JP2021037226A - Functional member - Google Patents

Functional member Download PDF

Info

Publication number
JP2021037226A
JP2021037226A JP2019162302A JP2019162302A JP2021037226A JP 2021037226 A JP2021037226 A JP 2021037226A JP 2019162302 A JP2019162302 A JP 2019162302A JP 2019162302 A JP2019162302 A JP 2019162302A JP 2021037226 A JP2021037226 A JP 2021037226A
Authority
JP
Japan
Prior art keywords
functional member
member according
dimple
shaped
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019162302A
Other languages
Japanese (ja)
Other versions
JP7162263B2 (en
Inventor
英二 下平
Eiji Shimodaira
英二 下平
正夫 熊谷
Masao Kumagai
正夫 熊谷
秀実 荻原
Hidemi Ogiwara
秀実 荻原
伴子 児玉
Tomoko Kodama
伴子 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surf Technology Co Ltd
Friction Co Ltd
Original Assignee
Surf Technology Co Ltd
Friction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surf Technology Co Ltd, Friction Co Ltd filed Critical Surf Technology Co Ltd
Priority to JP2019162302A priority Critical patent/JP7162263B2/en
Publication of JP2021037226A publication Critical patent/JP2021037226A/en
Application granted granted Critical
Publication of JP7162263B2 publication Critical patent/JP7162263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a functional member for forming in an irregular manner, dimple-shaped fine recesses and ridge-shaped salient parts in the surrounding of the recesses, on a surface of a member, for providing simultaneously, an antimicrobe effect (or, sterilization and disinfection) and hydrophilic nature, powder adherence suppression, and light reflection suppression on the surface of the member.SOLUTION: A functional member of the invention comprises on a surface, dimple-shaped fine recesses and ridge-shaped salient parts in the surrounding of the recesses, in an irregular manner, for achieving an antimicrobe effect on the surface thereof.SELECTED DRAWING: Figure 1

Description

本発明は、表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成することで表面に抗菌作用等の機能を付与した機能性部材(以下において、単に部材とも称する。)に関する。 INDUSTRIAL APPLICABILITY The present invention is a functional member (hereinafter, also simply referred to as a member) in which a function such as an antibacterial action is imparted to the surface by forming a dimple-shaped minute concave portion on the surface and a ridge-shaped convex portion unevenly around the concave portion. ).

従来、小麦粉、コーンスターチ、片栗粉、抹茶パウダー、ココアパウダー、粉糖、カレー粉などの食用粉体や医薬品粉体(粉末薬)などの粉体は、フルイによる分別(或いは分級)の対象とされたり、ホッパーなどの収容容器やシューターやコンベアーなどの搬送部品を用いて取り扱われる。 Conventionally, edible powders such as wheat flour, cornstarch, kataguri powder, matcha powder, cocoa powder, powdered sugar, and curry powder, and powders such as pharmaceutical powders (powdered medicines) have been subject to sorting (or classification) by flue. , It is handled using storage containers such as hoppers and transport parts such as shooters and conveyors.

これら粉体はふるいや収容容器や搬送部品などの部材表面へ付着して成長し、比較的大きな塊等となって排出不良(ホッパー)を招いたり、目詰り(フルイ)を招くといったトラブルが発生し、生産効率の低下や不良品増加の一因となっている。 These powders adhere to the surface of members such as sieves, storage containers, and transport parts and grow, resulting in relatively large lumps and other problems such as poor discharge (hopper) and clogging (flui). However, it contributes to the decrease in production efficiency and the increase in defective products.

このようなことから、本発明者等は、種々の研究・実験を繰り返し、その結果に基づいて、本願出願人等は、特許文献1において、微粒子ピーニング処理(WPC処理(登録商標。以下、同様))を施すことにより、粉体と接触する部材(以下、粉体接触部材とも称する)の表面に微小凹部(微小ディンプル)を複数形成することで、粉体の付着を抑制することができる技術を提案した。 For this reason, the present inventors have repeated various studies and experiments, and based on the results, the applicants of the present application have described the fine particle peening treatment (WPC treatment (registered trademark; hereinafter the same)) in Patent Document 1. ))) To form a plurality of minute recesses (micro dimples) on the surface of a member that comes into contact with the powder (hereinafter, also referred to as a powder contact member), thereby suppressing the adhesion of the powder. Proposed.

特許第6416151号明細書Japanese Patent No. 6416151

ここで、本願出願人等は、ディンプル状の微小凹凸を形成することによる表面改質技術の様々な分野への適用の可能性を探るべく、処理対象と接触する部材(処理対象接触部材)の表面に微小凹凸を不均一に形成することによる作用効果を様々な分野で確認するといったアプローチを種々行っているが、その過程において、本発明者等は、これまで知られていなかった新たな知見を得た。 Here, the applicants of the present application, etc., in order to explore the possibility of applying the surface modification technology by forming dimple-shaped minute irregularities to various fields, of a member in contact with a processing target (treatment target contact member). Various approaches have been taken, such as confirming the action and effect of forming minute irregularities on the surface in various fields, but in the process, the present inventors have made new findings that have not been known so far. Got

なお、これまでに、ディンプル状の微小凹部を複数(無数)に形成することによる効果として知られていた効果は、粉体や粘着物の付着抑制、摺動部に微小凹凸を無数に形成することでオイル溜まりとして機能させて摺動抵抗の低減・摩耗抑制などの効果であり、今回発見した効果はこれらからは予測不能な全く別異の効果である。 It should be noted that the effect known as the effect of forming a plurality (innumerable) of dimple-shaped minute concave portions is to suppress the adhesion of powder or adhesive and to form innumerable fine irregularities on the sliding portion. As a result, it functions as an oil reservoir to reduce sliding resistance and suppress wear, and the effect discovered this time is a completely different effect that cannot be predicted from these.

その知見とは、部材の表面に、表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成すると、抗菌(或いは滅菌、殺菌)効果およびそれに加え親水性、粉体付着抑制、光の反射抑制を同時に生じさせることができ、ステンレス鋼、アルミニウム合金等の金属、プラスチック材といった基材を用いてその効果が発揮できるというものである。 The finding is that when dimple-shaped micro-concavities on the surface and ridge-shaped protrusions around the recesses are formed non-uniformly on the surface of the member, antibacterial (or sterilization, sterilization) effects and in addition, hydrophilicity and powder adhesion Suppression and suppression of light reflection can be generated at the same time, and the effect can be exhibited by using a base material such as a metal such as stainless steel or an aluminum alloy or a plastic material.

本発明は、上述したような実情に鑑みなされたもので、部材の表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果およびそれに加え親水性、粉体付着抑制、光の反射抑制を同時に持たせることができる機能性部材を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and is antibacterial (or antibacterial) (or) on the surface of a member by forming dimple-shaped minute recesses and ridge-shaped protrusions around the recesses unevenly on the surface of the member. It is an object of the present invention to provide a functional member capable of simultaneously having hydrophilicity, suppression of powder adhesion, and suppression of light reflection (sterilization, sterilization) effect.

このため、本発明に係る機能性部材は、
表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成することで表面に抗菌作用を持たせたことを特徴とする。
Therefore, the functional member according to the present invention is
It is characterized in that the surface is provided with an antibacterial action by forming dimple-shaped minute recesses on the surface and ridge-shaped protrusions non-uniformly around the recesses.

本発明において、抗菌性作用と同時に親水性を有することを特徴とすることができる。 The present invention can be characterized by having hydrophilicity as well as antibacterial action.

本発明において、抗菌性作用、親水性と同時に粉体付着抑制効果を有することを特徴とすることができる。 The present invention can be characterized by having an antibacterial action and a hydrophilicity as well as a powder adhesion suppressing effect.

本発明において、抗菌性作用、親水性、粉体付着抑制効果と同時に光の反射抑制効果を有することを特徴とすることができる。 The present invention can be characterized by having an antibacterial effect, a hydrophilicity, an effect of suppressing powder adhesion, and an effect of suppressing light reflection.

本発明において、抗菌性作用に、粉体抑制効果、光の反射抑制効果の何れか一つの効果を有することを特徴とすることができる。 The present invention can be characterized in that the antibacterial action has any one of a powder suppressing effect and a light reflection suppressing effect.

本発明において、前記部材の基材が金属材料から成ることを特徴とすることができる。 The present invention can be characterized in that the base material of the member is made of a metal material.

本発明において、前記部材の基材がステンレス鋼から成ることを特徴とすることができる。 The present invention can be characterized in that the base material of the member is made of stainless steel.

本発明において、前記部材の基材がアルミニウム合金から成ることを特徴とすることができる。 The present invention can be characterized in that the base material of the member is made of an aluminum alloy.

本発明において、前記部材がプラスチック材料から成ることを特徴とすることができる。 The present invention can be characterized in that the member is made of a plastic material.

本発明において、前記ディンプル状の微小凹部が形成されるピッチが、抗菌作用の対象となる細菌のサイズに対応した値であることを特徴とすることができる。 In the present invention, the pitch at which the dimple-shaped minute recesses are formed can be a value corresponding to the size of the bacterium that is the target of the antibacterial action.

本発明において、前記ディンプル状の微小凹部が形成されるピッチが、8.0μm以下であることを特徴とすることができる。 The present invention can be characterized in that the pitch at which the dimple-shaped minute recesses are formed is 8.0 μm or less.

本発明において、前記ディンプル状の微小凹部が形成されるピッチが、0.4μm以下であることを特徴とすることができる。 The present invention can be characterized in that the pitch at which the dimple-shaped minute recesses are formed is 0.4 μm or less.

本発明において、前記ディンプル状の微小凹部が形成されるピッチが、0.4〜8.0μmであることを特徴とすることができる。 In the present invention, the pitch at which the dimple-shaped minute recesses are formed can be 0.4 to 8.0 μm.

本発明において、表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を、ショット材を投射処理することに不均一に形成させたことを特徴とすることができる。 The present invention is characterized in that dimple-shaped minute recesses on the surface and ridge-shaped protrusions around the recesses are formed non-uniformly by projecting a shot material.

本発明において、前記ショット材料に、セラミックス微粒子を用いることを特徴とすることができる。 The present invention can be characterized in that ceramic fine particles are used as the shot material.

本発明において、表面に残留圧縮応力を形成させたことを特徴とすることができる。 The present invention can be characterized in that a residual compressive stress is formed on the surface.

本発明において、表面にショット処理時にショット材とともに巻き込まれた酸素を基材表層に残留させたことを特徴とすることができる。 The present invention can be characterized in that oxygen entrained on the surface together with the shot material during the shot treatment remains on the surface layer of the base material.

本発明において、前記部材が、板形状、管形状、網状、或いは線材であることを特徴とすることができる。 In the present invention, the member can be characterized by having a plate shape, a pipe shape, a net shape, or a wire rod.

本発明によれば、部材の表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果を有し、さらには抗菌作用に加えて親水性、粉体付着抑制効果、光の反射抑制効果を有する機能性部材を提供することができる。 According to the present invention, the surface of the member has an antibacterial (or sterilization, sterilization) effect by forming dimple-shaped minute recesses and ridge-shaped protrusions non-uniformly around the recesses. Can provide a functional member having hydrophilicity, powder adhesion suppressing effect, and light reflection suppressing effect in addition to antibacterial action.

本発明の一実施の形態に係る部材の表面に、微粒子ピーニング処理により、ディンプル状の微小凹部と凹部周辺に稜線状の凸部からなる不均一凹凸形状を形成した、種々の基材における各基材未処理部材に対する抗菌効果の有無、洗浄性に対応する親水性(低い接触角)、粉体の付着抑制効果(小麦粉)、光の反射抑制効果を示す一覧表である。Each group in various base materials in which a non-uniform uneven shape composed of dimple-shaped minute recesses and ridge-shaped protrusions around the recesses is formed on the surface of the member according to the embodiment of the present invention by fine particle peening treatment. It is a list showing the presence or absence of the antibacterial effect on the untreated material, the hydrophilicity corresponding to the detergency (low contact angle), the effect of suppressing the adhesion of powder (wheat flour), and the effect of suppressing the reflection of light. 同上実施の形態に係る試験に供した試料(1):SUS304ステンレス鋼未処理部材の表面の3D画像及び表面粗さを示す図である。Sample (1) used for the test according to the same embodiment: It is a figure which shows the 3D image and the surface roughness of the surface of the SUS304 stainless steel untreated member. 同上実施の形態に係る試験に供した試料(2):SUS304ステンレス鋼処理部材の表面の3D画像及び表面粗さを示す図である。Sample (2) used for the test according to the same embodiment: It is a figure which shows the 3D image and the surface roughness of the surface of the SUS304 stainless steel processing member. 同上実施の形態に係る試験に供した試料(3):SUS304ステンレス鋼処理部材の表面の3D画像及び表面粗さを示す図である。Sample (3) used for the test according to the same embodiment: It is a figure which shows the 3D image and the surface roughness of the surface of the SUS304 stainless steel processing member. は試料(2)の凹凸ピッチ(凸部の間隔)の測定データ(表面形状データ)の一例を示す図である。Is a diagram showing an example of measurement data (surface shape data) of the uneven pitch (interval between convex portions) of the sample (2). は試料(3)の凹凸ピッチ(凸部の間隔)の測定データ(表面形状データ)の一例を示す図である。Is a diagram showing an example of measurement data (surface shape data) of the uneven pitch (interval between convex portions) of the sample (3). 同上実施の形態に係る微粒子ピーニング処理に用いるメディアをワンショットすることにより実験的に形成した単一の微小凹部の断面SEM像である。It is a cross-sectional SEM image of a single micro-recess formed experimentally by one-shot of the medium used for the fine particle peening treatment according to the same embodiment. レーザ加工による凹部断面SEM像である。It is a concave cross section SEM image by laser processing.

以下、本発明に係る一実施の形態を、添付の図面を参照しつつ説明する。なお、以下で説明する実施の形態により、本発明が限定されるものではない。 Hereinafter, an embodiment according to the present invention will be described with reference to the accompanying drawings. The present invention is not limited to the embodiments described below.

上述したように、本願出願人等は、ディンプル(くぼみ、略凹球面)状の微小凹部を形成することによる表面改質技術の様々な分野への適用の可能性を探るべく、処理対象と接触する部材(処理対象接触部材)の表面に微小凹部を無数に形成することによる作用効果を様々な分野で確認するといったアプローチを種々行っているが、そのようなアプローチの過程において、本発明者等は、従来知られていなかった新たな知見を得た。 As described above, the applicants of the present application contact with the processing target in order to explore the possibility of applying the surface modification technology to various fields by forming dimples (dents, substantially concave spherical surfaces) -like minute recesses. Various approaches have been taken, such as confirming the action and effect of forming innumerable minute recesses on the surface of the member (contact member to be treated) in various fields. In the process of such an approach, the present inventors, etc. Gained new findings that were previously unknown.

なお、本実施の形態において、部材(機能性部材)は、処理対象が接触する部材(処理対象接触部材)(例えば、保管、収容、運搬、滑落、ふるい、撹拌器具、調理用ボール、調理用器具、手術用器具、医療用器具などを含む各種の処理の対象となるものに接触する部材)に限定されるものではなく、抗菌等を目的とする部材(機能性部材)に適用可能である。 In the present embodiment, the member (functional member) is a member (contact member to be processed) with which the processing target is in contact (for example, storage, storage, transportation, sliding, sieving, agitator, cooking bowl, cooking). It is not limited to members (members that come into contact with objects to be treated) including instruments, surgical instruments, medical instruments, etc., but can be applied to members (functional members) for the purpose of antibacterial or the like. ..

具体的には、前記アプローチの過程において、微粒子ピーニング処理により、表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成した部材(試験片)を、抗菌力評価試験(日本工業規格JIS Z 2801:2010)に供してみたところ、高い抗菌作用(或いは滅菌作用、殺菌作用)があるという知見を得た。
かかる知見は、ディンプル状の表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成した部材に関して、従来知られていない作用効果であり、上述したように、これまでの知見からは予測不能な作用効果である。
Specifically, in the process of the approach, an antibacterial activity evaluation test (test piece) was performed on a member (test piece) in which dimple-shaped minute recesses were formed on the surface and ridge-shaped protrusions were unevenly formed around the recesses by fine particle peening treatment. When it was subjected to the Japanese Industrial Standards JIS Z 2801: 2010), it was found that it had a high antibacterial action (or sterilizing action, bactericidal action).
Such findings are conventionally unknown operational effects with respect to a member in which dimple-shaped minute recesses and ridge-shaped protrusions are unevenly formed around the dimple-shaped surface, and as described above, so far. It is an unpredictable effect from the findings.

なお、 試験は、地方独立法人神奈川県立産業技術総合研究所にて実施した。
試験方法は、表面処理(表面テクスチャ)の異なる試料(試験片)について、フィルム密着法による抗菌力評価試験を行った。
The test was conducted at the Kanagawa Prefectural Institute of Industrial Technology.
As a test method, a sample (test piece) having a different surface treatment (surface texture) was subjected to an antibacterial activity evaluation test by a film adhesion method.

試験条件は、以下に示す通りである。
試験菌株:Escherichia coli NBRC3972株
接種菌液濃度:3.3×10CFU/mL
菌液接種量:0.4mL
試験面積:40×40mm角
被覆フィルム:エスクリニカパックL、積水化学工業(株)製
試験温度:35°C
試験時間:8時間
生菌数測定には大腸菌群用微生物培地シート(JNC(株)製)を用いた。
生菌数測定は、試料を滅菌生理食塩水9.6mLで洗い、この洗い出した液中の生菌数濃度を測定することで行った。
The test conditions are as shown below.
Test strains: Escherichia coli NBRC3972 strain inoculum concentration: 3.3 × 10 5 CFU / mL
Bacterial solution inoculation amount: 0.4 mL
Test area: 40 x 40 mm square Covering film: Esclinica Pack L, manufactured by Sekisui Chemical Co., Ltd. Test temperature: 35 ° C
Test time: 8 hours
A microbial medium sheet for coliform bacteria (manufactured by JNC Co., Ltd.) was used for measuring the viable cell count.
The viable cell count was measured by washing the sample with 9.6 mL of sterile physiological saline and measuring the viable cell count concentration in the washed out solution.

その結果、基準材である試料(1)「SUS304 ♯400 未処理」は、3ロットの試験片において、大腸菌の生菌数濃度(CFU/mL)が、4.0×10〜1.7×10の範囲(図1において抗菌改善効果の“基準”に相当する範囲)であった。なお、「SUS304 ♯400 未処理」は、SUS304からなるステンレス製の板材(板状の部材)の表面をP400番バフにより研磨仕上げしたもので、その表面は、図2に示すように、鏡面に近い光沢があり、若干の筋状の溝が観察される。参考までに、面粗さRa=0.031μm、面粗さRz=0.364μm程度の表面である。また、ディンプル状の微小凹部ではないが、筋(筋状溝)のピッチは、約0.4〜0.8μmで、深さが約0.05μm程度である。
後述する試料(2)〜(3)(機能性部材の例)は、この試料(1)に対して各種の表面処理を施したものである。
As a result, in the sample (1) "SUS304 # 400 untreated" as the reference material, the viable cell count concentration (CFU / mL) of Escherichia coli was 4.0 × 10 3 to 1.7 in the test pieces of 3 lots. was × 10 4 range (a range corresponding to "standard" antimicrobial improvement in FIG. 1). In "SUS304 # 400 untreated", the surface of a stainless steel plate (plate-shaped member) made of SUS304 is polished and finished with a P400 buff, and the surface is mirror-finished as shown in FIG. It has a close luster and some streaky grooves are observed. For reference, the surface has a surface roughness Ra = 0.031 μm and a surface roughness Rz = 0.364 μm. Further, although it is not a dimple-shaped minute recess, the pitch of the streaks (stripe grooves) is about 0.4 to 0.8 μm, and the depth is about 0.05 μm.
The samples (2) to (3) (examples of functional members) described later are obtained by subjecting the sample (1) to various surface treatments.

なお、後述するものを含めて、本実施の形態における3D画像、面粗さRa及び面粗さRzの測定値は、実際の面性状計測データからのものであり、KEYENCE社製の形状測定レーザーマイクロスコープVK−X100を用いて取得した。 The measured values of the 3D image, the surface roughness Ra, and the surface roughness Rz in the present embodiment, including those described later, are from the actual surface property measurement data, and are shape measurement lasers manufactured by KEYENCE. Obtained using a microscope VK-X100.

試料(2)「SUS304 ♯400 P43」の抗菌試験結果は、3ロットにおいて、大腸菌の生菌数濃度(CFU/mL)が、すべて1より小さい値(<1)であり、大腸菌が滅菌或いは殺菌され、図1に示すように、上記基準材の試料(1)に対して、明確な抗菌作用が得られることが確認された。 The antibacterial test result of sample (2) "SUS304 # 400 P43" shows that the viable cell count concentration (CFU / mL) of Escherichia coli in all 3 lots is less than 1 (<1), and Escherichia coli is sterilized or sterilized. As shown in FIG. 1, it was confirmed that a clear antibacterial action was obtained with respect to the sample (1) of the reference material.

なお、試料(2)「SUS304 ♯400 P43」は、試料(1)に対してディンプル状の微小凹部を形成する表面処理(微粒子ピーニング処理或いはマイクロディンプル処理)を施したもので、まず最初に、例えば、1種類目のメディア(商品名「フジランダム(カーボランダム)」、粒番号C♯400(最大粒子径75μm以下、累積高さ50%点の粒子径30.0±2.0μm)のSiC(炭化珪素))を1/数(例えば0.3)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面(試料の表面、部材の表面)に投射処理(以下、投射加工とも称する)を行う。
次に、例えば、2種類目のメディア(商品名「フジランダム(カーボランダム)」、粒番号C♯3000(最大粒子径13μm以下、累積高さ50%点の粒子径4.0±0.5μm)のSiC(炭化珪素))を、1/数(例えば0.4)MPa程度の圧縮空気と共に被加工面に投射処理(投射加工)を行った。
上述した仕様の異なるメディアを二段階に分けて投射加工を行う微小凹凸形成処理(微粒子ピーニング処理)を、ここではP43と称する。
なお、試料(2)は、図3に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。参考までに、面粗さRa=0.252μm、面粗さRz=3.238μm程度の表面である。
The sample (2) "SUS304 # 400 P43" was subjected to a surface treatment (fine particle peening treatment or microdimple treatment) for forming dimple-shaped minute recesses on the sample (1). For example, SiC of the first type of media (trade name "Fuji Random (Carborundum)", grain number C # 400 (maximum particle diameter 75 μm or less, particle diameter 30.0 ± 2.0 μm at a cumulative height of 50%)) (Silicon carbide)) is injected from an injection nozzle together with compressed air of about 1 / (for example, 0.3) MPa, and a projection process (hereinafter, also referred to as projection process) is performed on the surface to be processed (the surface of the sample and the surface of the member). I do.
Next, for example, the second type of media (trade name "Fuji Random (Carborundum)", grain number C # 3000 (maximum particle size 13 μm or less, particle size 4.0 ± 0.5 μm at a cumulative height of 50%) ) (SiC (Silicon Carbide)) was projected onto the surface to be processed (projection processing) together with compressed air of about 1 / several (for example, 0.4) MPa.
The micro-concavo-convex forming process (fine particle peening process) in which the above-mentioned media having different specifications are projected in two stages is referred to as P43 here.
As shown in FIG. 3, the sample (2) has innumerable dimple-shaped minute recesses randomly formed on the surface thereof. For reference, the surface has a surface roughness Ra = 0.252 μm and a surface roughness Rz = 3.238 μm.

ここで、従来は、微粒子状のメディア(ショット材)を投射してディンプル状の微小凹部を形成する投射加工では、面粗さRa=0.252μm、面粗さRz=3.238μm程度の微小凹部(試料(2)(P43処理)の凹凸ピッチ(隣接する凸部の間隔)の範囲が1.7〜7.3μm程度、凹部深さの範囲が0.2〜1.0μm程度)を形成することは難しかったが、本発明者等の実験、研究等を通じて、仕様の異なるメディア(ショット材)を二段階に分けて投射加工を行うことで、ステンレス材などであっても非常に小さなディンプル状の微小凹部を無数にランダムに形成することができるようになった。 Here, conventionally, in the projection process of projecting a fine particle-like medium (shot material) to form dimple-like minute recesses, the surface roughness Ra = 0.252 μm and the surface roughness Rz = 3.238 μm. A concave portion (sample (2) (P43 treatment) has a concave-convex pitch (interval between adjacent convex portions) of about 1.7 to 7.3 μm and a concave depth range of about 0.2 to 1.0 μm). It was difficult to do this, but through experiments, research, etc. by the present inventor, etc., by performing projection processing on media (shot materials) with different specifications in two stages, even stainless steel materials, very small dimples. It has become possible to randomly form innumerable minute recesses.

試料(3)「SUS304 ♯400 PT1」の抗菌試験結果は、3ロットにおいて、試料(2)同様、大腸菌の生菌数濃度(CFU/mL)が、すべて1より小さい値(<1)であり、大腸菌が滅菌或いは殺菌され、図1に示すように、上記基準材の試料(1)に対して、明確な抗菌作用が得られることが確認された。 The antibacterial test result of sample (3) "SUS304 # 400 PT1" is that the viable cell count concentration (CFU / mL) of Escherichia coli is less than 1 (<1) in 3 lots as in sample (2). It was confirmed that Escherichia coli was sterilized or sterilized, and as shown in FIG. 1, a clear antibacterial action was obtained with respect to the sample (1) of the reference material.

なお、試料(3)「SUS304 ♯400 PT1」は、試料(1)に対してディンプル状の微小凹部を形成する表面処理(微粒子ピーニング処理)を施したもので、具体的には、新日本金属(株)製のタングステンカーバイド粉、記号WC−10(粒度:0.70〜1.19μm)を、1/数(例えば0.4)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面に投射加工を行った。
このような投射加工を行う微小凹凸形成処理(微粒子ピーニング処理)を、ここではPT1と称する。
なお、試料(3)は、図4に示すように、表面に、ディンプル状の微小凹部が無数にランダムに形成されている。参考までに、面粗さRa=0.042μm、面粗さRz=0.689μm程度の表面である。
The sample (3) "SUS304 # 400 PT1" is obtained by subjecting the sample (1) to a surface treatment (fine particle peening treatment) for forming dimple-shaped minute recesses. Tungsten carbide powder manufactured by Co., Ltd., symbol WC-10 (particle size: 0.70 to 1.19 μm) is injected from an injection nozzle together with compressed air of about 1 / several (for example, 0.4) MPa to be processed. Projection processing was performed on.
The micro-concavo-convex forming process (fine particle peening process) that performs such projection processing is referred to as PT1 here.
As shown in FIG. 4, the sample (3) has innumerable dimple-shaped minute recesses randomly formed on the surface thereof. For reference, the surface has a surface roughness Ra = 0.042 μm and a surface roughness Rz = 0.689 μm.

ここで、従来は、微粒子状のメディア(ショット材)を投射してディンプル状の微小凹部を形成する投射加工では、面粗さRa=0.042μm、面粗さRz=0.689μm程度の微小凹部(試料(3)(PT1処理)の凹凸ピッチ(隣接する凸部の間隔)の範囲が0.4〜1.0μm程度、凹部深さの範囲が0.04〜0.17μm程度)を形成することはできなかったが、本発明者等の実験、研究等を通じて、タングステンカーバイド程度以上の比重の大きなメディア(ショット材)を用いることで、ステンレス材などであっても非常に小さなディンプル状の微小凹部を無数にランダムに形成することができるようになった。 Here, conventionally, in the projection process of projecting a fine medium (shot material) to form dimple-shaped minute recesses, the surface roughness Ra = 0.042 μm and the surface roughness Rz = 0.689 μm. Concavities (sample (3) (PT1 treatment) unevenness pitch (interval between adjacent convex parts) range of about 0.4 to 1.0 μm, concave depth range of about 0.04 to 0.17 μm) are formed. However, through experiments, research, etc. by the present inventors, by using a medium (shot material) with a large specific gravity of about tungsten carbide or more, even stainless steel material has a very small dimple shape. It has become possible to randomly form innumerable minute recesses.

また、試料(2)「SUS304 ♯400 P43」の微小凹部の凹凸ピッチを観察した表面形状データを図5に示す。試料(2)の凹凸ピッチ(凸部の間隔)範囲(μm)は1.7〜7.3μm程度であり,その平均凹凸ピッチ(凸部の間隔)は3.56μm程度となる。また、凹部深さ範囲は0.2〜1.0μm程度であり、その平均凹部深さは0.51μm程度となる。 Further, FIG. 5 shows surface shape data obtained by observing the uneven pitch of the minute recesses of the sample (2) “SUS304 # 400 P43”. The uneven pitch (spacing of convex portions) range (μm) of the sample (2) is about 1.7 to 7.3 μm, and the average uneven pitch (spacing of convex portions) is about 3.56 μm. The recess depth range is about 0.2 to 1.0 μm, and the average recess depth is about 0.51 μm.

また、試料(3)「SUS304 ♯400 PT1」の微小凹部の凹凸ピッチを観察した表面形状データを図6に示す。試料(3)の凹凸ピッチ(凸部の間隔)範囲(μm)は0.4〜1.0μm程度であり,その平均凹凸ピッチ(凸部の間隔)は0.72μm程度となる。また、凹部深さ範囲は0.04〜0.17μm程度であり、その平均凹部深さは0.10μm程度となる。 Further, FIG. 6 shows surface shape data obtained by observing the uneven pitch of the minute recesses of the sample (3) “SUS304 # 400 PT1”. The uneven pitch (distance between convex portions) range (μm) of the sample (3) is about 0.4 to 1.0 μm, and the average uneven pitch (interval between convex portions) is about 0.72 μm. The recess depth range is about 0.04 to 0.17 μm, and the average recess depth is about 0.10 μm.

図5、図6から分かるように、微粒子ピーニング処理により形成された凹凸表面は、レーザ加工等で予め設計された図面に従って形成される幾何学的かつ規則的な凹凸形状とは全く異なり、ディンプル状の微小凹部と凹部周辺に稜線状の凸部が、それぞれの形状、ピッチ、深さが不均一に形成されていることを特徴としている。 As can be seen from FIGS. 5 and 6, the uneven surface formed by the fine particle peening treatment is completely different from the geometrical and regular uneven shape formed according to the drawing designed in advance by laser processing or the like, and has a dimple shape. It is characterized in that the minute concave portion and the ridge-shaped convex portion around the concave portion are formed unevenly in their respective shapes, pitches, and depths.

ところで、試料(2)、(3)などは、研磨仕上げにより表面にすじ状溝(研磨溝)を形成した試料(1)に比べて、大腸菌に対して極めて顕著な抗菌或いは滅菌、殺菌効果がある。 By the way, the samples (2), (3) and the like have extremely remarkable antibacterial, sterilizing and bactericidal effects against Escherichia coli as compared with the sample (1) in which streaky grooves (polishing grooves) are formed on the surface by polishing finish. is there.

これは、詳細な解析が待たれるところではあるが、微粒子ピーニング処理により形成されるディンプル状の微小凹部は、試料(1)のようにステンレス製の部材(試料)の表面に研削やラッピング等により形成される凹部(底部が筋状に連続して延びている凹部(筋、溝))とは異なり、噴射されたメディア(ショット材粒子)により部材表面がディンプル状に凹まされたそれぞれの凹部が、周囲の凸部により仕切られる(区切られる、画成される)ことで隣接する凹部同士が独立的に無数にランダムに形成されることが、理由のひとつであると考えられる。 This is where detailed analysis is awaited, but the dimple-shaped minute recesses formed by the fine particle peening process are formed by grinding or wrapping the surface of the stainless steel member (sample) as in sample (1). Unlike the recesses (recesses (streaks, grooves) whose bottoms extend continuously in a streak shape), each recess in which the member surface is recessed in a dimple shape by the ejected media (shot material particles) is formed. It is considered that one of the reasons is that the adjacent concave portions are independently and randomly formed innumerably by being partitioned (separated and defined) by the surrounding convex portions.

すなわち、大腸菌のサイズは、東京都健康安全研究センターの提供データによると、大腸菌(O157、O111など)の細菌の大きさは、1.1〜1.5μm(よこ寸法)×2.0〜6.0μm(長さ)程度であり、大腸菌が、微粒子ピーニング処理により形成される微小凹部にはまってしまったり、凸部に乗り上げてしまうことで、大腸菌が移動・運動を自由に行えなくなって死滅したり、そのような移動・運動が規制された状態で比較的長く伸びる鞭毛が回転運動して自己損傷して死滅してしまうことなどにより、抗菌効果(作用が)生じるなどと予測することができる。 That is, according to the data provided by the Tokyo Metropolitan Health and Safety Research Center, the size of Escherichia coli (O157, O111, etc.) is 1.1 to 1.5 μm (horizontal size) x 2.0 to 6 It is about 0.0 μm (length), and E. coli gets stuck in the micro-concave formed by the fine particle peening process or rides on the convex part, so that the E. coli cannot move and move freely and die. Or, it can be predicted that an antibacterial effect (action) will occur due to the fact that the flagella, which grow relatively long in such a state where movement and movement are restricted, rotate and self-damage and die. ..

なお、サルモネラ菌は、その大きさは0.7〜1.5μm(よこ寸法)×2.0〜5. 0μm(長さ)であり、このように似たようなサイズの細菌に対しても、大腸菌と同様に、本実施の形態に係る微粒子ピーニング処理によりその表面に微小凹凸を無数に形成した部材には抗菌或いは滅菌、殺菌効果があるものと考えられる。 The size of Salmonella is 0.7 to 1.5 μm (horizontal size) x 2.0 to 5. Similar to Escherichia coli, a member having innumerable fine irregularities formed on its surface by the fine particle peening treatment according to the present embodiment, even for bacteria having a length of 0 μm and having a similar size. Is considered to have antibacterial, sterilizing, and bactericidal effects.

すなわち、本実施の形態に係る微粒子ピーニング処理によりその表面にディンプル状の微小凹部を無数に形成した抗菌部材は、「鞭毛を持ったグラム陰性菌である、大腸菌、サルモネラ菌等の一般細菌」に適用可能であると考えられる。 That is, the antibacterial member in which innumerable dimple-shaped minute recesses are formed on the surface by the fine particle peening treatment according to the present embodiment is applied to "general bacteria such as Escherichia coli and Salmonella, which are gram-negative bacteria having flagella". It is considered possible.

また、一般細菌としては、百日咳菌、結核菌、ジフテリア菌、赤痢菌、コレラ菌なども存在するが、神奈川県衛生研究所の資料(細菌の構造と大きさ)によれば、これらは大腸菌よりもサイズが小さく、百日咳菌のサイズは、例えば、0.2μm×0.3〜1.0μmであるため、本発明において抗菌作用の対象となる細菌のサイズに対応した値(本発明に係るディンプル状の微小凹部が形成されるピッチ)の下限値は、0.2μm程度と考えられる(ディンプル状の微小凹部が形成されるピッチは、0.2μm以上とも言える)。 In addition, as general bacteria, there are also Bordetella pertussis, Mycobacterium tuberculosis, Klebs-Löyma, Shigella, Vibrio cholerae, etc. Since the size of B. coli is small and the size of B. pertussis is, for example, 0.2 μm × 0.3 to 1.0 μm, a value corresponding to the size of the bacterium that is the target of the antibacterial action in the present invention (dimple according to the present invention). The lower limit of the pitch at which the shape-like minute recesses are formed is considered to be about 0.2 μm (the pitch at which the dimple-shaped minute recesses are formed can be said to be 0.2 μm or more).

このように、本実施の形態によれば、ステンレス製の部材の表面に、筋状に延びている凹部(筋、溝)ではなく、微粒子ピーニング処理により、凹部の底部が周囲の隣接する凹部の底部と凸部を介して画成されていてそれぞれが独立的に形成されている微小凹部を無数にランダムに形成することで、大腸菌等の細菌に対して抗菌或いは滅菌、殺菌効果(或いは菌増殖抑制効果)を生じさせることができる。 As described above, according to the present embodiment, the bottom of the recess is formed on the surface of the stainless steel member by the fine particle peening treatment instead of the recesses (streaks, grooves) extending in a streak pattern. Antibacterial, sterilizing, and bactericidal effects (or bacterial growth) against bacteria such as Escherichia coli by randomly forming innumerable microrecesses that are defined through the bottom and convex parts and are independently formed. Suppressive effect) can be produced.

続いて、機能性部材の他の例として、オーステナイト系ステンレス鋼SUS304基材で実施した表面処理条件を用いて、加工性に優れ安価なフェライト系SUS430、汎用されているアルミニウム合金A6063、プラスチック材ポリメチルメタクリレートPMMAの基材における、種々の特性を、微粒子ピーニング処理(WPC処理)をしていない基材と比較評価した。
その結果、図1にまとめて示すように、これら各種の機能性部材は、未処理基材に比べて、抗菌性等の種々の特性が大幅に改善できる結果が得られた。
Subsequently, as another example of the functional member, using the surface treatment conditions carried out on the austenitic stainless steel SUS304 base material, ferritic SUS430, which is excellent in workability and inexpensive, aluminum alloy A6063, which is widely used, and plastic material poly Various properties of the base material of methyl methacrylate PMMA were evaluated in comparison with the base material not subjected to the fine particle peening treatment (WPC treatment).
As a result, as shown collectively in FIG. 1, it was obtained that these various functional members can significantly improve various properties such as antibacterial properties as compared with the untreated base material.

すなわち、本実施の形態によれば、微粒子ピーニング処理(WPC処理)により、ディンプル状の微小凹部と凹部周辺に稜線状の凸部からなる不均一凹凸形状を形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果、さらにはそれに同時に洗浄性の改善、粉体の付着抑制効果や光の反射抑制効果が得られる機能性部材を提供することができる。 That is, according to the present embodiment, the fine particle peening treatment (WPC treatment) forms a non-uniform uneven shape composed of dimple-shaped minute concave portions and ridge-shaped convex portions around the concave portions, thereby forming an antibacterial shape on the surface of the member. It is possible to provide a functional member capable of (or sterilizing, sterilizing) effect, and at the same time, improving detergency, suppressing powder adhesion, and suppressing light reflection.

ここで、本実施の形態に係る微小凹凸形成処理(微粒子ピーニング処理(WPC処理))は、既知の噴射装置により、上述したようなメディア(ショット材、研磨材粒子)を噴射して処理対象接触部材等の部材の表面に衝突させることで行うことができる。 Here, in the fine unevenness forming treatment (fine particle peening treatment (WPC treatment)) according to the present embodiment, the media (shot material, abrasive particles) as described above is injected by a known injection device to make contact with the processing target. This can be done by colliding with the surface of a member such as a member.

例えば、噴射装置としては、ブラスト装置を用いることができ、ブラスト装置の一例としては、例えば、株式会社不二製作所製の「PNEUMA BLASTER」(型式:SCシリーズ、SGシリーズなど)などを用いることができる。また、例えば、特開2019−25584号公報などに記載されているものを用いることができる。 For example, a blasting device can be used as the injection device, and as an example of the blasting device, for example, "PNEUMA BLASTER" (model: SC series, SG series, etc.) manufactured by Fuji Seisakusho Co., Ltd. can be used. it can. Further, for example, those described in Japanese Patent Application Laid-Open No. 2019-25584 can be used.

より具体的には、噴射粒体を部材の表面に向けて噴射する噴射装置としては、圧縮気体(空気、アルゴン、窒素等)と共に研磨材(微粒子)の噴射を行う既知のブラスト加工装置(ブラスト処理装置)を使用することができる。 More specifically, as an injection device that injects the injection particles toward the surface of the member, a known blasting device (blasting) that injects an abrasive (fine particles) together with a compressed gas (air, argon, nitrogen, etc.). Processing equipment) can be used.

そして、ブラスト加工装置(ブラスト処理装置)としては、圧縮気体の噴射により生じた負圧を利用して研磨材を噴射するサクション式のブラスト加工装置,研磨材タンクから落下した研磨材を圧 縮気体に乗せて噴射する重力式のブラスト加工装置,研磨材が投入されたタンク内に圧縮気体を導入し、別途与えられた圧縮気体供給源からの圧縮気体流に研磨材タンクからの研磨材流を合流させて噴射する直圧式のブラスト加工装置、及び、上記直圧式の圧縮気体流を、ブロワーユニットで発生させた気体流に乗せて噴射するブロワー式ブラスト加工装置等が市販されているが,これらはいずれも前述した噴射粒体の噴射に使用可能である。
また、水などの液体と共にショットを高圧で噴射するウォータージェットも使用することができる。
The blasting device (blasting device) is a suction type blasting device that injects the abrasive by using the negative pressure generated by the injection of the compressed gas, and the abrasive that has fallen from the abrasive tank is compressed gas. A gravity-type blasting device that injects on the abrasive, introduces compressed gas into the tank into which the abrasive is charged, and feeds the abrasive flow from the abrasive tank to the compressed gas flow from the separately given compressed gas supply source. A direct pressure type blasting device that merges and injects, and a blower type blasting device that injects the above direct pressure type compressed gas flow on a gas flow generated by a blower unit are commercially available. Can be used for injecting the above-mentioned injection particles.
A water jet that injects a shot at high pressure together with a liquid such as water can also be used.

ところで、本実施の形態では、微粒子ピーニング処理(WPC処理)により、ディンプル状の微小凹部を無数にランダムに形成したが、本発明はこれに限定されるもではなく、処理対象接触部材等の部材の表面に化学研磨(化学エッチング)を施すことで、微小凹部をランダムに複数(多数)形成することができる。なお、化学研磨(化学エッチング)としては、例えば、塩酸・硝酸・硫酸・リン酸などの酸性薬剤や塩化鉄(III)などを任意の割合で水溶液に調製し使用することが想定される。特に、部材が管形状(筒状)を有する場合、微粒子ピーニング処理ではその内面(内周面)に微小凹凸を形成することは困難であるため、管形状(筒状)の部材の内面(内周面)に、本発明に係る各種作用、効果、特性などを持たせる場合には、化学エッチング処理は有効である。 By the way, in the present embodiment, innumerable dimple-shaped minute recesses are randomly formed by the fine particle peening treatment (WPC treatment), but the present invention is not limited to this, and members such as contact members to be treated are not limited to this. By applying chemical polishing (chemical etching) to the surface of the above, a plurality (many) of minute recesses can be randomly formed. As chemical polishing (chemical etching), for example, it is assumed that acidic chemicals such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, iron (III) chloride, and the like are prepared in an aqueous solution at an arbitrary ratio and used. In particular, when the member has a tube shape (cylindrical shape), it is difficult to form minute irregularities on the inner surface (inner peripheral surface) of the member by the fine particle peening treatment, so that the inner surface (inner surface) of the tube-shaped (cylindrical) member. The chemical etching treatment is effective when the peripheral surface) is provided with various actions, effects, characteristics, etc. according to the present invention.

また、処理対象接触部材等の部材の表面に、アルゴンボンバード処理を施すことで、接触面にサブミクロン以下の凹凸をランダムに複数(多数)形成することもできる。 Further, by applying an argon bombard treatment to the surface of a member such as a contact member to be treated, it is possible to randomly form a plurality (many) of irregularities of submicron or less on the contact surface.

なお、本発明に係る機能性部材は、例えば、処理対象が接触する処理対象接触部材に適用でき、その場合において、例えば、保管、収容、運搬、滑落、ふるい、撹拌器具、調理用ボール、調理用器具、手術用器具、医療用器具などを含む各種の処理に用いられる部材に適用可能である。 The functional member according to the present invention can be applied to, for example, a contact member to be processed, which is in contact with the object to be processed. In that case, for example, storage, storage, transportation, sliding, sieving, agitator, cooking bowl, cooking. It can be applied to members used in various treatments including tools, surgical instruments, medical instruments, and the like.

また、本発明に係る機能性部材は、上述したような処理対象接触部材に限定されるものではなく、車両用の吊手(つり革のグリップ部分)、その他の取っ手或いは持ち手(グリップ)、ドアノブ、ハンドル、便座など人や動物が触れる部材など、抗菌(或いは菌増殖抑制)等の目的のために、ディンプル状の微小凹部を無数にランダムに形成する部材であれば適用可能である。 Further, the functional member according to the present invention is not limited to the contact member to be processed as described above, and is not limited to the contact member to be processed as described above, but is a hanger for a vehicle (grip portion of a strap), another handle or handle (grip), and the like. It is applicable to members such as doorknobs, handles, toilet seats, etc. that are touched by humans and animals, as long as they are members that randomly form innumerable dimple-shaped minute recesses for the purpose of antibacterial (or suppression of bacterial growth).

ところで、本実施の形態に係る「表面に抗菌作用などの各種の機能を持たせた機能性部材」の形状は特に限定されるものではなく、平坦形状、曲面形状などの表面形状を有する部材の他、部材そのものが、線材、或いは線材を編み込んで構成される網状(ネット状)、メッシュ状の部材などであっても、本実施の形態に係る機能性部材に含めることができるものである。 By the way, the shape of the "functional member having various functions such as antibacterial action on the surface" according to the present embodiment is not particularly limited, and the member having a surface shape such as a flat shape or a curved surface shape. In addition, even if the member itself is a wire rod or a net-like (net-like) or mesh-like member formed by knitting the wire rod, it can be included in the functional member according to the present embodiment.

ここで、本発明では、微粒子ピーニングにより形成された凹凸表面を形状或いは構造面から特定するために、レーザ加工等で予め設計された図面に従って形成される幾何学的かつ規則的な凹凸形状とは全く異なり、ディンプル状の微小凹部と凹部周辺に稜線状の凸部が、それぞれの形状、ピッチ、深さが不均一に形成されているという特定方法を用いている。
すなわち、「微粒子ピーニングにより表面に微小凹凸を形成することで表面に抗菌作用を持たせる」という特定方法(表現)を用いる代わりに、「表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成することで表面に抗菌作用を持たせる」という特定方法(表現)を用いている。
しかしながら、先行技術などとの対比において、上記特定方法(表現)では、微粒子ピーニングにより形成された凹凸表面を、他と区別した特徴的な特定方法(表現)として採用することが難しくなる場合も想定される。
Here, in the present invention, in order to specify the uneven surface formed by fine particle peening from the shape or structural surface, what is the geometrical and regular uneven shape formed according to a drawing pre-designed by laser processing or the like? It is completely different, and a specific method is used in which dimple-shaped minute recesses and ridge-shaped protrusions around the recesses are formed unevenly in shape, pitch, and depth.
That is, instead of using the specific method (expression) that "the surface is given an antibacterial effect by forming minute irregularities on the surface by fine particle peening", "dimple-shaped minute concaves on the surface and ridge-shaped protrusions around the concaves". A specific method (expression) of "giving an antibacterial effect to the surface by forming the part non-uniformly" is used.
However, in comparison with the prior art, it is assumed that it may be difficult to adopt the uneven surface formed by fine particle peening as a characteristic specific method (expression) that distinguishes it from others in the above specific method (expression). Will be done.

このため、「微粒子ピーニングにより表面に微小凹凸を形成することで表面に抗菌作用を持たせる」という特定方法(表現)により、微粒子ピーニングにより形成された凹凸表面を特定せざるを得ない状況が想定される。
従って、微粒子ピーニング処理により形成された微小凹凸を形状、構造、特性等により特定することには、本願出願時において不可能・非現実的事情が存在しており、「微粒子ピーニングにより表面に微小凹凸を形成することで」という表現を用いざるを得ない場合があることについて、以下に説明しておく。
For this reason, it is assumed that there is no choice but to specify the uneven surface formed by fine particle peening by the specific method (expression) that "the surface is given an antibacterial effect by forming fine irregularities on the surface by fine particle peening". Will be done.
Therefore, it is impossible or unrealistic at the time of filing the application for the present application to specify the minute irregularities formed by the fine particle peening treatment by the shape, structure, characteristics, etc. It will be explained below that the expression "by forming" may have to be used.

微粒子ピーニング処理は、ガラスビーズなどの投射粒(メディア)を、圧縮空気を介し秒速数十から百m以上の速度で加工対象表面に衝突させ、有意な寸法変化を伴わずに、その縁に凸部を有する略球面状のミクロンサイズの微小凹部を不規則に加工面の略全面に形成するものであり、微粒子ピーニング処理においてメディアが衝突して微小凹部が形成される際には、クレーター状に、その周囲が***して凸部が形成され(図7参照)、この***した凸部は、他のメディアが衝突することで、凹まされるため凸部の高さは不規則となる(図3〜図6参照)。 In the fine particle peening process, projected particles (media) such as glass beads are made to collide with the surface to be processed at a speed of several tens to 100 m or more per second via compressed air, and are convex to the edges without significant dimensional change. Approximately spherical micron-sized micro-recesses having a portion are irregularly formed on substantially the entire surface of the machined surface, and when the media collides with each other in the fine particle peening process to form the micro-recess, the shape is crater-like. , The periphery thereof is raised to form a convex portion (see FIG. 7), and the raised convex portion is recessed by collision with other media, so that the height of the convex portion becomes irregular (FIG. 3). -See FIG. 6).

これに対して、レーザ加工や切削加工等の機械的加工は規則正しい凹部が形成されると共に、除去加工であるため凸部は形成されない(凹部の形成に伴って凸部が***されることはない)。このため、レーザ加工や切削加工等の機械的加工における微小凹部の周囲の凸部の高さは被加工材(レーザ加工されている部材)の表面(元々の素材表面)の高さに一致している(図8参照)。 On the other hand, in mechanical processing such as laser processing and cutting processing, regular concave portions are formed, and since the processing is removal processing, no convex portion is formed (the convex portion is not raised due to the formation of the concave portion). ). For this reason, the height of the convex portion around the minute concave portion in mechanical processing such as laser processing and cutting processing matches the height of the surface (original material surface) of the work material (member to be laser processed). (See FIG. 8).

また、微粒子ピーニング処理により形成される微小凹凸は無数に不規則に(ランダムに)形成されるため、当該微粒子ピーニング処理により形成される表面テクスチャ(形状)は、研磨や研削処理などの表面を削って傷(すじ状などの溝)を付与する処理により形成される表面形状(テクスチャ)とは異なるが、表面粗さ計などにより測定すると、両者は数値的には似た値となってしまうため、表面粗さなどにより両者を区別することはできない。 In addition, since the fine irregularities formed by the fine particle peening treatment are formed innumerably irregularly (randomly), the surface texture (shape) formed by the fine particle peening treatment scrapes the surface such as polishing or grinding treatment. It is different from the surface shape (texture) formed by the process of giving scratches (grooves such as streaks), but when measured with a surface roughness meter etc., both values are numerically similar. , It is not possible to distinguish between the two by surface roughness and the like.

しかし、微粒子ピーニング処理により形成される表面テクスチャ(形状)によって得られる効果(抗菌効果)は、研磨や研削処理などの表面を削って傷を付与する処理により形成される表面形状(テクスチャ)からは予想できない全く異なるものである。
また、数ミリオーダーのメディアを衝突させて残留応力を付与して疲労限を改善するショットピーニング処理からは、微粒子ピーニング処理を施した表面が抗菌効果を有するといったことは到底予測できないものである。
However, the effect (antibacterial effect) obtained by the surface texture (shape) formed by the fine particle peening treatment is derived from the surface shape (texture) formed by the treatment of scraping and scratching the surface such as polishing and grinding. It's an unpredictable and completely different thing.
Further, from the shot peening treatment in which media of several millimeters order is collided to apply residual stress to improve the fatigue limit, it cannot be predicted that the surface subjected to the fine particle peening treatment has an antibacterial effect.

このように、微粒子ピーニング処理により形成される微小凹凸は無数に不規則に(ランダムに)形成され、微小凹部及びその周囲の凸部の形状は不規則であり、その不規則性が本発明により奏される作用効果の源になっていることに鑑みれば、微粒子ピーニング処理により形成された表面テクスチャ(形状)を特定するための用語として、「微粒子ピーニング処理により形成された」という表現を用いる以外には、微粒子ピーニング処理により形成された表面を特定することはできない。
以上のように、微粒子ピーニング処理により形成された微小凹凸を形状、構造、特性等により特定することには、本願出願時において不可能・非現実的事情が存在している。
As described above, the minute irregularities formed by the fine particle peening treatment are formed innumerably irregularly (randomly), and the shapes of the minute concave portions and the convex portions around them are irregular, and the irregularities thereof are according to the present invention. Considering that it is the source of the action and effect to be exerted, the expression "formed by the fine particle peening treatment" is used as a term for specifying the surface texture (shape) formed by the fine particle peening treatment. It is not possible to specify the surface formed by the fine particle peening treatment.
As described above, there are impossible and unrealistic circumstances at the time of filing the application for the present application to specify the minute irregularities formed by the fine particle peening treatment by the shape, structure, characteristics and the like.

なお、本実施の形態では「機能性部材」を代表的に説明したが、本発明はこれに限定されるものではなく、「表面に抗菌作用などの各種の機能を持たせる機能表面処理方法」として表現することもできる。
すなわち、部材の表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成することで、部材の表面に抗菌作用、さらにはそれに加え、親水性 (洗浄性と相関)、粉体付着抑制効果、光の反射抑制効果を持たせる表面処理方法も本明細書の開示の範囲である。
Although the "functional member" has been described as a representative in the present embodiment, the present invention is not limited to this, and "a functional surface treatment method for imparting various functions such as antibacterial action to the surface". It can also be expressed as.
That is, by forming dimple-shaped minute recesses on the surface of the member and ridge-shaped protrusions non-uniformly around the recesses, the surface of the member has an antibacterial effect, and in addition, hydrophilicity (correlates with detergency). A surface treatment method for suppressing powder adhesion and light reflection is also within the scope of the present specification.

本発明は、上述した発明の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。 The present invention is not limited to the embodiments of the invention described above, and various modifications can be made without departing from the gist of the present invention.

本発明は、部材の表面にディンプル状の微小凹部を無数に形成することで、部材の表面に抗菌(或いは滅菌、殺菌)効果を持たせることができ、衛生を問題とする産業界において有益であり利用可能である。 INDUSTRIAL APPLICABILITY The present invention can give an antibacterial (or sterilization, sterilization) effect to the surface of a member by forming innumerable dimple-shaped minute recesses on the surface of the member, which is useful in the industry where hygiene is a problem. Yes available.

Claims (18)

表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を不均一に形成することで表面に抗菌作用を持たせたことを特徴とする機能性部材。 A functional member characterized by having an antibacterial action on the surface by forming dimple-shaped minute recesses on the surface and ridge-shaped protrusions non-uniformly around the recesses. 抗菌性作用と同時に親水性を有することを特徴とする請求項1に記載の機能性部材。 The functional member according to claim 1, which has hydrophilicity as well as antibacterial action. 抗菌性作用、親水性と同時に粉体付着抑制効果を有することを特徴とする請求項2に記載の機能性部材。 The functional member according to claim 2, which has an antibacterial action, a hydrophilicity, and a powder adhesion suppressing effect at the same time. 抗菌性作用、親水性、粉体付着抑制効果と同時に光の反射抑制効果を有することを特徴とする請求項3に記載の機能性部材。 The functional member according to claim 3, further comprising an antibacterial action, a hydrophilicity, a powder adhesion suppressing effect, and a light reflection suppressing effect. 抗菌性作用に、粉体抑制効果、光の反射抑制効果の何れか一つの効果を有することを特徴とする請求項1に記載の機能性部材。 The functional member according to claim 1, wherein the antibacterial action has any one of a powder suppressing effect and a light reflection suppressing effect. 前記部材の基材が金属材料から成ることを特徴とする請求項1〜5の何れか一つに記載の機能性部材。 The functional member according to any one of claims 1 to 5, wherein the base material of the member is made of a metal material. 前記部材の基材がステンレス鋼から成ることを特徴とする請求項1〜5の何れか一つに記載の機能性部材。 The functional member according to any one of claims 1 to 5, wherein the base material of the member is made of stainless steel. 前記部材の基材がアルミニウム合金から成ることを特徴とする請求項1〜5の何れか一つに記載の機能性部材。 The functional member according to any one of claims 1 to 5, wherein the base material of the member is made of an aluminum alloy. 前記部材がプラスチック材料から成ることを特徴とする請求項1〜5の何れか一つに記載の機能性部材。 The functional member according to any one of claims 1 to 5, wherein the member is made of a plastic material. 前記ディンプル状の微小凹部が形成されるピッチが、抗菌作用の対象となる細菌のサイズに対応した値であることを特徴とする請求項1〜9の何れか一つに記載の機能性部材。 The functional member according to any one of claims 1 to 9, wherein the pitch at which the dimple-shaped minute recesses are formed is a value corresponding to the size of the bacterium to be antibacterial action. 前記ディンプル状の微小凹部が形成されるピッチが、8.0μm以下であることを特徴とする請求項10に記載の機能性部材。 The functional member according to claim 10, wherein the pitch at which the dimple-shaped minute recesses are formed is 8.0 μm or less. 前記ディンプル状の微小凹部が形成されるピッチが、0.4μm以下であることを特徴とする請求項10に記載の機能性部材。 The functional member according to claim 10, wherein the pitch at which the dimple-shaped minute recesses are formed is 0.4 μm or less. 前記ディンプル状の微小凹部が形成されるピッチが、0.4〜8.0μmであることを特徴とする請求項1〜9の何れか一つに記載の機能性部材。 The functional member according to any one of claims 1 to 9, wherein the pitch at which the dimple-shaped minute recesses are formed is 0.4 to 8.0 μm. 表面にディンプル状の微小凹部と凹部周辺に稜線状の凸部を、ショット材を投射処理することに不均一に形成させたことを特徴とする請求項1〜13の何れか一つに記載の機能性部材。 The invention according to any one of claims 1 to 13, wherein a dimple-shaped minute concave portion on the surface and a ridge-shaped convex portion around the concave portion are formed non-uniformly by the projection treatment of the shot material. Functional member. 前記ショット材料に、セラミックス微粒子を用いることを特徴とする請求項14に記載の機能性部材。 The functional member according to claim 14, wherein ceramic fine particles are used as the shot material. 表面に残留圧縮応力を形成させたことを特徴とする請求項14又は15に記載の機能性部材。 The functional member according to claim 14 or 15, wherein a residual compressive stress is formed on the surface. 表面にショット処理時にショット材とともに巻き込まれた酸素を基材表層に残留させたことを特徴とする請求項14〜16の何れか一つに記載の機能性部材。 The functional member according to any one of claims 14 to 16, wherein oxygen entrained together with the shot material remains on the surface layer of the base material during the shot treatment. 前記部材が、板形状、管形状、網状、或いは線材であることを特徴とする請求項1〜17の何れか一つに記載の機能性部材。 The functional member according to any one of claims 1 to 17, wherein the member has a plate shape, a tube shape, a net shape, or a wire rod.
JP2019162302A 2019-09-05 2019-09-05 Functional member and its production method Active JP7162263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019162302A JP7162263B2 (en) 2019-09-05 2019-09-05 Functional member and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019162302A JP7162263B2 (en) 2019-09-05 2019-09-05 Functional member and its production method

Publications (2)

Publication Number Publication Date
JP2021037226A true JP2021037226A (en) 2021-03-11
JP7162263B2 JP7162263B2 (en) 2022-10-28

Family

ID=74847750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019162302A Active JP7162263B2 (en) 2019-09-05 2019-09-05 Functional member and its production method

Country Status (1)

Country Link
JP (1) JP7162263B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193742A1 (en) * 2020-03-25 2021-09-30 本田技研工業株式会社 Functional material and method for producing same
WO2021193843A1 (en) * 2020-03-27 2021-09-30 本田技研工業株式会社 Functional material and method for producing same
WO2023013557A1 (en) * 2021-08-05 2023-02-09 三井化学株式会社 Antibacterial metal material and antibacterial article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506273A (en) * 1993-11-10 1997-06-24 インプラント・イノヴェーションズ・インコーポレーテッド Surgically implantable prosthetic devices
JP2002085981A (en) * 2000-09-14 2002-03-26 Fuji Kihan:Kk Oxidized metal coating film having oxygen deficient inclination structure
CN104451684A (en) * 2014-09-27 2015-03-25 浙江大学 Method for constructing surface of bionic multifunctional titanium-based implant
WO2015163018A1 (en) * 2014-04-22 2015-10-29 シャープ株式会社 Synthetic polymer membrane having surface with sterilizing activity, laminate equipped with synthetic polymer membrane, sterilization method utilizing surface of synthetic polymer membrane, method for reactivating surface of synthetic polymer membrane, mold for use in production of synthetic polymer membrane, and method for producing mold
WO2016021367A1 (en) * 2014-08-07 2016-02-11 シャープ株式会社 Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
JP2017145210A (en) * 2016-02-16 2017-08-24 大日本印刷株式会社 Antibacterial metal article
KR20180040330A (en) * 2016-10-12 2018-04-20 포항공과대학교 산학협력단 Surface treatment method for micro channel heat exchanger and the micro channel heat exchanger with superhydrophobic surface formed by the method
JP6695558B1 (en) * 2019-06-22 2020-05-20 株式会社サーフテクノロジー Antibacterial surface treatment method and antibacterial member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506273A (en) * 1993-11-10 1997-06-24 インプラント・イノヴェーションズ・インコーポレーテッド Surgically implantable prosthetic devices
JP2002085981A (en) * 2000-09-14 2002-03-26 Fuji Kihan:Kk Oxidized metal coating film having oxygen deficient inclination structure
WO2015163018A1 (en) * 2014-04-22 2015-10-29 シャープ株式会社 Synthetic polymer membrane having surface with sterilizing activity, laminate equipped with synthetic polymer membrane, sterilization method utilizing surface of synthetic polymer membrane, method for reactivating surface of synthetic polymer membrane, mold for use in production of synthetic polymer membrane, and method for producing mold
WO2016021367A1 (en) * 2014-08-07 2016-02-11 シャープ株式会社 Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
CN104451684A (en) * 2014-09-27 2015-03-25 浙江大学 Method for constructing surface of bionic multifunctional titanium-based implant
JP2017145210A (en) * 2016-02-16 2017-08-24 大日本印刷株式会社 Antibacterial metal article
KR20180040330A (en) * 2016-10-12 2018-04-20 포항공과대학교 산학협력단 Surface treatment method for micro channel heat exchanger and the micro channel heat exchanger with superhydrophobic surface formed by the method
JP6695558B1 (en) * 2019-06-22 2020-05-20 株式会社サーフテクノロジー Antibacterial surface treatment method and antibacterial member
JP2021000702A (en) * 2019-06-22 2021-01-07 株式会社サーフテクノロジー Antibacterial surface treatment method and antibacterial member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193742A1 (en) * 2020-03-25 2021-09-30 本田技研工業株式会社 Functional material and method for producing same
WO2021193843A1 (en) * 2020-03-27 2021-09-30 本田技研工業株式会社 Functional material and method for producing same
WO2023013557A1 (en) * 2021-08-05 2023-02-09 三井化学株式会社 Antibacterial metal material and antibacterial article

Also Published As

Publication number Publication date
JP7162263B2 (en) 2022-10-28

Similar Documents

Publication Publication Date Title
JP2021037226A (en) Functional member
JP6695558B1 (en) Antibacterial surface treatment method and antibacterial member
JP7236077B2 (en) Parts or components for medical equipment
JP7185882B2 (en) Food processing parts that come into contact with food or humans, parts or members used for food handling, and production methods thereof
JP6416151B2 (en) Treatment instrument and surface treatment method thereof
Niemczewska-Wójcik et al. The surface texture and its influence on the tribological characteristics of a friction pair: Metal-polymer
CN111601507A (en) Method for applying an antimicrobial surface coating to a substrate
KR102173928B1 (en) Method of surface treatment of metal products and metal products
Georgakopoulos-Soares et al. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review
JP7045043B2 (en) Detergency improvement surface treatment method and detergency improvement member
JP6886239B2 (en) Titanium member that suppresses powder adhesion
JP6916496B1 (en) Anti-virus surface treatment method for members and anti-virus members
JP6892415B2 (en) Surface treatment method for food contact members
CN109304675A (en) The method of unevenness is formed in hard brittle material surface
CA2156367A1 (en) Pre-forge aluminum oxide blasting of forging billets as a scale resistance treatment
JP2022135273A (en) Fine uneven surface shape protection method, abrasion resistance improving member, machine instrument, instrument, scissors or cutter for hairdressing, cosmetic or medical use, and slide component of machine component
JP2023183145A (en) Antibacterial member, production method and evaluation method of the same
EP2801443B1 (en) Processing medium for processing stainless steel or other metallic surfaces, method for processing stainless steel or other metallic surfaces using such a processing medium and nozzle arranged to be fitted on a process gun
WO2014074844A1 (en) Apparatus and method for imparting selected topographies to aluminum sheet metal and applications there for
JP7162265B2 (en) Fine unevenness forming method and powder contact member
JP7295537B2 (en) Powder adhesion suppression member and member surface treatment method
Arifvianto et al. Roughness reduction in AISI 316L stainless steel after surface mechanical attrition treatment (SMAT)
JP2023141528A (en) Surface treatment method improving sticking material strippability, and sticking material strippability-improved member
JP7202268B2 (en) net conveyor belt
JP7029730B2 (en) Member and surface treatment method for member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221006

R150 Certificate of patent or registration of utility model

Ref document number: 7162263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150