JP2021034335A - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
JP2021034335A
JP2021034335A JP2019156645A JP2019156645A JP2021034335A JP 2021034335 A JP2021034335 A JP 2021034335A JP 2019156645 A JP2019156645 A JP 2019156645A JP 2019156645 A JP2019156645 A JP 2019156645A JP 2021034335 A JP2021034335 A JP 2021034335A
Authority
JP
Japan
Prior art keywords
side electrode
movable
fixed
drive
movable side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019156645A
Other languages
Japanese (ja)
Other versions
JP7347998B2 (en
Inventor
幸三 田村
Kozo Tamura
幸三 田村
深大 佐藤
Shindai Sato
深大 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019156645A priority Critical patent/JP7347998B2/en
Publication of JP2021034335A publication Critical patent/JP2021034335A/en
Application granted granted Critical
Publication of JP7347998B2 publication Critical patent/JP7347998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

To provide a circuit breaker in which, when a fixed side electrode and a movable side electrode transfer from a cut-off state (open) to a turning-on state (close), even if the movable side electrode hits (contacts) the fixed side electrode to cause an impact, repulsive stress is not applied on the movable side electrode, so that the movable side electrode is not temporarily disconnected from the fixed side electrode.SOLUTION: A circuit breaker of the present invention includes a fixed side electrode, a movable side electrode which is disposed to face the fixed side electrode and electrically contacts with the fixed side electrode, and a drive part for driving the movable side electrode. The circuit breaker includes a controller which makes the driving force of the drive part at the contact between the fixed side electrode and the movable side electrode (at the final driving) stronger than the driving force at the end of driving during driving, so as to press the movable side electrode against the fixed side electrode.SELECTED DRAWING: Figure 4

Description

本発明は遮断器に係り、特に、相対向する電極の可動側が操作器等の駆動部により駆動されるものに好適な遮断器に関する。 The present invention relates to a circuit breaker, and particularly relates to a circuit breaker in which the movable side of the electrodes facing each other is driven by a driving unit such as an actuator.

遮断器に関する従来技術としては、特許文献1に記載されている真空遮断器を挙げることができる。この特許文献1には、真空遮断器の重量やサイズを増加させることなく、真空遮断器の開閉動作に伴う衝撃や振動による応力を軽減して操作機構部の筺体の撓みを低減し、開閉動作に対する信頼性を向上させるために、少なくとも固定側電極及び可動側電極が格納され、周囲がモールド部で覆われている真空バルブと、駆動軸を介して連結されて前記可動側電極を駆動する操作機構部とを備え、前記真空バルブ(固定側電極及び可動側電極)と前記駆動軸及び前記操作機構部が直線状に配置されていると共に、前記真空バルブのモールド部と前記操作機構部に跨り両者を固定する固定部材を備えていることが記載されている。 As a conventional technique relating to a circuit breaker, a vacuum circuit breaker described in Patent Document 1 can be mentioned. In Patent Document 1, the stress due to impact and vibration associated with the opening / closing operation of the vacuum breaker is reduced to reduce the bending of the housing of the operation mechanism portion without increasing the weight and size of the vacuum breaker, and the opening / closing operation is performed. An operation of driving the movable side electrode by being connected via a drive shaft to a vacuum valve in which at least the fixed side electrode and the movable side electrode are stored and the periphery is covered with a mold portion in order to improve the reliability with respect to the vacuum valve. The vacuum valve (fixed side electrode and movable side electrode), the drive shaft, and the operation mechanism portion are linearly arranged, and straddle the mold portion and the operation mechanism portion of the vacuum valve. It is described that it is provided with a fixing member for fixing both.

特開2018−147643号公報Japanese Unexamined Patent Publication No. 2018-147643

しかしながら、上述した特許文献1の真空遮断器は、真空バルブ(固定側電極及び可動側電極)と駆動軸及び駆動部である操作機構部が直線状に配置されているため、固定側電極と可動側電極が遮断状態(開)から投入状態(閉)に移行する際に、可動側電極が固定側電極にぶつかる(接触する)ことによる操作機構部からの駆動力が直接固定側電極に掛ることになる。 However, in the vacuum breaker of Patent Document 1 described above, since the vacuum valve (fixed side electrode and movable side electrode), the drive shaft, and the operation mechanism part which is the drive part are arranged linearly, the vacuum breaker is movable with the fixed side electrode. When the side electrode shifts from the cutoff state (open) to the closing state (closed), the driving force from the operating mechanism due to the movable side electrode colliding (contacting) with the fixed side electrode is directly applied to the fixed side electrode. become.

このため、固定側電極と可動側電極が遮断状態(開)から投入状態(閉)に移行する時、可動側電極が固定側電極にぶつかる(接触する)際の衝撃で、可動側電極に反発応力が加わり、一時的に可動側電極が固定側電極との接続状態が外れてしまう(可動側電極と固定側電極が完全な非接触状態となってしまう)恐れがある。 Therefore, when the fixed-side electrode and the movable-side electrode shift from the shut-off state (open) to the closed state (closed), the movable-side electrode repels the movable-side electrode due to the impact when it hits (contacts) the fixed-side electrode. Stress may be applied and the movable side electrode may be temporarily disconnected from the fixed side electrode (the movable side electrode and the fixed side electrode may be in a completely non-contact state).

本発明は上述の点に鑑みなされたもので、その目的とするところは、固定側電極と可動側電極が遮断状態(開)から投入状態(閉)に移行する時、可動側電極が固定側電極にぶつかる(接触する)衝撃が発生したとしても、可動側電極に反発応力が加わることがなく、一時的に可動側電極が固定側電極との接続状態が外れることのない遮断器を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is that when the fixed side electrode and the movable side electrode shift from the cutoff state (open) to the closing state (closed), the movable side electrode is on the fixed side. Provided is a circuit breaker in which a repulsive stress is not applied to the movable electrode even if an impact of hitting (contacting) the electrode occurs, and the movable electrode is not temporarily disconnected from the fixed electrode. There is.

本発明の真空遮断器は、上記目的を達成するために、固定側電極と、該固定側電極と対向配置され電気的に接触する可動側電極と、該可動側電極を駆動する駆動部とを備えた遮断器であって、前記固定側電極と前記可動側電極との接触時(駆動最終時)における前記駆動部の駆動力を、駆動途中の駆動終盤時の駆動力より強くして前記可動側電極を前記固定側電極に押し付けるように制御する制御部を備えているか、
或いは、前記固定側電極と前記可動側電極との接触時(駆動最終時)における前記駆動部の駆動速度を、駆動途中の駆動終盤時の駆動速度より小さくして前記可動側電極を前記固定側電極に押し付けるように制御する制御部を備えていることを特徴とする。
In the vacuum circuit breaker of the present invention, in order to achieve the above object, a fixed side electrode, a movable side electrode arranged to face the fixed side electrode and electrically contacting the fixed side electrode, and a driving unit for driving the movable side electrode are provided. The circuit breaker is provided, and the driving force of the driving unit at the time of contact between the fixed side electrode and the movable side electrode (at the final stage of driving) is made stronger than the driving force at the end of driving during driving to make the movable circuit breaker. Is it provided with a control unit that controls the side electrode to be pressed against the fixed side electrode?
Alternatively, the drive speed of the drive unit at the time of contact between the fixed side electrode and the movable side electrode (at the final drive) is made smaller than the drive speed at the end of the drive during the drive, and the movable side electrode is set to the fixed side. It is characterized in that it is provided with a control unit that controls so as to press against an electrode.

本発明によれば、固定側電極と可動側電極が遮断状態(開)から投入状態(閉)に移行する時、可動側電極が固定側電極にぶつかる(接触する)衝撃が発生したとしても、可動側電極に反発応力が加わることがなく、一時的に可動側電極が固定側電極との接続状態が外れることはない。 According to the present invention, when the fixed-side electrode and the movable-side electrode shift from the shut-off state (open) to the closed state (closed), even if an impact occurs in which the movable-side electrode collides with (contacts) the fixed-side electrode. No repulsive stress is applied to the movable side electrode, and the movable side electrode is not temporarily disconnected from the fixed side electrode.

本発明の遮断器の一例として真空遮断器を示す断面図である。It is sectional drawing which shows the vacuum circuit breaker as an example of the circuit breaker of this invention. 本発明の遮断器の実施例1である真空遮断器の駆動開始時(固定側電極と可動側電極が非接触時)を示す図である。It is a figure which shows the driving start time (when the fixed side electrode and the movable side electrode are non-contact) of the vacuum circuit breaker which is Example 1 of the circuit breaker of this invention. 本発明の遮断器の実施例1である真空遮断器の図2の状態から固定側電極と可動側電極との距離が近づき接触が近い駆動終盤時を示す図である。It is a figure which shows the drive final stage when the distance between a fixed side electrode and a movable side electrode is short, and contact is close from the state of FIG. 2 of the vacuum circuit breaker which is Example 1 of the circuit breaker of this invention. 本発明の遮断器の実施例1である真空遮断器の固定側電極に可動側電極が接触した駆動最終時を示す図である。It is a figure which shows the drive final time when the movable side electrode came into contact with the fixed side electrode of the vacuum circuit breaker which is Example 1 of the circuit breaker of this invention. 本発明の遮断器の実施例1である真空遮断器の駆動開始時から駆動終盤時、駆動最終時へと可動側電極が移動する際の操作機構部の駆動力の変化を示す図である。It is a figure which shows the change of the driving force of the operation mechanism part when the movable side electrode moves from the driving start time to the driving end stage, and the driving final time of the circuit breaker which is the first embodiment of the circuit breaker of this invention. 本発明の遮断器の実施例2である真空遮断器の駆動開始時(固定側電極と可動側電極が非接触時)を示す図である。It is a figure which shows the driving start time (when the fixed side electrode and the movable side electrode are non-contact) of the vacuum circuit breaker which is Example 2 of the circuit breaker of this invention. 本発明の遮断器の実施例2である真空遮断器の図2の状態から固定側電極と可動側電極との距離が近づき接触が近い駆動終盤時を示す図である。It is a figure which shows the drive end stage when the distance between a fixed side electrode and a movable side electrode is short, and contact is close from the state of FIG. 2 of the vacuum circuit breaker which is Example 2 of the circuit breaker of this invention. 本発明の遮断器の実施例2である真空遮断器の固定側電極に可動側電極が接触した駆動最終時を示す図である。It is a figure which shows the drive final time when the movable side electrode came into contact with the fixed side electrode of the vacuum circuit breaker which is Example 2 of the circuit breaker of this invention. 本発明の遮断器の実施例2である真空遮断器の駆動開始時から駆動終盤時、駆動最終時へと可動側電極が移動する際の操作機構部の駆動力の変化を示す図である。It is a figure which shows the change of the driving force of the operation mechanism part when the movable side electrode moves from the driving start time to the driving end stage, and the driving final time of the vacuum circuit breaker which is the second embodiment of the circuit breaker of this invention. ばねを用いた従来の真空遮断器の固定側電極と可動側電極が非接触の状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the conventional vacuum circuit breaker using a spring are in non-contact state. ばねを用いた従来の真空遮断器の固定側電極と可動側電極が接触している状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the conventional vacuum circuit breaker using a spring are in contact with each other. 本発明の遮断器の実施例3である真空遮断器の固定側電極と可動側電極が非接触の状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 3 of the circuit breaker of this invention are in non-contact state. 本発明の遮断器の実施例3である真空遮断器の固定側電極と可動側電極が接触している状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 3 of the circuit breaker of this invention are in contact with each other. ばねを用いた従来の真空遮断器における可動側電極の駆動速度とばねの反発力との関係を示す図である。It is a figure which shows the relationship between the driving speed of the movable side electrode and the repulsive force of a spring in the conventional vacuum circuit breaker using a spring. 本発明の遮断器の実施例3である真空遮断器における可動側電極の駆動速度とばねの反発力との関係を、ばねを用いた従来の真空遮断器における可動側電極の駆動速度とばねの反発力と比較して示す図である。The relationship between the driving speed of the movable side electrode and the repulsive force of the spring in the vacuum circuit breaker according to the third embodiment of the circuit breaker of the present invention is as follows. It is a figure which shows in comparison with the repulsive force. 本発明の遮断器の実施例4である真空遮断器の固定側電極と可動側電極が接触している状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 4 of the circuit breaker of this invention are in contact with each other. 本発明の遮断器の実施例5である真空遮断器の固定側電極と可動側電極が接触している状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 5 of the circuit breaker of this invention are in contact with each other. 本発明の遮断器の実施例6である真空遮断器の固定側電極と可動側電極が非接触の状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 6 of the circuit breaker of this invention are in non-contact state. 本発明の遮断器の実施例6である真空遮断器の固定側電極と可動側電極が接触している状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 6 of the circuit breaker of this invention are in contact with each other. 本発明の遮断器の実施例6である真空遮断器の油圧ダンパ接触時と電極接触時における可動側電極の駆動速度の変化を示す図である。It is a figure which shows the change of the driving speed of the movable side electrode at the time of contact with the hydraulic damper and the contact with an electrode of the vacuum circuit breaker which is Example 6 of the circuit breaker of this invention. 本発明の遮断器の実施例6である真空遮断器の油圧ダンパ接触時と電極接触時における油圧ダンパの制動力の変化を示す図である。It is a figure which shows the change of the braking force of the hydraulic damper at the time of contact with the hydraulic damper and the contact with an electrode of the vacuum circuit breaker which is Example 6 of the circuit breaker of this invention. 本発明の遮断器の実施例7である真空遮断器の固定側電極と可動側電極が非接触の状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 7 of the circuit breaker of this invention are in non-contact state. 本発明の遮断器の実施例7である真空遮断器の可動側電極が固定側電極に接触するために移動した際の第1の溝部における固定側電極と可動側電極が非接触の状態の時の突起体の位置を示す図であるWhen the fixed side electrode and the movable side electrode in the first groove when the movable side electrode of the vacuum circuit breaker according to the seventh embodiment of the present invention moves to contact the fixed side electrode are in a non-contact state. It is a figure which shows the position of the protrusion of. 図23(a)の状態から可動側電極が左側に移動した時の第1の溝部における突起体の位置を示す図である。It is a figure which shows the position of the protrusion in the 1st groove part when the movable side electrode moves to the left side from the state of FIG. 23A. 図23(b)の状態から可動側電極が更に左側に移動した時の第2の溝部の曲率部における突起体の位置を示す図である。It is a figure which shows the position of the protrusion in the curvature part of the 2nd groove part when the movable side electrode moves further to the left side from the state of FIG. 23B. 図23(c)の状態から可動側電極が更に左側に移動した時の第2の溝部における突起体の位置を示す図である。It is a figure which shows the position of the protrusion in the 2nd groove part when the movable side electrode moves further to the left side from the state of FIG. 23C. 本発明の遮断器の実施例8である真空遮断器の固定側電極と可動側電極が接触している状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 8 of the circuit breaker of this invention are in contact with each other. 本発明の遮断器の実施例8である真空遮断器の固定側電極と可動側電極が非接触の状態を示す図である。It is a figure which shows the state which the fixed side electrode and the movable side electrode of the vacuum circuit breaker which is Example 8 of the circuit breaker of this invention are in non-contact state.

以下、図示した実施例に基づいて本発明の遮断器を説明する。なお、各実施例において、同一構成部品には同符号を使用する。 Hereinafter, the circuit breaker of the present invention will be described based on the illustrated examples. In each embodiment, the same reference numerals are used for the same components.

先ず、図1を用いて本発明の遮断器の代表的な例である真空遮断器について説明する。 First, a vacuum circuit breaker, which is a typical example of the circuit breaker of the present invention, will be described with reference to FIG.

図1に示す如く、真空遮断器40は、エポキシ樹脂等の固体絶縁物により一体注型(モールド)されて形成された(周囲がモールド部1Aで覆われた)真空バルブ1と、固定側ケーブルブッシング導体15の周囲がモールドされている固定側ケーブルブッシング2と、可動側ケーブルブッシング導体16の外部の周囲がモールドされている可動側ケーブルブッシング3と、後述する可動側電極13を操作する駆動部である操作機構部4とで概略構成されている。通常、エポキシ樹脂等の固体絶縁物により一体注型された真空バルブ1は、モールド真空バルブと呼ばれている。なお、特に図示しないが、モールド部分は通常接地されている。 As shown in FIG. 1, the vacuum breaker 40 includes a vacuum valve 1 (around which is covered with a mold portion 1A) formed by integrally casting (molding) with a solid insulator such as an epoxy resin, and a fixed side cable. A fixed-side cable bushing 2 in which the periphery of the bushing conductor 15 is molded, a movable-side cable bushing 3 in which the outer periphery of the movable-side cable bushing conductor 16 is molded, and a drive unit that operates a movable-side electrode 13 described later. It is roughly composed of the operation mechanism unit 4 which is the above. Usually, the vacuum valve 1 integrally cast with a solid insulating material such as epoxy resin is called a molded vacuum valve. Although not shown in particular, the mold portion is usually grounded.

上述した真空バルブ1は、円筒絶縁材5の一端に接合された固定側端板6と、固定側端板6を気密に貫通する固定側導体7と、円筒絶縁材5の他端に接合された可動側端板8と、可動側端板8に一端が接合され、可動部の駆動を許容する蛇腹形状のベローズ9と、ベローズ9を気密に貫通し真空を維持しながら軸方向に駆動する可動側導体10とから構成され、その内部圧力は、およそ10−2Pa以下の真空に保たれている。 The vacuum valve 1 described above is joined to the fixed side end plate 6 joined to one end of the cylindrical insulating material 5, the fixed side conductor 7 airtightly penetrating the fixed side end plate 6, and the other end of the cylindrical insulating material 5. One end is joined to the movable side end plate 8 and the movable side end plate 8 to allow the movable part to be driven. The bellows-shaped bellows 9 and the bellows 9 are airtightly penetrated to drive in the axial direction while maintaining a vacuum. It is composed of a movable side conductor 10, and its internal pressure is maintained in a vacuum of about 10-2 Pa or less.

その真空バルブ1の内部には、円筒絶縁材5で支持された浮遊電位金属11と、固定側導体7の端部に接続された固定側電極12と、可動側導体10の端部に接続された可動側電極13とが配置されている。 Inside the vacuum valve 1, the floating potential metal 11 supported by the cylindrical insulating material 5, the fixed electrode 12 connected to the end of the fixed conductor 7, and the end of the movable conductor 10 are connected. The movable side electrode 13 is arranged.

可動側導体10は操作用絶縁ロッド14に接続され、操作用絶縁ロッド14は操作機構部4に収納され、電極対に接触荷重を加えるワイプ機構と連結された操作器に接続されている。操作用絶縁ロッド14の周囲空間には、空気や六フッ化硫黄などの絶縁ガス18が充填されている。 The movable side conductor 10 is connected to the operating insulating rod 14, the operating insulating rod 14 is housed in the operating mechanism portion 4, and is connected to an operating device connected to a wipe mechanism that applies a contact load to the electrode pair. The space around the operating insulating rod 14 is filled with an insulating gas 18 such as air or sulfur hexafluoride.

また、図示しない操作器の駆動に連動して操作用絶縁ロッド14を介して可動側電極13が駆動することで、固定側電極12と可動側電極13の接離、即ち、真空バルブ1の開状態と閉状態を切り替えることができる。なお、図1の真空バルブ1は、開状態を示している。 Further, the movable side electrode 13 is driven via the operating insulating rod 14 in conjunction with the drive of the actuator (not shown), so that the fixed side electrode 12 and the movable side electrode 13 are brought into contact with each other, that is, the vacuum valve 1 is opened. You can switch between the closed state and the closed state. The vacuum valve 1 in FIG. 1 shows an open state.

固定側ケーブルブッシング2は、固定側ケーブルブッシング導体15を真空バルブ1の固定側導体7に電気的に接続して、また、可動側ケーブルブッシング3は、可動側ケーブルブッシング導体16を真空バルブ1の可動側に配置して、真空バルブ1と一緒にエポキシ樹脂等の固体絶縁物により一体注型されており、真空バルブ1の可動側導体10と可動側ケーブルブッシング導体16は、摺動通電可能な接触子17を介して電気的に接続され、固定側ケーブルブッシング2と可動側ケーブルブッシング3に、図示しない電源側ケーブルや負荷側ケーブルがそれぞれ接続されることで、運転できる構成となっている。 The fixed side cable bushing 2 electrically connects the fixed side cable bushing conductor 15 to the fixed side conductor 7 of the vacuum valve 1, and the movable side cable bushing 3 electrically connects the movable side cable bushing conductor 16 to the vacuum valve 1. It is arranged on the movable side and integrally cast with a solid insulator such as epoxy resin together with the vacuum valve 1, and the movable side conductor 10 and the movable side cable bushing conductor 16 of the vacuum valve 1 can be slidably energized. It is electrically connected via a contact 17 and can be operated by connecting a power supply side cable and a load side cable (not shown) to the fixed side cable bushing 2 and the movable side cable bushing 3, respectively.

また、図1に示す真空遮断器40は、真空バルブ(固定側電極12及び可動側電極13)1と駆動軸(可動側導体10、操作用絶縁ロッド14)及び駆動部である操作機構部4とがほぼ直線状に配置されていると共に、真空バルブ1の周囲のモールド部1Aと操作機構部4とに跨り、両者を一体に固定する固定部材19を有した構成となっている。 Further, the vacuum circuit breaker 40 shown in FIG. 1 includes a vacuum valve (fixed side electrode 12 and movable side electrode 13) 1, a drive shaft (movable side conductor 10, operating insulating rod 14), and an operation mechanism unit 4 which is a drive unit. Are arranged substantially linearly, and have a structure in which a fixing member 19 is provided so as to straddle the mold portion 1A and the operation mechanism portion 4 around the vacuum valve 1 and fix the two integrally.

このように、図1に示す真空遮断器40は、真空バルブ(固定側電極12及び可動側電極13)1と駆動軸(可動側導体10、操作用絶縁ロッド14)及び操作機構部4とがほぼ直線状に配置されているため、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する際に、可動側電極13が固定側電極12にぶつかる(接触する)ことによる操作機構部4からの駆動力が、操作用絶縁ロッド14、可動側導体10及び可動側電極13を介して直接固定側電極12に掛ることになる。 As described above, in the vacuum breaker 40 shown in FIG. 1, the vacuum valve (fixed side electrode 12 and movable side electrode 13) 1 and the drive shaft (movable side conductor 10, operating insulating rod 14) and the operating mechanism unit 4 are combined. Since the fixed-side electrode 12 and the movable-side electrode 13 are arranged substantially linearly, the movable-side electrode 13 collides with the fixed-side electrode 12 (contact) when the fixed-side electrode 12 and the movable-side electrode 13 shift from the shut-off state (open) to the closed state (closed). The driving force from the operating mechanism unit 4 is directly applied to the fixed side electrode 12 via the operating insulating rod 14, the movable side conductor 10, and the movable side electrode 13.

このことから、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)際の衝撃で、可動側電極13に反発応力が加わり、一時的に可動側電極13が固定側電極12との接続状態が外れてしまう(可動側電極13と固定側電極12が完全な非接触状態となってしまう)恐れがある。 Therefore, when the fixed side electrode 12 and the movable side electrode 13 shift from the shutoff state (open) to the closed state (closed), the impact when the movable side electrode 13 collides with (contacts) the fixed side electrode 12 is generated. A repulsive stress is applied to the movable side electrode 13, and the movable side electrode 13 is temporarily disconnected from the fixed side electrode 12 (the movable side electrode 13 and the fixed side electrode 12 are completely in a non-contact state). ) There is a risk.

これを解決するのが本発明の遮断器であり、本発明の遮断器の一例である真空遮断器40では、固定側電極12と可動側電極13との接触時(駆動最終時)における駆動部である操作機構部4の駆動力を、駆動途中の駆動終盤時の駆動力より強くして可動側電極13を固定側電極12に押し付けるように制御する制御部を備えているか、或いは、固定側電極12と可動側電極13との接触時(駆動最終時)における駆動部である操作機構部4の駆動速度を、駆動途中の駆動終盤時の駆動速度より小さくして可動側電極13を固定側電極12に押し付けるように制御する制御部又はばねを備えていることを特徴とする。 The circuit breaker of the present invention solves this problem, and in the vacuum circuit breaker 40 which is an example of the circuit breaker of the present invention, the drive unit at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive). It is provided with a control unit that controls the driving force of the operating mechanism unit 4 to be stronger than the driving force at the end of driving during driving so as to press the movable side electrode 13 against the fixed side electrode 12, or the fixed side. The drive speed of the operation mechanism unit 4, which is the drive unit at the time of contact between the electrode 12 and the movable side electrode 13 (at the final drive), is made smaller than the drive speed at the end of the drive during the drive, and the movable side electrode 13 is fixed. It is characterized by including a control unit or a spring that controls the electrode 12 so as to be pressed against the electrode 12.

以下、上記操作機構部4の駆動力を、駆動途中の駆動終盤時の駆動力より強くして可動側電極13を固定側電極12に押し付けるように制御部で制御する具体例、及び上記操作機構部4の駆動速度を、駆動途中の駆動終盤時の駆動速度より小さくして可動側電極13を固定側電極12に押し付けるように制御部又はばねで制御する具体例について説明する。 Hereinafter, a specific example in which the driving force of the operating mechanism unit 4 is made stronger than the driving force at the end of the driving during driving and the movable side electrode 13 is pressed against the fixed side electrode 12 by the control unit, and the operating mechanism. A specific example will be described in which the drive speed of the unit 4 is set to be smaller than the drive speed at the end of the drive during the drive, and the movable side electrode 13 is controlled by the control unit or the spring so as to be pressed against the fixed side electrode 12.

図2、図3、図4及び図5に、本発明の遮断器の実施例1として操作機構部4の駆動力を、駆動途中の駆動終盤時の駆動力より強くして可動側電極13を固定側電極12に押し付けるように制御部で制御する例を示す。 In FIGS. 2, 3, 4 and 5, as the first embodiment of the circuit breaker of the present invention, the driving force of the operation mechanism unit 4 is made stronger than the driving force at the end of the driving during the driving, and the movable side electrode 13 is formed. An example of controlling by the control unit so as to press against the fixed side electrode 12 is shown.

図2、図3及び図4は、図1に示した真空遮断器40の概略構成であり、図2は真空遮断器40の駆動開始時(a)(固定側電極12と可動側電極13が非接触時)を、図3は図2の状態から固定側電極12と可動側電極13との距離が近づき接触が近い駆動終盤時(b)を、図4は固定側電極12に可動側電極13が接触した駆動最終時(c)をそれぞれ示し、図5は駆動開始時(a)から駆動終盤時(b)、駆動最終時(c)へと可動側電極13が移動する際の操作機構部4の駆動力の変化を示す。 2, 3 and 4 are schematic configurations of the vacuum breaker 40 shown in FIG. 1, and FIG. 2 shows the start of driving of the vacuum breaker 40 (a) (fixed side electrode 12 and movable side electrode 13). (Non-contact), FIG. 3 shows the final stage of driving (b) in which the fixed side electrode 12 and the movable side electrode 13 are close to each other and the contact is close from the state of FIG. 2, and FIG. 4 shows the movable side electrode connected to the fixed side electrode 12. The operation mechanism when the movable side electrode 13 moves from the start of the drive (a) to the final stage of the drive (b) and the final drive (c) is shown in FIG. The change of the driving force of the part 4 is shown.

図2、図3及び図4に示す本実施例では、操作機構部4に制御部20Aを備え、この制御部20Aで、固定側電極12と可動側電極13との接触時(駆動最終時(c))における操作機構部4の駆動力を、駆動途中の駆動終盤時(b)の駆動力より強くして可動側電極13を固定側電極12に押し付けるように制御している。 In the present embodiment shown in FIGS. 2, 3 and 4, the operation mechanism unit 4 is provided with a control unit 20A, and the control unit 20A is used when the fixed side electrode 12 and the movable side electrode 13 are in contact with each other (at the final drive (final drive). The driving force of the operation mechanism unit 4 in c)) is controlled to be stronger than the driving force at the end of driving (b) during driving so that the movable side electrode 13 is pressed against the fixed side electrode 12.

即ち、制御部20Aで、図5に示すように、駆動開始時(a)には操作機構部4の駆動力を最も大きい“大”にし、図2の状態から固定側電極12と可動側電極13との距離が近づき接触が近い図3の状態の駆動終盤時(b)には操作機構部4の駆動力を最も小さい“小”にし、固定側電極12に可動側電極13が接触した図4の駆動最終時(c)には操作機構部4の駆動力を駆動終盤時(b)の駆動力より大きい“中”にして可動側電極13を固定側電極12に押し付けるようにしている。 That is, as shown in FIG. 5, the control unit 20A sets the driving force of the operating mechanism unit 4 to the maximum “large” at the start of driving (a), and from the state of FIG. 2, the fixed side electrode 12 and the movable side electrode 12 and the movable side electrode At the end of driving (b) in the state of FIG. 3 in which the distance from 13 is close and the contact is close, the driving force of the operation mechanism unit 4 is set to the smallest "small", and the movable electrode 13 comes into contact with the fixed electrode 12. At the final driving force (c) of 4, the driving force of the operating mechanism unit 4 is set to “medium”, which is larger than the driving force at the final stage of driving (b), and the movable side electrode 13 is pressed against the fixed side electrode 12.

なお、上記した制御部20Aによる操作機構部4の駆動力の制御は、駆動電流若しくは駆動電圧の大小で行うか、或いはデジタルによるパルス駆動として単位時間当たりのパルス幅若しくはパルス数により行うものである。 The driving force of the operating mechanism unit 4 is controlled by the control unit 20A described above by the magnitude of the driving current or the driving voltage, or by the pulse width or the number of pulses per unit time as a digital pulse drive. ..

このように、制御部20Aで、固定側電極12と可動側電極13との接触時(駆動最終時(c))における操作機構部4の駆動力を、駆動途中の駆動終盤時(b)の駆動力より強く(大きく)して可動側電極13を固定側電極12に押し付けるように制御することにより、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)衝撃が発生したとしても、駆動最終時(c)における操作機構部4の駆動力を、駆動途中の駆動終盤時(b)の駆動力より強くして可動側電極13を固定側電極12に押し付けているので、可動側電極13への反発を抑制でき、可動側電極13に反発応力が加わることがなく、一時的に可動側電極13が固定側電極12との接続状態が外れることはない。 In this way, in the control unit 20A, the driving force of the operation mechanism unit 4 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final driving time (c)) is applied to the driving force at the final stage of driving (b) during driving. By controlling the movable side electrode 13 to be pressed against the fixed side electrode 12 by making it stronger (larger) than the driving force, the fixed side electrode 12 and the movable side electrode 13 shift from the cutoff state (open) to the closing state (closed). Even if an impact occurs in which the movable side electrode 13 hits (contacts) the fixed side electrode 12, the driving force of the operation mechanism unit 4 at the final driving stage (c) is applied to the driving force at the end of the driving stage (b). Since the movable side electrode 13 is pressed against the fixed side electrode 12 with a strength stronger than the driving force of the above, the repulsion to the movable side electrode 13 can be suppressed, and the repulsive stress is not applied to the movable side electrode 13 and the movable side electrode 13 is temporarily movable. The side electrode 13 is not disconnected from the fixed side electrode 12.

図6、図7、図8及び図9に、本発明の遮断器の実施例2として固定側電極12と可動側電極13との接触時(駆動最終時(c))における操作機構部4の駆動速度を、駆動途中の駆動終盤時(b)の駆動速度より小さくして可動側電極13を固定側電極12に押し付けるように制御部で制御する例を示し、固定側電極12と可動側電極13との接触前に、操作機構部4の駆動速度を最高速度より低下させるように制御する例を示す。 In FIGS. 6, 7, 8 and 9, as the second embodiment of the breaker of the present invention, the operation mechanism unit 4 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive (c)) An example is shown in which the control unit controls the movable side electrode 13 so as to press the movable side electrode 13 against the fixed side electrode 12 by making the drive speed smaller than the drive speed at the end of the drive (b) during the drive. An example of controlling the driving speed of the operating mechanism unit 4 to be lower than the maximum speed before contact with the 13 is shown.

図6、図7及び図8は、図1に示した真空遮断器40の概略構成であり、図6は真空遮断器40の駆動開始時(a)(固定側電極12と可動側電極13が非接触時)を、図7は図6の状態から固定側電極12と可動側電極13との距離が近づき接触が近い駆動終盤時(b)を、図8は固定側電極12に可動側電極13が接触した駆動最終時(c)をそれぞれ示し、図9は駆動開始時(a)から駆動終盤時(b)、駆動最終時(c)へと可動側電極13が移動する際の操作機構部4の駆動速度の変化を示す。 6, 7 and 8 are schematic configurations of the vacuum breaker 40 shown in FIG. 1, and FIG. 6 shows the start of driving of the vacuum breaker 40 (a) (fixed side electrode 12 and movable side electrode 13). (Non-contact), FIG. 7 shows the final stage of driving (b) in which the fixed side electrode 12 and the movable side electrode 13 are close to each other and the contact is close from the state of FIG. 6, and FIG. 8 shows the movable side electrode connected to the fixed side electrode 12. The operation mechanism when the movable side electrode 13 moves from the start of the drive (a) to the final stage of the drive (b) and the final drive (c) is shown in FIG. The change of the driving speed of the part 4 is shown.

図6、図7及び図8に示す本実施例では、操作機構部4に制御部20Bを備え、この制御部20Bで、固定側電極12と可動側電極13との接触時(駆動最終時(c))における操作機構部4の駆動速度を、駆動途中の駆動終盤時(b)の駆動速度より小さくして可動側電極13を固定側電極12に押し付けるように制御している。 In the present embodiment shown in FIGS. 6, 7 and 8, the operation mechanism unit 4 is provided with a control unit 20B, and the control unit 20B is used when the fixed side electrode 12 and the movable side electrode 13 are in contact with each other (at the final drive (final drive). The drive speed of the operation mechanism unit 4 in c)) is controlled to be smaller than the drive speed at the end of the drive (b) during the drive so that the movable side electrode 13 is pressed against the fixed side electrode 12.

即ち、制御部20Bで、図9に示すように、駆動開始時(a)には操作機構部4の駆動速度を零にし、図6の状態から固定側電極12と可動側電極13との距離が近づき接触が近い図7の状態の駆動終盤時(b)には操作機構部4の駆動速度を最高速度にし、固定側電極12に可動側電極13が接触した図8の駆動最終時(c)には操作機構部4の駆動速度を駆動終盤時(b)の駆動速度(最高速度)より小さくして可動側電極13を固定側電極12に押し付けるようにしている。 That is, as shown in FIG. 9, the control unit 20B sets the drive speed of the operation mechanism unit 4 to zero at the start of drive (a), and the distance between the fixed side electrode 12 and the movable side electrode 13 from the state of FIG. At the end of driving (b) in the state of FIG. 7 where the moving side electrodes are close to each other, the driving speed of the operation mechanism unit 4 is set to the maximum speed, and at the final driving time (c) of FIG. 8 when the movable side electrode 13 comes into contact with the fixed side electrode 12. ), The drive speed of the operation mechanism unit 4 is set to be smaller than the drive speed (maximum speed) at the end of the drive (b), and the movable side electrode 13 is pressed against the fixed side electrode 12.

このように、制御部20Bで、固定側電極12と可動側電極13との接触時(駆動最終時(c))における操作機構部4の駆動速度を、駆動途中の駆動終盤時(b)の駆動速度より小さくして可動側電極13を固定側電極12に押し付けるように制御、即ち、固定側電極12と可動側電極13との接触前に、操作機構部4の駆動速度を最高速度より低下させるように制御部20Bで制御することにより、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)衝撃が発生したとしても、駆動最終時(c)における操作機構部4の駆動速度を、駆動途中の駆動終盤時(b)の駆動速度より小さくして可動側電極13を固定側電極12に押し付けているので、可動側電極13への反発を抑制でき、可動側電極13に反発応力が加わることがなく、一時的に可動側電極13が固定側電極12との接続状態が外れることはない。 In this way, in the control unit 20B, the drive speed of the operation mechanism unit 4 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive (c)) is set to the drive speed at the end of the drive (b) during the drive. The drive speed is controlled to be smaller than the drive speed so that the movable side electrode 13 is pressed against the fixed side electrode 12, that is, the drive speed of the operation mechanism unit 4 is lowered from the maximum speed before the fixed side electrode 12 and the movable side electrode 13 come into contact with each other. When the fixed side electrode 12 and the movable side electrode 13 shift from the shutoff state (open) to the closed state (closed) by being controlled by the control unit 20B, the movable side electrode 13 collides with the fixed side electrode 12 ( Even if an impact (contact) occurs, the drive speed of the operation mechanism unit 4 at the final drive (c) is made smaller than the drive speed at the end of the drive (b) during the drive, and the movable side electrode 13 is fixed. Since it is pressed against the movable side electrode 13, the repulsion to the movable side electrode 13 can be suppressed, the repulsive stress is not applied to the movable side electrode 13, and the movable side electrode 13 is temporarily disconnected from the fixed side electrode 12. There is no.

図12、図13及び図15に、本発明の遮断器の実施例3として、固定側電極12と可動側電極13との接触時(駆動最終時)における操作機構部4の駆動速度を、ばねで制御する例を示す。 In FIGS. 12, 13 and 15, as the third embodiment of the circuit breaker of the present invention, the drive speed of the operation mechanism unit 4 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive) is set by a spring. An example of controlling with is shown.

先ず、図10及び図11を用いて、従来の構成における課題について説明する。図10及び図11は、図1に示した真空遮断器40の概略構成であり、図10は固定側電極12と可動側電極13が非接触の状態、図11は固定側電極12と可動側電極13が接触している状態を示す。 First, problems in the conventional configuration will be described with reference to FIGS. 10 and 11. 10 and 11 are schematic configurations of the vacuum circuit breaker 40 shown in FIG. 1, FIG. 10 shows a state in which the fixed side electrode 12 and the movable side electrode 13 are not in contact with each other, and FIG. 11 shows the fixed side electrode 12 and the movable side. Indicates a state in which the electrodes 13 are in contact with each other.

図10及び図11に示すように、絶縁体で構成された駆動軸である操作用絶縁ロッド14の可動側電極13とは反対側の先端にはばね21が設置されており、このばね21は、操作機構部4に形成された中空部4a内に配置されている。 As shown in FIGS. 10 and 11, a spring 21 is installed at the tip opposite to the movable side electrode 13 of the operating insulating rod 14 which is a drive shaft composed of an insulator, and the spring 21 is installed. , It is arranged in the hollow portion 4a formed in the operation mechanism portion 4.

上記したばね21は、図10に示す固定側電極12と可動側電極13が非接触(OFF時)の状態では圧縮状態であり、この状態からばね21の圧縮状態を解放すると図11に示す固定側電極12と可動側電極13が接触するが、この際、図14に示すように、ばね21の圧縮解放後、ばね21の力で可動側電極13は徐々に速度を上げ、やがて固定側電極12と接触時(ON時)には、可動側電極13は最高速度となる。 The above-mentioned spring 21 is in a compressed state when the fixed side electrode 12 and the movable side electrode 13 shown in FIG. 10 are not in contact (when OFF), and when the compressed state of the spring 21 is released from this state, the spring 21 is fixed as shown in FIG. The side electrode 12 and the movable side electrode 13 come into contact with each other. At this time, as shown in FIG. 14, after the spring 21 is compressed and released, the movable side electrode 13 gradually increases in speed by the force of the spring 21, and eventually the fixed side electrode 13 is contacted. When in contact with 12 (when ON), the movable side electrode 13 has the maximum speed.

固定側電極12と可動側電極13の接触時(ON時)に、可動側電極13が最高速度となるため、その分反発力も大きくなり反発力が増大し、収束までに時間がかかってしまうという課題があった。 When the fixed side electrode 12 and the movable side electrode 13 are in contact (when ON), the movable side electrode 13 has the maximum speed, so that the repulsive force also increases and the repulsive force increases, and it takes time to converge. There was a challenge.

この課題を解決するのが、図12及び図13に示す実施例3である。 It is Example 3 shown in FIGS. 12 and 13 that solves this problem.

図12及び図13は、図1に示した真空遮断器40の概略構成であり、図12は固定側電極12と可動側電極13が非接触の状態、図13は固定側電極12と可動側電極13が接触している状態を示す。 12 and 13 are schematic configurations of the vacuum circuit breaker 40 shown in FIG. 1, FIG. 12 shows a state in which the fixed side electrode 12 and the movable side electrode 13 are not in contact with each other, and FIG. 13 shows the fixed side electrode 12 and the movable side. Indicates a state in which the electrodes 13 are in contact with each other.

図12及び図13に示す実施例3は、絶縁体で構成された駆動軸である操作用絶縁ロッド14の可動側電極13とは反対側の先端に設置され、固定側電極12と可動側電極13の非接触時に圧縮状態となる操作機構部4に形成された中空部4a内に配置された第1のばね21Aと、この第1のばね21Aとは別に操作用絶縁ロッド14に一端が第1の支持部材23を介して接続され、操作機構部4に他端が第2の支持部材24を介して接続されていると共に、固定側電極12と可動側電極13の接触時に引っ張り応力となる第2のばね22とを備えて構成されている。 In the third embodiment shown in FIGS. 12 and 13, the fixed side electrode 12 and the movable side electrode 12 are installed at the tip opposite to the movable side electrode 13 of the operation insulating rod 14 which is a drive shaft composed of an insulator. The first spring 21A arranged in the hollow portion 4a formed in the operating mechanism portion 4 that is in a compressed state when the 13 is not in contact, and one end of the operating insulating rod 14 separately from the first spring 21A. It is connected via the support member 23 of No. 1, the other end is connected to the operation mechanism portion 4 via the second support member 24, and a tensile stress is generated when the fixed side electrode 12 and the movable side electrode 13 come into contact with each other. It is configured to include a second spring 22.

そして、固定側電極12と可動側電極13との接触時(駆動最終時)に、第2のばね22の引っ張り応力が最大となるようにし、可動側電極13の駆動速度を減速するようにしている。 Then, when the fixed side electrode 12 and the movable side electrode 13 come into contact with each other (at the final drive), the tensile stress of the second spring 22 is maximized, and the driving speed of the movable side electrode 13 is reduced. There is.

このように、圧縮状態の第1のばね21Aに加え、固定側電極12と可動側電極13との接触時(駆動最終時)に引っ張り力となる第2のばね22を設け、第2のばね22の引っ張り力が、固定側電極12と可動側電極13との接触時(駆動最終時)に最大となるようにすることにより、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)衝撃が発生したとしても、駆動最終時における操作機構部4の駆動速度を低下させて可動側電極13を固定側電極12に押し付けているので、可動側電極13への反発を抑制でき、可動側電極13に反発応力が加わることがなく、一時的に可動側電極13が固定側電極12との接続状態が外れることはない。 In this way, in addition to the first spring 21A in the compressed state, a second spring 22 that acts as a tensile force when the fixed side electrode 12 and the movable side electrode 13 come into contact with each other (at the final drive) is provided, and the second spring is provided. By maximizing the tensile force of 22 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive), the fixed side electrode 12 and the movable side electrode 13 are separated from the cutoff state (open). Even if an impact occurs in which the movable side electrode 13 hits (contacts) the fixed side electrode 12 when shifting to the closed state, the drive speed of the operation mechanism unit 4 at the final drive is reduced to reduce the drive speed of the movable side electrode 12. Since the 13 is pressed against the fixed side electrode 12, the repulsion to the movable side electrode 13 can be suppressed, the repulsive stress is not applied to the movable side electrode 13, and the movable side electrode 13 is temporarily connected to the fixed side electrode 12. The connection status will not be disconnected.

図14に示すように(第2のばね22がない場合)、ばね21の圧縮解放後、ばね21の力で可動側電極13は徐々に速度を上げ、やがて固定側電極12と接触時(ON時)には、可動側電極13は最高速度となることは上述したが、図15に示すように、第2のばね22がある場合には、第2のばね22がない場合に比べて、固定側電極12との接触時(ON時)の可動側電極13の最高速度が低下していることが分かる。 As shown in FIG. 14 (when there is no second spring 22), after the spring 21 is compressed and released, the movable side electrode 13 gradually increases in speed by the force of the spring 21, and when it comes into contact with the fixed side electrode 12 (ON). At the time), the movable side electrode 13 has the maximum speed, but as shown in FIG. 15, when the second spring 22 is present, the speed is higher than when the second spring 22 is not present. It can be seen that the maximum speed of the movable side electrode 13 at the time of contact with the fixed side electrode 12 (when ON) is reduced.

また、図15から分かるように、第1のばね21Aの反発力の最小値が、第2のばね22の引っ張り力の最大値より大きくなければ、固定側電極12と可動側電極13との接触が外れてしまうので、第1のばね21Aの反発力の最小値は、第2のばね22の引っ張り力の最大値より大きいことが重要である。 Further, as can be seen from FIG. 15, if the minimum value of the repulsive force of the first spring 21A is not larger than the maximum value of the tensile force of the second spring 22, the contact between the fixed side electrode 12 and the movable side electrode 13 It is important that the minimum value of the repulsive force of the first spring 21A is larger than the maximum value of the tensile force of the second spring 22.

図16に、本発明の遮断器の実施例4として、固定側電極12と可動側電極13との接触時(駆動最終時)における操作機構部4の駆動速度を、ばねで制御する例を示す。 FIG. 16 shows an example in which the drive speed of the operation mechanism unit 4 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive) is controlled by a spring as the fourth embodiment of the circuit breaker of the present invention. ..

図16は、図1に示した真空遮断器40の概略構成であり、固定側電極12と可動側電極13が接触している状態を示す。 FIG. 16 is a schematic configuration of the vacuum circuit breaker 40 shown in FIG. 1, and shows a state in which the fixed side electrode 12 and the movable side electrode 13 are in contact with each other.

図16に示す実施例4は、絶縁体で構成された駆動軸である操作用絶縁ロッド14の可動側電極13とは反対側の先端に設置され、操作機構部4に形成された中空部4a内に配置された第1のばね21Aと、この第1のばね21Aの外周に、操作用絶縁ロッド14に一端が第1の支持部材23aを介して接続され、操作機構部4に他端が第2の支持部材24aを介して接続されると共に、第1のばね21Aと同軸上に配置された第2のばね25とを備え、第2のばね25の巻き数を第1のばね21Aの巻き数より少なくし、固定側電極12と可動側電極13との接触時(駆動最終時)での第2のばね25の引っ張り力を、一時的に第1のばね21Aの引っ張り力より大きくし、可動側電極13の固定側電極12との接触速度を低減するようにしている。 In the fourth embodiment shown in FIG. 16, a hollow portion 4a is installed at the tip of the operating insulating rod 14 which is a drive shaft composed of an insulator and is opposite to the movable side electrode 13, and is formed in the operating mechanism portion 4. One end is connected to the operating insulating rod 14 via the first support member 23a, and the other end is connected to the operating mechanism portion 4 to the first spring 21A arranged inside and the outer periphery of the first spring 21A. It is connected via a second support member 24a and includes a second spring 25 arranged coaxially with the first spring 21A, and the number of turns of the second spring 25 is set to that of the first spring 21A. The number of turns is reduced, and the tensile force of the second spring 25 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive) is temporarily made larger than the tensile force of the first spring 21A. , The contact speed of the movable side electrode 13 with the fixed side electrode 12 is reduced.

このように、第1のばね21Aの外周に、第1のばね21Aと同軸上に配置された第2のばね25の巻き数を第1のばね21Aの巻き数より少なくし、固定側電極12と可動側電極13との接触時(駆動最終時)での第2のばね25の引っ張り力を、一時的に第1のばね21Aの引っ張り力より大きくし、可動側電極13の固定側電極12との接触速度を低減することにより、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)衝撃が発生したとしても、駆動最終時における操作機構部4の駆動速度を低下させて可動側電極13を固定側電極12に押し付けているので、可動側電極13への反発を抑制でき、可動側電極13に反発応力が加わることがなく、一時的に可動側電極13が固定側電極12との接続状態が外れることはない。 In this way, the number of turns of the second spring 25 arranged coaxially with the first spring 21A on the outer periphery of the first spring 21A is made smaller than the number of turns of the first spring 21A, and the fixed side electrode 12 The tensile force of the second spring 25 at the time of contact between the movable side electrode 13 and the movable side electrode 13 (at the final drive) is temporarily made larger than the tensile force of the first spring 21A, and the fixed side electrode 12 of the movable side electrode 13 is increased. By reducing the contact speed with, when the fixed side electrode 12 and the movable side electrode 13 shift from the shutoff state (open) to the closed state (closed), the movable side electrode 13 collides with (contacts) the fixed side electrode 12. ) Even if an impact occurs, the drive speed of the operation mechanism unit 4 at the final drive is reduced and the movable side electrode 13 is pressed against the fixed side electrode 12, so that the repulsion to the movable side electrode 13 can be suppressed and the movable side electrode 13 is movable. No repulsive stress is applied to the side electrode 13, and the movable side electrode 13 is not temporarily disconnected from the fixed side electrode 12.

図17に、本発明の遮断器の実施例5として、固定側電極12と可動側電極13との接触時(駆動最終時)における操作機構部4の駆動速度を、電磁石で制御する例を示す。 FIG. 17 shows an example in which the drive speed of the operation mechanism unit 4 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive) is controlled by an electromagnet as the fifth embodiment of the circuit breaker of the present invention. ..

図17は、図1に示した真空遮断器40の概略構成であり、固定側電極12と可動側電極13が接触している状態を示す。 FIG. 17 is a schematic configuration of the vacuum circuit breaker 40 shown in FIG. 1, and shows a state in which the fixed side electrode 12 and the movable side electrode 13 are in contact with each other.

図17に示す実施例5は、絶縁体で構成された駆動軸である操作用絶縁ロッド14の可動側電極13とは反対側の先端に設置され、操作機構部4に形成された中空部4a内に配置された第1のばね21Aと、この第1のばね21Aの外周に、操作用絶縁ロッド14に一端が第1の支持部材23aを介して接続され、操作機構部4に他端が第2の支持部材24aを介して接続されると共に、第1のばね21Aと同軸上に配置された第2のばね25と、操作用絶縁ロッド14に第1の支持部材23aを介して設置されている磁石受け部27と、この磁石受け部27と対向配置された電磁石26とを備え、固定側電極12と可動側電極13との間の距離が一定以上近づいた段階で、一時的に電磁石26を作動させて磁石受け部27を吸引接触して操作用絶縁ロッド14に減速力を発生させ、駆動途中の駆動終盤時での駆動速度を急減速し、減速後、電磁石26をOFFにして磁石受け部27との吸引接触を開放し、固定側電極12と可動側電極13を低速度で接触させるようにしている。 In the fifth embodiment shown in FIG. 17, a hollow portion 4a is installed at the tip of the operating insulating rod 14 which is a drive shaft composed of an insulator and is opposite to the movable side electrode 13, and is formed in the operating mechanism portion 4. One end is connected to the operating insulating rod 14 via the first support member 23a, and the other end is connected to the operating mechanism portion 4 to the first spring 21A arranged inside and the outer periphery of the first spring 21A. It is connected via the second support member 24a, and is installed on the operating insulating rod 14 via the first support member 23a and the second spring 25 arranged coaxially with the first spring 21A. The magnet receiving portion 27 and the electromagnet 26 arranged to face the magnet receiving portion 27 are provided, and when the distance between the fixed side electrode 12 and the movable side electrode 13 becomes closer than a certain level, the electromagnet is temporarily provided. 26 is operated to attract and contact the magnet receiving portion 27 to generate a deceleration force on the operating insulating rod 14, the drive speed at the end of the drive during the drive is suddenly decelerated, and after the deceleration, the electromagnet 26 is turned off. The suction contact with the magnet receiving portion 27 is opened so that the fixed side electrode 12 and the movable side electrode 13 are brought into contact with each other at a low speed.

このように、固定側電極12と可動側電極13との間の距離が一定以上近づいた段階で、一時的に電磁石26を作動させて磁石受け部27を吸引接触して操作用絶縁ロッド14に減速力を発生させ、駆動途中の駆動終盤時での駆動速度を急減速し、減速後、電磁石26をOFFにして磁石受け部27との吸引接触を開放し、固定側電極12と可動側電極13を低速度で接触させることにより、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)衝撃が発生したとしても、駆動最終時における操作機構部4の駆動速度を低下させて可動側電極13を固定側電極12に押し付けているので、可動側電極13への反発を抑制でき、可動側電極13に反発応力が加わることがなく、一時的に可動側電極13が固定側電極12との接続状態が外れることはない。 In this way, when the distance between the fixed side electrode 12 and the movable side electrode 13 is closer than a certain level, the electromagnet 26 is temporarily operated to attract and contact the magnet receiving portion 27 to the operating insulating rod 14. A deceleration force is generated to suddenly reduce the drive speed at the end of the drive during driving, and after deceleration, the electromagnet 26 is turned off to release the suction contact with the magnet receiving portion 27, and the fixed side electrode 12 and the movable side electrode 12 and the movable side electrode are released. By contacting 13 at a low speed, when the fixed side electrode 12 and the movable side electrode 13 shift from the shutoff state (open) to the closed state (closed), the movable side electrode 13 collides with (contacts) the fixed side electrode 12. ) Even if an impact occurs, the drive speed of the operation mechanism unit 4 at the final drive is reduced and the movable side electrode 13 is pressed against the fixed side electrode 12, so that the repulsion to the movable side electrode 13 can be suppressed and the movable side electrode 13 is movable. No repulsive stress is applied to the side electrode 13, and the movable side electrode 13 is not temporarily disconnected from the fixed side electrode 12.

図18及び図19に、本発明の遮断器の実施例6として、固定側電極12と可動側電極13との接触時(駆動最終時)における操作機構部4の駆動速度を、油圧ダンパで制御する例を示す。 In FIGS. 18 and 19, as the sixth embodiment of the circuit breaker of the present invention, the drive speed of the operation mechanism unit 4 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive) is controlled by a hydraulic damper. An example of doing so is shown.

図18及び図19は、図1に示した真空遮断器40の概略構成であり、図18は固定側電極12と可動側電極13が非接触の状態、図19は固定側電極12と可動側電極13が接触している状態を示す。 18 and 19 are schematic configurations of the vacuum circuit breaker 40 shown in FIG. 1, FIG. 18 shows a state in which the fixed side electrode 12 and the movable side electrode 13 are not in contact with each other, and FIG. 19 shows the fixed side electrode 12 and the movable side. Indicates a state in which the electrodes 13 are in contact with each other.

図18及び図19に示す実施例6は、絶縁体で構成された駆動軸である操作用絶縁ロッド14の可動側電極13とは反対側の先端に設置され、操作機構部4に形成された中空部4a内に配置された第1のばね21Aと、この第1のばね21Aの外周に、操作用絶縁ロッド14に一端が、後述する油圧ダンパ28の先端部28aと接触する接触板を兼ねる第1の支持部材23bを介して接続され、操作機構部4に他端が第2の支持部材24aを介して接続されると共に、第1のばね21Aと同軸上に配置された第2のばね25と、操作用絶縁ロッド14と一緒に動作する接触板を兼ねる第1の支持部材23bと対向して配置され、支持部材29を介して第2の支持部材24aに支持されている油圧ダンパ28とを備え、固定側電極12と可動側電極13とが非接触状態(図18)では第1及び第2のばね21A及び25は圧縮状態で、油圧ダンパ28の先端部28aと接触板を兼ねる第1の支持部材23bの距離が所定値離れており、第1及び第2のばね21A及び25の引っ張り力により可動側電極13が固定側電極12に向って図18の左側に移動すると、油圧ダンパ28の先端部28aと接触板を兼ねる第1の支持部材23bの距離が徐々に減少し、やがて、速度が乗った状態で油圧ダンパ28の先端部28aが接触板を兼ねる第1の支持部材23bに接触することにより、油圧ダンパ28が操作用絶縁ロッド14に減速力を発生させ(高速度のため、油圧ダンパ28は硬い状態の反応となり急減速)、駆動途中の駆動終盤時での駆動速度を急減速し、減速後、引き続き可動側電極13は図18の左側に動くが、この時は速度が落ちているため油圧ダンパ28は柔らかい状態となるため、再び速度を向上して、やがて、固定側電極12と可動側電極13とが接触して通電するようにしている。 Example 6 shown in FIGS. 18 and 19 is installed at the tip of the operating insulating rod 14 which is a drive shaft composed of an insulator and is opposite to the movable side electrode 13, and is formed on the operating mechanism portion 4. The first spring 21A arranged in the hollow portion 4a and the outer periphery of the first spring 21A also serve as a contact plate having one end of the operating insulating rod 14 in contact with the tip portion 28a of the hydraulic damper 28 described later. A second spring which is connected via the first support member 23b, the other end of which is connected to the operation mechanism portion 4 via the second support member 24a, and is arranged coaxially with the first spring 21A. The hydraulic damper 28 is arranged so as to face the first support member 23b that also serves as a contact plate that operates together with the operation insulating rod 14, and is supported by the second support member 24a via the support member 29. When the fixed side electrode 12 and the movable side electrode 13 are not in contact with each other (FIG. 18), the first and second springs 21A and 25 are in a compressed state, and also serve as a contact plate with the tip 28a of the hydraulic damper 28. When the distance of the first support member 23b is separated by a predetermined value and the movable side electrode 13 moves toward the fixed side electrode 12 to the left side of FIG. 18 due to the tensile force of the first and second springs 21A and 25, the flood control is applied. The distance between the tip 28a of the damper 28 and the first support member 23b that also serves as the contact plate gradually decreases, and eventually, the tip 28a of the hydraulic damper 28 also serves as the contact plate while the speed is increased. Upon contact with 23b, the hydraulic damper 28 generates a deceleration force on the operating insulating rod 14 (because of the high speed, the hydraulic damper 28 reacts in a hard state and suddenly decelerates), and the drive is driven at the end of the drive during the drive. The speed is suddenly decelerated, and after deceleration, the movable side electrode 13 continues to move to the left side of FIG. , The fixed side electrode 12 and the movable side electrode 13 are in contact with each other to energize.

このように、固定側電極12と可動側電極13とが非接触状態では第1及び第2のばね21A及び25は圧縮状態で、油圧ダンパ28の先端部28aと接触板を兼ねる第1の支持部材23bの距離が所定値離れており、第1及び第2のばね21A及び25の引っ張り力により可動側電極13が固定側電極12に向って移動すると、油圧ダンパ28の先端部28aと接触板を兼ねる第1の支持部材23bの距離が徐々に減少し、やがて、速度が乗った状態で油圧ダンパ28の先端部28aが接触板を兼ねる第1の支持部材23bに接触することにより(図20に示すように、油圧ダンパ28の接触時に可動側電極13の駆動速度が最高速度になっている)、油圧ダンパ28が操作用絶縁ロッド14に減速力を発生させ(図21に示すように、油圧ダンパ28の制動力が最大になっている)、駆動途中の駆動終盤時での駆動速度を急減速し(図20に示すように、可動側電極13の駆動速度が急激に減少している)、減速後、再び可動側電極13が固定側電極12に向って移動して固定側電極12と可動側電極13とが接触することにより、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)衝撃が発生したとしても、駆動最終時における操作機構部4の駆動速度を低下させて可動側電極13を固定側電極12に押し付けているので、可動側電極13への反発を抑制でき、可動側電極13に反発応力が加わることがなく、一時的に可動側電極13が固定側電極12との接続状態が外れることはない。 As described above, when the fixed side electrode 12 and the movable side electrode 13 are not in contact with each other, the first and second springs 21A and 25 are in a compressed state, and the first support which also serves as the tip 28a of the hydraulic damper 28 and the contact plate. When the distance between the members 23b is separated by a predetermined value and the movable side electrode 13 moves toward the fixed side electrode 12 due to the tensile force of the first and second springs 21A and 25, the tip 28a of the hydraulic damper 28 and the contact plate The distance of the first support member 23b that also serves as a contact plate gradually decreases, and eventually, the tip portion 28a of the hydraulic damper 28 comes into contact with the first support member 23b that also serves as a contact plate while the speed is increased (FIG. 20). As shown in, the driving speed of the movable side electrode 13 is the maximum speed when the hydraulic damper 28 is in contact with the hydraulic damper 28), and the hydraulic damper 28 generates a deceleration force on the operating insulating rod 14 (as shown in FIG. 21). The braking force of the hydraulic damper 28 is maximized), and the driving speed at the end of the driving during driving is suddenly decelerated (as shown in FIG. 20, the driving speed of the movable side electrode 13 is sharply reduced. ), After deceleration, the movable side electrode 13 moves toward the fixed side electrode 12 again and the fixed side electrode 12 and the movable side electrode 13 come into contact with each other, so that the fixed side electrode 12 and the movable side electrode 13 are blocked ( Even if an impact occurs in which the movable side electrode 13 hits (contacts) the fixed side electrode 12 when shifting from the open) to the closed state (closed), the drive speed of the operation mechanism unit 4 at the final drive is reduced. Since the movable side electrode 13 is pressed against the fixed side electrode 12, repulsion to the movable side electrode 13 can be suppressed, repulsive stress is not applied to the movable side electrode 13, and the movable side electrode 13 temporarily becomes the fixed side electrode. The connection state with 12 is not disconnected.

図22、図23(a)、図23(b)、図23(c)及び、図23(d)に、本発明の遮断器の実施例7として、固定側電極12と可動側電極13との接触時(駆動最終時)における操作機構部4の駆動速度を、駆動軸に設けられた溝部と、この溝部を移動する突起体で制御する例を示す。 22, FIG. 23 (a), FIG. 23 (b), FIG. 23 (c), and FIG. 23 (d) show, as Example 7 of the circuit breaker of the present invention, the fixed side electrode 12 and the movable side electrode 13. An example is shown in which the drive speed of the operation mechanism unit 4 at the time of contact (final drive) is controlled by a groove portion provided on the drive shaft and a protrusion that moves the groove portion.

図22、図23(a)、図23(b)、図23(c)及び、図23(d)は、図1に示した真空遮断器40の概略構成であり、図22は固定側電極12と可動側電極13が非接触の状態、図23(a)、図23(b)、図23(c)及び図23(d)は可動側電極13が固定側電極12に接触するために移動した際の溝部における突起体の位置を示す図である。 22, FIG. 23 (a), FIG. 23 (b), FIG. 23 (c), and FIG. 23 (d) are schematic configurations of the vacuum circuit breaker 40 shown in FIG. 1, and FIG. 22 shows a fixed side electrode. In the state where the movable side electrode 13 and the movable side electrode 13 are not in contact with each other, FIGS. 23 (a), 23 (b), 23 (c) and 23 (d) show that the movable side electrode 13 is in contact with the fixed side electrode 12. It is a figure which shows the position of the protrusion in the groove part at the time of moving.

図22に示す実施例7は、絶縁体で構成された駆動軸である操作用絶縁ロッド14の可動側電極13とは反対側の先端に設置され、操作機構部4に形成された中空部4a内に配置された第1のばね21Aと、この第1のばね21Aの外周に、操作用絶縁ロッド14に一端が第1の支持部材23aを介して接続され、操作機構部4に他端が第2の支持部材24aを介して接続されると共に、第1のばね21Aと同軸上に配置された第2のばね25とを備えている。 Example 7 shown in FIG. 22 is a hollow portion 4a formed in the operation mechanism portion 4 and installed at the tip opposite to the movable side electrode 13 of the operation insulation rod 14 which is a drive shaft composed of an insulator. One end is connected to the operating insulating rod 14 via the first support member 23a, and the other end is connected to the operating mechanism portion 4 to the first spring 21A arranged inside and the outer periphery of the first spring 21A. It is connected via a second support member 24a and includes a second spring 25 arranged coaxially with the first spring 21A.

そして、上記構成に加え、本実施例では、駆動軸の一部である可動側導体10と操作用絶縁ロッド14の間に設けられた回転軸30を、可動側導体10に対しては第1の回転接続部30aを介して、操作用絶縁ロッド14に対しては第2の回転接続部30bを介して、それぞれ回転可能に構成し、回転可能に構成された回転軸30に溝部31を設け、この溝部31を移動する突起体32を備えている。 Then, in addition to the above configuration, in the present embodiment, the rotating shaft 30 provided between the movable side conductor 10 which is a part of the drive shaft and the operation insulating rod 14 is the first with respect to the movable side conductor 10. The operating insulating rod 14 is rotatably configured via the second rotary connection portion 30b via the rotary connection portion 30a of the above, and the groove portion 31 is provided on the rotatably configured rotary shaft 30. A protrusion 32 that moves the groove 31 is provided.

本実施例では、固定側電極12と可動側電極13とが非接触状態では第1のばね21Aは圧縮状態で、この状態から第1のばね21Aの引っ張り力により可動側電極13が固定側電極12に向って移動すると突起体32が溝部31を移動して、駆動軸(可動側電極13、操作用絶縁ロッド14)に減速力を発生させ、駆動途中の駆動終盤時での可動側電極13の駆動速度を急減速し、減速後、回転軸30が回転し、突起体32が溝部31を移動することによって、再び可動側電極13が固定側電極12に向って移動して固定側電極12と可動側電極13とが接触するものである。 In this embodiment, when the fixed side electrode 12 and the movable side electrode 13 are not in contact with each other, the first spring 21A is in a compressed state, and from this state, the movable side electrode 13 becomes the fixed side electrode due to the tensile force of the first spring 21A. When moving toward 12, the protrusion 32 moves in the groove 31 to generate a deceleration force on the drive shaft (movable side electrode 13, operating insulating rod 14), and the movable side electrode 13 at the end of the drive during driving. The drive speed of the movable side electrode 13 is suddenly decelerated, and after the deceleration, the rotating shaft 30 rotates and the protrusion 32 moves in the groove portion 31, so that the movable side electrode 13 moves toward the fixed side electrode 12 again and the fixed side electrode 12 And the movable side electrode 13 come into contact with each other.

上記した溝部31は、図23(a)、図23(b)、図23(c)及び、図23(d)に示すように、軸方向に伸延する直線状の第1の溝部31aと、この第1の溝部31aの操作機構部4側端部から連続して形成された曲線状の第2の溝部31bとから構成され、可動側電極13が固定側電極12に向って移動すると突起体32が第1の溝部31aを移動し、回転軸30が回転し、突起体32が第2の溝部31bの曲線状の曲率部に衝突することにより駆動軸(可動側電極13、操作用絶縁ロッド14)に減速力を発生させ、駆動途中の駆動終盤時での可動側電極13の駆動速度を急減速する。 As shown in FIGS. 23 (a), 23 (b), 23 (c), and 23 (d), the groove portion 31 described above includes a linear first groove portion 31a extending in the axial direction. The first groove portion 31a is composed of a curved second groove portion 31b formed continuously from the operation mechanism portion 4 side end portion, and when the movable side electrode 13 moves toward the fixed side electrode 12, it is a protrusion. 32 moves in the first groove 31a, the rotating shaft 30 rotates, and the protrusion 32 collides with the curved curved portion of the second groove 31b, so that the drive shaft (movable side electrode 13, operating insulating rod) A deceleration force is generated in 14) to suddenly decelerate the drive speed of the movable side electrode 13 at the end of the drive during the drive.

図23(a)、図23(b)、図23(c)及び、図23(d)を用いて、更に具体的に説明すると、図23(a)に示す固定側電極12と可動側電極13が非接触の状態(OFF状態)では、可動側電極13は移動していないので、突起体32は第1の溝部31aの略中央部に位置している。 More specifically, the fixed side electrode 12 and the movable side electrode shown in FIG. 23 (a) will be described in more detail with reference to FIGS. 23 (a), 23 (b), 23 (c), and 23 (d). When the 13 is in a non-contact state (OFF state), the movable side electrode 13 is not moving, so that the protrusion 32 is located at a substantially central portion of the first groove portion 31a.

この状態から可動側電極13が固定側電極12との接触に向けて図23(b)の左側に移動を開始すると、図23(b)に示すように、突起体32は第1の溝部31aの右側に位置している。 From this state, when the movable side electrode 13 starts moving to the left side of FIG. 23 (b) toward the contact with the fixed side electrode 12, the protrusion 32 has the first groove portion 31a as shown in FIG. 23 (b). It is located on the right side of.

この図23(b)の状態から可動側電極13が固定側電極12との接触に向けて更に左側に移動すると、突起体32が第2の溝部31bの曲線状の曲率部に衝突(この状態が図23(c))し、可動側電極13は急減速する。 When the movable side electrode 13 moves further to the left toward the contact with the fixed side electrode 12 from the state shown in FIG. 23 (b), the protrusion 32 collides with the curved curved portion of the second groove portion 31b (this state). 23 (c)), and the movable side electrode 13 suddenly decelerates.

その後、引き続き可動側電極13が左側に向う方向の力が加わることで回転軸30が回転され、突起体32は曲率部のある第2の溝部31b内を更に進行する(この状態が図23(d))。この時、可動側電極13は、少し加速しながら左側に移動する。 After that, the rotation shaft 30 is rotated by continuously applying a force in the direction toward the left side of the movable electrode 13, and the protrusion 32 further advances in the second groove 31b having the curvature portion (this state is shown in FIG. 23 (FIG. 23). d)). At this time, the movable side electrode 13 moves to the left side while accelerating a little.

このように、軸方向に伸延する直線状の第1の溝部31aと、この第1の溝部31aの操作機構部4側端部から連続して形成された曲線状の第2の溝部31bとから構成され、可動側電極13が固定側電極12に向って移動すると突起体32が第1の溝部31aを移動し、回転軸30が回転し、突起体32が第2の溝部31bの曲線状の曲率部に衝突することにより駆動軸(可動側電極13、操作用絶縁ロッド14)に減速力を発生させ、駆動途中の駆動終盤時での可動側電極13の駆動速度を急減速し、その後、引き続き可動側電極13が左側に向う方向の力が加わることで回転軸30が回転され、突起体32は曲率部のある第2の溝部31b内を更に進行して、固定側電極12と可動側電極13を接触させることにより、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)衝撃が発生したとしても、駆動最終時における操作機構部4の駆動速度を低下させて可動側電極13を固定側電極12に押し付けているので、可動側電極13への反発を抑制でき、可動側電極13に反発応力が加わることがなく、一時的に可動側電極13が固定側電極12との接続状態が外れることはない。 As described above, from the linear first groove portion 31a extending in the axial direction and the curved second groove portion 31b formed continuously from the operation mechanism portion 4 side end portion of the first groove portion 31a. When the movable side electrode 13 moves toward the fixed side electrode 12, the protrusion 32 moves in the first groove 31a, the rotation shaft 30 rotates, and the protrusion 32 is curved in the second groove 31b. A deceleration force is generated in the drive shaft (movable side electrode 13, operating insulating rod 14) by colliding with the curved portion, and the drive speed of the movable side electrode 13 at the end of the drive during the drive is suddenly decelerated, and then the drive speed is rapidly reduced. The rotating shaft 30 is continuously rotated by the force applied to the movable side electrode 13 in the direction to the left side, and the protrusion 32 further advances in the second groove 31b having the curved portion, and the fixed side electrode 12 and the movable side By bringing the electrodes 13 into contact with each other, when the fixed side electrode 12 and the movable side electrode 13 shift from the shutoff state (open) to the closing state (closed), the movable side electrode 13 collides with (contacts) the fixed side electrode 12. Even if the above occurs, the drive speed of the operation mechanism unit 4 at the final drive is reduced and the movable side electrode 13 is pressed against the fixed side electrode 12, so that the repulsion to the movable side electrode 13 can be suppressed and the movable side electrode 13 can be suppressed. No repulsive stress is applied to 13, and the movable side electrode 13 is not temporarily disconnected from the fixed side electrode 12.

なお、本実施例では、固定側電極12と可動側電極13が接触したあとの反発も、回転軸30が回転しながらでないと可動側電極13が反発できないため、接触後の反発も抑制でき、更に接触安定化までの時間を短縮できる。 In this embodiment, the repulsion after the fixed side electrode 12 and the movable side electrode 13 come into contact with each other cannot be repelled unless the rotating shaft 30 is rotating, so that the repulsion after the contact can be suppressed. Furthermore, the time required for contact stabilization can be shortened.

図24及び図25に、本発明の遮断器の実施例8として、固定側電極12と可動側電極13との接触時(駆動最終時)における操作機構部4の駆動速度を、固定側電極12の周囲に配置した電磁石で制御する例を示す。 In FIGS. 24 and 25, as the eighth embodiment of the circuit breaker of the present invention, the driving speed of the operation mechanism unit 4 at the time of contact between the fixed side electrode 12 and the movable side electrode 13 (at the final drive) is shown by the fixed side electrode 12. An example of controlling with an electromagnet arranged around the is shown.

図24及び図25は、図1に示した真空遮断器40の概略構成であり、図24は固定側電極12と可動側電極13が接触している状態、図25は固定側電極12と可動側電極13が非接触の状態を示す。 24 and 25 are schematic configurations of the vacuum circuit breaker 40 shown in FIG. 1, FIG. 24 shows a state in which the fixed side electrode 12 and the movable side electrode 13 are in contact with each other, and FIG. The side electrode 13 shows a non-contact state.

図24及び図25に示す実施例3は、絶縁体で構成された駆動軸である操作用絶縁ロッド14の可動側電極13とは反対側の先端に設置され、固定側電極12と可動側電極13の非接触時に圧縮状態となり、接触時には伸びきった状態になる操作機構部4に形成された中空部4a内に配置されたばね21と、固定側電極12の周囲に配置された電磁石33とを備えて構成されている。 In the third embodiment shown in FIGS. 24 and 25, the fixed side electrode 12 and the movable side electrode 12 are installed at the tip opposite to the movable side electrode 13 of the operation insulating rod 14 which is a drive shaft composed of an insulator. The spring 21 arranged in the hollow portion 4a formed in the operation mechanism portion 4 which is in a compressed state when the 13 is not in contact and is in a fully extended state when in contact, and the electromagnet 33 arranged around the fixed side electrode 12 It is configured to prepare.

そして、電磁石33に電流を流し、この電磁石33による吸着力(A)とばね21による固定側電極12と可動側電極13の引きはがし力(B)の関係がA>Bであれば、固定側電極12と可動側電極13が接触して導通し(図24の状態)、電磁石33の電流がOFFか又は弱まり吸着力(A)とばね21による固定側電極12と可動側電極13の引きはがし力(B)の関係がA<Bになれば、固定側電極12と可動側電極13が分離して非導通(図25の状態)となるようにしたものである。 Then, a current is passed through the electric magnet 33, and if the relationship between the attractive force (A) by the electric magnet 33 and the peeling force (B) between the fixed side electrode 12 and the movable side electrode 13 by the spring 21 is A> B, the fixed side The electrode 12 and the movable side electrode 13 are in contact with each other to conduct conduction (state in FIG. 24), and the current of the electromagnet 33 is turned off or weakened, and the fixed side electrode 12 and the movable side electrode 13 are peeled off by the attractive force (A) and the spring 21. When the relationship of the force (B) becomes A <B, the fixed side electrode 12 and the movable side electrode 13 are separated and become non-conducting (state in FIG. 25).

このように、電磁石33に電流を流し、この電磁石33による吸着力(A)とばね21による固定側電極12と可動側電極13の引きはがし力(B)の関係がA>Bであれば、固定側電極12と可動側電極13が接触して導通し(図24の状態)、電磁石33の電流がOFFか又は弱まり吸着力(A)とばね21による固定側電極12と可動側電極13の引きはがし力(B)の関係がA<Bになれば、固定側電極12と可動側電極13が分離して非導通(図25の状態)となるようにすることにより、固定側電極12と可動側電極13が遮断状態(開)から投入状態(閉)に移行する時、可動側電極13が固定側電極12にぶつかる(接触する)衝撃が発生したとしても、駆動最終時における操作機構部4の駆動速度を低下させて可動側電極13を固定側電極12に押し付けているので、可動側電極13への反発を抑制でき、可動側電極13に反発応力が加わることがなく、一時的に可動側電極13が固定側電極12との接続状態が外れることはない。 In this way, when a current is passed through the electromagnet 33 and the relationship between the attractive force (A) by the electromagnet 33 and the peeling force (B) between the fixed side electrode 12 and the movable side electrode 13 by the spring 21 is A> B, The fixed side electrode 12 and the movable side electrode 13 are in contact with each other to conduct conduction (state in FIG. 24), and the current of the electromagnet 33 is turned off or weakened, and the attractive force (A) and the spring 21 cause the fixed side electrode 12 and the movable side electrode 13 to become conductive. When the relationship of the peeling force (B) becomes A <B, the fixed side electrode 12 and the movable side electrode 13 are separated from each other so as to be non-conducting (state in FIG. 25), so that the fixed side electrode 12 and the fixed side electrode 12 are separated. When the movable side electrode 13 shifts from the shutoff state (open) to the closed state (closed), even if an impact occurs in which the movable side electrode 13 collides with (contacts) the fixed side electrode 12, the operation mechanism unit at the final drive time occurs. Since the movable side electrode 13 is pressed against the fixed side electrode 12 by reducing the driving speed of 4, the repulsion to the movable side electrode 13 can be suppressed, and the repulsive stress is not applied to the movable side electrode 13 temporarily. The movable side electrode 13 is not disconnected from the fixed side electrode 12.

なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換える事が可能であり、また、ある実施例の構成に他の実施例の構成を加える事も可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をする事が可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1…真空バルブ、1A…真空バルブのモールド部、2…固定側ケーブルブッシング、3…可動側ケーブルブッシング、4…操作機構部、4a…中空部、5…円筒絶縁材、6…固定側端板、7…固定側導体、8…可動側端板、9…ベローズ、10…可動側導体、11…浮遊電位金属、12…固定側電極、13…可動側電極、14…操作用絶縁ロッド、15…固定側ケーブルブッシング導体、16…可動側ケーブルブッシング導体、17…接触子、18…絶縁ガス、19…固定部材、20A、20B…制御部、21…ばね、21A…第1のばね、22、25…第2のばね、23、23a…第1の支持部材、23b…接触板を兼ねる第1の支持部材、24、24a…第2の支持部材、26、33…電磁石、27…磁石受け部、28…油圧ダンパ、28a…油圧ダンパの先端部、29…支持部材、30…回転軸、30a…第1の回転接続部、30b…第2の回転接続部、31…溝部、31a…第1の溝部、31b…第2の溝部、32…突起体、40…真空遮断器。 1 ... Vacuum valve, 1A ... Vacuum valve mold part, 2 ... Fixed side cable bushing, 3 ... Movable side cable bushing, 4 ... Operation mechanism part, 4a ... Hollow part, 5 ... Cylindrical insulating material, 6 ... Fixed side end plate , 7 ... Fixed side conductor, 8 ... Movable side end plate, 9 ... Bellows, 10 ... Movable side conductor, 11 ... Floating potential metal, 12 ... Fixed side electrode, 13 ... Movable side electrode, 14 ... Insulated rod for operation, 15 ... Fixed side cable bushing conductor, 16 ... Movable side cable bushing conductor, 17 ... Contact, 18 ... Insulating gas, 19 ... Fixed member, 20A, 20B ... Control unit, 21 ... Spring, 21A ... First spring, 22, 25 ... 2nd spring, 23, 23a ... 1st support member, 23b ... 1st support member also serving as a contact plate, 24, 24a ... 2nd support member, 26, 33 ... Electromagnet, 27 ... Magnet receiving portion , 28 ... Hydraulic damper, 28a ... Tip of hydraulic damper, 29 ... Support member, 30 ... Rotating shaft, 30a ... First rotary connection, 30b ... Second rotary connection, 31 ... Groove, 31a ... First Groove, 31b ... Second groove, 32 ... Projection, 40 ... Vacuum breaker.

Claims (12)

固定側電極と、該固定側電極と対向配置され電気的に接触する可動側電極と、該可動側電極を駆動する駆動部とを備えた遮断器であって、
前記固定側電極と前記可動側電極との接触時(駆動最終時)における前記駆動部の駆動力を、駆動途中の駆動終盤時の駆動力より強くして前記可動側電極を前記固定側電極に押し付けるように制御する制御部を備えているか、
或いは、前記固定側電極と前記可動側電極との接触時(駆動最終時)における前記駆動部の駆動速度を、駆動途中の駆動終盤時の駆動速度より小さくして前記可動側電極を前記固定側電極に押し付けるように制御する制御部を備えていることを特徴とする遮断器。
A circuit breaker including a fixed side electrode, a movable side electrode arranged to face the fixed side electrode and electrically contacting the fixed side electrode, and a driving unit for driving the movable side electrode.
The driving force of the driving unit at the time of contact between the fixed side electrode and the movable side electrode (at the time of final driving) is made stronger than the driving force at the end of driving during driving, and the movable side electrode is used as the fixed side electrode. Does it have a control unit that controls it to be pressed?
Alternatively, the drive speed of the drive unit at the time of contact between the fixed side electrode and the movable side electrode (at the final drive) is made smaller than the drive speed at the end of the drive during the drive, and the movable side electrode is set to the fixed side. A circuit breaker characterized by having a control unit that controls the pressure against an electrode.
請求項1に記載の遮断器であって、
前記可動側電極と前記駆動部が駆動軸を介して接続されていると共に、前記固定側電極と前記可動側電極及び前記駆動部が直線状に配置されていることを特徴とする遮断器。
The circuit breaker according to claim 1.
A circuit breaker characterized in that the movable side electrode and the drive unit are connected via a drive shaft, and the fixed side electrode, the movable side electrode, and the drive unit are linearly arranged.
請求項1又は2に記載の遮断器であって、
前記制御部による前記駆動力の制御は、駆動電流若しくは駆動電圧の大小で行うか、或いはデジタルによるパルス駆動として単位時間当たりのパルス幅若しくはパルス数により行うことを特徴とする遮断器。
The circuit breaker according to claim 1 or 2.
A circuit breaker characterized in that the driving force is controlled by the control unit by the magnitude of the driving current or the driving voltage, or by the pulse width or the number of pulses per unit time as a digital pulse drive.
請求項1又は2に記載の遮断器であって、
前記制御部による前記駆動速度の制御は、前記固定側電極と前記可動側電極との接触前に、前記駆動速度を最高速度より低下させるように行うことを特徴とする遮断器。
The circuit breaker according to claim 1 or 2.
The circuit breaker is characterized in that the drive speed is controlled by the control unit so that the drive speed is lower than the maximum speed before the fixed side electrode and the movable side electrode come into contact with each other.
固定側電極と、該固定側電極と対向配置され電気的に接触する可動側電極と、該可動側電極を駆動する駆動部とを備え、前記可動側電極と前記駆動部が駆動軸を介して接続されていると共に、前記固定側電極と前記可動側電極及び前記駆動部が直線状に配置されている遮断器であって、
絶縁体で構成された前記駆動軸の前記可動側電極とは反対側の先端に設置され、前記固定側電極と前記可動側電極の非接触時に圧縮状態となる前記駆動部内に配置された第1のばねと、該第1のばねとは別に前記駆動軸に一端が、前記駆動部に他端が接続され、前記固定側電極と前記可動側電極の接触時に引っ張り力となる第2のばねとを備え、
前記固定側電極と前記可動側電極との接触時(駆動最終時)に、前記第2のばねの引っ張り力が最大となり、前記可動側電極の駆動速度を減速することを特徴とする遮断器。
A fixed-side electrode, a movable-side electrode that is arranged to face the fixed-side electrode and is in electrical contact with the fixed-side electrode, and a drive unit that drives the movable-side electrode are provided, and the movable-side electrode and the drive unit are interposed via a drive shaft. A circuit breaker in which the fixed side electrode, the movable side electrode, and the driving part are linearly arranged while being connected.
A first unit that is installed at the tip of the drive shaft made of an insulator on the side opposite to the movable side electrode and is placed in the drive unit that is in a compressed state when the fixed side electrode and the movable side electrode are not in contact with each other. And a second spring in which one end is connected to the drive shaft and the other end is connected to the drive portion separately from the first spring, and a tensile force is applied when the fixed electrode and the movable electrode come into contact with each other. With
A circuit breaker characterized in that when the fixed side electrode and the movable side electrode come into contact with each other (at the time of final driving), the tensile force of the second spring is maximized to reduce the driving speed of the movable side electrode.
請求項5に記載の遮断器であって、
前記第1のばねの反発力の最小値は、前記第2のばねの引っ張り力の最大値より大きいことを特徴とする遮断器。
The circuit breaker according to claim 5.
A circuit breaker characterized in that the minimum value of the repulsive force of the first spring is larger than the maximum value of the tensile force of the second spring.
固定側電極と、該固定側電極と対向配置され電気的に接触する可動側電極と、該可動側電極を駆動する駆動部とを備え、前記可動側電極と前記駆動部が駆動軸を介して接続されていると共に、前記固定側電極と前記可動側電極及び前記駆動部が直線状に配置されている遮断器であって、
絶縁体で構成された前記駆動軸の前記可動側電極とは反対側の先端に設置され、前記駆動部内に配置された第1のばねと、該第1のばねの外周に、該第1のばねと同軸上に配置された第2のばねとを備え、
前記第2のばねの巻き数を前記第1のばねの巻き数より少なくし、前記固定側電極と前記可動側電極との接触時(駆動最終時)での前記第2のばねの引っ張り力を、一時的に前記第1のばねの引っ張り力より大きくしたことを特徴とする遮断器。
A fixed-side electrode, a movable-side electrode that is arranged to face the fixed-side electrode and is in electrical contact with the fixed-side electrode, and a drive unit that drives the movable-side electrode are provided, and the movable-side electrode and the drive unit are interposed via a drive shaft. A circuit breaker in which the fixed side electrode, the movable side electrode, and the driving part are linearly arranged while being connected.
The first spring, which is installed at the tip of the drive shaft made of an insulator on the opposite side of the movable side electrode and is arranged in the drive unit, and the first spring on the outer circumference of the first spring. It has a spring and a second spring located coaxially with it.
The number of turns of the second spring is made smaller than the number of turns of the first spring, and the tensile force of the second spring at the time of contact between the fixed side electrode and the movable side electrode (at the final drive) is applied. , A circuit breaker characterized in that the tensile force of the first spring is temporarily increased.
固定側電極と、該固定側電極と対向配置され電気的に接触する可動側電極と、該可動側電極を駆動する駆動部とを備え、前記可動側電極と前記駆動部が駆動軸を介して接続されていると共に、前記固定側電極と前記可動側電極及び前記駆動部が直線状に配置されている遮断器であって、
絶縁体で構成された前記駆動軸の前記可動側電極とは反対側の先端に設置され、前記駆動部内に配置された第1のばねと、該第1のばねの外周に、該第1のばねと同軸上に配置された第2のばねと、前記駆動軸に設置されている磁石受け部と、該磁石受け部と対向配置された電磁石とを備え、
前記固定側電極と前記可動側電極間の距離が一定以上近づいた段階で、一時的に前記電磁石を作動させて前記磁石受け部を吸引接触して前記駆動軸に減速力を発生させ、駆動途中の駆動終盤時での駆動速度を急減速し、減速後、前記電磁石をOFFにして前記磁石受け部との吸引接触を開放し、前記固定側電極と前記可動側電極を低速度で接触させることを特徴とする遮断器。
A fixed-side electrode, a movable-side electrode that is arranged to face the fixed-side electrode and is in electrical contact with the fixed-side electrode, and a drive unit that drives the movable-side electrode are provided, and the movable-side electrode and the drive unit are interposed via a drive shaft. A circuit breaker in which the fixed side electrode, the movable side electrode, and the driving part are linearly arranged while being connected.
The first spring, which is installed at the tip of the drive shaft made of an insulator on the opposite side of the movable side electrode and is arranged in the drive unit, and the first spring on the outer periphery of the first spring. A second spring arranged coaxially with the spring, a magnet receiving portion installed on the drive shaft, and an electromagnet arranged facing the magnet receiving portion are provided.
When the distance between the fixed side electrode and the movable side electrode approaches a certain level or more, the electromagnet is temporarily operated to attract and contact the magnet receiving portion to generate a deceleration force on the drive shaft, and during driving. The drive speed at the end of the drive is suddenly decelerated, and after the deceleration, the electromagnet is turned off to release the attraction contact with the magnet receiving portion, and the fixed side electrode and the movable side electrode are brought into contact with each other at a low speed. A circuit breaker featuring.
固定側電極と、該固定側電極と対向配置され電気的に接触する可動側電極と、該可動側電極を駆動する駆動部とを備え、前記可動側電極と前記駆動部が駆動軸を介して接続されていると共に、前記固定側電極と前記可動側電極及び前記駆動部が直線状に配置されている遮断器であって、
絶縁体で構成された前記駆動軸の前記可動側電極とは反対側の先端に設置され、前記駆動部内に配置されたばねと、前記駆動軸と一緒に動作する接触板と対向して配置された油圧ダンパとを備え、
前記固定側電極と前記可動側電極とが非接触状態では前記ばねは圧縮状態で、前記油圧ダンパと前記接触板の距離が所定値離れており、前記ばねの引っ張り力により前記可動側電極が前記固定側電極に向って移動すると前記油圧ダンパと前記接触板の距離が徐々に減少し、前記油圧ダンパが前記接触板に接触することにより前記油圧ダンパが前記駆動軸に減速力を発生させ、駆動途中の駆動終盤時での駆動速度を急減速し、減速後、再び前記可動側電極が前記固定側電極に向って移動して前記固定側電極と前記可動側電極とが接触することを特徴とする遮断器。
A fixed-side electrode, a movable-side electrode that is arranged to face the fixed-side electrode and is in electrical contact with the fixed-side electrode, and a drive unit that drives the movable-side electrode are provided, and the movable-side electrode and the drive unit are interposed via a drive shaft. A circuit breaker in which the fixed side electrode, the movable side electrode, and the driving part are linearly arranged while being connected.
It was installed at the tip of the drive shaft made of an insulator on the opposite side of the movable side electrode, and was arranged so as to face the spring arranged in the drive unit and the contact plate operating together with the drive shaft. Equipped with a hydraulic damper,
When the fixed side electrode and the movable side electrode are not in contact with each other, the spring is in a compressed state, the distance between the hydraulic damper and the contact plate is separated by a predetermined value, and the pulling force of the spring causes the movable side electrode to move. When moving toward the fixed side electrode, the distance between the hydraulic damper and the contact plate gradually decreases, and when the hydraulic damper comes into contact with the contact plate, the hydraulic damper generates a deceleration force on the drive shaft to drive the drive shaft. The driving speed at the end of driving in the middle is suddenly decelerated, and after deceleration, the movable side electrode moves toward the fixed side electrode again, and the fixed side electrode and the movable side electrode come into contact with each other. Breaker.
固定側電極と、該固定側電極と対向配置され電気的に接触する可動側電極と、該可動側電極を駆動する駆動部とを備え、前記可動側電極と前記駆動部が駆動軸を介して接続されていると共に、前記固定側電極と前記可動側電極及び前記駆動部が直線状に配置されている遮断器であって、
前記駆動軸の一部を回転可能に構成すると共に、絶縁体で構成された前記駆動軸の前記可動側電極とは反対側の先端に設置され、前記駆動部内に配置されたばねと、前記駆動軸の回転可能に構成された部分に溝部を設け、前記溝部を移動する突起体とを備え、
前記固定側電極と前記可動側電極とが非接触状態では前記ばねは圧縮状態で、前記ばねの引っ張り力により前記可動側電極が前記固定側電極に向って移動すると前記突起体が前記溝部を移動することにより前記駆動軸に減速力を発生させ、駆動途中の駆動終盤時での駆動速度を急減速し、減速後、前記駆動軸の回転可能に構成された部分が回転し、前記突起体が前記溝部を移動することによって、再び前記可動側電極が前記固定側電極に向って移動して前記固定側電極と前記可動側電極とが接触することを特徴とする遮断器。
A fixed-side electrode, a movable-side electrode that is arranged to face the fixed-side electrode and is in electrical contact with the fixed-side electrode, and a drive unit that drives the movable-side electrode are provided, and the movable-side electrode and the drive unit are interposed via a drive shaft. A circuit breaker in which the fixed side electrode, the movable side electrode, and the driving part are linearly arranged while being connected.
A part of the drive shaft is rotatably configured, and a spring installed at the tip of the drive shaft made of an insulator on the opposite side of the movable side electrode and arranged in the drive unit, and the drive shaft. A groove is provided in the rotatably configured portion of the above, and a protrusion for moving the groove is provided.
When the fixed side electrode and the movable side electrode are in a non-contact state, the spring is in a compressed state, and when the movable side electrode moves toward the fixed side electrode due to the tensile force of the spring, the protrusion moves the groove portion. By doing so, a deceleration force is generated in the drive shaft, the drive speed at the end of the drive during the drive is suddenly decelerated, and after the deceleration, the rotatable portion of the drive shaft rotates, and the protrusions are formed. A breaker characterized in that, by moving the groove portion, the movable side electrode moves toward the fixed side electrode again, and the fixed side electrode and the movable side electrode come into contact with each other.
請求項10に記載の遮断器であって、
前記溝部は、軸方向に伸延する直線状の第1の溝部と、該第1の溝部の前記駆動部側端部から連続して形成された曲線状の第2の溝部とから成り、
前記可動側電極が前記固定側電極に向って移動すると前記突起体が前記第1の溝部を移動し、前記駆動軸の回転可能に構成された部分が回転し、前記突起体が前記第2の溝部の曲線状の曲率部に衝突することにより前記駆動軸に減速力を発生させ、駆動途中の駆動終盤時での駆動速度を急減速することを特徴とする遮断器。
The circuit breaker according to claim 10.
The groove is composed of a linear first groove extending in the axial direction and a curved second groove continuously formed from the drive portion side end of the first groove.
When the movable side electrode moves toward the fixed side electrode, the protrusion moves in the first groove portion, the rotatably configured portion of the drive shaft rotates, and the protrusion becomes the second. A breaker characterized in that a deceleration force is generated in the drive shaft by colliding with a curved curved portion of the groove portion, and the drive speed at the end of the drive during the drive is suddenly decelerated.
固定側電極と、該固定側電極と対向配置され電気的に接触する可動側電極と、該可動側電極を駆動する駆動部とを備え、前記可動側電極と前記駆動部が駆動軸を介して接続されていると共に、前記固定側電極と前記可動側電極及び前記駆動部が直線状に配置されている遮断器であって、
絶縁体で構成された前記駆動軸の前記可動側電極とは反対側の先端に設置され、前記駆動部内に配置されたばねと、前記固定側電極の周囲に配置された電磁石とを備え、
前記電磁石に電流を流し、前記電磁石による吸着力(A)と前記ばねによる前記固定側電極と前記可動側電極の引きはがし力(B)の関係がA>Bであれば、前記固定側電極と前記可動側電極が接触して導通し、前記電磁石の電流がOFFか又は弱まりA<Bになれば、前記固定側電極と前記可動側電極が分離して非導通となることを特徴とする遮断器。
A fixed-side electrode, a movable-side electrode that is arranged to face the fixed-side electrode and is in electrical contact with the fixed-side electrode, and a drive unit that drives the movable-side electrode are provided, and the movable-side electrode and the drive unit are interposed via a drive shaft. A circuit breaker in which the fixed side electrode, the movable side electrode, and the driving part are linearly arranged while being connected.
The drive shaft made of an insulator is provided with a spring installed at the tip opposite to the movable side electrode and arranged in the drive unit, and an electromagnet arranged around the fixed side electrode.
When a current is passed through the electromagnet and the relationship between the attractive force (A) by the electromagnet and the peeling force (B) between the fixed side electrode and the movable side electrode by the spring is A> B, the fixed side electrode and the fixed side electrode When the movable side electrodes come into contact with each other and conduct, and the current of the electromagnet becomes OFF or weakens A <B, the fixed side electrode and the movable side electrode are separated and become non-conducting. vessel.
JP2019156645A 2019-08-29 2019-08-29 circuit breaker Active JP7347998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019156645A JP7347998B2 (en) 2019-08-29 2019-08-29 circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019156645A JP7347998B2 (en) 2019-08-29 2019-08-29 circuit breaker

Publications (2)

Publication Number Publication Date
JP2021034335A true JP2021034335A (en) 2021-03-01
JP7347998B2 JP7347998B2 (en) 2023-09-20

Family

ID=74677631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019156645A Active JP7347998B2 (en) 2019-08-29 2019-08-29 circuit breaker

Country Status (1)

Country Link
JP (1) JP7347998B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078971A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Switching device for electromagnetic repelling drive power
JP2009266511A (en) * 2008-04-24 2009-11-12 Japan Ae Power Systems Corp Vacuum circuit breaker
JP2014186878A (en) * 2013-03-25 2014-10-02 Mitsubishi Electric Corp Electromagnetic operation type opening/closing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078971A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Switching device for electromagnetic repelling drive power
JP2009266511A (en) * 2008-04-24 2009-11-12 Japan Ae Power Systems Corp Vacuum circuit breaker
JP2014186878A (en) * 2013-03-25 2014-10-02 Mitsubishi Electric Corp Electromagnetic operation type opening/closing device

Also Published As

Publication number Publication date
JP7347998B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP2010503161A (en) Vacuum circuit breaker
US4272661A (en) High speed vacuum interrupter
JP2011009156A (en) Gas-blast circuit breaker with injection resistance contact and its injection, the circuit break method
US10818454B2 (en) High speed switch
US20220238288A1 (en) Switchgear with manual trip assembly and mechanical interlock
CN105190814A (en) Lorentz force activated electric switching device
KR101300264B1 (en) Switchgear
JP4172615B2 (en) Switching contacts and switches
GB2168199A (en) Electric switches
JP2021034335A (en) Circuit breaker
JP6535610B2 (en) Gas circuit breaker
JP4829097B2 (en) Electromagnetic actuator
US20150114933A1 (en) Pushrod assembly for a medium voltage vacuum circuit breaker
KR200406796Y1 (en) Disconnector for gas insulated switchgear
CN114097054B (en) Circuit breaker
WO2019073671A1 (en) Gas circuit breaker
JP6300681B2 (en) Switchgear
WO2021176751A1 (en) Electromagnetic-operation-type switching device
JP7154983B2 (en) circuit breaker
JP7422947B2 (en) Controller
JPH08306269A (en) Gas-blast circuit-breaker
JP6992434B2 (en) Solid insulation switchgear
JP2003036771A (en) Switch
JPH08222092A (en) Electromagnetic repulsive driving device for vacuum circuit breaker
JP2002124161A (en) Switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230907

R150 Certificate of patent or registration of utility model

Ref document number: 7347998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150