, and the V-groove 82 is not present. On the other hand, as shown in FIG. 26B, the condenser lens 2 of the sub-device 83 does not exist and the V-groove 82 exists in the cross section of the capillary 49 on both sides of the light emitting point 1. FIG. 26C shows a cross section of the capillary 49 in the major axis direction, in which the condenser lens 2 is located in the center of the sub-device 85, and V-grooves 82 are present on both sides thereof. This is a device for preventing the V-groove 82 from interfering with the detection of light emission from the light-emitting point 1 while realizing highly accurate positioning of the capillary 49 by the V-groove 82. If the sub-device 85 as described above is created in advance, high-precision alignment of each light emitting point 1 and each condensing lens 2 can be easily performed by simply pressing a plurality of capillaries 49 against each V-groove 82. It becomes possible.

本実施例は,以上の実施例のいずれの構成とも組み合わせることができる。V溝アレイデバイス84と集光レンズアレイデバイス83を一体化したサブデバイス85は,射出成形やインプリントのような加工法で一体成形することが可能であり,低コストに量産も可能である。もちろん,V溝アレイデバイス84と集光レンズアレイデバイス83を別々に作製してから結合させることでサブデバイス85を完成させても良い。 This embodiment can be combined with any of the configurations of the above examples. The sub-device 85, which integrates the V-groove array device 84 and the condenser lens array device 83, can be integrally molded by a processing method such as injection molding or imprinting, and can be mass-produced at low cost. Of course, the sub-device 85 may be completed by separately producing the V-groove array device 84 and the condenser lens array device 83 and then combining them.

サブデバイスはV溝アレイが無い場合も有効である。例えば,サブデバイスのキャピラリ配列側の表面をV溝アレイではなく,平面としても良い。複数のキャピラリの配列間隔は別の手段によって調整する必要があるが,各キャピラリをサブデバイスの上記平面に押し付けることによって,各キャピラリと各集光レンズの距離,すなわち各発光点と各集光レンズの距離を制御することは可能である。あるいは,V溝ではなくても,キャピラリの位置を制御するための構造物をサブデバイスに設ければ良い。 The sub-device is also effective when there is no V-groove array. For example, the surface of the sub-device on the capillary array side may be a flat surface instead of the V-groove array. The arrangement spacing of multiple capillaries needs to be adjusted by another means, but by pressing each capillary against the above plane of the subdevice, the distance between each capillary and each condenser lens, that is, each emission point and each condenser lens It is possible to control the distance of. Alternatively, the sub-device may be provided with a structure for controlling the position of the capillary, even if it is not a V-groove.

各集光レンズ2の,発光点アレイの配列方向と平行方向の焦点距離をf1と,同垂直方向の焦点距離をf2とするとき,以上の実施例ではf=f1=f2としていたが,f1≠f2とすることも有効である。例えば,本実施例のように,発光点1がキャピラリ49の内部に存在するときに有効である。キャピラリ49は円筒形状をしているため,発光点アレイの配列方向にレンズ作用を持つが,各キャピラリ49の長軸方向にはレンズ作用を持たない。したがって,発光点1からの発光を集光レンズ2で効率良く集光するためには,上記のキャピラリ49のレンズ作用の方向による違いをキャンセルすることが有効であり,そのためにはf1≠f2,具体的にはf1<f2とすれば良い。これは,各集光レンズ2の表面を非球面形状とすることで簡単に実現できる。また,各集光レンズ2をフレネルレンズとすることによって,レンズの厚みを低減し,蛍光検出装置をさらに小型化することも可能である。フレネルレンズの利用は,f1=f2の場合も,もちろん有効である。 When the focal length of each condenser lens 2 in the direction parallel to the arrangement direction of the light emitting point array is f1 and the focal length in the same vertical direction is f2, f = f1 = f2 in the above embodiment, but f1 It is also effective to set ≠ f2. For example, it is effective when the light emitting point 1 exists inside the capillary 49 as in this embodiment. Since the capillary 49 has a cylindrical shape, it has a lens action in the arrangement direction of the emission point array, but does not have a lens action in the long axis direction of each capillary 49. Therefore, in order to efficiently condense the light emitted from the light emitting point 1 with the condensing lens 2, it is effective to cancel the difference depending on the direction of the lens action of the capillary 49, and for that purpose, f1 ≠ f2. Specifically, f1 <f2 may be set. This can be easily realized by forming the surface of each condenser lens 2 into an aspherical shape. Further, by using each condenser lens 2 as a Fresnel lens, it is possible to reduce the thickness of the lens and further reduce the size of the fluorescence detection device. Of course, the use of a Fresnel lens is effective even when f1 = f2.

図27は,図26において,発光点アレイと集光レンズアレイ8の中間に,ピンホールアレイ73を追加した構成を示す。より具体的には,V溝アレイデバイス84と集光レンズアレイデバイス83の中間にピンホールアレイ73を挟み込み,これら全体をサブデバイス86とした。図22(b)に示すピンホール72は,その存在によって,集光レンズ2が発光点71からの発光を集光する光量を制限していた。これに対して図27に示すピンホール72は,図27(a)に示すように,その存在によって,集光レンズ2が発光点1からの発光を集光する光量を制限しないように,各ピンホール72の径d0は発光点1の径dよりも大きくした(d0≧d)。図22(b)のピンホール72の役割は発光点71の径を実効的に縮小することであったのに対して,図27のピンホール72の役割は,集光レンズ2が対応する発光点1からの発光以外の光を集光することを回避することである。例えば,レーザビーム54をキャピラリアレイに照射する際に発生する,各キャピラリ49の外表面におけるレーザビーム54の散乱光が,集光レンズ2によって集光され,センサに到達することを回避,あるいは低減できる。あるいは,集光レンズ2によって隣接する発光点1からの発光が集光され,センサに到達することを回避,あるいは低減できる。以上によって,発光点1からの発光の高感度な検出が可能となる。 FIG. 27 shows a configuration in which a pinhole array 73 is added between the light emitting point array and the condenser lens array 8 in FIG. 26. More specifically, the pinhole array 73 was sandwiched between the V-groove array device 84 and the condenser lens array device 83, and the entire pinhole array 73 was used as the sub-device 86. The presence of the pinhole 72 shown in FIG. 22B limits the amount of light that the condenser lens 2 collects the light emitted from the light emitting point 71. On the other hand, as shown in FIG. 27A, each of the pinholes 72 shown in FIG. 27 does not limit the amount of light that the condensing lens 2 collects the light emitted from the light emitting point 1. The diameter d 0 of the pinhole 72 was made larger than the diameter d of the light emitting point 1 (d 0 ≧ d). The role of the pinhole 72 in FIG. 22B was to effectively reduce the diameter of the light emitting point 71, whereas the role of the pinhole 72 in FIG. 27 was to emit light corresponding to the condensing lens 2. This is to avoid condensing light other than the light emitted from point 1. For example, the scattered light of the laser beam 54 on the outer surface of each capillary 49, which is generated when the laser beam 54 is irradiated to the capillary array, is collected by the condenser lens 2 and is prevented or reduced from reaching the sensor. it can. Alternatively, it is possible to avoid or reduce the light emitted from the adjacent light emitting point 1 being collected by the condenser lens 2 and reaching the sensor. As described above, highly sensitive detection of light emission from the light emission point 1 becomes possible.

これらの不要な光をセンサに到達させないためには,発光点とセンサの中間の任意の箇所に色ガラスフィルタを配置することも有効である。色ガラスフィルタは上記のピンホールと併用しても良いし,どちらか一方のみを用いても良い。これらの不要な光が集光レンズ2で集光された光束は,集光レンズ2の光軸(すなわち,発光点1からの発光が集光レンズ2で集光された光束の光軸)に対して傾いて進行するため,上述のロングパスフィルタやダイクロで遮断することが難しい(発光点1からの発光が集光レンズ2で集光された光束に対して設計されているため)。これに対して,色ガラスフィルタは,光の入射角度が違っても,同等のフィルタ性能を発揮することができるため,上記の効果を得ることができる。 In order to prevent these unnecessary lights from reaching the sensor, it is also effective to place a colored glass filter at an arbitrary position between the light emitting point and the sensor. The colored glass filter may be used in combination with the above pinholes, or only one of them may be used. The luminous flux obtained by condensing these unnecessary lights by the condensing lens 2 is aligned with the optical axis of the condensing lens 2 (that is, the optical axis of the light beam in which the light emitted from the light emitting point 1 is condensed by the condensing lens 2). On the other hand, it is difficult to block the light with the above-mentioned long-pass filter or dichro because it travels at an angle (because the light emitted from the light emitting point 1 is designed for the luminous flux collected by the light collecting lens 2). On the other hand, the colored glass filter can exhibit the same filter performance even if the incident angle of light is different, so that the above effect can be obtained.

図28は,図27と同様の効果を生じる別な構成を示す。サブデバイス85の構成要素である集光レンズアレイデバイス83は,以上と同様に,ガラス,樹脂等の透明材料で作製するのに対して,V溝アレイデバイス84は不透明な材料で作製する。V溝アレイデバイス84の各集光レンズ2の光軸と交差する位置にそれぞれ貫通孔であるピンホール87を形成することにより,V溝アレイデバイス84がピンホールアレイの役割を担うようにする。このような構成にすることによって,図27の場合よりも簡便にサブデバイス85を作製することが可能である。 FIG. 28 shows another configuration that produces the same effect as in FIG. 27. The condenser lens array device 83, which is a component of the sub-device 85, is made of a transparent material such as glass or resin as described above, whereas the V-groove array device 84 is made of an opaque material. By forming pinholes 87, which are through holes, at positions intersecting the optical axes of each condenser lens 2 of the V-groove array device 84, the V-groove array device 84 plays the role of a pinhole array. With such a configuration, the sub-device 85 can be manufactured more easily than in the case of FIG. 27.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1 発光点
2 集光レンズ
3,3’ 平行光束
4,5 スポット
7 発光点像
8 集光レンズアレイ
11 2次元カラーセンサ
17〜20 ダイクロ
30 2次元センサ
31 透過型回折格子
33 再集光レンズ
37 2次元センサ
41 波長分散像
43 プリズム
45,48 発光点像
49 キャピラリ
53 レーザ光源
71 発光点
72 ピンホール
74 ピンホール像
75 発光点
76 発光点像
77〜79 光路長調整素子
80 発光分布
83 集光レンズアレイデバイス
84 V溝アレイデバイス
87 ピンホール
1 Emission point 2 Condensing lens 3, 3'Parallel light beam 4, 5 Spot 7 Emission point image 8 Condensing lens array 11 Two-dimensional color sensor 17 to 20 Dycro 30 Two-dimensional sensor 31 Transmission type diffraction grid 33 Recondensing lens 37 Two-dimensional sensor 41 Wavelength dispersion image 43 Prism 45, 48 Light emitting point image 49 Capillary 53 Laser light source 71 Light emitting point 72 Pinhole 74 Pinhole image 75 Light emitting point 76 Light emitting point image 77 to 79 Light path length adjusting element 80 Light emission distribution 83 Condensing Lens Array Device 84 V-Groove Array Device 87 Pinhole

Claims (12)

M≧2として,M個の発光点が配列した発光点アレイからの発光をそれぞれ個別に集光して光束とするM個の集光レンズが配列した集光レンズアレイと,
前記M個の光束をそれぞれ偏向して偏向光束とする光学素子と,
前記M個の偏向光束が並列に入射される少なくとも1個のセンサと,を有し,
前記M個の発光点の有効径の平均をd,
前記M個の集光レンズの焦点距離の平均をf,
前記M個の集光レンズの間隔の平均をp,
前記M個の集光レンズと,前記M個の光束が入射する前記光学素子の端面の間の最大光路長の平均をgとするとき,
d,f,p,gが,
f≧1/{(2*p)/(1.27*d)+1}*g
の関係を満足する,発光検出装置。
With M ≧ 2, a condenser lens array in which M condenser lenses are arranged to individually collect light emitted from the emission point array in which M emission points are arranged to obtain a luminous flux, and a condenser lens array.
An optical element that deflects each of the M light fluxes to obtain a deflected light flux, and
It has at least one sensor in which the M deflection luminous fluxes are incident in parallel.
The average of the effective diameters of the M light emitting points is d,
The average focal length of the M condenser lenses is f,
The average of the intervals between the M condenser lenses is p,
When the average of the maximum optical path lengths between the M condensing lenses and the end faces of the optical elements to which the M light fluxes are incident is g.
d, f, p, g are
f ≧ 1 / {(2 * p) / (1.27 * d) +1} * g
A light emission detection device that satisfies the relationship between.
f≧1/(p/d+1)*g
を満足する,請求項1に記載の発光検出装置。
f ≧ 1 / (p / d + 1) * g
The light emitting detection device according to claim 1, which satisfies the above.
f≦2*p
を満足する,請求項1又は2に記載の発光検出装置。
f ≦ 2 * p
The light emitting detection device according to claim 1 or 2, which satisfies the above.
f≦p
を満足する,請求項1〜3のいずれか1項に記載の発光検出装置。
f ≦ p
The light emitting detection device according to any one of claims 1 to 3, which satisfies the above.
前記M個の集光レンズにそれぞれ位置合わせされて配列したM個のピンホールを備えるピンホールアレイを有し,
前記M個の発光点は少なくとも1個の発光領域の一部の発光によって構成されている,請求項1〜4のいずれか1項に記載の発光検出装置。
It has a pinhole array having M pinholes aligned and arranged on each of the M condenser lenses.
The light emission detecting apparatus according to any one of claims 1 to 4, wherein the M light emitting points are composed of light emitted from a part of at least one light emitting region.
M≧2として,M個の発光点が配列した発光点アレイからの発光をそれぞれ個別に集光して光束とするM個の集光レンズが配列した集光レンズアレイと,
前記M個の光束をそれぞれ個別に再集光して再集光光束とする,M個の再集光レンズが配列した再集光レンズアレイと,
前記M個の再集光光束が並列に入射される少なくとも1個のセンサと,を有し,
前記M個の発光点の有効径の平均をd,
前記M個の集光レンズの焦点距離の平均をf,
前記M個の集光レンズの間隔の平均をp,
前記M個の集光レンズと,前記M個の再集光レンズの間の最大光路長の平均をgとするとき,
d,f,p,gが,
f≧1/{(2*p)/(1.27*d)+1}*g
の関係を満足する,発光検出装置。
With M ≧ 2, a condenser lens array in which M condenser lenses are arranged to individually collect light emitted from the emission point array in which M emission points are arranged to obtain a luminous flux, and a condenser lens array.
A refocusing lens array in which M refocusing lenses are arranged, in which the M light fluxes are individually refocused to obtain a refocusing light beam.
It has at least one sensor in which the M refocused luminous fluxes are incident in parallel.
The average of the effective diameters of the M light emitting points is d,
The average focal length of the M condenser lenses is f,
The average of the intervals between the M condenser lenses is p,
When the average of the maximum optical path lengths between the M condensing lenses and the M recondensing lenses is g.
d, f, p, g are
f ≧ 1 / {(2 * p) / (1.27 * d) +1} * g
A light emission detection device that satisfies the relationship between.
f≧1/(p/d+1)*g
を満足する,請求項6に記載の発光検出装置。
f ≧ 1 / (p / d + 1) * g
6. The light emitting detection device according to claim 6.
f≦2*p
を満足する,請求項6又は7に記載の発光検出装置。
f ≦ 2 * p
The light emitting detection device according to claim 6 or 7.
f≦p
を満足する,請求項6〜8のいずれか1項に記載の発光検出装置。
f ≦ p
The light emitting detection device according to any one of claims 6 to 8, which satisfies the above.
前記M個の集光レンズにそれぞれ位置合わせされて配列したM個のピンホールを備えるピンホールアレイを有し,
前記M個の発光点は少なくとも1個の発光領域の一部の発光によって構成されている,請求項6〜9のいずれか1項に記載の発光検出装置。
It has a pinhole array having M pinholes aligned and arranged on each of the M condenser lenses.
The light emission detecting apparatus according to any one of claims 6 to 9, wherein the M light emitting points are composed of light emitted from a part of at least one light emitting region.
複数のキャピラリが平面上に配列されたキャピラリアレイと,
前記キャピラリアレイを支持するデバイスと,をさらに備え,
前記発光点アレイは,前記キャピラリアレイからの個々の発光点により形成され,
前記集光レンズアレイは,前記デバイスに一体化されている,請求項1〜10のいずれか1項に記載の発光検出装置。
A capillary array in which multiple capillaries are arranged on a plane,
Further equipped with a device for supporting the capillary array,
The emission point array is formed by individual emission points from the capillary array.
The light emission detecting device according to any one of claims 1 to 10, wherein the condensing lens array is integrated with the device.
前記キャピラリアレイと前記集光レンズアレイとの間に配置され,M個のピンホールが前記M個の集光レンズにそれぞれ位置合わせされて配列したピンホールアレイをさらに備える,請求項11に記載の発光検出装置。 The eleventh aspect of claim 11, further comprising a pinhole array arranged between the capillary array and the condenser lens array, in which M pinholes are aligned and arranged on the M condenser lenses, respectively. Luminous detector.
JP2020169511A 2020-10-07 2020-10-07 Luminous detector Active JP7075974B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020169511A JP7075974B2 (en) 2020-10-07 2020-10-07 Luminous detector
JP2022080312A JP7329658B2 (en) 2020-10-07 2022-05-16 Luminescence detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020169511A JP7075974B2 (en) 2020-10-07 2020-10-07 Luminous detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018501420A Division JP6820907B2 (en) 2016-02-22 2016-02-22 Luminescent detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022080312A Division JP7329658B2 (en) 2020-10-07 2022-05-16 Luminescence detector

Publications (2)

Publication Number Publication Date
JP2021039106A true JP2021039106A (en) 2021-03-11
JP7075974B2 JP7075974B2 (en) 2022-05-26

Family

ID=74847022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020169511A Active JP7075974B2 (en) 2020-10-07 2020-10-07 Luminous detector

Country Status (1)

Country Link
JP (1) JP7075974B2 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0022506A1 (en) * 1979-07-17 1981-01-21 Erwin Sick GmbH Optik-Elektronik Optical measuring apparatus
JPH08105834A (en) * 1994-10-06 1996-04-23 Hitachi Ltd Fluorescent detection electrophoresis device
JPH10206384A (en) * 1997-01-16 1998-08-07 Kagaku Gijutsu Shinko Jigyodan Multicapillary electrophoretic device
JP2000321243A (en) * 1999-05-12 2000-11-24 Inst Of Physical & Chemical Res Multi-capillary electrophoresis device
JP2001124736A (en) * 1999-10-29 2001-05-11 Hitachi Ltd Capillary electrophoretic apparatus
JP2005050297A (en) * 2003-04-15 2005-02-24 Sharp Corp Image reader and illumination mechanism
JP2005091242A (en) * 2003-09-19 2005-04-07 Hitachi High-Technologies Corp Electrophoretic analyzer
JP2006292369A (en) * 2005-04-05 2006-10-26 Hitachi High-Technologies Corp Capillary electrophoretic device, and capillary electrophoretic method
US20070154938A1 (en) * 1999-10-05 2007-07-05 Yoshitada Oshida Method of inspecting a DNA chip and apparatus thereof
JP2007285999A (en) * 2006-04-20 2007-11-01 Furukawa Electric Co Ltd:The Optical measurement apparatus
US20080260577A1 (en) * 2007-04-23 2008-10-23 Masataka Shirai Chemiluminescent detection system
JP2009300385A (en) * 2008-06-17 2009-12-24 National Institute Of Advanced Industrial & Technology Emitted light detecting device for minute object
JP2010025893A (en) * 2008-07-24 2010-02-04 Canon Inc Detector and method
US20110036992A1 (en) * 2009-08-12 2011-02-17 Sony Corporation Light detection device
JP2011525629A (en) * 2008-06-24 2011-09-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microarray evaluation system and method
JP2014013214A (en) * 2012-07-05 2014-01-23 Ricoh Co Ltd Reflective optical sensor and image forming apparatus
US20150105295A1 (en) * 2012-09-26 2015-04-16 Palo Alto Research Center Incorporated Multiplexed flow assay based on absorption-encoded micro beads

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0022506A1 (en) * 1979-07-17 1981-01-21 Erwin Sick GmbH Optik-Elektronik Optical measuring apparatus
JPH08105834A (en) * 1994-10-06 1996-04-23 Hitachi Ltd Fluorescent detection electrophoresis device
JPH10206384A (en) * 1997-01-16 1998-08-07 Kagaku Gijutsu Shinko Jigyodan Multicapillary electrophoretic device
JP2000321243A (en) * 1999-05-12 2000-11-24 Inst Of Physical & Chemical Res Multi-capillary electrophoresis device
US20070154938A1 (en) * 1999-10-05 2007-07-05 Yoshitada Oshida Method of inspecting a DNA chip and apparatus thereof
JP2001124736A (en) * 1999-10-29 2001-05-11 Hitachi Ltd Capillary electrophoretic apparatus
JP2005050297A (en) * 2003-04-15 2005-02-24 Sharp Corp Image reader and illumination mechanism
JP2005091242A (en) * 2003-09-19 2005-04-07 Hitachi High-Technologies Corp Electrophoretic analyzer
JP2006292369A (en) * 2005-04-05 2006-10-26 Hitachi High-Technologies Corp Capillary electrophoretic device, and capillary electrophoretic method
JP2007285999A (en) * 2006-04-20 2007-11-01 Furukawa Electric Co Ltd:The Optical measurement apparatus
US20080260577A1 (en) * 2007-04-23 2008-10-23 Masataka Shirai Chemiluminescent detection system
JP2008268069A (en) * 2007-04-23 2008-11-06 Hitachi Ltd Chemiluminescence detection device
JP2009300385A (en) * 2008-06-17 2009-12-24 National Institute Of Advanced Industrial & Technology Emitted light detecting device for minute object
JP2011525629A (en) * 2008-06-24 2011-09-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microarray evaluation system and method
JP2010025893A (en) * 2008-07-24 2010-02-04 Canon Inc Detector and method
US20110036992A1 (en) * 2009-08-12 2011-02-17 Sony Corporation Light detection device
JP2011059095A (en) * 2009-08-12 2011-03-24 Sony Corp Light detection device
JP2014013214A (en) * 2012-07-05 2014-01-23 Ricoh Co Ltd Reflective optical sensor and image forming apparatus
US20150105295A1 (en) * 2012-09-26 2015-04-16 Palo Alto Research Center Incorporated Multiplexed flow assay based on absorption-encoded micro beads

Also Published As

Publication number Publication date
JP7075974B2 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
JP6820907B2 (en) Luminescent detector
CN101663576B (en) Compact optical detection system for a microfluidic devices
US20210165198A1 (en) Microscope system and method for microscopic imaging
US10753873B2 (en) Multicolor detection device
JP2003532887A (en) Optical system and method for optically analyzing light from a sample
US20240142366A1 (en) Methods and systems for fast recompensation of flow cytometery data
CN110114709A (en) Determine the method and microscope of fluorescence intensity
CN111630374B (en) High throughput high spectral imaging system
WO2005093393A2 (en) System with enhanced emission light collection for increased fluorescent light detection efficiency
CN108604017B (en) Dichroic mirror array
JP6975704B2 (en) Multicolor detector
JP7075974B2 (en) Luminous detector
JP7329658B2 (en) Luminescence detector
WO2020075293A1 (en) Dichroic mirror array and light detecting device
US8649003B2 (en) Microrefractometer using defocusing imaging
GB2583307A (en) Light-emitting detection device
GB2578260A (en) Light-emitting detection device
WO2024057455A1 (en) Optical device
CN117011170A (en) Ghost correction method for dual-channel quantitative FRET microscopic imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220516

R150 Certificate of patent or registration of utility model

Ref document number: 7075974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150